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Abstract

Despite the dominance of convolutional and
transformer-based architectures in image-to-
image retrieval, these models are prone to biases
arising from low-level visual features, such as
color. Recognizing the lack of semantic under-
standing as a key limitation, we propose a novel
scene graph-based retrieval framework that em-
phasizes semantic content over superficial im-
age characteristics. Prior approaches to scene
graph retrieval predominantly rely on supervised
Graph Neural Networks (GNNs), which require
ground truth graph pairs driven from image cap-
tions. However, the inconsistency of caption-
based supervision stemming from variable text en-
codings undermine retrieval reliability. To address
these, we present SCENIR, a Graph Autoencoder-
based unsupervised retrieval framework, which
eliminates the dependence on labeled training
data. Our model demonstrates superior perfor-
mance across metrics and runtime efficiency, out-
performing existing vision-based, multimodal,
and supervised GNN approaches. We further
advocate for Graph Edit Distance (GED) as a
deterministic and robust ground truth measure
for scene graph similarity, replacing the inconsis-
tent caption-based alternatives for the first time
in image-to-image retrieval evaluation. Finally,
we validate the generalizability of our method
by applying it to unannotated datasets via auto-
mated scene graph generation, while substantially
contributing in advancing state-of-the-art in coun-
terfactual image retrieval. The source code is
available at https://github.com/nickhaidos/scenir-
icml2025.
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Figure 1. Top: Example of visual biases (color bias) in image
retrieval when using visual models vs ours. Bottom: Example of
the retrieval variability of SBERT models (top-1 retrieved items).

1. Introduction
With the advent of deep visual models, transiting from Con-
volutional Neural Networks (CNNs) to Vision Transformers
(ViT), unprecedented performance has been reported across
a variety of vision tasks. However, it is still unclear whether
related models fully rely on correlational patterns or acquire
an understanding of semantics, i.e. objects, attributes and
their relationships. For example, CNNs lack understanding
of contextual dependencies (Lin et al., 2020), while ViTs are
widely exposed to correlation biases (Ghosal & Li, 2024),
revealing that true knowledge of visual semantics has not
yet been conquered (Wang et al., 2023b). To this end, there
is an extensive line of work exposing erroneous results on
state-of-the-art (SotA) visual models due to biases (Shi et al.,
2022; Park & Kim, 2022; Wei et al., 2023; Murali et al.,
2023; Menon et al., 2023; Izmailov et al., 2024; Puaduraru
et al., 2024; Zheng et al., 2025).

We briefly demonstrate an example of biased image-to-
image retrieval in Figure 1. Efficient-ViT (Cai et al., 2023) -
a SotA image classifier - retrieves results that are predom-
inantly based on color attributes, such as ’black & white’
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rather than semantics (as seen in the top-1 and top-2 po-
sitions). This behavior strongly suggests that a dispropor-
tionate focus is placed on visual features like color. In turn,
semantic relationships are overlooked - i.e the fact that the
depicted group of people is riding a form of sports equip-
ment (bikes, pairs of skis).

Figure 2. Agreement be-
tween top-1 retrieved items
with various SBERT models
(MPNet: all-mpnet-base-v2,
RoBERTa: all-distilroberta-
v1, MiniLM: all-minilm-l6-
v2) for caption retrieval.

We argue that harnessing se-
mantic information and mit-
igating visual biases can be
tackled by adopting scene
graphs in visual pipelines, as
they provide structured repre-
sentations of images, where
the objects, attributes and re-
lationships are explicitly pre-
sented (Chang et al., 2021).
As a result, when a scene
graph is employed for a vi-
sion task, such as image simi-
larity -the focus of this work-
concepts drive the decision-
making of the underlying
model. Thus, advanced inter-
pretability and robustness is
offered (Wang et al., 2023b),
while redundant visual details
(lighting, camera angle, black & white image etc.) become
less influential. Ultimately, the problem of image-to-image
retrieval translates to that of scene graph retrieval.

However, this domain is not devoid of computational obsta-
cles. Scene graph retrieval essentially requires solving graph
matching and ultimately calculating Graph Edit Distance
(GED) (Sanfeliu & Fu, 1983), an NP-hard problem (Zeng
et al., 2009). To accelerate GED calculation, Graph Neu-
ral Networks (GNNs) have been utilized to acquire scene
graph embeddings, facilitating efficient retrieval in lower-
dimensionality spaces. Existing endeavors for GNN-based
GED acceleration harness pre-calculated similarity scores
between graph pairs, which demands obtaining ground truth
GED scores beforehand (Dimitriou et al., 2024).

Staying within the supervised training spectrum, and by
acknowledging the computational restrictions of GED cal-
culation, other works resort to the utilization of captions
as the ground truth supervision signals for GNN training
(Yoon et al., 2021; Maheshwari et al., 2021; Wang et al.,
2023b). Caption matching is based on pre-trained Sentence-
BERT (SBERT) models (Reimers & Gurevych, 2019), which
provide embedding representations of captions, allowing
the computation of cosine similarity scores between their
embeddings. Even this seemingly simple solution poses
various disadvantages. To elaborate, there is non-negligible
variability depending on the chosen SBERT model, result-

ing in different top-k matchings for a given query caption -
as briefly demonstrated in Fig. 1. In general, SBERT mod-
els tend to return disagreeing rankings, when compared to
each other; in Fig. 2, we calculate the agreement in top-1
retrieved results using some of the best-performing SBERT
models for embedding captions1. As evidenced in the ma-
jority of results, there is significant disagreement (≥40%)
between the top-1 retrievals across models. Such inconsis-
tencies in the supposed ground truth will inevitably cause
error cascading in the trained GNN, ultimately leading to
inconsistent outputs, as we demonstrate empirically in Sec-
tion 4.2. On top of that, language as a ground truth modality
should not be considered without apprehension. Captions
are usually short descriptions, providing a very high-level
representation of the image without comprehensive seman-
tic details. Moreover, there is no definitive way to measure
the similarity between two sentences, leading to dispute
even among humans (Wang & Dong, 2020). All these is-
sues suggest that deviating from captions as a ground truth
GNN supervision signal is likely a more effective solution.

In this work, we propose a solution to bypass relying both
on GED as well as image captions for GNN supervision.
Instead, we favor unsupervised methods for scene graph
retrieval, a topic that has been largely underexplored in
previous research. Additionally, we highlight the need to
scrutinize the evaluation strategies used for assessing scene
graph retrieval systems, as they often lack reliable and ro-
bust ground-truth measures. To this end, we contribute to
the following: 1 We propose SCENIR, an Unsupervised
Graph Autoencoder for scene graph retrieval that eliminates
the need for similarity labels, while surpassing supervised
methods in both performance and computational efficiency.
2 We advocate the utilization of GED as the standard

evaluation framework to compute reliable similarity scores
without variability, therefore deterministically assessing the
capacity of the models to capture important semantic infor-
mation. 3 We present the extendability of our method on
unannotated images via Scene Graph Generation (SGG) and
offer use cases such as counterfactual image explanations.

2. Related work
Graph Autoencoders (GAEs) are at the center of our
work. Despite the novel contribution of our proposed model,
we utilize and build upon well-known GAE architectures,
such as VGAE (Kipf & Welling, 2016) which learns graph
representations by attempting to reproduce their original ad-
jacency matrix from latent node embeddings in an encoder-
decoder fashion. The Adversarially Regularized Variational
Graph Autoencoder (ARVGA) (Pan et al., 2018) further

1Captions from 3000 images, from the PSG dataset(Yang et al.,
2022) (under license CC-BY 4.0).
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boosts the regularization of the latent embeddings via ad-
versarial training. While both methods focus exclusively on
topological aspects of the graph, the Graph Feature Autoen-
coder (GFA) (Hasibi & Michoel, 2021) implements a new
decoder that solely regards node information, which learns
to reconstruct the original feature matrix. In this paper, we
propose a carefully designed combination and extension
of architectural components to enhance the representative
power of GAEs for semantic graphs.

Graph similarity methods leverage the topological struc-
ture and semantic content of graphs to measure their dif-
ferences. While often a step in retrieval pipelines, their
relevance here is complementary, as scene graph retrieval
frameworks are a distinct field. Often employed in graph
similarity endeavors, deterministic similarity/distance met-
rics such as GED (Sanfeliu & Fu, 1983) are computationally
expensive, ultimately rendering the use of approximation
frameworks like GNNs an imperative choice. Most widely
used GNN models are supervised, i.e. they are trained us-
ing either a large amount of pre-computed similarity labels
(Bai et al., 2018a;b; Zhuo & Tan, 2022), or ground-truth
positive/negative pairs (Li et al., 2019; Ying et al., 2020). In
contrast, SCENIR mitigates the extensive data requirements
by employing unsupervised GAEs to encode scene graphs
and then compute embedding similarity. GED is only used
in the evaluation stage as a ground truth measure.

Scene graph retrieval though well-defined as a field, re-
mains relatively underexplored in literature. In the general
context of similarity, scene graphs have primarily been uti-
lized for cross-modal text-image retrieval (Wang et al., 2019;
Peng & Chi, 2020; Zhong et al., 2021; Wang et al., 2023a).
However, despite its semantic advantages, image-to-image
retrieval through scene graphs, the focus of our work, has
received limited attention so far (Yoon et al., 2021; Mahesh-
wari et al., 2021; Wang et al., 2023b). Yoon et al. (2021)
(IRSGS) train a three-layer siamese GNN leveraging simi-
larity labels derived from SBERT-embedded image captions.
The same caption-based similarities are treated as ground
truth for evaluation. Their probabilistic training method
requires labels that scale quadratically with respect to the
available scene graphs. Our approach differs from their
framework in two major ways: a) relying entirely on unsu-
pervised models for greater efficiency in training time and
label requirements, and b) using the more robust GED as
ground truth. Recent work by Wang et al. (2023b) merges
visual and graph features for multi-modal image retrieval
using images and scene graphs as input. Finally, the ap-
proach of Dimitriou et al. (2024) (Graph Counterfactuals -
GC) explores GNN-based methods to produce counterfac-
tual explanations (CEs) for scene classifiers, utilizing GED
as the evaluation framework, similar to us. Although our
primary focus is on scene graph retrieval rather than CEs,

we present a brief comparative use case within the counter-
factual context. In doing so, we demonstrate that SCENIR
is more competent in the inductive setting, a scenario not
explored in their work.

3. Method
3.1. Notation & Problem Formulation

In this paper, we focus on image-to-image retrieval using
scene graphs; thus, a suitable dataset comprises (I,G)
pairs, where I is an image, and G the corresponding scene
graph. Formally, a scene graph G = (V,E) consists of a set
of nodes V and a set of edges E ⊆ V × V . It is specifically
formulated as a feature matrix X ∈ Rn×d (information
about objects in image I), and an adjacency matrix
A ∈ Rn×n (information about relations in image I), where
n = |V | is the number of nodes, and d the feature vector
dimensionality per node. A scene graph retrieval framework
receives as input the query pair (Iq, Gq) and the can-
didate pairs {(Ic1 , Gc1), (Ic2 , Gc2), . . . (Icn , Gcn)}.
The output is a permutation of the candidates
{(Ik1

, Gk1
), (Ik2

, Gk2
), . . . (Ikn

, Gkn
)}, which aims

to approximate the ranking of a surrogate similarity
measure sim(Gq, Gci) defined on the scene graphs. For
this similarity measure we utilize GED, as proposed in
Dimitriou et al. (2024), where, instead of exclusively
utilizing it for evaluating counterfactual explanations, we
extend it to evaluate scene graph retrieval in general.

Here, we harness GNNs to extract global embeddings for
query and candidate scene graphs, and then calculate the fi-
nal rankings through cosine similarity. Despite this retrieval
pipeline being conceptually simple, using unsupervised rep-
resentations for scene graph retrieval is surprisingly an un-
derexplored topic. To this end, our experimentation revolves
around GAE models, which we integrate to our retrieval
framework as sub-modules to compute embeddings.

3.2. Proposed Model

While existing GAE approaches have shown promise in
graph-based tasks, they face key limitations with scene
graph retrieval, including struggles with complex node-edge
representations, limited expressiveness of inner-product
decoders, and loss of discriminative power due to over-
smoothing. Our proposed SCENIR (SCene-graph auto-
ENcoder for Image Retrieval) framework addresses these
challenges through a carefully designed combination of split
encoders, MLP-based decoders, and adversarial training.

Encoder The encoder comprises two GNN modules
(GNNµ and GNNσ), whose goal is to encode the input
graph into a learned latent space. It takes as input the
scene graph’s feature matrix X and adjacency matrix A,
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Figure 3. Overall Scene Graph Retrieval pipeline: training (top) and inference (bottom), with scene graphs linked to images in the dataset.
The architecture of the proposed SCENIR model is depicted. The only loss term that does not originate from the Discriminator or the
Decoder’s modules is LKL for the variational regularization, that is applied directly to the encoder output.

and outputs a latent node embeddings matrix Z ∈ Rn×dl .
The authors of the original VGAE (Kipf & Welling, 2016)
suggest leveraging a shared GNN layer followed by sepa-
rate GNNµ and GNNσ for variational training, which is
a widely adopted model option. We instead find that it is
more beneficial to completely split GNNµ and GNNσ into
two independent 3-layer branches.

The split between GNNµ and GNNσ branches is moti-
vated by the distinct roles of mean and variance parameters
in variational inference, where mean embeddings capture
structural features while variance embeddings model uncer-
tainty. Thus, the independent branches allow these distinct
aspects to be learned more effectively. Ablation studies
(offered in App. D) showcase that this architectural choice
enhances retrieval accuracy compared to the shared-layer
approach. Formally, the encoder is expressed as:

Zµ = GNNµ,3 (GNNµ,2 (GNNµ,1 (X,A)))

Zσ = GNNσ,3 (GNNσ,2 (GNNσ,1 (X,A)))
(1)

All GNN functions can be implemented using any message-
passing module, such as GCN (Kipf & Welling, 2017) or
GIN (Xu et al., 2019). Bias terms and RELU activation func-
tions are included for each GNN layer in the implementation.
Notably, Zσ is only employed during training.

Decoder A key innovation in our architecture is the de-
coder design, which comprises two parallel branches: an
Edge Decoder and a Feature Decoder, both implemented as
2-layer MLPs instead of the traditional no-parameter inner-

product decoder, as in VGAE and ARVGA (Pan et al., 2018).
This design choice allows the autoencoder to learn more
sophisticated relations in the encoded latent space compared
to a simple inner-product, which proves to have great im-
pact in the case of semantic similarity between scene graphs.
Mathematically, the formulation of the decoder is:

Ze = We,2We,1Z

Ap = σ(ZeZT
e )

Zf = Wf,2Wf,1Z
(2)

where W∗ are learnable weights (bias and RELU activation
included in the implementation), σ is the sigmoid function,
Ap ∈ Rn×n, with Ap,ij ∈ [0, 1], is the predicted adjacency
matrix and Zf ∈ Rn×d is the predicted feature matrix.

The incorporation of MLP instead of GNN in the decoder
addresses the challenge of embedding oversmoothing that
occurs when stacking multiple graph convolution layers (Li
et al., 2018). Our choice of a 2-layer MLP decoder, and
3-layer GNN encoder architecture additionally aligns with
recent findings (Luo et al., 2024) that demonstrate the ef-
fectiveness of simpler, shallow architectures over complex
ones in the majority of graph-based tasks. This balanced
design achieves both model expressiveness and computa-
tional speed, demonstrating superior performance in graph
retrieval, while also maintaining significant computational
efficiency (further details in Section 4.4).

Discriminator To enhance learned representation quality,
we integrate adversarial training through a discriminator
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module, as proposed by Pan et al. (2018). This module
distinguishes between real samples from a prior distribution
(typically Gaussian ∼ N (0, I)) and fake latent embeddings
generated by the encoder. This adversarial component helps
to further regularize the latent space and improve the overall
representation quality. The discriminator is implemented as
a 2-layer MLP, with a binary output (real/fake).

Training The model is trained end-to-end with a com-
prehensive loss function that combines multiple objectives
from all the aforementioned modules:

L =λ1(Lfeat recon + Ledge recon)+

λ2Ladv + λ3LKL

(3)

where Lfeat recon is the Mean Squared Error (MSE) loss
between the original X and predicted Zf feature matrices,
while Ledge recon is the reconstruction loss between the
original A and the predicted Ap adjacency matrices defined
as Eq(X|Ze,A) [log p (A|Ze)]. Ladv is the adversarial loss
implemented as Binary Cross Entropy Loss for the discrim-
inator prediction, and LKL is the Kullback-Leibler Diver-
gence of the latent embeddings to the prior Gaussian dis-
tribution N (0, I). To further improve training stability, we
implement an Exponential Learning Rate Scheduler with a
gamma of 0.95, and we apply loss tradeoff terms λi (details
in Appendix D) resulting in the final loss equation 3.

Inference At inference time, global scene graph represen-
tations are generated by applying sum-pooling to the latent
node embeddings Zµ from the trained GNNµ encoder (Fig.
3). This pooling strategy is selected for its proven superior
discriminative power (Xu et al., 2019) in capturing graph-
level representations (especially in cases with distinct node
types, such as in scene graph representations), when com-
pared to other pooling functions (e.g. mean or max).

4. Experiments
Datasets For our experiments we leverage the PSG scene
graph dataset (Yang et al., 2022), a more curated version of
the traditional scene graph dataset, Visual Genome (Krishna
et al., 2017), as it is based on more advanced panoptic seg-
mentation masks, containing almost 49K annotated image,
caption and scene graph samples. We select 11K scene
graphs for training, and 1K scene graphs for testing. Statis-
tics for the finally preprocessed scene graphs are presented
in Fig. 4. We also experiment on images from Flickr30K
(Young et al., 2014) to evaluate SCENIR in a real-world
use case, where caption and scene-graph annotations are
unavailable, requiring us to generate synthetic ones (details
about dataset preprocessing in Appendix A).

Ground Truth and Evaluation We employ approximate
GED as the ground truth distance/similarity for evaluating

Figure 4. Maximum path lengths and mean values for graph met-
rics, for the preprocessed PSG graphs.

our approach, motivated by recent work adjacent to our field
(Dimitriou et al., 2024) that emphasizes semantic similarity
over low-level features, such as pixels. In accordance to
their analysis and our experimental findings, GED’s robust-
ness eliminates ambiguity in generating golden rankings,
unlike methods such as captioning (Fig. 2). Our experi-
ments are based on an inductive retrieval setting, i.e. both
the test query and candidates are not available to the model
during training. We compute GED between all pairs of the
1K test graphs, and finally extract the ground-truth rank-
ings. In total, we have 1K test queries, each accompanied
by 999 retrieved and ranked objects. Using these GED rank-
ings as ground truth, we evaluate all models on NDCG@k,
MAP@k, and MRR (k = 1, 3, 5, 10).

Baselines We initially compare our proposed architecture,
to SotA pre-trained Vision and Vision-Language (VL) mod-
els, supervised GNNs, and basic GAEs. For the Vision mod-
els, we use two pre-trained convolution-based architectures,
ConvNeXt-V2-Large (Woo et al., 2023) and InceptionNeXt-
Base (Yu et al., 2024), two pretrained ViT-based models,
EfficientViT-L3 (Cai et al., 2023) and DeiT-III-Large (Tou-
vron et al., 2022), and four pre-trained VL models, CLIP
(ViT-L-14) (Radford et al., 2021), BLIP (base) (Li et al.,
2022), BLIP-2 (COCO finetuned) (Li et al., 2023b) and AL-
BEF (base) (Li et al., 2021). For the inference stage of vision
models, we extract the pooled last-layer feature vectors per
image, while for the VL models we encode the query image
and the candidate captions for image-text retrieval. The final
rankings are calculated via cosine similarity between these
vectors.

Regarding GNNs, we compare with IRSGS-GCN/GIN - the
current SotA for supervised scene graph retrieval - retaining
the original training details (Yoon et al., 2021). We also
maintain caption similarity labels as a supervision signal for
training, as originally proposed by the authors, harnessing
two SBERT models (MPNet and RoBERTa), in order to
assess whether SBERT disagreements affects the models’
output. As for the GAEs, we evaluate VGAE and ARVGA,
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Table 1. Retrieval results (as occurring with comparison to ground-truth GED ranks) using supervised and unsupervised GNNs, as well as
Vision & VL models. Bold denotes the best overall result, underlined denotes best results within each model category.

MODEL
NDCG↑ MAP↑ MRR↑

@1 @3 @5 @10 @1 @3 @5 @10

V
IS

IO
N CONVNEXT 12.33 12.50 12.47 13.06 24.60 34.87 36.83 35.33 41.74

INCEPTIONNEXT 12.63 12.67 12.90 13.64 23.90 33.92 36.03 35.33 41.27
EFFICIENT-VIT 13.47 13.49 13.40 13.89 25.70 35.86 37.27 36.36 42.66
DEIT-III 12.75 13.25 13.05 13.78 25.40 35.74 37.32 36.27 42.48

V
L

CLIP 15.63 14.64 14.58 14.93 28.80 38.21 39.38 38.25 44.79
BLIP2 13.64 14.23 14.60 15.29 25.90 36.62 39.14 38.13 43.73
BLIP 15.62 15.19 15.00 15.38 28.50 38.57 40.01 38.86 45.10
ALBEF 15.77 15.37 15.36 15.69 28.10 38.58 39.99 38.73 45.11

E
X

IS
T

IN
G

G
N

N

IRSGS-GCNMPNet 27.50 25.84 24.70 23.53 41.50 51.33 51.82 49.18 56.42
IRSGS-GINMPNet 29.83 27.68 26.75 26.04 44.10 53.17 53.64 50.49 58.73
IRSGS-GCNRoberta 28.93 26.03 25.20 24.17 44.10 53.01 53.62 50.05 58.19
IRSGS-GINRoberta 29.64 27.96 27.13 26.00 43.80 54.12 54.22 50.67 59.16

VGAE-GCN 27.30 25.68 24.77 23.91 40.90 50.63 51.11 48.35 55.76
VGAE-GIN 27.27 26.26 25.27 24.41 41.80 50.84 51.43 48.73 56.58
ARVGA-GCN 26.59 25.10 24.26 23.84 39.70 49.46 50.07 47.44 55.09
ARVGA-GIN 25.09 24.93 24.36 24.08 40.20 50.53 51.34 48.71 55.92

O
U

R
S SCENIR-GCN 26.42 25.05 23.92 22.55 39.30 48.37 48.80 46.61 53.61

SCENIR-GIN 31.39 28.77 27.59 26.28 44.60 54.16 54.27 51.70 59.01

as well as our SCENIR, implementing each one with GCN
and GIN modules to ensure a fair comparison.

Implementation We utilize PyTorch Geometric (Fey &
Lenssen, 2019) for supervised and unsupervised GNNs,
training them on a single P100 GPU. The mean-pooled
node embeddings of the last layer serve as the graph em-
beddings for IRSGS variants, while sum-pooling on the
latent node embeddings (encoder output) is used for the
GAEs. For Vision/VL pre-trained model implementations,
we leverage open-source libraries (Wightman, 2019; Li et al.,
2023a). For all models, predicted rankings are obtained via
cosine similarity through one-step retrieval (no secondary
pre-ranking), to isolate the model’s retrieval abilities. More
details are presented in Appendix C.

4.1. Quantitative Results

In Table 1 we present test set retrieval results, comparing
Vision and VL models, supervised and unsupervised GNNs.

First and foremost, there is a clear performance gap be-
tween Vision models and GNNs, with Vision models scor-
ing about half as much in NDCG and 15%-20% less in
MAP and MRR. Among Vision models, ViT-based archi-
tectures (Efficient-ViT, DeiT-III) consistently outperform
convolution-based ones. While VL models show modest
improvements of 1%-3% over pure Vision ones, both cate-
gories fall significantly behind GNN-based architectures on
scene graph (and equivalently image-to-image) retrieval.

Focusing on the GNNs, we observe that the supervised
IRSGS performs competitively over the basic unsupervised
VGAE and ARVGA, holding a consistent advantage across
all metrics. Notably, the GIN variants consistently outper-
form their GCN counterparts for all architectures, which can
be attributed to the theoretically proven expressive power of
the GIN module (Xu et al., 2019). Indeed, our SCENIR-GIN
variant achieves 2-3% increase in NDCG, 3-5% in MAP, and
2-5% in MRR compared to its GCN variant. This pattern
holds for both supervised and unsupervised approaches, sug-
gesting that GIN’s structural advantages generalize across
different training paradigms.

Overall, our proposed SCENIR architecture demonstrates
superior performance, surpassing even the supervised
IRSGS across most metrics. Our comprehensive unsuper-
vised approach, combining an MLP-based decoder with a
powerful GIN backbone, can effectively substitute for the
absence of training labels while providing SotA retrieval.

Ablation Studies To understand the contribution of each
integrated architectural component, we conduct ablation
experiments (Table 2), gradually subtracting the main con-
stituents analyzed in Section 3.2. As evidenced in Table 2,
the full benefit of the selected architectural components is
only realized when properly integrated within our entire pro-
posed framework. For example, excluding the MLP decoder
immediately hurts performance by ∼4% in NDCG, MAP
and MRR, while further removing the discriminator slightly
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Figure 5. NDCG@5 score for different number of GNN layers.

deteriorates results. However, when subtracting the GNN
Feature Decoder and the GNN Edge Decoder we observe
some marginal gains, without however approximating the
full SCENIR performance. Additional experiments with
varying numbers of GNN layers in Figure 5 (further results
in Appendix D) show that SCENIR uniquely benefits from
a deeper architecture, achieving optimal performance with
3 layers, while other models exhibit decreased performance
beyond a single layer. This aligns with the path lengths
of our scene graphs (Fig. 4), allowing SCENIR to achieve
semantic representation without over-smoothing.

Table 2. Ablation study results showing the impact of different
modules for SCENIR. Higher values are better for all metrics.

MODEL NDCG@3↑ MAP@3↑ MRR↑

SCENIR 28.27 54.16 59.01
(-MLP DEC.) 24.95 49.27 54.95

(-DISCRIMINATOR) 24.37 49.02 54.22
(-GNN EDGE DEC.) 25.81 50.99 56.61

(-GNN FEATURE DEC.) 25.68 50.63 55.76

4.2. Qualitative Results

Some qualitative results that demonstrate the superiority of
our approach are presented in Figures 6 and 7. In Figure
6, DeiT, a VL model, completely fails to retrieve a rele-
vant image to the query, which depicts a black cat wearing
a white bow tie. Derailed by color-related black& white
patterns, DeiT returns a boy wearing a tuxedo in top-1 posi-
tion. Failed retrievals follow in the top-2 and top-3 places,
portraying people in athletic situations, the semantics of
which are totally unrelated to the query ones. It is uncertain
how DeiT decision-making works in these situations, since
the query image accurately falls within DeiT’s pre-training
distribution on ImageNet-1K (Deng et al., 2009) (which
includes cat classes, denoting that related features should
be well-imbued within DeiT’s representation). Regarding

Figure 6. Qualitative results: VL (DeiT) vs supervised GNNs
(IRSGS-GIN w RoBERTa-based caption similarity) vs SCENIR.

supervised GNNs, even though the top-1 result displaying
a cat is reasonable, subsequent ones depict dogs instead of
cats, revealing the inability of the best IRSGS variant (with
GIN and RoBERTa for caption embeddings) to return the
key semantics of the query. Still, the semantic understand-
ing is elevated in comparison to DeiT, with displayed con-
cepts staying within the ’animal’ category. On the contrary,
SCENIR successfully returns cat images in all top-three
positions, also qualitatively surpassing its competitors.

Caption-driven disagreements In Fig. 7, the impact of
disagreeing SBERT captions and in turn ground-truth ranks
becomes prominent, as proven by the diverging outputs of
IRSGS variants. Specifically, RoBERTa and MPNet-based
supervision signals lead to a discrepancy in all positions,
with the MPNet-based one also returning an irrelevant im-
age at top-2, which does not contain any of the ’bird’ or
’bench’ query semantics. Other than the compared super-
vised GNNs, EfficientViT, lying in the Vision models cate-
gory, is also entirely confused in top-2 and top-3 positions,
resulting in a striking failure to bring images containing at
least one relevant semantic. On the contrary, SCENIR suc-
cessfully retrieves bird-related images in all three positions.

4.3. Extendability

In-the-wild Retrieval To validate our model’s practical
applicability, we evaluate SCENIR’s performance on im-
ages from Flickr30K. This represents a more challenging
real-world scenario where ground truth scene graphs, or cap-
tions are unavailable. We employ PSGTR (Yang et al., 2022)

7



SCENIR: Visual Semantic Clarity through Unsupervised Scene Graph Retrieval

Figure 7. Additional qualitative results. Inconsistent ground truth
matchings lead to inconsistent IRSGS-GIN outputs.

for automated scene graph generation and BLIP-Captioner-
Base (Li et al., 2022) for caption generation to process
the raw images. As shown in Table 3, SCENIR maintains
its superior performance even in this challenging setting,
achieving the highest scores across all retrieval metrics.
These results demonstrate SCENIR’s robustness and gener-
alizability beyond curated datasets, rendering it particularly
valuable for real-world scene graph retrieval applications.

Table 3. Image Retrieval without pre-annotated scene graphs and
captions on Flickr30K.

MODEL NDCG@3↑ MAP@3↑ MRR↑

IRSGS 21.02 49.08 54.30
VGAE 17.92 44.81 50.45
ARVGA 17.51 44.17 49.54
SCENIR 22.75 50.31 56.20

Counterfactual Retrieval Retrieval with emphasis on
depicted semantics - objects and relations - is essential in
tasks such as counterfactual explanations (CEs) (Browne &
Swift, 2020). Semantic-driven CE frameworks identify the
minimum changes required to transit between classification
labels. For image classifiers, this involves finding the most
similar image from a different class and computing the ed-

Table 4. Counterfactual Scene Graph Retrieval on PSG.

MODEL NDCG(B)@1↑ MAP(B)@3↑ MRR(B)↑

VGAE 8.79 11.09 14.23
ARVGA 8.2 10.63 13.79
IRSGS 8.9 11.63 14.96
GC 7.0 8.7 10.67
SCENIR 9.7 11.83 14.99

its between them; particularly, graph edits between scene
graphs to instruct CEs are suggested in the SotA framework
of Graph Counterfactuals (GC) (Dimitriou et al., 2024).
Due to the critical role of the scene graphs in this use case,
we demonstrate the versatility of SCENIR when adopted as
a retrieval component in a CE pipeline: given a query scene
graph in class A we seek the most similar scene graph of
class B ̸= A according to Places365 classifier (Zhou et al.,
2017), which ultimately serves as the CE between the cor-
responding images. For evaluation metrics, we utilize the
binary versions (denoted by ’B’), introduced in GC, where
only the top-1 ground-truth instance is considered relevant2.
Unlike GC’s supervised transductive approach that requires
test graphs during training, our evaluation follows a more
challenging and realistic inductive setting with completely
unseen test graphs. As shown in Table 4, SCENIR outper-
forms all supervised and unsupervised baselines along with
the previous SotA GC framework (which is optimized for
calculating CEs) across all metrics, illustrating our superi-
ority in counterfactual retrieval, without requiring explicit
supervision or exposure to the test set during training.

Table 5. Complexities of scene graph retrieval frameworks, with
respect to the dataset size (PSG dataset, 11k/1k train/test graphs).

MODEL PREPROC. TRAINING INFERENCE TOTAL TIME

GC O(n2) O(n2) O(n) ∼3 hr.
IRSGS O(n2) O(n) O(n) ∼50 min.
SCENIR O(n) O(n) O(n) ∼8 min.

4.4. Computational speedup

As shown in Table 5, SCENIR achieves significant computa-
tional advantages over competitors. Prior SotA supervised
methods like IRSGS and GC require quadratic complexity
with respect to the sampled PSG dataset size in preprocess-
ing and/or training with runtimes of ∼50 minutes and ∼3
hours respectively. SCENIR though maintains linear com-
plexity, executing the entire pipeline in just ∼8 minutes.
This efficiency stems from our unsupervised approach that
eliminates the need for expensive preprocessing of similarity

2The CE setting instructs that only the closest instance is rele-
vant, due to minimality constrains of counterfactual theory.
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labels or caption embeddings. The linear complexity across
preprocessing, training, and inference makes SCENIR par-
ticularly suitable for large-scale retrieval applications.

5. Conclusion
In this work, we propose SCENIR, a novel unsupervised
framework for scene graph retrieval based on graph au-
toencoders. We emphasize the importance of using Graph
Edit Distance, a deterministic graph similarity algorithm,
for evaluating scene graph retrieval. Our proposed model
achieves superior performance in retrieval metrics when
compared to SotA Vision and VL models, as well as su-
pervised GNNs, while also being significantly faster than
its GNN competitors. The qualitative results showcase the
robustness and effectiveness of our approach in retrieving
relevant images, contributing to the underexplored domain
of scene graph retrieval and highlighting the potential of
unsupervised approaches in this field. Through our extend-
ability experiments on unannotated datasets and counterfac-
tual explanation applications, we further highlight the broad
applicability of our framework in real-world scenarios.
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A. Dataset Preprocessing
For the preprocessing of the PSG dataset, we removed the isolated nodes (no incoming and no outgoing edges) of all the
scene graphs, mainly for two reasons: Firstly, the isolated nodes do not contribute in any way during the propagation through
graph convolutional layers (neither do they provide, nor receive any information). Secondly, the PSG dataset defines a special
type of grouped node (noted as ”merged”), which basically represents multiple nodes of the same type. We only retain
these merged nodes, implicitly keeping all the important information (object types and interactions), without obstructing
the training process of the GNNs. Examples of the final scene graphs can be seen in Fig. 11. We used 768-dimensional
Sentence-Transformer embeddings for the 189 object and predicate classes to construct the feature matrix X for each scene
graph, which is required as input for all the GNN models.

B. Ground Truth and Retrieval Metrics
For the computation of the ground-truth GED scores, we need to define costs for each edit operation on the input graphs
(insertion,deletion and substitution). Specifically, we define the node substitution cost as the cosine distance between the
node embeddings, while the node insertion/deletion cost is defined as the cosine distance to the mean node embedding
(average of all the 133 object class embeddings). Additionally for the retrieval metrics, we focus on the top-50 items out of
the 999 retrieved by GED to avoid inflated MAP and MRR scores. For NDCG, we scale the inverse GED score to a range of
[1, 10] to manage outlier instabilities.

It is worth noting that the retrieval metrics behave differently, when changing the number of top-k retrievals. Specifically,
we can see in Table 1 that NDCG steadily decreases as k goes from 1 to 10. This is expected, as it is a harder task to have
a perfect top-m retrieval, than a perfect top-k retrieval, where m > k. This is not the case with MAP, where we have
significantly lower scores when k = 1, compared to k = 3, 5, 10. This exception is a direct result of the definition of MAP,
because it only considers whether a retrieved object is relevant or not. It does not use any relevance scoring system, like
NDCG, something that renders it vulnerable to situations where the top retrieved items vary in relevance. In this case, if
there are highly relevant retrieved top-1 items, NDCG increases according to their relevance score, but MAP will remain
constant independent of their relevance. This phenomenon is especially evident with MAP@1, because the final score is
entirely determined by a single retrieved item.

C. GNN Training Details
Regarding the Graph Autoencoders, they were all trained for 30 epochs, with batch size 64, AdamW Optimizer (lr = 0.001,
β1 = 0.9, β2 = 0.999, weight decay = 0.01), 1000 latent space dimension, 32 output dimension for the Edge Decoder,
768 output dimension for the Feature Decoder, and 1 output dimension for the Discriminator (real/fake). Concerning the
models that employ adversarial training, we followed the training algorithm proposed in Pan et al. (2018), with two separate
AdamW optimizers, one for the Discriminator, and one for the rest of the model parameters. Also, we used an Exponential
Learning Rate Scheduler (γ = 0.95), and Loss Tradeoff terms in order to stabilize the training. Experiments for Loss
Tradeoff terms can be found in the next section.

(a) Layer-wise NDCG@3. (b) Layer-wise MAP@3. (c) Layer-wise MRR.

Figure 8. Variation in NDCG@3, MAP@3 and MRR for different number of layers, for each GAE. The 3-layer variant of SCENIR
performs the best in every metric.
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(a) NDCG@3 performance. (b) MAP@3 performance. (c) MRR performance.

Figure 9. Variation in NDCG@3, MAP@3 and MRR for different values of each loss term, in the final loss function.

D. Further GNN Architecture Experiments
In Figure 8, we report the results on NDCG@3, MAP@3 and MRR for different number of GNN layers, on the SCENIR-
GIN architecture. Results follow the same trajectory depicted in Fig. 7 of the main paper, showing that the 3-layer GNN
outperforms the rest, on every metric.

We also report the results on Loss Trade-off Term tuning. Specifically, the final loss function of SCENIR, can be written as:

L = λ1 (Lfeat recon + Ledge recon) + λ2Ladv + λ3LKL (4)

Here, λ1 denotes the loss weight for the graph reconstruction, λ2 the loss weight for adversarial regularization, and λ3 the
loss weight for KL Divergence. Each loss term was individually tuned by fixing the other two to their empirically determined
optimal values and varying the remaining term to identify its best value. The final chosen parameters where λ1 = 3, λ2 = 1

6
and λ3 = 1

3 . Results for NDCG@3, MAP@3 and MRR of the SCENIR-GIN model, reported in Figure 9.

Figure 10. Left: illustration of the encoder architecture in original GAE (unified), and in the proposed SCENIR (split). Right: Performance
comparison between split and unified architecture, on MAP@3, MRR and NDCG@3.

Finally, regarding the splitting of the GNN Encoder, the original GAE (Kipf & Welling, 2016), proposed a unified encoder
architecture (as seen in Figure 10), where all the layers are shared, except for the output. We proposed using a completely
Split variation for the GNN encoder, without any shared layers, which ultimately surpasses the original variant across every
metric. Architecture illustration and metrics results can be seen in Figure 10.

E. Preprocessed Scene Graphs of Qualitative Results
In Figures 12 and 13, we present the scene graphs accompanying the qualitative results of Figures 5 and 6 of the main paper
respectively. Viewing the graphs with the image retrieval outcomes provides a better understanding of our graph-based
semantic retrieval system and its merits. In both cases, it is apparent that GNN-based models (supervised and unsupervised)
retrieve structurally similar graphs varying in semantic content; our method leads to consistently better semantics.

It is important to highlight that PSG graphs have been curated so that they properly represent semantics and relationships
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Figure 11. Additional qualitative results obtained from SCENIR. Scene graphs of retrieved images are also provided.

present in images. To this end, our graph based method does not favor scene graphs being similar to the query because of
merely having similar annotations; on the contrary, it is ensured that similarity in terms of scene graph annotations denotes
actual similarity in terms of semantics and relationships.

F. Additional Results
In Fig. 11 we provide some additional ranked images as retrieved from our proposed model, SCENIR.

We can observe a general semantic consistency among the retrieved results. Starting from the example on the left side of Fig.
11, we can see that our framework successfully returns semantically similar images in all three positions. Specifically, in the
first two positions, we can see a train on the railroad, something that is also present in the scene graphs. For the image in
the third position, while the vehicle itself is different (”bus” instead of ”train”), there is still significant similarity in the
corresponding scene graphs.

As for the example on the right side of Fig. 11, we can see more clearly the structural similarities of the query and the
retrieved scene graphs. In all cases, semantics of nodes and edges are very similar. Specifically, in the first two positions, the
retrieved images depict multiple cows, something that is also evident in the scene graphs with the ”cow” nodes. Since the
test set was randomly chosen, it is evident that finding exact-match images is an uncommon scenario. Therefore, the image
in the third position, depicts zebras instead of cows. It is important to note that many of the semantics remain similar (both
structurally and conceptually), while the concepts of ”cow” and ”zebra” are particularly close.

G. Details on Semantic Counterfactual Retrieval
Counterfactual explanations provide insights into why a machine learning model made a particular decision by identifying
the smallest possible changes to an input that would have led to a different outcome. For example, in the context of loan
approval, a counterfactual explanation might state: ”Had your income been $5,000 higher, your loan would have been
approved.” This method is particularly useful for interpretability, as it helps users understand not just the current decision,
but what would need to change to alter it.

Semantic counterfactual explanations extend this idea by ensuring that the generated modifications are meaningful and
realistic within the context of the data. While counterfactuals in general focus on any minimal change that flips the model’s
prediction, semantic counterfactuals ensure that these changes preserve the logic and constraints of the domain. For instance,
in an image classification model, a semantic counterfactual would modify features in a way that aligns with real-world
variations (e.g., changing a dog’s breed rather than distorting the image with unrealistic pixel noise). Within the context of
semantic graph counterfactuals proposed by Dimitriou et al. (2024), images are represented as scene graphs, and the goal is
to identify all meaningful edits required to transform a scene graph belonging to one source class to the most similar scene
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graph/image classified differently. Therefore, their use case can directly leverage our scene graph retrieval framework.

Their method relies on Graph Edit Distance (GED) as a supervision signal, which measures the smallest number of edit
operations (node/edge additions, deletions, or label changes) required to transform one graph into another. By leveraging
GED, one can generate counterfactuals by using GNNs to learn to approximate GED and thus minimize the number of
modifications needed to alter the model’s decision. However, computing GED is computationally expensive, particularly in
a supervised learning setting where large datasets require repeated counterfactual evaluations. Even within the GC paper it
is highlighted that this brute-force approach is somewhat inefficient, making it impractical for real-world applications that
require fast and scalable explanations.

Our proposed framework, SCENIR, directly addresses these shortcomings. Its efficiency stems from its fully unsupervised
design, which not only reduces training time but also removes dependencies on labeled data, making it more scalable for
large-scale retrieval applications. This aspect is evident in the significantly smaller training and inference times, as shown in
Table 5. Additionally, our approach differs in that GED is used as a ground truth measure while maintaining an unsupervised
learning paradigm, allowing for a more flexible and inductive generalization.
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Figure 12. Underlying preprocessed scene graphs directly corresponding to the qualitative results of Figure 5 in the main paper.
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Figure 13. Underlying preprocessed scene graphs directly corresponding to the qualitative results of Figure 6 in the main paper.
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