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ABSTRACT

Self-supervised pre-training plays an important role in molecular representation
learning because labeled molecular data are usually limited in many tasks, such
as chemical property prediction and virtual screening. However, most existing
molecular pre-training methods focus on one modality of molecular data, and the
complementary information of two important modalities, SMILES and graph, are
not fully explored. In this study, we propose a straightforward yet effective multi-
modality pre-training framework for Molecular SMILES and Graph (MoleSG).
Specifically, the SMILES sequence data and graph data are first tokenized so that
they can be processed by a unified transformer-based backbone network, which
is trained by a masked reconstruction strategy. In addition, we introduce a spe-
cialized non-overlapping masking strategy to encourage fine-grained interaction
between these two modalities. Experimental results show that our framework
achieves state-of-the-art performance in a series of molecular property predic-
tion tasks, and detailed ablation study demonstrates efficacy of the multi-modality
structure and the masking strategy.

1 INTRODUCTION

Efficient molecular representation learning is foundational to drug discovery (David et al., 2020;
Huang & Von Lilienfeld, 2016). With the advancement of deep learning, data-driven molecular
representation learning has found applications in various domains, such as chemical property pre-
diction (Duvenaud et al., 2015), virtual screening (Stumpfe & Bajorath, 2020), molecular design
(Magar et al., 2021), and more. However, since most molecular label data need to be obtained
through labor-intensive and costly wet experiments (Brown et al., 2019), there is a lack of sufficient
labeled molecular data, which hinders the development of deep learning methods and can lead to
issues like overfitting and poor generalization (Rong et al., 2020). Self-supervised learning holds
substantial research value in addressing these challenges, which involves pre-training on unlabeled
data and fine-tuning with labeled data on downstream tasks. It has shown significant promise in
enhancing the performance of molecular representation learning on many downstream tasks (Xie
et al., 2022).

Molecules can be described using various modalities, such as fingerprints, sequences, graphs, and
more (Xia et al., 2023). Currently, molecular pre-training predominantly focuses on a single modal-
ity (Xia et al., 2023), with only a little attention given to methods jointly dealing with multiple
modalities (Liu et al., 2021; Zhu et al., 2021). This paper addresses the issue of jointly pre-training
on two molecule modalities: Simplified Molecular-Input Line-Entry system (SMILES) (Weininger,
1988) and molecular graph. As depicted in Figure 1, the same molecule can be represented using
both a SMILES sequence and a graph, with each modality having its unique advantages and disad-
vantages. SMILES is a compact implicit representation of the molecule that excludes single-bond
representation, making it well-suited for rapid compound retrieval and identification (Quirós et al.,
2018). Additionally, the SMILES sequence, being a text string, can be processed with transformer-
based networks well-developed in the Natural Language Processing (NLP) field for feature extrac-
tion, in which the self-attention mechanism weights and combines information from any position in
the input sequence, thereby facilitating the capture of global contextual information (Chithrananda
et al., 2020; Wang et al., 2019). However, SMILES representations only capture the relationships be-
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Figure 1: Comparison of two molecular representation modalities, SMILES and graph. (a) Il-
lustration of the topological differences between the two modalities. SMILES represents topology
implicitly, while graph displays explicit topology. (b) Difference in attention mechanisms used for
feature processing in the two modalities. Global attention mechanism is usually used for SMILES
while local attention mechanism can be easily implemented for graph.

tween atoms and bonds. They often struggle to capture the complex structural and topological infor-
mation of molecules, such as the number and positions of rings, the length of side chains, and other
intricate details that can be crucial in drug efficacy prediction (Lim et al., 2021; Zhang et al., 2022).
Graph representations offer explicit portrayals of atoms, bonds, and their interconnections, show-
casing the topological structure of molecules (Xiong et al., 2019). They provide detailed chemical
information about molecules, including attributes for each atom such as element type, charge state,
stereochemistry, and attributes for each bond, like bond type and bond length (Hall et al., 1991).
However, Graph Neural Networks (GNNs), commonly used to extract features from graphs, primar-
ily rely on message-passing layers to gather information from neighboring nodes, emphasizing the
capture of local contextual information. This can lead to a disadvantage in capturing global context
information due to information decay when delivering messages between non-adjacent nodes (Zhou
et al., 2020). As a result, for the same molecule, SMILES and graph encode molecular features from
different perspectives, offering complementary information. The rational combination of these two
modalities holds promise for enhancing molecular representation performance.

There are several existing works on multi-modality molecular pre-training (Liu et al., 2021; Zhu
et al., 2021; Liu et al., 2022). For example, GraphMVP (Liu et al., 2021) focuses on joint pre-
training with 2D graphs and 3D graphs. However, these two modalities exhibit high similarity.
Additionally, this study only proved 3D geometry complements 2D topology in downstream tasks,
without proving 2D topology complements 3D geometry. DVMP (Zhu et al., 2021) first extracts
features from SMILES and graph of the same molecule for contrastive learning. All these existing
methods lack fine-grained cross-modality interactions, and there is no existing work that effectively
explores the complementary information between SMILES and graph. The challenge of more effi-
ciently combining these two modalities with significant differences lies in how to promote informa-
tion exchange in fine-grain such as at the atom level rather than only achieving contrastive learning
at the entire molecule level.

In this paper, we propose MoleSG, a simple yet effective pre-training framework for effectively
exploring the complementary information between SMILES and graph in molecular pre-training.
Specifically, recognizing that both words in SMILES sequences and graph nodes can be treated
as transformer tokens (Hu et al., 2023; Huang et al., 2022), we first introduce a transformer-based
unified backbone network for jointly processing embeddings from both modalities to facilitate inter-
actions between them. Our framework consists of two independent encoders to separately convert
masked SMILES and masked graph of an input molecule into token embeddings. The embed-
dings from the two modalities are concatenated and inputted into a standard transformer for joint
processing and the output is used to reconstruct the original SMILES and graph by two specific de-
coders. Our framework is trained by reconstruction losses. Furthermore, to enhance cross-modality
interaction, we introduce a dedicated non-overlapping masking strategy, in which we establish the
positional correspondence between the SMILES sequence and the graph of a molecule to ensure
that regions masked in SMILES and graph do not overlap. Intuitively, the information used for
reconstructing the masked tokens can come from the context within the same modality, as well as
information from the tokens of corresponding structures in the other modality. Therefore, our non-
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overlapping masking strategy masks information within its own modality to encourage the model
to learn information from the other modality, thereby strengthening interactions between the two
modalities. To evaluate the effectiveness of MoleSG, we conduct experiments on 14 downstream
tasks related to molecular property prediction and MoleSG achieves state-of-the-art (SOTA) perfor-
mance in all tasks. We also compare it with the same network pre-trained by a single modality, and
the experimental results show that multi-modality training learns richer molecular representation
knowledge.

Our contributions are as follows: (1) We propose MoleSG, a novel molecular pre-training frame-
work that utilizes the complementary information of SMILES and graph representations, resulting
in improved performance; (2) We introduce an innovative non-overlapping masking strategy and
a unified network for handling two distinct modalities, allowing for fine-grained interaction be-
tween SMILES and graph representations and achieving better representation learning; (3) MoleSG
achieves SOTA performance in a series of molecular property prediction tasks, and detailed ablation
study demonstrates efficacy of the multi-modality structure and the masking strategy.

2 RELATED WORK

Molecular single-modality self-supervised learning: Molecular single-modality self-supervised
learning can be broadly categorized into contrastive and generative approaches. Most contrastive
methods work on the modality of graph by bringing augmented graphs from the same molecule
closer while pushing those from different molecules farther apart, and they focus on the global
molecular information. For instance, MolCLR (Wang et al., 2022) employs diverse graph aug-
mentation techniques for contrastive learning pre-training. FraSICL (Zhang et al., 2023) divides
the same molecule into different fragment pairs based on semantics, enabling contrastive learning.
KANO (Fang et al., 2023) incorporates an additional knowledge graph-based augmentation to im-
prove the performance of contrastive learning. Generative approaches primarily predict masked
molecular components using an encoder-decoder pattern, with an emphasis on learning information
at the local level. For example, GROVER (Rong et al., 2020) is designed for the 2D graph modal-
ity and encompasses masked generative self-supervised tasks at the node and edge levels. Uni-mol
(Zhou et al., 2023) focuses on the 3D graph modality and achieves effective 3D spatial represen-
tation learning through 3D position recovery and masked atom prediction tasks on a large dataset.
Both SMILES-BERT (Wang et al., 2019) and ChemBERTa (Chithrananda et al., 2020) are designed
for the SMILES modality and utilize a ”cloze-style” generative pre-training approach.

Molecular multi-modality self-supervised learning: GraphMVP (Liu et al., 2021) leverages cor-
respondences and consistencies between 2D graph and 3D graph to perform both contrastive and
generative self-supervised learning and inject 3D information into 2D molecular graph encoders.
MoleculeSTM (Liu et al., 2022) focuses on molecular graphs and text descriptions, using a con-
trastive learning strategy to learn the consistency between the chemical structure of molecules and
their textual descriptions. DVMP (Zhu et al., 2021) addresses both SMILES and graph modalities,
employing a contrastive learning approach to learn SMILES information encoded by transformer
and graph information encoded by GNN from the same molecule. DVMP focuses on the same two
modalities as we do but it neglects interactions between fine-grained information across different
modalities.

3 METHOD

In this section, we will begin with providing an overview of our pre-training framework. Next, we
will detail our data preprocessing procedures and introduce our innovative non-overlapping masking
alignment strategy, which aims to encourage interaction between the two modalities. Following that,
we will describe our network containing specialized encoders, backbone, and specialized decoders.

3.1 OVERVIEW OF MOLESG

As shown in Figure 2, MoleSG learns features jointly from SMILES and graph by performing
masked reconstruction on both modalities with a unified feature extraction backbone network. Con-
cretely, for a given molecule, we first convert its SMILES sequence into tokens and calculate features
for nodes and edges in the graph. Then, we randomly mask some node features in the graph and then
mask a portion of SMILES tokens corresponding to the remaining unmasked atoms in the graph, so
that we can perform non-overlapping masking to facilitate the interaction of information between
the two modalities.
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Figure 2: Overview of MoleSG. The SMILES sequence and the graph of a molecule are first
randomly masked using the non-overlapping masking strategy. Then they are individually encoded
by independent encoders, and the SMILES embeddings and the graph embeddings are concatenated
and inputted into a transformer backbone for joint processing. Finally, processed features belonging
to each modality are decoded into token ids and graph nodes for the reconstruction proxy task.

During pre-training, we employ a symmetric joint encoder-decoder framework to perform further
feature extraction. The framework consists of two independent branches for the two modalities and
a shared backbone for feature fusion. The independent encoder branches encode the data of two
different modalities into a unified form i.e. embedding, which is suitable for understanding by a
transformer backbone (Hu et al., 2023; Huang et al., 2022). The shared transformer backbone can
learn the dependencies between atoms within and across the modalities and output features for the
subsequent independent decoders. Finally, the SMILES decoder and the graph decoder reconstruct
the original SMILES sequence and graph based on the output of the backbone.

Different from prior works (Liu et al., 2021; Zhu et al., 2021; Zhang et al., 2023), the core of MoleSG
lies in the specially designed masking strategy and the unified network capable of handling data of
different modalities. We will introduce the details of our masking strategy in section 3.2, followed
by a comprehensive presentation of our network architectures in section 3.3-3.5.
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Figure 3: Non-overlapping masking strategy. (a) Non-overlapping masking strategy: Masks in the
SMILES sequence and the graph for the same molecule do not overlap. (b) Non-overlapping mask-
ing strategy pipeline: First, we establish a correspondence between atom index in both modalities.
Then, random masking is applied to the graph, followed by mapping the masked atoms from the
graph to the SMILES sequence. Finally, random masking on the SMILES sequence is implemented
on the remaining unmasked atoms of the graph.

3.2 NON-OVERLAPPING MASKING STRATEGY

The non-overlapping masking strategy we propose is illustrated in Figure 3, which can be divided
into two steps, first performing atom index alignment between the two modalities, and then perform-
ing non-overlapping masking.
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Step 1: Atom index alignment. Initially, for a given input molecule, we define its molecular
graph as G = (V,E), where V and E represent the sets of atoms and edges, respectively. Fol-
lowing the method of CoMPT (Chen et al., 2021), we precompute the node features Vfeature =
{vf0, vf1, ..., vf(m−1)}, where m is the number of atoms and then represent the SMILES sequence
as the set of a series of tokens S1 = {s0, s1, ..., sn−1}, where n is the total number of tokens. The
SMILES tokens can be categorized into three classes: (1) Atoms, including single-character atoms
like C and N, as well as multi-character atoms like Ca and Au, and ions like [Cl-] and [Fe+3]; (2)
Chemical bonds, represented by symbols like ‘#’ and ‘=’; (3) Other symbols, such as numbers ‘1’
and ‘2’ indicating the positions of atoms in a ring and parentheses ‘(’ and ‘)’ denoting containing
side chains. Given that single bonds are often omitted in SMILES, achieving a one-to-one corre-
spondence between two modalities for chemical bonds is not practical. Therefore, in this paper, we
focus on aligning the atom index. Therefore, we gather the tokens representing the atoms and assign
indexes to them to establish a consistent correspondence between atoms in graph G1 and those in
filtered SMILES tokens S2.

Step 2: Masking strategy. We randomly mask atomic features on the graph MG : G1 7→ G2, where
G2 is the masked graph, and the set of masked atom indexes on G2 is defined as IG. Following that,
we randomly mask atomic tokens on the SMILES sequence MS : S2 7→ S3, where S3 is the
preliminary masked SMILES sequence, and the set of masked atom indexes on S3 is denoted as
IS . To encourage better interaction between the two modalities, we set the overlap ratio between
masked atoms in both modalities to be 0, forcing one modality to learn the “correct answer” from the
other modality. Specifically, based on the one-to-one correspondence of atom index, we localize the
positions of masked atoms onto the SMILES sequence. Through operation P : IS − IG ∩ IS , S3 7→
S4, where S4 is the final masked SMILES sequence, we avoid masking atoms on the SMILES
sequence that are already masked on the graph.

3.3 ENCODER

To facilitate the interaction of fine-grained features across different modalities, we use two indepen-
dent encoders to convert the data of two entirely different modalities into embeddings of the same
dimensions for being further processed by transformer.

For the SMILES sequence, we adopt the method used in Roberta (Liu et al., 2019b). We first convert
the masked SMILES sequence into a sequence of token ids following ChemBERTa (Chithrananda
et al., 2020), and we expand its vocabulary by conducting a comprehensive analysis of all tokens in
our dataset, as detailed in Appendix E. Then, we calculate their corresponding embeddings FS ∈
RNS×d by a vanilla transformer, where NS represents the number of SMILES tokens, and d is the
feature dimension.

For the graph, we precompute the same node features and edge features as CoMPT (Chen et al.,
2021) does. After that, a portion of node features are randomly masked, and then we feed them into
the graph encoder. Our graph encoder is the same as that used in CoMPT (Chen et al., 2021), which
consists of many message-passing layers. After repeating message-passing in the graph encoder, we
finally obtain token embeddings FG ∈ RNG×d for nodes, where NG is the number of atoms, and d
is the feature dimension.

3.4 UNIFIED BACKBONE

Given that two modalities are treated as embeddings of the same dimension, we can easily use
a simple unified network to learn fine-grained features in both modalities. We first add trainable
parameters to FS ∈ RNS×d and FG ∈ RNG×d and then concatenate them. The concatenated
embeddings FS,G ∈ R(NS+NG)×d are then fed into the backbone. Here, we use the transformer
encoder employed in Roberta (Liu et al., 2019b) as the backbone network, and its multi-head self-
attention mechanism can facilitate information interaction between token embeddings both within
the same modalities and across different modalities.

3.5 DECODER

After feature extraction in the backbone, we split the output features F ′
S,G ∈ R(NS+NG)×d into

features F ′
S ∈ RNS×d for SMILES and features F ′

G ∈ RNG×d for graph. F ′
S and F ′

G are features
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for individual modality-specific mask reconstruction tasks. Specifically, F ′
S is fed into LMhead in

Roberta (Liu et al., 2019b) to predict the masked token ids, while F ′
G is inputted into a lightweight

network GIN (Xu et al., 2018) after re-masking (Hou et al., 2022) to reconstruct the masked node
features. We calculate the entropy loss LEN (Liu et al., 2019b) in SMILES reconstruction and the
SCE loss LSCE (Hou et al., 2022) in graph reconstruction. Finally, the overall loss for the entire
task is as follows: LTotal = LEN + LSCE .

3.6 FINE-TUNING

We conduct fine-tuning on 14 downstream tasks of predicting molecular properties. Since previous
works only utilize a single modality in the downstream tasks, we also take a single modality as input
to achieve a fair comparison. Moreover, as single modality input has an inconsistent distribution
with two modalities, the backbone that takes two modalities as input during pre-training may suffer
from performance decrease during fine-tuning. Therefore, we also discard the backbone during fine-
tuning and inference. In other words, we only reserve a single special encoder during fine-tuning
and inference. Our following experiment in section 4.3.3 also verifies it.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets setup: During the pre-training stage, we sample 250,000 unlabeled molecules from
ZINC15 (Sterling & Irwin, 2015), which is a comprehensive collection of chemical compounds
for drug discovery and computational chemistry research. During the fine-tuning stage, we utilize
14 benchmark datasets from MoleculeNet (Wu et al., 2018), covering molecular data from various
domains, including pharmaceuticals, biology, chemistry, and physics. These downstream datasets
include 678 binary classification tasks and 19 regression tasks. For more detailed information about
benchmark datasets, please refer to Appendix A.

We partition each benchmark dataset into the train, validation, and test sets in an 8:1:1 ratio. For
all datasets except QM9, we employ scaffold splitting, reporting the mean and standard deviation
of results from three random seeds for each benchmark. Scaffold splitting is a more challenging
and realistic data partitioning method (Ramsundar et al., 2019). For the QM9 dataset, we follow the
approach used in most prior work (Wang et al., 2022; Fang et al., 2023) for random splitting.

Pre-training: We train MoleSG for 90k iterations using the AdamW optimizer with a base learning
ratio of 1e-3. We set the masking ratio for graph at 25% and for SMILES at 15%. The details of the
mask ratio setting experiments for the two modes are shown in Appendix C.

Downstream: We set a maximum of 150 training epochs, with early stopping applied when the
validation set’s best value is not improved for more than 20 epochs. We use the AdamW optimizer
with a base learning rate of 1e-3 and a warmup factor of 0.1 for the first 30 epochs.

Competitors: We compare MoleSG with both supervised (training from scratch) baselines and pre-
trained baselines. Supervised methods include MPNN (Gilmer et al., 2017), DMPNN (Yang et al.,
2019), CMPNN (Song et al., 2020), and CoMPT (Chen et al., 2021). Pre-training methods include
N-gram (Liu et al., 2019a), PretrainGNN (Hu et al., 2019), MGSSL (Zhang et al., 2021), GROVER
(Rong et al., 2020), GraphMVP (Liu et al., 2021), MolCLR (Wang et al., 2022), GEM (Fang et al.,
2022), DVMP (Zhu et al., 2021), KANO (Fang et al., 2023), and Uni-mol (Zhou et al., 2023). The
specific configurations for these competitors can be found in Appendix B. Additionally, for a fair
comparison, we implement new MolCLR and DVMP by replacing the original encoders in them
with the same networks we use, which are denoted as MolCLRCoMPT and DVMPMoleSG. We also
utilize our non-overlapping masking strategy in DVMPMoleSG.

4.2 RESULTS OF MOLECULAR PROPERTY PREDICTION

Table 1 presents the test results in classification tasks. It can be observed that MoleSG consistently
outperforms other methods across all eight datasets, demonstrating its effectiveness. It’s worth notic-
ing that though the Toxcast dataset benchmark with 617 binary classification tasks is challenging,
our method still performs better than the current SOTA method KANO. Complementary information
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Table 1: Performance of different models on eight classification benchmarks in physiology and
biophysics. The mean and standard deviation of ROC-AUC (%) from three independent runs are
reported. (Higher values indicate better performance.)

Category Physiology Biophysics

Dataset BBBP Tox21 ToxCast SIDER ClinTox BACE MUV HIV
Molecules 2039 7831 8575 1427 1478 1513 93807 41127
Tasks 1 12 617 27 2 1 17 1

MPNN 91.3±4.1 80.8±2.4 69.1±3.0 59.5±3.0 87.9±5.4 81.5±1.0 75.7±1.3 77.0±1.4
DMPNN 91.9±3.0 75.9±0.7 63.7±0.2 57.0±0.7 90.6±0.6 85.2±0.6 78.6±1.4 77.1±0.5
CMPNN 92.7±1.7 80.1±1.6 70.8±1.3 61.6±0.3 89.8±0.8 86.7±0.2 79.0±2.0 78.2±2.2
CoMPT 96.1±0.4 84.5±0.7 72.2±0.8 66.1±0.9 97.3±2.5 94.1±3.6 82.6±1.6 86.4±1.2

N-Gram 91.2±0.3 76.9±2.7 - 63.2±0.5 87.5±2.7 79.1±1.3 76.9±0.7 78.7±0.4
PretrainGNN 70.8±1.5 78.7±0.4 65.7±0.6 62.7±0.8 72.6±1.5 84.5±0.7 81.3±2.1 79.9±0.7
MGSSL 70.5±1.1 76.4±0.4 64.1±0.7 61.8±0.8 80.7±2.1 79.7±0.8 78.7±1.5 79.5±1.1
GEM 88.8±0.4 78.1±0.4 68.6±0.2 63.2±1.5 90.3±0.7 87.9±1.1 75.3±1.5 81.3±0.3
GROVER 86.8±2.2 80.3±2.0 56.8±3.4 61.2±2.5 70.3±13.7 82.4±3.6 67.3±1.8 68.2±1.1
GraphMVP 72.4±1.6 75.9±0.5 63.1±0.4 63.9±1.2 79.1±2.8 81.2±0.9 77.7±0.6 77.0±1.2
Uni-mol 72.9±0.6 79.6±0.5 69.6±0.1 65.9±1.3 91.9±1.8 85.7±0.2 82.1±1.3 80.8±0.3
DVMP 77.8±0.3 79.1±0.4 - 69.8±0.6 95.6±0.7 89.4±0.8 - 81.4±0.4
DVMPMoleSG 80.9±2.1 84.4±1.2 73.3±0.9 66.9±1.2 98.4±2.0 93.5±2.8 80.9±2.1 87.6±1.8
MolCLR 73.3±1.0 74.1±5.3 65.9±2.1 61.2±3.6 89.8±2.7 82.8±0.7 78.9±2.3 77.4±0.6
MolCLRCoMPT 97.2±0.2 82.4±1.8 72.7±0.5 57.1±8.7 77.0±14.5 85.5±0.9 75.8±15.0 81.8±2.2
KANO 96.0±1.6 83.7±1.3 73.2±1.6 65.2±0.8 94.4±0.3 93.1±2.1 83.7±2.3 85.1±2.2
MoleSG 97.9±0.3 85.0±1.2 74.2±0.5 70.0±0.2 99.1±0.9 95.1±2.1 85.1±0.8 87.7±1.9

Table 2: Performance of different models on six regression benchmarks in physical chemistry and
quantum mechanics. The mean and standard deviation of root mean square error (RMSE) (for
ESOL, FreeSolv, and Lipophilicity) or mean absolute error (MAE) (for QM7, QM8, and QM9)
from three independent runs are reported. (Lower values indicate better performance.)

Category Physical chemistry Quantum mechanics

Dataset ESOL FreeSolv Lipophilicity QM7 QM8 QM9
Molecules 1128 642 4200 6830 21786 133885
Tasks 1 1 1 1 12 3

MPNN 1.167±0.043 1.621±0.952 0.672±0.051 111.4±0.9 0.0148±0.001 0.00522±0.00003
DMPNN 1.050±0.008 1.673±0.082 0.683±0.016 103.5±8.6 0.0156±0.001 0.00514±0.00001
CMPNN 0.798±0.112 1.570±0.442 0.614±0.029 75.1±3.1 0.0153±0.002 0.00405±0.00002
CoMPT 0.643±0.051 0.970±0.207 0.572±0.058 32.7±7.4 0.0120±0.001 0.00353±0.00067

N-Gram 1.100±0.030 2.510±0.191 0.880±0.121 125.6±1.5 0.0320±0.003 0.00964±0.00031
PretrainGNN 1.100±0.006 2.764±0.002 0.739±0.003 113.2±0.6 0.0215±0.001 0.00922±0.00004
GEM 0.813±0.028 1.748±0.114 0.674±0.022 60.0±2.7 0.0163±0.001 0.00562±0.00007
GROVER 1.423±0.288 2.947±0.615 0.823±0.010 91.3±1.9 0.0182±0.001 0.00719±0.00208
Uni-mol 0.788±0.029 1.480±0.048 0.603±0.010 41.8±0.2 0.0156±0.000 -
DVMP 0.817±0.024 1.952±0.061 0.653±0.002 74.4±1.2 0.0171±0.004 -
DVMPMoleSG 0.669±0.114 0.942±0.110 0.594±0.018 30.2±3.0 0.0123±0.001 0.00323±0.00006
MolCLR 1.113±0.023 2.301±0.247 0.789±0.009 90.9±1.7 0.0185±0.013 0.00480±0.00003
MolCLRCoMPT 0.849±0.062 1.135±0.163 0.657±0.012 32.7±2.8 0.0141±0.001 0.00350±0.00000
KANO 0.670±0.019 1.142±0.258 0.566±0.007 56.4±2.8 0.0123±0.000 0.00320±0.00001
MoleSG 0.599±0.067 0.932±0.131 0.545±0.014 29.6±2.9 0.0117±0.001 0.00313±0.00006
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Table 3: Comparison of our approach with two single-modality pre-training approaches on classi-
fication tasks. The mean and standard deviation of ROC-AUC (%) over three independent runs are
reported. (Higher values indicate better performance.)

BBBP Tox21 ToxCast SIDER Clintox BACE MUV HIV

SMILES scratch 63.6±4.3 75.5±0.5 64.2±2.5 54.0±2.4 88.1±6.3 79.2±6.6 63.6±4.3 72.7±3.5
SMILES pre-train 61.5±4.9 77.6±2.5 66.8±0.9 55.0±3.1 93.3±2.8 83.8±0.9 61.5±4.9 75.1±2.5
Ours SMILES 65.3±3.1 77.9±2.5 67.0±0.9 59.6±3.8 94.3±2.0 85.3±1.1 65.3±3.1 77.3±0.7
Graph scratch 96.1±0.4 84.5±0.7 72.2±0.8 66.1±0.9 97.3±2.5 94.1±3.6 82.6±1.6 86.4±1.2
Graph pre-train 96.8±1.8 84.2±0.1 72.6±1.0 66.7±2.2 98.0±0.9 94.9±2.3 82.2±1.4 85.9±2.5
Ours graph 97.9±0.3 85.0±1.2 74.2±0.5 70.0±0.2 99.1±0.9 95.1±2.1 85.1±0.8 87.7±1.9

Table 4: Comparison of our approach with two single-modality pre-training approaches on regres-
sion tasks. The mean and standard deviation of RMSE or MAE over three independent runs are
reported. (Lower values indicate better performance.)

ESOL Freesolv Lipophilicity QM7 QM8 QM9

SMILES scratch 0.946±0.226 2.581±0.286 1.028±0.030 160.2±6.8 0.0146±0.001 0.01017±0.00045
SMILES pre-train 1.030±0.336 1.942±0.450 1.034±0.015 159.3±5.7 0.0141±0.001 0.01080±0.00010
Ours SMILES 0.873±0.172 1.889±0.590 0.964±0.036 155.7±3.9 0.0139±0.001 0.00973±0.00059
Graph scratch 0.643±0.051 0.970±0.207 0.572±0.058 32.7±7.4 0.0120±0.001 0.00353±0.00067
Graph pre-train 0.635±0.104 0.939±0.225 0.585±0.031 32.3±1.6 0.0118±0.001 0.00323±0.00012
Ours graph 0.599±0.067 0.932±0.131 0.545±0.014 29.6±2.9 0.0117±0.001 0.00313±0.00006

of the two modalities in MoleSG contributes to outstanding results, surpassing methods injecting ad-
ditional 3D information.

Table 2 shows the test results in regression tasks. We can observe that MoleSG achieves the best
scores among both supervised and self-supervised pre-training models, with a relative improvement
of 14.4% over KANO across all six regression tasks. MoleSG greatly benefits tasks with limited
label information, achieving a 18.4% improvement over KANO on the small dataset FreeSolv, which
contains only 642 labeled molecules.

Moreover, it is worth noting that our method still outperforms MolCLRCoMPT, which is a version of
the typical contrastive learning method MolCLR with the same encoder as ours, verifying the supe-
riority of our method. We also compare with another contrastive learning competitor DVMPMoleSG,
which utilizes the same encoders as ours. In addition, both MolCLRCoMPT and DVMPMoleSG outper-
form their original counterpart MolCLR and DVMP in most tasks, demonstrating the effectiveness
of the corresponding strategies proposed in this paper.

4.3 ABLATION EXPERIMENTS

4.3.1 SINGLE-MODALITY VS. MULTI-MODALITY

To further reveal the superiority of our method, we compare our multi-modality pre-training with
single-modality pre-training. The results are shown in Table 3 and Table 4. Our method success-
fully achieves the best performance on all downstream tasks. Moreover, it is worth noting that
single modality pre-training may cause performance degradation. However, by fully leveraging the
complementary information among different modalities, our method can improve performance on
all downstream tasks, showing more potential for practical applications. We present visualization
results of our method’s feature extraction capability in Appendix D.

4.3.2 OVERLAP VS. NON-OVERLAP

To validate whether our non-overlapping masking strategy benefits pre-training, we conduct experi-
ments on different overlap ratios on all downstream tasks. We define overlap ratio as a metric mea-
suring the proportion of jointly masked atoms in both modality inputs. We conduct experiments at
overlap ratios at 0%, 25%, 50%, 75%, and 100% across all benchmarks, where our non-overlapping
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Figure 4: The impact of different overlap ratios on downstream task performance. The results are
reported as mean and standard deviation values on three independent runs.

masking strategy is equivalent to setting the overlap ratio to 0. The experimental results shown in
Figure 4 indicate that the performance on downstream tasks is the best when the overlap ratio is 0.

4.3.3 WITH VS. WITHOUT BACKBONE

As analyzed above, fine-tuning both the encoder and backbone may cause suboptimal performance
due to the inconsistent distributions. Therefore, we conduct an experiment to validate it. Specifically,
section 4.3.1 has shown that the graph encoder has better performance than the SMILES encoder.
Therefore, we only consider two combinations in this section. The former is fine-tuning a single
graph encoder, and the other is fine-tuning both the graph encoder and the backbone. We perform
experiments on all benchmarks, and the results are shown in Table 5 and Table 6. The results show
that using only the graph encoder achieves higher performance in all tasks.

Table 5: Comparison of results on classification tasks with and without the backbone network. The
mean and standard deviation of ROC-AUC (%) from three independent runs are reported.

BBBP Tox21 ToxCast SIDER ClinTox BACE MUV HIV

Graph encoder+backbone 97.23±0.6 84.8±1.8 73.6±0.9 65.6±0.4 98.8±0.6 89.7±5.2 81.9±1.9 85.8±1.4
Graph encoder 97.9±0.3 85.0±1.2 74.2±0.5 70.0±0.2 99.1±0.9 95.1±2.1 85.1±0.8 87.7±1.9

Table 6: Comparison of results on regression tasks with and without the backbone network. The
mean and standard deviation of RMSE (or MAE) from three independent runs are reported.

ESOL FreeSolv Lipophilicity QM7 QM8 QM9

Graph encoder+backbone 0.661±0.011 0.988±0.250 0.560±0.017 31.9±3.8 0.0119±0.001 0.00353±0.00015
Graph encoder 0.599±0.067 0.932±0.131 0.545±0.014 29.6±2.9 0.0117±0.001 0.00313±0.00006

5 CONCLUSION

In this study, we address the challenges of learning fine-grained information from two complemen-
tary modalities: SMILES and graph. To better capture rich molecular features from the interaction
between these two modalities, we design a simple and efficient multi-modality pre-training frame-
work called MoleSG, which utilizes a unified feature processing network to fuse both modalities. In
addition, we propose a non-overlapping masking strategy to facilitate information exchange between
the two modalities. Extensive experiments on 14 downstream tasks show that our method achieves
new SOTA performance. Our non-overlapping masking strategy has the potential to be used in other
masked reconstruction-based multi-modality pre-training studies.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Lorenz C Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual screening
in the chemical universe database gdb-13. Journal of the American Chemical Society, 131(25):
8732–8733, 2009.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019.

Jianwen Chen, Shuangjia Zheng, Ying Song, Jiahua Rao, and Yuedong Yang. Learning at-
tributed graph representations with communicative message passing transformer. arXiv preprint
arXiv:2107.08773, 2021.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: large-scale self-
supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885, 2020.

Laurianne David, Amol Thakkar, Rocı́o Mercado, and Ola Engkvist. Molecular representations in
ai-driven drug discovery: a review and practical guide. Journal of Cheminformatics, 12(1):1–22,
2020.

John S Delaney. Esol: estimating aqueous solubility directly from molecular structure. Journal of
chemical information and computer sciences, 44(3):1000–1005, 2004.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28, 2015.

Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo Zhou, Fan Wang,
Hua Wu, and Haifeng Wang. Geometry-enhanced molecular representation learning for property
prediction. Nature Machine Intelligence, 4(2):127–134, 2022.

Yin Fang, Qiang Zhang, Ningyu Zhang, Zhuo Chen, Xiang Zhuang, Xin Shao, Xiaohui Fan, and
Huajun Chen. Knowledge graph-enhanced molecular contrastive learning with functional prompt.
Nature Machine Intelligence, pp. 1–12, 2023.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012.

Kaitlyn M Gayvert, Neel S Madhukar, and Olivier Elemento. A data-driven approach to predicting
successes and failures of clinical trials. Cell chemical biology, 23(10):1294–1301, 2016.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Lowell H Hall, Brian Mohney, and Lemont B Kier. The electrotopological state: structure infor-
mation at the atomic level for molecular graphs. Journal of chemical information and computer
sciences, 31(1):76–82, 1991.

Thomas Hartung. Toxicology for the twenty-first century. Nature, 460(7252):208–212, 2009.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 594–604, 2022.

Fan Hu, Yishen Hu, Weihong Zhang, Huazhen Huang, Yi Pan, and Peng Yin. A multimodal protein
representation framework for quantifying transferability across biochemical downstream tasks.
Advanced Science, pp. 2301223, 2023.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

10



Under review as a conference paper at ICLR 2024

Bing Huang and O Anatole Von Lilienfeld. Communication: Understanding molecular representa-
tions in machine learning: The role of uniqueness and target similarity. The Journal of Chemical
Physics, 145(16), 2016.

Xiaoshui Huang, Sheng Li, Wentao Qu, Tong He, Yifan Zuo, and Wanli Ouyang. Frozen clip model
is efficient point cloud backbone. arXiv preprint arXiv:2212.04098, 2022.

Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider database of drugs and side
effects. Nucleic acids research, 44(D1):D1075–D1079, 2016.

Sangsoo Lim, Yijingxiu Lu, Chang Yun Cho, Inyoung Sung, Jungwoo Kim, Youngkuk Kim,
Sungjoon Park, and Sun Kim. A review on compound-protein interaction prediction methods:
data, format, representation and model. Computational and Structural Biotechnology Journal,
19:1541–1556, 2021.

Shengchao Liu, Mehmet F Demirel, and Yingyu Liang. N-gram graph: Simple unsupervised repre-
sentation for graphs, with applications to molecules. Advances in neural information processing
systems, 32, 2019a.

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang. Pre-
training molecular graph representation with 3d geometry. arXiv preprint arXiv:2110.07728,
2021.

Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang,
Chaowei Xiao, and Anima Anandkumar. Multi-modal molecule structure-text model for text-
based retrieval and editing. arXiv preprint arXiv:2212.10789, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Rishikesh Magar, Prakarsh Yadav, and Amir Barati Farimani. Potential neutralizing antibodies dis-
covered for novel corona virus using machine learning. Scientific reports, 11(1):5261, 2021.

Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach to in
silico blood-brain barrier penetration modeling. Journal of chemical information and modeling,
52(6):1686–1697, 2012.

David L Mobley and J Peter Guthrie. Freesolv: a database of experimental and calculated hydration
free energies, with input files. Journal of computer-aided molecular design, 28:711–720, 2014.
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