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ABSTRACT

Overconfidence is a common issue for deep neural networks, limiting their deploy-
ment in real-world applications. To better estimate confidence, existing methods
mostly focus on fully-supervised scenarios and rely on training labels. In this
paper, we propose the first confidence estimation method for a semi-supervised
setting, when most training labels are unavailable. We stipulate that even with lim-
ited training labels, we can still reasonably approximate the confidence of model
on unlabeled samples by inspecting the prediction consistency through the train-
ing process. We use training consistency as a surrogate function and propose
a consistency ranking loss for confidence estimation. On both image classifica-
tion and segmentation tasks, our method achieves state-of-the-art performances in
confidence estimation. Furthermore, we show the benefit of the proposed method
through a downstream active learning task.

1 INTRODUCTION

Besides accuracy, the confidence, measuring how certain a model is of its prediction, is also criti-
cal in real world applications such as autonomous driving (Ding et al., 2021) and computer-aided
diagnosis (Laves et al., 2019). Despite the strong prediction power of deep networks, their overcon-
fidence is a very common issue (Guo et al., 2017; Nguyen et al., 2015; Szegedy et al., 2014). The
output of a standard model, e.g., the softmax output, does not correctly reflect the confidence. The
reason is that the training is only optimized regarding to the training set (Naeini et al., 2015), not
the underlying distribution. Accurate confidence estimation is important in practice. In autonomous
driving and computer-aided diagnosis, analyzing low confidence samples can help identify subpopu-
lations of events or patients that deserve extra consideration. Meanwhile, reweighting hard samples,
i.e., samples on which the model has low confidence, can help improve the model performance.
Highly uncertain samples can also be used to promote model performance in active learning (Sid-
diqui et al., 2020; Moon et al., 2020).

Different ideas have been proposed for confidence estimation. Bayesian approaches (MacKay, 1992;
Neal, 1996; Graves, 2011) rely on probabilistic interpretations of a model’s output, while the high
computation demand restricts their applications. Monte Carlo dropout (Gal & Ghahramani, 2016) is
introduced to mitigate the computation inefficiency. But dropout requires sampling multiple model
predictions at the inference stage, which is time-consuming. Another idea is to use an ensemble
of neural networks (Lakshminarayanan et al., 2017), which can still be expensive in both inference
time and storage. To overcome the inefficiency issue, some recent works focus on the whole training
process rather than the final model. Moon et al. (2020) use the frequency of correct predictions
through the training process to approximate the confidence of a model on each training sample.
Geifman et al. (2018) collect model snapshots over the training process to compensate for overfitting
and estimate confidence.

However, most existing methods purely rely on labeled data, and thus are not well suited for a semi-
supervised setting. Indeed, confidence estimation is critically needed in the semi-supervised setting,
where we have limited labels and a large amount of unlabeled data. A model trained with limited
labels is sub-optimal. Confidence will help efficiently improve the quality of the model, and help
annotate the vast majority of unlabeled data in a scalable manner (Wang et al., 2022; Sohn et al.,
2020; Xu et al., 2021).

In this paper, we propose the first confidence estimation method specifically designed for the semi-
supervised setting. The first challenge is to leverage the vast majority of unlabeled data for confi-
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dence learning. For data without labels, our idea is to use the consistency of the predictions through
the training process. An initial investigation suggests that consistency of predictions tends to be
correlated with sample confidence on both labeled and unlabeled data.

Having established training consistency as an approximation of confidence, the next challenge is that
the consistency can only be evaluated on data available during training. To this end, we propose to
re-calibrate model’s prediction by aligning it with the consistency. In particular, we propose a novel
Consistency Ranking Loss to regulate the model’s output after the softmax layer so it has a similar
ranking of model confidence output as the ranking of the consistency. After the re-calibration, we
expect the model’s output correctly accounts for its confidence on test samples. We both theoretically
and empirically validate the effectiveness of the proposed Consistency Ranking Loss. Specifically,
we show the superiority of our method on real applications, such as image classification and medical
image segmentation, under semi-supervised settings. We also demonstrate the benefit of our method
through active learning tasks.

Related work. There are two mainstream approaches for confidence (uncertainty) estimation: confi-
dence calibration and ordinal ranking. Confidence calibration treats confidence as the true probabil-
ity of making correct prediction and tries to directly estimate it (Platt, 2000; Guo et al., 2017; Jungo
& Reyes, 2019; Zadrozny & Elkan, 2002; Naeini et al., 2015). For any sample, the confidence
estimate generated by a well-calibrated classifier should be the likelihood of predicting correctly.
Directly estimating the confidence may be challenging. Instead, many works focus on the ordinal
ranking aspect (Geifman et al., 2018; Geifman & El-Yaniv, 2017; Mandelbaum & Weinshall, 2017;
Moon et al., 2020; Lakshminarayanan et al., 2017). In spite of the actual estimated confidence val-
ues, the ranking of samples with regard to the confidence level should be consistent with the chance
of correct prediction. A model with well-ranked confidence estimate can be widely used in the field
of selective classification, active learning and semi-supervised learning (Siddiqui et al., 2020; Yoo &
Kweon, 2019; Sener & Savarese, 2018; Tarvainen & Valpola, 2017; Zhai et al., 2019; Miyato et al.,
2018; Xie et al., 2020; Chen et al., 2021; Li & Yin, 2020). Semi-supervised active learning meth-
ods (Gao et al., 2020; Huang et al., 2021) only focus on finding high-uncertainty samples through
training actions, thus are unable to be applied to estimate uncertainty for unseen samples.

2 CONSISTENCY - A NEW SURROGATE OF CONFIDENCE

Our main idea is to use the training consistency, i.e., the frequency of a training datum getting the
same prediction in sequential training epochs, as a surrogate function of the model’s confidence. In
this section, we first formalize the definition of training consistency. Next, we use qualitative and
quantitative evidences to show that consistency can be used as a surrogate function of confidence.
This justifies the usage of training consistency as a supervision for model confidence estimation,
which we will introduce in the next section.

Definition: training consistency. Assume a given dataset with n labeled and p unlabeled data,
D = (X,Y, U). Here X = {x1, . . . , xn}, xi ∈ X is the set of labeled data with corresponding labels
Y = {y1, . . . , yn}, yi ∈ Y = {1, . . . ,K}. The set of unlabeled data U = {xn+1, . . . , xn+p}, xj ∈
X cannot be directly used to train the model, but will be used to help estimate confidence.
We assume a simple training setting where we use the labeled set (X,Y ) to train a model
f(x, y;W ) : X × Y → [0, 1]. The method can naturally generalize to more sophisticated semi-
supervised learning methods, where unlabeled data can also be used. For any data, either labeled or
unlabeled, xi ∈ X ∪ U , we have the classification ŷi = argmaxy∈Yf(xi, y;W ). Note that tradi-
tionally the model output regarding the classification label, f(xi, ŷi;W ) = maxy∈Y f(xi, y;W ), is
used as the confidence.

Our definition involves the training process. Denote by W t the model weights at the t-th training
epoch, t = 1, . . . , T . We use ŷti = argmaxy∈Yf(xi, y|W t) to denote the model classification for
sample xi at the t-th epoch. For a sample xi, we define its training consistency as the frequency
of getting consistent predictions in sequential training epochs during the whole training process (T
epochs in total):

ci =
1

T − 1

T−1∑
t=1

1{ŷti = ŷt+1
i }. (1)

Qualitative analysis shows consistency is a good surrogate of confidence. We provide a quali-
tative example in Fig. 1 with the feature representations. We observe that the data further from the
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(a) Label (b) Softmax (c) Correctness (d) Consistency
Figure 1: Feature representations of 6000 unlabeled CIFAR10 data. The model is trained on 20%
labeled data. We use t-SNE for dimension reduction and only show data of three classes. (a) different
class labels: 0-blue, 1-yellow, 9-brown. (b) the softmax output is clearly overconfident. (c) and (d)
are correctness and consistency maps respectively. They are similar to each other and seem to be
well correlated with confidence.

decision boundary have higher consistency, and the ones closer to decision boundary have lower
consistency. This is consistent with our intuition and seems to correlate with model confidence.
Although we do not have the ground truth of confidence, it is reasonable to believe that data further
from the decision boundary will have higher confidence, whereas data near the decision boundary
will have lower confidence.

The data representation is acquired by training a model (PreAct-ResNet110) on only 20% of CI-
FAR10 training set. We extract the penultimate fully connected (FC) layer output as the feature
representation. Here we use t-SNE to visualize the feature representations of 80% unlabeled train-
ing images. For ease of exposition, we only focus on class 0, class 1 and class 9. As shown in
Fig. 1(a), since the model is trained with limited labeled data, the three classes are not completely
separated in the representation space. We expect lower confidence data to be closer to the decision
boundary. However, this is not well reflected by the model confidence output, i.e., the maximum
softmax output, f(xi, ŷi;W ). As shown in Fig. 1(b), softmax output tends to be overconfident.

Meanwhile, we calculate consistency on unlabeled data and visualize them in Fig. 1(d). The con-
sistency map seems much more reasonable and better correlates with model confidence. The con-
sistency is high within each class, but slowly transits to low towards the decision boundary. Since
we do not have ground truth of confidence, as a reference, we also calculate and visualize the cor-
rectness of data, a known good proxy of confidence in fully-supervised setting (Moon et al., 2020).
The correctness of a datum xi is the frequency at which the model makes a correct classification on
xi across different epochs, i.e., 1

T

∑T
t=1 1{yi = ŷti}. As shown in Fig. 1(c), the correctness map is

very similar to consistency. This further justifies our proposal of using consistency.

Please note that this analysis does not justify correctness as a good confidence surrogate when train-
ing with limited labels. When labeled data is limited, we can only calculate and use correctness on
a limited amount of samples. They cannot provide sufficient supervision for confidence learning.
This will be evident in our experiment section.

Quantitative analysis. We further evaluate the quality of consistency as a confidence surrogate
using a popular confidence evaluation metric, the area under the risk-coverage curve (AURC) and the
excess-AURC (E-AURC). Based on the ordinary ranking principle, AURC and E-AURC measure
how well an estimated confidence is correlated with the chance of correct prediction; a sample with
high confidence should have a high chance to be correctly predicted. A low AURC or E-AURC
indicates the estimation is a good approximation of the true confidence. A formal definition of
AURC and E-AURC is provided in Sec. 3.2.

We evaluate AURC and E-AURC on the training data for consistency, correctness and softmax out-
put of the model at different training epochs with regard to a model trained on limited labeled data.
The setting is the same as in the previous qualitative analysis. The results are shown in Fig. 2. We
observe that overall all three confidence proxies improve their quality as the training continues (i.e.,
their AURCs/E-AURCs decrease as the training progresses). Consistency is better than softmax
output throughout the training (i.e., having a lower AURC or E-AURC). Correctness has the best
performance among the three (i.e., the lowest AURC or E-AURC). However, correctness is unavail-
able for unlabeled data, thus does not help learning confidence in our problem. In Append. A.8, we
compare training consistency with other label-free uncertainty surrogates.
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3 LEARNING TO ESTIMATE CONFIDENCE: CONSISTENCY RANKING LOSS
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Figure 2: Performance of consistency as a confidence esti-
mator. We evaluate the performance of softmax output, con-
sistency and correctness in terms of popular metrics, AURC
and E-AURC. We train a model with only 20% of CIFAR10
labeled data, and evaluate on the remaining unlabeled data.

We have established that consistency
is a good approximation of the con-
fidence. However, consistency is
only available for training data. At
the inference stage, we do not have
such measure for test data. To this
end, we propose a novel Consistency
Ranking Loss during training to en-
force the model’s maximum softmax
output approximates the consistency
well. The hope is at the inference
stage, the maximum softmax out-
put will well approximate the consis-
tency, and thus the confidence.

The consistency ranking loss is a
pairwise ordinal ranking function to
enforce the maximum softmax output
to be consistent with the training consistency on all labeled and unlabeled training data X ∪ U . Re-
call for the i-th training datum, xi ∈ X ∪ U , we denote by ci its training consistency (Eq. (1)). For
convenience, we denote by κi the model’s maximum softmax output for xi.1 The loss function en-
forces the two to be consistent in terms of ordinary ranking, i.e., if ci < cs, then κi < κs. Formally,

Lcons(f) =

n+p∑
s=1

n+p∑
i=1,ci<cs

max{0, (cs − ci)− (κs − κi)}. (2)

The loss sums over all pairs of training data and penalizes a pair (i, s) when xi has a lower confidence
than xs and the difference cs − ci is bigger than the difference κs − κi. Through training, the
confidence estimator κ is learned to have a similar gap as the consistency c’s, i.e., κs−κi ≥ cs− ci,
∀cs > ci. The loss seems expensive as it is quadratic to the sample size. In practice, however,
computation is not a major issue. We evaluate the loss on samples within each minibatch (both
labeled and unlabeled). The loss is then only quadratic to the minibatch size. As shown in the
experiment section, this suffices in practice. The details of the pairing strategy are provided in
Append. A.2.

To fully exploit labeled training samples for confidence estimation, we also incorporate correctness
into our training, using a ranking loss Lcorr. Note Lcorr is only evaluated on labeled samples. Our
overall loss L is

L = LCE + λ1Lcorr + λ2Lcons (3)
Here LCE is cross entropy loss on labeled samples. λ1 and λ2 are the weights of losses. The pseudo
code of our method is shown in Append. A.6

3.1 EXPERIMENT VERIFICATION

In practice, it is intractable to compare all possible sample pairs even for small batch data. We use
experiment to show the empirical performance of consistency ranking loss on CIFAR-10 dataset.
Here we adopt the same experimental setting as Sec. 2. All the results are collected from unlabeled
training set (40000). As shown in Tab. 1, our consistency ranking loss makes the AURC (E-AURC)
of model confidence output (maximum softmax output) approximate the AURC (E-AURC) of train-
ing consistency very well. The experimental results indicate that our consistency ranking loss can
achieve very good performance even optimized on minibatch data with limited pairs.

3.2 THEORETICAL GUARANTEE

In this section, we provide theoretical analysis of the proposed consistency ranking loss (Eq. (2)).
We show that the loss upperbounds the quality of the confidence estimator κ. Informally, our main

1In general, κi can be any confidence estimator (e.g., one can use a separate head to output κi).
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Table 1: The quality of optimization on consistency ranking loss. Softmax (ours): the maximum
softmax output trained with consistency ranking loss. TC (ours): training consistency. Diff. (ours):
the evaluation metric difference between our maximum softmax output and training consistency.
Softmax, TC, Diff. are corresponding results without consistency ranking loss. All values ×102.

Dataset (labeled size) Method E-AURC↓ AURC↓ Method E-AURC↓ AURC↓

CIFAR10
(10000)

Softmax 29.07 40.57 Softmax (ours) 19.35 32.57
TC 17.63 29.13 TC (ours) 17.17 30.39

Diff. 11.44 11.44 Diff. (ours) 2.17 2.17

theorem (Thm. 1) states that the loss upperbounds the difference between the confidence estimation
performance of κ and the consistency c, in terms of the popular metrics AURC and E-AURC. In
other words, as we minimize the loss, κ will have a similar performance as the consistency c in
terms of confidence estimation.

Definition of AURC. To evaluate if a confidence estimator κ is correlated with the chance of a
sample being correctly predicted by classifier f , the area under the risk-coverage curve (AURC) is
proposed. Given a dataset with m samples Dm = (Xm, Ym) and a confidence estimator κ, the em-
pirical selective risk is r̂(f, gθ|Dm) =

1
m

∑m
i=1 l(ŷi,yi)gθ(xi)

1
m

∑m
i=1 gθ(xi)

where ŷi = argmaxy∈Y f(xi, y|Dm).
We define indicator function l(ŷi, yi) = 1{ŷi ̸= yi}. Here, gθ(xi) = 1{κi ≥ θ} is a selec-
tion function thresholding on confidence scores κ. The AURC is defined as AURC(f, κ|Dm) =
1
m

∑
θ∈Θ r̂(f, gθ|Dm), where Θ is the set of all distinct values of confidence scores κ on Xm, i.e.,

Θ = {κi|i = 1, . . . ,m}.

E-AURC was proposed as a normalized version of AURC. κ∗ is an optimal confidence score
function of f on Dm, yielding the correctly predicted samples having higher confidence scores
than misclassified ones. κ∗ minimizes AURC(f, ·|Dm). Excess-AURC (E-AURC) is defined as,
E-AURC(f, κ|Dm) = AURC(f, κ|Dm) − AURC(f, κ∗|Dm). When E-AURC(f, κ|Dm) = 0 and
f is not an optimal classifier, then κ assigns higher confidence score to correct predictions than
incorrect ones. In such a way, we can filter out correct predictions by κ.

Next, we formally state and prove our main theorem. Let T (f |Dm) be the set constituted by all
the correctly predicted samples, T (f |Dm) = {x : ŷ = y, ŷ = argmaxi∈Y f(x)i, (x, y) ∈ Dm}.
Here we define Rκ, a ranking function based on confidence score function κ on Xm, Rκ(x) ∈
{1, 2, . . . ,m},∀x ∈ Xm. If κ(xi) < κ(xj) than Rκ(xi) > Rκ(xj), ∀xi, xj ∈ Xm. Here we
assume both κ and Rκ are one-to-one functions. Given Rκ, we define ranking set Hκ = {Rκ(x) :
ŷ = y, ŷ = argmaxi∈Y f(x)i, (x, y) ∈ Dm}. Here we define c(xi) = ci, xi ∈ Xm. Note that
training consistency is a kind of confidence estimator and in the context below, we will use c to
denote training consistency. Here we define Rc in certain way such that it is one-to-one function
(More details are included in Append. A.3).

Definition 3.1. Given ranking function Rc and Rκ, we introduce a set Dc = {|c(R−1
c (i)) −

c(R−1
c (j))|; i = γm(Rκ(x)), j = γm(Rκ(x)) + sign(Rκ(x) − γm(Rκ(x)))), x ∈ T,R−1

c (j) ̸∈
T (f |Dm)}, where γm = argminγ∈τ(Hκ,Hc)

∑
x∈T |Rκ(x)− γ(Rκ(x))|, sign is a sign function, τ

is the collection of the bijective function between the elements of Hκ and Hc.

Theorem 1. Given dataset Dm = (Xm, Ym) and training consistency Cm:

|AURC(f, c|Dm)− AURC(f, κ|Dm)| ≤ 1

mminDc
Lcons(f,Xm;Cm) (4)

We notice that |E-AURC(f, c|Dm)− E-AURC(f, κ|Dm)| = |AURC(f, c|Dm)− AURC(f, κ|Dm)| ,
thus the theorem above works for E-AURC too.

Proof. Let Tκ(i) be the set constituted by all the correct predicted samples with confidence less
or equal than R−1

κ (i), Tκ(i) = {x : Rκ(x) ≤ i, ŷ = y, ŷ = argmaxi∈Y f(x)i, (x, y) ∈ Dm}.
Tc(i) is the corresponding set introduced by training consistency c. We define Hc(f, κ|Dm) =∑m

i=1 1(#Tκ(i) ̸= #Tc(i)) and Hk
c (f, κ|Dm) =

∑k
i=1 1(#Tκ(i) ̸= #Tc(i)). It can be proved:

|AURC(f, c|Dm)− AURC(f, κ|Dm)| ≤ Hc(f, κ|Dm)

m
(5)
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There is a fact that ∀i ∈ {1, 2, . . . ,m} if 1(#Tκ(i) = #Tc(i)), than
r̂(f, gR−1

κ (i)|Dm) = r̂(f, gR−1
c (i)|Dm), so |AURC(f, c|Dm) − AURC(f, κ|Dm)| ≤

1
m

∑
#Tκ(i) ̸=#Tc(i)

|r̂(f, gR−1
κ (i)|Dm) − r̂(f, gR−1

c (i)|Dm)|. We also have Fr(f, c|Dm) =∑m
i=1

∏m
j=1 1(Rc(xj) ≤ i) ·1(ŷj = yj), where ŷj = argmaxi∈Y f(xj)i and (xj , yj) ∈ Dm. Here

we define K(f, c|Dm) = #T (f |Dm) − Fr(f, c|Dm), which is the number of correct predicted
samples with lower training consistency than at least one incorrect sample. Then we prove that:

1

mminDc
Lcons(f,Xm;Cm) ≥ Hc(f, κ|Dm)

m
(6)

A detailed proof version is provided in Append. A.3.

4 EXPERIMENT

To verify the effectiveness of our method in confidence estimation with limited labeled data, we start
with evaluating on image classification and medical image segmentation tasks. Active learning is
usually used as a follow-up task of confidence estimation. Here we implement active learning on
image classification tasks to show that the highly uncertain samples picked up by our method will
promote the learning process in a better manner. We also evaluate our method on CIFAR10/100
through anomaly detection in Append. A.7.

4.1 IMAGE CLASSIFICATION

In this section, we show that our method can generate reliable confidence estimates with a small
portion of labeled samples and majority of unlableled samples through classification tasks. We
evaluate our method on benchmark datasets, CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009).
Besides, we also provide the results on cancer survival dataset in Append. A.9.

Implementation details. To show the superiority of our method in making use of unlabeled training
samples, we compare our method with other baselines under different portions of labeled training
data: 5% (2500), 10% (5000), 20% (10000), 100% (50000). As for network architecture, we adopt
PreAct-ResNet110 (He et al., 2016) for CIFAR-10 and DenseNetBC (k = 12, d = 100) (Huang et al.,
2017) for CIFAR-100. All methods are trained by SGD with a momentum of 0.9 and a weight decay
of 0.0001. We train our method for 300 epochs with the mini-batch size of 192, in which 64 are
labeled, and use initial learning rate of 0.1 with a reduction by a factor of 10 at 150 and 250 epochs.
A standard data augmentation scheme for image classification is used, including random horizontal
flip, 4 pixels padding and 32× 32 random crop. More details are included in Append. A.1.

For our method, we set the loss weights λ1, λ2 in Eq. 3 as 0.5, 0.5 respectively, and use maximum
softmax as the model confidence output for both training and evaluation. We compare our method
with cross entropy loss only (Softmax), CRL (Moon et al., 2020), AES with 30 snapshot mod-
els (Geifman et al., 2018), Mcdrop with 50 stochastic ensembles (Gal & Ghahramani, 2016) and
Aleatoric+MCdropout (Kendall & Gal, 2017). As for evaluation, besides the ordinal ranking evalu-
ation metrics AURC and E-AURC, we also adopt three widely used calibration evaluation metrics,
the expected calibration error (ECE) (Naeini et al., 2015), negative log likelihood (NLL) and the
Brier score (Brier et al., 1950). The false positive rate at 95% true positive rate (FPR-95%-TPR) is
also used to evaluate confidence estimation performances.

The experimental results are shown in Tab. 2 (The results of ‘full’ setting are included in Ap-
pend. A.5). All the experiments are repeated for five times, and we report the means and standard
deviations. From the results, we can see that the proposed method achieves better performances in
both confidence estimation and classification accuracy. The improvement of our consistency rank-
ing loss is even more salient under the scenarios of less labeled training samples. This indicates that
our method utilizes unlabeled samples to encourage neural network classifier to generate believable
confidence estimates effectively.

It is also obvious that the improvement of our method is more significant on CIFAR-100. This is
because for CIFAR-100, the number of training samples in each class is much less than CIFAR-10,
which worsens ‘the lack of samples’ effect in confidence estimation and classification. This further
demonstrates the necessity of utilizing the confidence information of unlabeled samples .
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Table 2: Comparison of confidence estimates on CIFAR-10/100 with various labeled training data
sizes. The best results are shown in bold. We multiply the values of AURC & E-AURC by 103, FPR
by 102 and NLL by 10 for clarity.

Dataset (labeled size) Method Acc↑ AURC↓ E-AURC↓ FPR-95↓ ECE↓ NLL↓ Brier↓
CIFAR10

CIFAR10
(2500)

Softmax 0.717±0.008 109.78±6.69 65.32±3.92 75.64±0.59 20.23±0.76 14.83±0.60 47.17±1.53
AES 0.713±0.002 108.94±0.87 63.34±1.02 74.31±0.99 16.82±0.47 14.46±0.33 44.36±0.32

Mcdrop 0.700±0.008 122.45±6.37 72.42±3.89 76.43±1.49 16.76±0.59 16.49±0.53 46.18±1.19
Aleatoric+MC 0.704±0.022 119.76±15.06 70.66±7.69 75.29±2.35 16.55±1.56 16.30±1.23 45.62±3.49

CRL 0.718±0.003 105.92±2.27 61.95±1.27 74.17±0.80 13.15±0.62 10.63±0.19 42.20±0.55
Ours 0.755±0.004 81.50±2.70 48.72±1.75 71.42±1.08 5.77±0.30 8.56±0.24 35.24±0.53

CIFAR10
(5000)

Softmax 0.795±0.002 60.54±1.45 38.02±1.14 68.64±1.08 14.73±0.20 11.26±0.15 34.28±0.47
AES 0.799±0.002 51.68±1.04 29.99±0.80 60.44±0.90 8.16±0.19 9.46±0.09 28.51±0.21

Mcdrop 0.808±0.003 52.94±1.07 33.25±0.47 67.70±0.93 8.80±0.24 10.41±0.20 29.01±0.43
Aleatoric+MC 0.810±0.001 50.96±1.47 31.73±1.36 67.46±1.22 8.67±0.24 10.22±0.16 28.69±0.30

CRL 0.807±0.002 51.76±1.91 31.82±1.55 65.94±1.31 9.08±0.29 7.16±0.17 29.21±0.44
Ours 0.818±0.002 44.43±1.03 26.88±0.66 64.64±0.93 5.26±0.43 6.42±0.08 26.88±0.43

CIFAR10
(10000)

Softmax 0.849±0.001 37.46±1.09 25.44±0.93 63.34±1.88 11.03±0.13 8.49±0.09 25.59±0.26
AES 0.855±0.004 30.75±0.89 19.71±0.57 57.09±0.71 6.61±0.43 7.23±0.21 21.68±0.57

Mcdrop 0.865±0.004 28.58±1.08 19.09±0.58 61.39±1.66 5.68±0.34 7.41±0.23 20.37±0.46
Aleatoric+MC 0.865±0.001 28.64±0.70 19.22±0.65 61.80±2.13 5.75±0.20 7.47±0.10 20.47±0.23

CRL 0.856±0.001 31.28±0.32 20.51±0.16 61.63±1.36 5.71±0.21 5.08±0.03 21.71±0.16
Ours 0.860±0.002 28.39±0.54 18.19±0.36 59.23±1.96 3.99±0.17 4.83±0.03 20.77±0.18

CIFAR100

CIFAR100
(2500)

Softmax 0.292±0.006 506.70±4.52 159.23±6.38 79.15±1.54 31.89±1.34 38.25±0.99 97.18±0.96
AES 0.289±0.009 509.38±12.07 157.50±3.01 79.93±1.38 30.17±0.83 38.63±0.79 95.77±0.39

Mcdrop 0.269±0.005 542.10±7.75 165.06±2.00 79.95±1.98 42.43±0.84 49.71±1.37 108.54±1.07
Aleatoric+MC 0.269±0.005 542.86±10.72 165.56±3.95 80.96±1.63 42.48±1.70 49.61±2.02 108.81±1.78

CRL 0.287±0.004 507.43±5.96 152.82±2.28 79.12±1.86 29.01±1.74 37.33±1.00 95.40±1.34
Ours 0.365±0.004 399.49±6.23 133.15±3.78 75.36±0.82 27.55±0.35 33.54±0.39 87.24±0.66

CIFAR100
(5000)

Softmax 0.425±0.005 344.09±5.31 132.95±0.95 77.10±1.18 32.74±0.55 35.28±0.47 86.17±0.73
AES 0.419±0.005 335.02±4.86 118.75±0.87 73.30±0.73 22.89±0.69 34.04±0.63 77.93±0.74

Mcdrop 0.394±0.004 379.60±4.24 141.06±2.55 77.04±0.30 39.32±0.44 44.43±1.19 94.73±0.72
Aleatoric+MC 0.394±0.002 378.72±3.47 140.54±1.48 77.48±0.80 39.12±0.49 44.19±0.95 94.67±0.73

CRL 0.437±0.003 322.94±3.17 122.50±0.77 75.28±1.05 29.51±0.50 31.50±0.43 82.09±0.54
Ours 0.482±0.005 266.08±5.87 100.22±2.40 71.50±1.88 18.61±0.54 23.99±0.47 70.33±0.91

CIFAR100
(10000)

Softmax 0.546±0.004 214.17±2.81 90.78±0.59 72.72±0.52 24.31±0.40 24.19±0.44 67.41±0.59
AES 0.546±0.002 209.77±3.62 86.38±2.24 71.55±1.12 19.63±0.20 24.29±0.46 63.62±0.42

Mcdrop 0.523±0.004 238.32±5.79 100.70±3.53 72.99±0.72 30.58±0.73 31.73±1.05 75.05±1.02
Aleatoric+MC 0.521±0.006 240.02±6.93 100.94±3.05 73.15±1.49 30.54±0.55 31.79±1.16 75.27±1.22

CRL 0.563±0.005 196.11±2.35 82.976±0.95 70.37±1.18 20.71±0.31 21.20±0.19 63.02±0.58
Ours 0.590±0.003 168.57±2.39 70.26±0.89 68.30±1.37 14.34±0.32 17.55±0.22 56.23±0.49

4.2 MEDICAL IMAGE SEGMENTATION

Even though deep neural network has achieved very impressive performance in medical image seg-
mentation (Litjens et al., 2017), it is still important to estimate the model confidence on samples,
so the expert can get involved in time to avoid misjudgement. This emphasizes the importance
of detecting and reacting to the failure of deep learning models. Thus, confidence estimation is a
promising way to manage this reliability concern (Jungo & Reyes, 2019). On the other hand, im-
age segmentation (dense label prediction) task is a good scenario to show the effectiveness of our
consistency ranking loss, as the convergence of pairing loss is much more challenging. Here we use
a publicly available dataset to conduct the experiment: the international skin imaging collaboration
(ISIC) lesion segmentation dataset 2017 (Codella et al., 2018), which consists 2000 training, 150
validation and 600 testing annotated images.

Implementation details. We conduct experiments with various portions of labeled training samples:
1/16 (125), 1/8 (250), 1/4 (500) and full (2000). We use UNet (Ronneberger et al., 2015) with
ResNet34 backbone as the model architecture for all methods. The loss weights λ1, λ2 are set to
0.5, 0.15 for segmentation task. All models are trained by Adam with a learning rate 0.0001. We
train our method for 200 epochs with a mini-batch size of 96 (32 labeled and 64 unlabeled). As for
augmentation, a scheme with resizing (192×256), random scale, random crop (192×256), random
horizontal and vertical flip is used. Here we use mean Intersection-Over-Union (IOU) to evaluate
the segmentation quality. More details are provided in Append. A.1.

The results are shown in Tab. 4 (The results of ‘full’ setting are included in Append. A.4). We ob-
serve that our method can produce more reliable confidence estimates than other baselines. The lack
of labeled training samples has little impact on the segmentation accuracy (mIOU), but deteriorates
the confidence estimation quality severely. Our method shows robustness to the shortage of labeled
samples in terms of confidence estimation, because of the effective utilization of unlabeled samples.
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Table 3: The correctness supervision ablation study results on CIFAR10
Dataset (labeled size) Method Acc↑ AURC↓ E-AURC↓ FPR-95↓ ECE↓ NLL↓ Brier↓

CIFAR10

5000

Point-wise (L1) 0.803±0.004 76.73±5.79 55.88±4.87 66.97±0.75 3.25±0.71 7.84±0.64 28.51±0.71
Unified normalization 0.812±0.001 48.03±2.31 29.07±2.26 64.83±0.79 9.34±0.36 7.33±0.06 29.87±0.02

w/o corr 0.816±0.004 47.12±1.87 29.16±1.41 66.37±0.86 5.39±0.36 6.74±0.16 27.38±0.32
ours 0.818±0.002 44.43±1.03 26.88±0.66 64.64±0.93 5.26±0.43 6.42±0.08 26.88±0.43

Table 4: Comparison of confidence estimates on ISIC2017. The value setting is the same as Tab. 2.
Dataset (labeled size) Method mIOU↑ AURC↓ E-AURC↓ FPR-95↓ ECE↓ NLL↓ Brier↓

ISIC2017

125

Softmax 0.801±0.005 34.36±7.76 31.33±7.92 60.90±2.11 6.45±0.30 3.82±0.46 13.96±0.21
AES 0.802±0.006 21.12±1.10 18.07±1.01 57.26±4.65 5.46±0.37 4.17±0.22 12.84±0.53

Mcdrop 0.801±0.005 30.23±3.81 27.19±3.75 61.45±1.25 6.36±0.30 4.05±0.33 13.88±0.49
Aleatoric+MC 0.802±0.001 27.66±1.87 24.62±1.93 59.55±0.84 6.21±0.15 3.86±0.29 13.68±0.13

CRL 0.810±0.004 22.14±2.82 19.33±2.81 62.15±2.75 4.11±0.54 2.86±0.34 12.25±0.42
Ours 0.812±0.007 14.11±1.06 11.23±0.86 56.81±2.79 3.05±0.49 2.31±0.23 11.464±0.58

250

Softmax 0.819±0.002 28.91±4.70 26.45±4.72 58.51±0.93 5.62±0.20 3.35±0.21 12.45±0.18
AES 0.819±0.002 18.08±1.38 15.60±1.43 54.09±2.26 4.57±0.21 3.41±0.09 11.38±0.16

Mcdrop 0.819±0.008 25.38±4.76 22.89±4.57 58.31±1.49 5.45±0.40 3.39±0.23 12.27±0.67
Aleatoric+MC 0.817±0.005 25.96±3.76 23.37±3.80 57.80±1.77 5.49±0.33 3.43±0.29 12.43±0.60

CRL 0.818±0.002 16.43±0.94 13.90±0.90 62.56±9.11 3.93±0.91 2.60±0.25 11.64±0.82
Ours 0.817±0.007 12.79±0.79 10.21±0.62 54.51±2.79 2.56±0.26 2.23±0.17 10.71±0.31

500

Softmax 0.822±0.003 23.45±0.93 21.09±0.90 56.90±1.49 5.22±0.22 2.98±0.17 11.88±0.33
AES 0.823±0.006 15.74±1.18 13.39±1.13 54.29±3.51 4.39±0.15 3.10±0.14 11.10±0.24

Mcdrop 0.821±0.003 21.21±2.57 18.83±2.55 56.69±1.04 4.61±0.27 2.68±0.17 11.49±0.27
Aleatoric+MC 0.821±0.003 21.32±2.18 18.96±2.12 56.41±1.42 5.07±0.19 3.20±0.18 11.73±0.26

CRL 0.822±0.006 14.04±1.03 11.64±1.00 55.46±2.30 2.82±0.25 2.33±0.15 10.64±0.16
Ours 0.823±0.004 11.85±1.17 9.42±1.13 54.14±1.97 2.48±0.24 2.08±0.18 10.44±0.20

When it comes to confidence calibration, our method has superior performances under various sizes
of labeled samples.
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Figure 3: Ablation study for λ2.

In Fig. 4, the qualitative results on ISIC2017 are showed,
and we can observe that: 1) our method performs better
for segmentation accuracy, 2) the maximum softmax out-
put optimized on cross-entropy only is overconfident near
the boundary of lesion region, 3) the confidence map gen-
erated by our method is more reasonable and consistent
with training consistency.

Ablation study for λ2. We also discuss the effect of
weight changes on consistency ranking loss. As shown
in Fig. 3, the perturbation of weight λ2 has limited in-
fluence on confidence estimation performances, and our
choice (λ2 = 0.15) achieves the best outcome.

With/without correctness supervision. We used correctness ranking loss in our method to make
full use of limited training labels. Here we conduct an ablation study to see the importance of the
correctness ranking loss. According to Tab. 3 w/o corr, removing correctness ranking loss hurts the
performance on both classification and segmentation tasks.

Normalization strategy. In this paper, we do min-max normalization for training consistency on
labeled samples and unlabeled samples in mini-batch separately. Here we try to concatenate training
consistency on labeled and unlabeled samples first then normalize mini-batch consistency together
as an alternative solution. The results are shown in Tab. 3 Unified normalization. We can see all
evaluation metrics deteriorate significantly with the alternative normalization strategy.

Point-wise loss. Here use a ranking loss to optimize confidence output, an alternative solution is to
use a point-wise loss like L1 loss. However, due to training consistency is not of the same scale as
the probability-based uncertainty, L1 loss cannot achieve good performance (Tab. 3).

4.3 ACTIVE LEARNING

In practice, there are scenarios where unlabeled samples are cheap to acquire but manual annotations
are costly. To solve this problem, a promising direction is active learning, which requires learning
algorithm actively queries experts for annotations. The critical issue here is how algorithm can

8



Published as a conference paper at ICLR 2023

(a) Ori. (b) GT (c) Consi. (d) Soft. (e) Sconfi. (f) Ours (g) Confi.

Figure 4: Qualitative results on 250 labeled training samples compared to baselines. From left to
right: (a) Original image, (b) GT label, (c) GT consistency map, (d) Segmentation map of cross en-
tropy, (e) Maximum softmax of cross entropy (Softmax), (f) Segmentation map of proposed method,
(g) Confidence map of the proposed method.

decide which unlabeled samples are valuable for the next stage learning. A common opinion is that
the confidence levels of unlabeled samples denote the value for learning process. Therefore, in this
section, we adopt the strategy, which queries the samples with least model certainty.

Implementation details. We evaluate active learning performance on CIFAR-10 and CIFAR-100.
ResNet18 architecture is used for all models. For each stage, we train our model by SGD for 200
epochs with initial learning rate of 0.1, which shrinks a factor of 10 at 120 and 160 epochs. The
rest hyper-parameters for our method are the same as Sec. 4.1. Here we compare our method with
CRL, MC-dropout, core-set selection (Sener & Savarese, 2018), cross-entropy loss (using entropy
as confidence output) and random sampling.
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(b) CIFAR-100
Figure 5: Active learning results comparison on CIFAR-10 and
CIFAR-100. Curves are the mean accuracy of five iterations,
shaded regions are standard deviations.

In the first training stage, 1000
labeled training samples and
49000 unlabeled samples are fed
into training process. After
training, 1000 samples from the
unlabeled set with least model
confidence are selected and an-
notated. We iteratively train and
annotate for the next 9 stages.
All 10 stages construct a com-
plete training procedure. To
make sure the experimental re-
sults are repeatable, we repeat
each experiment for 5 times.
The results are shown in Fig. 5.
We can see our method performs
better in most stages for both CIFAR-10 and CIFAR-100. The reason is that our method can utilize
the confidence information contained in unlabeled training samples by inspecting training consis-
tency. This advantage is more apparent on CIFAR-100 because the shortage of training samples for
each class is more severe for CIFAR-100. Through active learning experiment, we can conclude
that the samples selected by confidence estimates generated by our method are more effective for
the following active learning stages.

5 CONCLUSION

In this paper, we study the validation of training consistency in estimating the model confidence
of unlabeled samples. Both t-SNE visualization and AURC (E-AURC) evaluation suggest that it
generates reliable confidence estimates for both labeled and unlabeled samples with minor labeled
samples. We propose consistency ranking loss to make the model confidence output be consistent
with training consistency on labeled and unlabeled samples. We demonstrate the efficacy of con-
sistency ranking loss by mathematical proof and empirical results. The superiority of our method
on image classification and medical image segmentation tasks suggest wide application prospect of
our method. The confidence estimates generated by our method also work for querying high quality
training images and achieve better performance than other baselines in active learning.
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Reproducibility Statement: We provide the necessary experimental details in Sec. 4. More specif-
ically, the implementation details of image classification tasks are provided in Sec. 4.1. Sec. 4.2
contains the implementation details for image segmentation task. The implementation details of
active learning tasks are provided in Sec. 4.3. The details of baseline methods are described in Ap-
pend. A.1. The details of the pairing strategy are provided in Append. A.2. The details of evaluation
metrics AURC and E-AURC are included in Sec. 3.2.
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A APPENDIX

Append. A.1 shows the implementation details of confidence estimation baselines.

Append. A.2 shows the details of mini-batch data pairing strategy.

Append. A.3 shows a detailed proof of Thm. 1

Append. A.4 shows the full confidence estimation results on ISIC2017

Append. A.5 shows the full confidence estimation results on CIFAR-10 and CIFAR-100

Append. A.6 shows the pseudo code of training model using our method.

Append. A.7 shows the anomaly detection results.

Append. A.8 shows the other possible ways for extracting consistency information.

Append. A.9 shows Cancer Survival dataset results.

A.1 IMPLEMENTATION DETAILS OF CONFIDENCE ESTIMATION BASELINES

For image classification, to make sure all baselines are fully converged, We train baseline models for
2700, 1200, 600, 300 epochs on 1/20 (2500), 1/10 (5000), 1/5 (10000), 1 (50000) labeled training
images. The mini-batch size is 128. The initial learning rate is 0.1 and shrinks a factor of 10 at
1/2× number of epochs and 5/6× number of epochs.

As for medical image segmentation (ISIC2017), we train all baseline models for 1500, 700, 300,
200 epochs on 1/16 (125), 1/8 (250), 1/4 (500), 1 (2000) labeled training images. The learning rate
is 0.0001 all the time. The mini-batch size of all baselines is 64.

A.2 DETAILS OF MINI-BATCH DATA PAIRING STRATEGY

The mini-batch data are constructed by labeled samples Dl = {(xi, yi)}bi=1 and unlabeled samples
Du = {(xu

i , y
u
i )}di=1. We define x[b] = x0, x[i] = xi+1, i = 1, . . . , b − 1 and xu

[d] = xu
0 , x

u
[i] =

xu
i+1, i = 1, . . . , d. In practice, we use empirical consistency ranking loss, which is defined by

Lcon =

b∑
s=1

sign(cs− c[s])((cs− c[s])− (κs−κ[s]))+

d∑
s=1

sign(cus − cu[s])((c
u
s − cu[s])− (κu

s −κu
[s]))

where cs = c(xs), c[s] = c(x[s]), κs = κ(xs), κ[s] = κ(x[s]), c
u
s = c(xu

s ), c
u
[s] = c(xu

[s]), κ
u
s =

κ(xu
s ), κ

u
[s] = κ(xu

[s]).

A.3 DETAILED PROOF

Given Rκ, we define ranking set Hκ = {Rκ(x) : ŷ = y, ŷ = argmaxi∈Y f(x)i, (x, y) ∈ Dm}. To
make sure the duplicate value in Cm won’t affect the proof result, we stipulate that beside the rule
above training consistency ranking function Rc also need to minimize

min
γ∈τ(Hκ,Hc)

∑
x∈T

|Rκ(x)− γ(Rκ(x))| (7)

where τ is the collection of the bijective function between the elements of Hκ and Hc. Satisfying two
conditions above, we can define Rc as an one-to-one function. Given Rc, we introduce a set Dc =
{|c(R−1

c (i)) − c(R−1
c (j))|; i = γm(Rκ(x)), j = γm(Rκ(x)) + sign(Rκ(x) − γm(Rκ(x)))), x ∈

T,R−1
c (j) ̸∈ T (f |Dm)}, where γm = argminγ∈τ(Hκ,Hc)

∑
x∈T |Rκ(x) − γ(Rκ(x))|, sign is a

sign function and c(xi) = ci, xi ∈ Xm.

To answer this question, we prove that consistency training loss is an upper bound of the absolute
difference between the E-AURC of training consistency and confidence estimator on given dataset
Dm = (Xm, Ym) and training consistency Cm:

|AURC(f, c|Dm)− AURC(f, κ|Dm)| ≤ 1

mminDc
Lcons(f,Xm;Cm)

13



Published as a conference paper at ICLR 2023

Proof. Let Tκ(i) be the set constituted by all the correct predicted samples with confidence less or
equal than R−1

κ (i), Tκ(i) = {x : Rκ(x) ≤ i, ŷ = y, ŷ = argmaxi∈Y f(x)i, (x, y) ∈ Dm}. Tc(i)
is the corresponding set introduced by training consistency c and Tc(i) = {x : Rc(x) ≤ i, ŷ =
y, ŷ = argmaxi∈Y f(x)i, (x, y) ∈ Dm}. We define Hc(f, κ|Dm) =

∑m
i=1 1(#Tκ(i) ̸= #Tc(i))

and Hk
c (f, κ|Dm) =

∑k
i=1 1(#Tκ(i) ̸= #Tc(i)). It can be proved that :

|AURC(f, c|Dm)− AURC(f, κ|Dm)| ≤ Hc(f, κ|Dm)

m
(8)

There is a fact that ∀i ∈ {1, 2, . . . ,m} if 1(#Tκ(i) = #Tc(i)), than r̂(f, gR−1
κ (i)|Dm) =

r̂(f, gR−1
c (i)|Dm), so

|AURC(f, c|Dm)− AURC(f, κ|Dm)| ≤ 1

m

∑
#Tκ(i)̸=#Tc(i)

|r̂(f, gR−1
κ (i)|Dm)− r̂(f, gR−1

c (i)|Dm)|

≤ Hc(f, κ|Dm)

m

We also have Fr(f, c|Dm) =
∑m

i=1

∏m
j=1 1(Rc(xj) ≤ i) · 1(ŷj = yj), where ŷj =

argmaxi∈Y f(xj)i and (xj , yj) ∈ Dm. Here we define K(f, c|Dm) = #T (f |Dm)−Fr(f, c|Dm),
which is the number of correct predicted samples with lower training consistency than at least one
incorrect sample.

In the next part, we will prove that:

1

mminDc
Lcons(f,Xm;Cm) ≥ Hc(f, κ|Dm)

m
(9)

We first discuss the case when K(f, c|Dm) = 0. This means that the correct classified sam-
ples should have higher training consistency than the misclassified. Let Ct be the set con-
structed by the consistency event count of correct classified samples, Ct = {c(x) : ŷ = y, ŷ =
argmaxi∈Y f(x)i, (x, y) ∈ Dm} and Cf be the set constructed by the consistency event count
of false classified samples, Cf = {c(x) : ŷ ̸= y, ŷ = argmaxi∈Y f(x)i, (x, y) ∈ Dm}. It is
not difficult to tell that minDc = |minCt − maxCf | under the case K(f, c|Dm) = 0. Because
Dc = {minCt −maxCf} when K(f, c|Dm) = 0.

Here we have:

1

|minCt −maxCf |
Lcons(f,Xm|Cm) =

m−1∑
s=1

m∑
i=1,ci<cs

(|cs − ci| − (κs − κi))+
|minCt −maxCf |

≥
m−1∑
s=1

m∑
i=1

1(l(ŷs, ys) = 1 ∩ l(ŷi, yi) = 0 ∩ κi > κs ∩ ci < cs) ≥ Hc(f, κ|Dm)

The details of above formula please take a look at Theorem. 2. We should notice that the conclusion
above does not rely on the data size of Dm. Here we define the ranking function RT (·, κ|Dm) on
T (f |Dm), RT (x, κ|Dm) ∈ {1, 2, . . . ,#T (f |Dm)},∀x ∈ T (f |Dm) and if Rκ(xi) < Rκ(xj) than
RT (xi, κ|Dm) < RT (xj , κ|Dm),∀xi, xj ∈ T (f |Dm).

We assume the result stands when K(f, c|Dm) = n. Than when K(f, c|Dm) = n+ 1, we start the
discussion with the situation R−1

T (#T (f |Dm), κ|Dm) = R−1
T (#T (f |Dm), c|Dm) = x∗. Accord-

ing to assumption here, we can get that
m−1∑
s=1

m∑
i=1,ci<cs

1{xi, xs ̸= x∗}
(|cs − ci| − (κs − κi))+

minDc
≥ Hc(f, κ|Dm/{x∗})

There is a fact that Hmin{Rκ(x∗),Rc(x∗)}
c (f, κ|Dm/{x∗}) = H

min{Rκ(x∗),Rc(x∗)}
c (f, κ|Dm). Since

Hc(f, κ|Dm/{x∗}) ≥ H
min{Rκ(x∗),Rc(x∗)}
c (f, κ|Dm/{x∗}) We have

m−1∑
s=1

m∑
i=1,ci<cs

1{xi, xs ̸= x∗}
(|cs − ci| − (κs − κi))+

minDc
≥ Hmin{Rκ(x∗),Rc(x∗)}

c (f, κ|Dm)
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We begin below part with the scenarios Rκ(x∗) ≥ Rc(x∗), than it is straight that there must ex-
ist |Rκ(x∗) − Rc(x∗)| samples from F (f |Dm) constructing a set V = {x ∈ Xm|Rκ(x) <
Rκ(x∗), Rc(x) > Rc(x∗), x ∈ F (f |Dm)}. It is easy to see that γm(Rκ(x∗)) = Rc(x∗) and
sign(Rκ(x∗)− γm(Rκ(x∗))) = 1. So ∀x ∈ V, |c(x∗)− c(x)| ≥ |c(x∗)− c(R−1

c (Rc(x∗) + 1))| ∈
Dc. Therefore, we can get that

m∑
i=1,ci ̸=c∗

(|c∗ − ci| − (κ∗ − κi))+
minDc

≥
∑
xi∈V

(|c∗ − ci| − (κ∗ − κi))+
minDc

≥ |Rκ(x∗)−Rc(x∗)|

As for Rκ(x∗) < Rc(x∗), the proof is in the same manner. Summary the result above we get:

1

minDc
Lcons(f,Xm|Cm) =

m−1∑
s=1

m∑
i=1,ci<cs

1{xi, xs ̸= x∗}
(|cs − ci| − (κs − κi))+

minDc

+

m∑
i=1,ci ̸=c∗

(|c∗ − ci| − (κ∗ − κi))+
minDc

≥ Hmin{Rκ(x∗),Rc(x∗)}
c (f, κ|Dm) + |Rκ(x∗)−Rc(x∗)| ≥ Hc(f, κ|Dm)

If R−1
T (#T (f |Dm), κ|Dm) = x1, R−1

T (#T (f |Dm), c|Dm) = x2 and x1 ̸= x2, we can have one
new confidence estimator by switching the confidence value between x1 and x2:

κt(x) =


κ(x1) x = x2

κ(x2) x = x1

κ(x) otherwise

(10)

It is not difficult to see that consistency ranking loss introduced by κt: Lt
cons(f,Xm|Dm) satisfying

Lcons(f,Xm|Cm) ≥ Lt
cons(f,Xm|Cm)

To see this fact, we pay attention to single sample. First, we discuss sample x∗ satisfying c(x∗) <
c(x2), we can define al = c(x2)− c(x∗)− (κ(x2)−κ(x∗)), bl = c(x1)− c(x∗)− (κ(x1)−κ(x∗)),
at = c(x2) − c(x∗) − (κt(x2) − κt(x∗)) = c(x2) − c(x∗) − (κ(x1) − κ(x∗)), bt = c(x1) −
c(x∗) − (κt(x1) − κt(x∗)) = c(x1) − c(x∗) − (κ(x2) − κ(x∗)). Apparently, bl > at, bl >
bt, at > al, bt > al and al + bl − (at + bt) = 0. Here we define function g(x) = max{0, x}.
It is straight that g(al) + g(bl) ≥ g(at) + g(bt). We discuss this by different situations: 1) if
bl ≤ 0, then g(al) + g(bl) = g(at) + g(bt) = 0; 2) if at ≤ 0, bt > 0, since bl > bt, we have
g(al) + g(bl) = g(bl) = bl > bt = g(bt) = g(at) + g(bt); 3) if bl, at, bt > 0, al < 0, then
g(al) + g(bl) ≥ al + bl ≥ at + bt = g(at) + g(bt). As for other cases, they are easy to get.

Here we have l(x∗) = g(al) + g(bl) and lt(x∗) = g(at) + g(bt), so l(x∗)− lt(x∗) ≥ 0.

As for c(x1) ≥ c(x∗) ≥ c(x2), we have al = c(x1)−c(x∗)−(κ(x1)−κ(x∗)), bl = c(x∗)−c(x2)−
(κ(x∗)− κ(x2)), at = c(x1)− c(x∗)− (κ(x2)− κ(x∗)), bt = c(x∗)− c(x2)− (κ(x∗)− κ(x1)).
Apparently al ≥ at and bl ≥ bt, so we have g(al) + g(bl) ≥ g(at) + g(bt). Also l(x∗) ≥ lt(x∗).

As for c(x∗) > c(x1), the proof is the same as the situation c(x∗) < c(x2).

If x∗ = x1, than l(x∗) = c(x1)− c(x2)− (κ(x1)− κ(x2)) and lt(x∗) = c(x1)− c(x2)− (κ(x2)−
κ(x1)). It is straight that l(x∗) ≥ lt(x∗).

Summary the result above, we can know that Lcons(f,Xm|Cm) − Lt
cons(f,Xm|Cm) =∑

x∈Xm,x̸=x2
l(x)− lt(x) ≥ 0

So the proof stands for case K(f, c|Dm) = n + 1, under the assumption it is true while
K(f, c|Dm) = n.

Let Ts be the set constituted by all the correct predicted samples, Ts = {x : l(ŷ, y) = 0, ŷ =
argmaxi∈Y f(x)i, (x, y) ∈ Dm}. Trank = {Rκ(t) : t ∈ Ts} is the corresponding ranking
set. We also define Fs to be the wrong predicted set, which is Fs = {x : l(ŷ, y) = 1, ŷ =
argmaxi∈Y f(x)i, (x, y) ∈ Dm} and Frank = {Rκ(d) : d ∈ Fs}.
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Theorem 2. Given dataset with m samples Dm, training consistency Cm, confidence estimator κ
and classifier f , we have

Hc(f, κ|Dm)

m
≤ 1

m|minCt −maxCf |
Lcons(f,Xm;Cm)

Proof. In this proof, we don’t consider the situation when f is an optimal classifier or κ is a
perfect confidence estimator (correctly predicted samples have higher confidence that the wrong
ones). Because for those two cases, The E-AURC difference will always be 0. Here we de-
fine Fr(f, κ|Dm) = minFrank, Tr(f, κ|Dm) = maxTrank. It is straight that Hc(f, κ|Dm) =
Tr(f, κ|Dm)− Fr(f, κ|Dm) when K(f, c|Dm) = 0.

First we show that ∀xi, xj ∈ Xm, if κi > κs, ci < cs, l(ŷs, ys) = 1 and l(ŷi, yi) = 0, than
|cs − ci| ≥ (minCt −maxCf ). It is apparent that cs ∈ Cf and ci ∈ Ct, so we have cs ≥ minCf

and ci ≤ maxCt. This inequation thus stands. So far we have

1
|minCt−maxCf |Lcons(f,Xm|Cm) =

∑n−1
s=1

∑n
i=1,ci<cs

(|cs−ci|−(κs−κi))+
|minCt−maxCf | ≥∑n−1

s=1

∑n
i=1,ci<cs

1(l(ŷs, ys) = 1 ∩ l(ŷi, yi) = 0 ∩ κi > κs)
(|cs−ci|−(κs−κi))+
|minCt−maxCf | ≥∑n−1

s=1

∑n
i=1 1(l(ŷs, ys) = 1 ∩ l(ŷi, yi) = 0 ∩ κi > κs ∩ ci < cs) = I(f, κ,Xm|Dm)

Next, we prove that for any confidence score function κ, there is a fact that

I(f, κ,Xm|Dm) = I(f,Xm|Dm) ≥ Tr(f, κ|Dm)− Fr(f, κ|Dm)

Here we define Km = {x ∈ Xm : Rκ(x) > Fr(f, κ|Dm), l(ŷ, y) = 0}. If #Km = 0, than
∀xi, xj ∈ Xm, l(ŷi, yi) = 1, l(ŷj , yj) = 0, we have Rκ(xj) < Rκ(xi). This property makes
κ under this condition an optimal confidence estimator and Tr(f, κ|Dm) < Fr(f, κ|Dm). It is
straight that I(f,Xm|Dm) ≥ 0. Therefore, we have I(f,Xm|Dm) ≥ Tr(f, κ|Dm)− Fr(f, κ|Dm)

If #Km = 1, we have Km = {x∗}, (x∗, y∗) ∈ Dm and Gm = {x ∈ Xm : Rκ(x) <
Tr(f, κ|Dm), l(ŷ, y) = 1}. Since l(ŷ∗, y∗) = 0, it is clear that Rκ(x∗) ≤ Tr(f, κ|Dm). But
if Rκ(x∗) < Tr(f, κ|Dm), we can get xt = R−1

κ (Tr(f, κ|Dm)). Apparently xt ∈ Ts and
Rκ(xt) > Rκ(x∗) > Fr(f, κ|Dm), so xt ∈ Km, which conflicts the fact that #Km = 1. We have
Rκ(x∗) = Tr(f, κ|Dm). According to our assumption about training consistency, it is apparent that
∀x# ∈ Gm, (x#, y#) ∈ Dm, l(ŷ∗, y∗) = 0, l(ŷ#, y#) = 1, κ(x∗) < κ(x#) and C(x∗) > C(x#),
where ŷ∗ = argmaxi∈Y f(x∗)i and ŷ# = argmaxi∈Y f(x#)i. Here we also have #Gm ≥
Tr(f, κ|Dm) − Fr(f, κ|Dm). To prove this, we assume #Gm < Tr(f, κ|Dm) − Fr(f, κ|Dm).
We have if x ∈ Gm, than Rκ(x) ≥ Fr(f, κ|Dm), because Fr(f, κ|Dm) is the minimum value of
Frank. Therefore, if #Gm < Tr(f, κ|Dm) − Fr(f, κ|Dm), there must exist xk ∈ Xm such that
Fr(f, κ|Dm) < Rκ(xk) < Tr(f, κ|Dm) and xk ∈ Ts, which makes xk ∈ Km. Apparently xk and
x∗ are two different elements of Km, which conflicts the fact that #Km = 1. This is a simple fact
that I(f,XmDm) ≥

∑
x#∈Gm

1(x∗ ∈ T ∩ x# ∈ F ∩ κ(x∗) < κ(x#) ∩ C(x∗) > C(x#)) ≥∑
x#∈Gm

1 ≥ Tr(f, κ|Dm)− Fr(f, κ|Dm).

In the context below, we show that for every k ≥ 1, if #Km = k this inequation holds, than
when #Km = k + 1, this inequation also holds. Otherwise, we assume this inequation holds
for any confidence estimator satisfying #Km = k, but there exists confidence estimator κf

such that I(f, κf , Xm|Dm) < Tr(f, κf |Dm) − Fr(f, κf |Dm),Kκf
m = {x ∈ Xm : Rκf

(x) >

Fr(f, κf |Dm), l(ŷ, y) = 0} and #K
κf
m = k + 1. Here we can have a confidence estimator

κt(x) =


κf (R

−1
κf

(F (f, κf |Dm))) x = argmin
x∈K

κf
m

Rκf
(x)

κf (argmin
x∈K

κf
m

Rκf
(x)) x = R−1

κf
(F (f, κf |Dm))

κf (x) otherwise

It is apparent that we get κt by swapping the confidence score of κf at argmin
x∈K

κf
m

Rκf
(x)

and R−1
κf

(F (f, κf |Dm)), so #Kκt
m = k and I(f, κt, Xm|Dm) ≥ Tr(f, κt|Dm) −

Fr(f, κt|Dm). It is also straight to see that Tr(f, κt|Dm) = Tr(f, κf |Dm), Fr(f, κf |Dm) =
Fr(f, κt|Dm) − 1. We also get that I(f, κf , Xm|Dm) − I(f, κt, Xm|Dm) ≥ 1, because

16



Published as a conference paper at ICLR 2023

Table 5: Comparison of confidence estimates on ISIC2017. The value setting is the same as Tab. 2

Dataset (labeled size) Method mIOU↑ AURC↓ E-AURC↓ FPR-95↓ ECE↓ NLL↓ Brier↓
ISIC2017

125

Softmax 0.801±0.005 34.36±7.76 31.33±7.92 60.90±2.11 6.45±0.30 3.82±0.46 13.96±0.21
AES 0.802±0.006 21.12±1.10 18.07±1.01 57.26±4.65 5.46±0.37 4.17±0.22 12.84±0.53

Mcdrop 0.801±0.005 30.23±3.81 27.19±3.75 61.45±1.25 6.36±0.30 4.05±0.33 13.88±0.49
Aleatoric+MC 0.802±0.001 27.66±1.87 24.62±1.93 59.55±0.84 6.21±0.15 3.86±0.29 13.68±0.13

CRL 0.810±0.004 22.14±2.82 19.33±2.81 62.15±2.75 4.11±0.54 2.86±0.34 12.25±0.42
Ours 0.812±0.007 14.11±1.06 11.23±0.86 56.81±2.79 3.05±0.49 2.31±0.23 11.464±0.58

250

Softmax 0.819±0.002 28.91±4.70 26.45±4.72 58.51±0.93 5.62±0.20 3.35±0.21 12.45±0.18
AES 0.819±0.002 18.08±1.38 15.60±1.43 54.09±2.26 4.57±0.21 3.41±0.09 11.38±0.16

Mcdrop 0.819±0.008 25.38±4.76 22.89±4.57 58.31±1.49 5.45±0.40 3.39±0.23 12.27±0.67
Aleatoric+MC 0.817±0.005 25.96±3.76 23.37±3.80 57.80±1.77 5.49±0.33 3.43±0.29 12.43±0.60

CRL 0.818±0.002 16.43±0.94 13.90±0.90 62.56±9.11 3.93±0.91 2.60±0.25 11.64±0.82
Ours 0.817±0.007 12.79±0.79 10.21±0.62 54.51±2.79 2.56±0.26 2.23±0.17 10.71±0.31

500

Softmax 0.822±0.003 23.45±0.93 21.09±0.90 56.90±1.49 5.22±0.22 2.98±0.17 11.88±0.33
AES 0.823±0.006 15.74±1.18 13.39±1.13 54.29±3.51 4.39±0.15 3.10±0.14 11.10±0.24

Mcdrop 0.821±0.003 21.21±2.57 18.83±2.55 56.69±1.04 4.61±0.27 2.68±0.17 11.49±0.27
Aleatoric+MC 0.821±0.003 21.32±2.18 18.96±2.12 56.41±1.42 5.07±0.19 3.20±0.18 11.73±0.26

CRL 0.822±0.006 14.04±1.03 11.64±1.00 55.46±2.30 2.82±0.25 2.33±0.15 10.64±0.16
Ours 0.823±0.004 11.85±1.17 9.42±1.13 54.14±1.97 2.48±0.24 2.08±0.18 10.44±0.20

full:2000

Softmax 0.831±0.003 16.39±0.61 14.29±0.61 53.69±1.00 4.67±0.19 2.87±0.17 10.94±0.25
AES 0.829±0.004 12.54±0.61 10.40±0.60 51.02±2.32 3.98±0.13 3.09±0.07 10.40±0.14

Mcdrop 0.834±0.005 15.41±0.92 13.40±0.89 54.32±0.49 4.51±0.18 2.86±0.08 10.69±0.33
Aleatoric+MC 0.828±0.010 14.81±1.05 12.66±1.07 54.37±0.65 4.57±0.32 3.04±0.21 10.94±0.58

CRL 0.834±0.001 10.17±0.46 8.08±0.46 51.83±3.18 2.61±0.27 2.02±0.07 9.76±0.21
Ours 0.838±0.007 11.18±1.39 9.17±1.35 52.27±3.14 2.23±0.43 1.89±0.17 9.49±0.43

I(f, κf , Xm|Dm) − I(f, κt, Xm|Dm) =
∑

x:F (f,κf |Dm)≤Rκf
(x)<argmin

x∈K
κf
m

Rκf
(x) 1(x ∈

F, x1 = R−1
κf

(F (f, κf |Dm)) ∈ T, κ(x) > κ(x1), C(x) < C(x1)) ≥ 1. So far according to
our assumption we have

I(f, κf , Xm|Dm) < Tr(f, κf |Dm)− Fr(f, κf |Dm) =⇒
I(f, κt, Xm|Dm) + 1 < Tr(f, κf |Dm)− Fr(f, κf |Dm) =⇒

I(f, κt, Xm|Dm) + 1 < Tr(f, κt|Dm)− Fr(f, κt|Dm) + 1 =⇒
I(f, κt, Xm|Dm) < Tr(f, κt|Dm)− Fr(f, κt|Dm)

Which leads to a conflict.

A.4 ISIC2017 CONFIDENCE ESTIMATION RESULTS IN TAB. 5

A.5 CIFAR-10 AND CIFAR-100 CONFIDENCE ESTIMATION RESULTS IN TAB. 6

A.6 PSEUDO CODE

Here we provide the pseudo code 1 for the training process of consistency ranking loss. Here we
need to notice that we normalize the training consistency for labeled samples and unlabeled samples
in a mini-batch independently. The reason is that training consistency has a bias on labeled training
samples, so the labeled samples have higher training consistency than unlabeled ones. There is a
mismatch between the training consistency distribution of labeled samples and unlabeled samples.
A simple way to overcome this issue is Min-max normalize the consistency of labeled and unlabeled
samples separately. In practice, this will achieve better performance.

A.7 ANOMALY DETECTION

We evaluate the anomaly detection ability of our method on CIFAR10 and use the samples of CI-
FAR100 as out-of-distribution samples. In this part, we use the 10% (5000) labeled samples setting.
The results are shown in the table below, and our method achieves best performance. This indicates
that the deep classifier trained by our method can detect out-of-distribution samples efficiently. For
the training details please refer to Sec. 4.1. We compare our method with Cross-entropy loss and
the correctness ranking loss. Here we use detection error (the minimum error among all thresh-
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Table 6: Comparison of confidence estimates on CIFAR-10/100 with various labeled training data
size. The best results of experiments are shown in bold. The values of AURC & E-AURC are
multiplied by 103, FPR are multiplied by 102 and NLL is multiplied by 10 for clarity

Dataset (labeled size) Method Acc↑ AURC↓ E-AURC↓ FPR-95↓ ECE↓ NLL↓ Brier↓
CIFAR10

CIFAR10
(2500)

Softmax 0.717±0.008 109.78±6.69 65.32±3.92 75.64±0.59 20.23±0.76 14.83±0.60 47.17±1.53
AES 0.713±0.002 108.94±0.87 63.34±1.02 74.31±0.99 16.82±0.47 14.46±0.33 44.36±0.32

Mcdrop 0.700±0.008 122.45±6.37 72.42±3.89 76.43±1.49 16.76±0.59 16.49±0.53 46.18±1.19
Aleatoric+MC 0.704±0.022 119.76±15.06 70.66±7.69 75.29±2.35 16.55±1.56 16.30±1.23 45.62±3.49

CRL 0.718±0.003 105.92±2.27 61.95±1.27 74.17±0.80 13.15±0.62 10.63±0.19 42.20±0.55
Ours 0.755±0.004 81.50±2.70 48.72±1.75 71.42±1.08 5.77±0.30 8.56±0.24 35.24±0.53

CIFAR10
(5000)

Softmax 0.795±0.002 60.54±1.45 38.02±1.14 68.64±1.08 14.73±0.20 11.26±0.15 34.28±0.47
AES 0.799±0.002 51.68±1.04 29.99±0.80 60.44±0.90 8.16±0.19 9.46±0.09 28.51±0.21

Mcdrop 0.808±0.003 52.94±1.07 33.25±0.47 67.70±0.93 8.80±0.24 10.41±0.20 29.01±0.43
Aleatoric+MC 0.810±0.001 50.96±1.47 31.73±1.36 67.46±1.22 8.67±0.24 10.22±0.16 28.69±0.30

CRL 0.807±0.002 51.76±1.91 31.82±1.55 65.94±1.31 9.08±0.29 7.16±0.17 29.21±0.44
Ours 0.818±0.002 44.43±1.03 26.88±0.66 64.64±0.93 5.26±0.43 6.42±0.08 26.88±0.43

CIFAR10
(10000)

Softmax 0.849±0.001 37.46±1.09 25.44±0.93 63.34±1.88 11.03±0.13 8.49±0.09 25.59±0.26
AES 0.855±0.004 30.75±0.89 19.71±0.57 57.09±0.71 6.61±0.43 7.23±0.21 21.68±0.57

Mcdrop 0.865±0.004 28.58±1.08 19.09±0.58 61.39±1.66 5.68±0.34 7.41±0.23 20.37±0.46
Aleatoric+MC 0.865±0.001 28.64±0.70 19.22±0.65 61.80±2.13 5.75±0.20 7.47±0.10 20.47±0.23

CRL 0.856±0.001 31.28±0.32 20.51±0.16 61.63±1.36 5.71±0.21 5.08±0.03 21.71±0.16
Ours 0.860±0.002 28.39±0.54 18.19±0.36 59.23±1.96 3.99±0.17 4.83±0.03 20.77±0.18

CIFAR10
(Full:
50000)

Softmax 0.941±0.002 9.11±0.44 7.34±0.39 40.42±2.30 4.46±0.16 3.34±0.13 10.19±0.32
AES 0.942±0.002 5.80±0.28 4.09±0.25 36.37±2.85 1.61±0.20 1.82±0.04 8.69±0.29

Mcdrop 0.942±0.000 5.48±0.19 3.80±0.16 36.74±3.06 1.45±0.15 1.88±0.05 8.48±0.13
Aleatoric+MC 0.943±0.000 6.02±0.33 4.38±0.30 38.72±1.82 1.25±0.07 1.80±0.03 8.36±0.12

CRL 0.940±0.001 6.02±0.26 4.21±0.19 38.81±1.59 1.23±0.18 1.81±0.04 8.85±0.20
Ours 0.942±0.001 5.83±0.25 4.16±0.16 40.69±1.37 0.86±0.07 1.76±0.02 8.60±0.16

CIFAR100

CIFAR100
(2500)

Softmax 0.292±0.006 506.70±4.52 159.23±6.38 79.15±1.54 31.89±1.34 38.25±0.99 97.18±0.96
AES 0.289±0.009 509.38±12.07 157.50±3.01 79.93±1.38 30.17±0.83 38.63±0.79 95.77±0.39

Mcdrop 0.269±0.005 542.10±7.75 165.06±2.00 79.95±1.98 42.43±0.84 49.71±1.37 108.54±1.07
Aleatoric+MC 0.269±0.005 542.86±10.72 165.56±3.95 80.96±1.63 42.48±1.70 49.61±2.02 108.81±1.78

CRL 0.287±0.004 507.43±5.96 152.82±2.28 79.12±1.86 29.01±1.74 37.33±1.00 95.40±1.34
Ours 0.365±0.004 399.49±6.23 133.15±3.78 75.36±0.82 27.55±0.35 33.54±0.39 87.24±0.66

CIFAR100
(5000)

Softmax 0.425±0.005 344.09±5.31 132.95±0.95 77.10±1.18 32.74±0.55 35.28±0.47 86.17±0.73
AES 0.419±0.005 335.02±4.86 118.75±0.87 73.30±0.73 22.89±0.69 34.04±0.63 77.93±0.74

Mcdrop 0.394±0.004 379.60±4.24 141.06±2.55 77.04±0.30 39.32±0.44 44.43±1.19 94.73±0.72
Aleatoric+MC 0.394±0.002 378.72±3.47 140.54±1.48 77.48±0.80 39.12±0.49 44.19±0.95 94.67±0.73

CRL 0.437±0.003 322.94±3.17 122.50±0.77 75.28±1.05 29.51±0.50 31.50±0.43 82.09±0.54
Ours 0.482±0.005 266.08±5.87 100.22±2.40 71.50±1.88 18.61±0.54 23.99±0.47 70.33±0.91

CIFAR100
(10000)

Softmax 0.546±0.004 214.17±2.81 90.78±0.59 72.72±0.52 24.31±0.40 24.19±0.44 67.41±0.59
AES 0.546±0.002 209.77±3.62 86.38±2.24 71.55±1.12 19.63±0.20 24.29±0.46 63.62±0.42

Mcdrop 0.523±0.004 238.32±5.79 100.70±3.53 72.99±0.72 30.58±0.73 31.73±1.05 75.05±1.02
Aleatoric+MC 0.521±0.006 240.02±6.93 100.94±3.05 73.15±1.49 30.54±0.55 31.79±1.16 75.27±1.22

CRL 0.563±0.005 196.11±2.35 82.976±0.95 70.37±1.18 20.71±0.31 21.20±0.19 63.02±0.58
Ours 0.590±0.003 168.57±2.39 70.26±0.89 68.30±1.37 14.34±0.32 17.55±0.22 56.23±0.49

CIFAR100
(Full:
50000)

Softmax 0.753±0.002 71.75±0.89 38.63±0.72 63.30±1.93 12.67±0.25 11.54±0.08 37.26±0.21
AES 0.760±0.001 65.22±0.73 33.95±0.68 62.17±0.54 7.38±0.22 9.04±0.04 33.96±0.16

Mcdrop 0.758±0.003 66.92±1.45 34.97±0.46 63.27±1.47 5.59±0.33 9.49±0.14 34.02±0.38
Aleatoric+MC 0.755±0.003 67.87±1.55 35.05±0.65 61.69±1.79 6.01±0.22 9.45±0.13 34.25±0.47

CRL 0.768±0.002 61.77±1.07 32.57±0.81 61.79±2.20 8.59±0.17 9.11±0.09 33.39±0.28
ours 0.780±0.002 55.40±0.90 29.36±0.57 60.67±1.03 7.87±0.18 8.45±0.07 31.52±0.35

olds) and the area under the receiver operating characteristic curve (AUROC) to evaluate the out-of-
distribution performances. All experiments are iterated 3 times and shown in Tab. 7. The mean and
standard deviation are reported.

A.8 ADDITIONAL QUALITATIVE RESULTS

In this paper, we use consistency events to quantify the sensitive levels of samples vibrating around
the decision boundary in the training process. It’s worth mentioning that this is not the only way
to capture such information. For example, we define label frequency ryi =

∑T−1
t=0 1{ŷti = y} as a

variable to count the number of sample xi being predicted as label y by classifier during training and
it is also able to capture training consistency. We can use the maximum label frequency (L-count)
maxy∈Y ryi to quantify the training consistency on sample xi. Apparently, the higher maximum
label frequency introduces less vacillation in the training process, leading to higher confidence. Be-
sides, we can also use the label frequency entropy (L-entropy) and margin (L-margin) to summarize
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Algorithm 1: Consistency ranking loss training
Input: Dataloader for labeled and labeled training samples
Output: Trained deep model
Definition: uLoader and sLoader denote the dataloader for unlabeled and labeled samples;
Dcorr is the dictionary, storing the count of correctness for each labeled sample. Dcon is the
dictionary, storing the count of consistency for each sample.

1: for epoch in range(number of epochs) do
2: siterator = iterator(sloader)
3: for (uninputs, unlabel-index) in uLoader do
4: if siterator iteration end then
4: siterator = iterator(sLoader)
4: update Dcorr, Dcon

4: inputs, targets, label-index = next(sLoader)
5: else
5: inputs, targets, label-index = next(sLoader)
6: end if
7: corrlabel = Normalize(Dcorr[label-index]) // We use Min-max normalization here
8: conlabel = Normalize(Dcon[label-index]) // Extracting training consistency for batch

labeled samples
9: conunlabel = Normalize(Dcon[unlabel-index]) // Extracting training consistency for batch

unlabeled samples
10: conbatch = Concat(conlabel, conunlabel)
11: labeloutput = model(inputs)
12: unlabeloutput = model(uninputs)
13: outputbatch = Concat(labeloutput, unlabeloutput)
14: LCE = LCE(labeloutput, targets)
15: Lcorr = Lcorr( softmax(labeloutput), corrlabel)
16: Lcon = Lcon(softmax(outputbatch), conbatch)
17: Losstotal = LCE + λ1Lcorr + λ2Lcon

18: Update model weights
19: end for
20: end for

Table 7: Anomaly detection results on 10% (5000) labeled CIFAR10

Method Accuracy↑ AUROC ↑ Detection error↓
CIFAR10

Cross-entropy 0.797±0.002 0.751±0.002 0.301±0.000
CRL 0.807±0.003 0.762±0.002 0.293±0.001
ours 0.818±0.003 0.786±0.001 0.276±0.001

consistency information. We show that our consistency event has superior performance in estimating
confidence in terms of the criterion of ordinal ranking. As shown in Fig. 6, compared with maximum
softmax output, training consistency estimate has much better performance in distinguishing correct
predictions from wrong ones on unlabeled samples. This indicates training consistency has the abil-
ity to extract valid confidence information without the necessity of ground truth labels. Furthermore,
we also find our consistency event captures the essential of training consistency in a better manner,
resulting in better performances across all shown epochs. Though Correctness also achieves good
results, the demand of annotations restricts its application in scenarios with limited labeled data. For
the rest of this paper, training consistency is especially referring to our confidence estimate method.

A.9 RESULTS ON CANCER SURVIVAL DATASET

In Cancer Survival dataset Liu et al. (2022), histopathological features are used to predict the 5-year
survival of lung cancer patients, which can be taken as a classification task. This dataset has 1512
whole slide images (1203 for training, 151 for validation, 158 for testing), 352 of which died in 5
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Figure 6: Performance of consistency as a confidence estimator. We evaluate the performance
of consistency, correctness, softmax, L-count, L-margin, L-entropy in terms of popular metrics,
AURC and E-AURC. We train a model with only 20% of CIFAR10 labeled data, and evaluate on
the remaining unlabeled data.

Table 8: Results on Cancer Survival dataset (120 labeled sample)

Method Acc↑ AURC↓ E-AURC↓ FPR-95↓ ECE↓ NLL↓ Brier↓
Cancer Survival

CE 0.616 418.50 333.03 90.53 13.76 7.35 51.86
MMCE (Kumar et al., 2018) 0.625 436.54 355.43 89.88 8.86 6.74 48.01
CaPE(bin) (Liu et al., 2022) 0.614 428.10 341.29 92.82 9.60 7.10 50.57

CaPE(kernel) (Liu et al., 2022) 0.614 414.27 327.46 88.96 10.11 7.12 50.56
Deep ensemble (Lakshminarayanan et al., 2017) 0.620 386.71 303.07 90.41 10.33 7.05 49.54

ETS (Zhang et al., 2020) 0.627 384.90 304.29 90.89 15.13 7.69 52.63
Mcdrop 0.628 351.36 271.38 91.51 10.66 6.80 48.40

CRL 0.628 367.50 287.58 95.25 9.22 6.82 48.44
Ours 0.627 343.73 263.20 91.52 6.43 6.68 47.42

years. For our experiment, we randomly choose 120 training samples as labeled and the rest training
samples are unlabeled.

Results are shown in the Tab. 8. Our method achieves very good performance on this Cancer Survival
dataset. Most evaluation metrics of our method are best among compared methods. This is because
our method can make use of the confidence information on unlabeled samples effectively.
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