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ABSTRACT

Cross-lingual information retrieval in long-context settings faces challenges such
as the "lost-in-the-middle" phenomenon and computational inefficiencies. We
introduce CROSS (Cross-lingual Retrieval Optimized for Scalable Solutions),
a two-phase retrieval framework that integrates multilingual embeddings with
efficient candidate selection to enhance retrieval-augmented generation (RAG).
Evaluating CROSS on the newly developed mLongRR-V2 benchmark—covering
seven languages and 49 language pairs—we demonstrate substantial improvements
in retrieval accuracy, scalability to 512,000-token contexts, and robustness across
linguistic structures. Compared to baseline large language models (LLMs), CROSS
significantly mitigates mid-context retrieval failures while reducing computational
overhead. Our results establish CROSS as an efficient and scalable solution for
multilingual long-context retrieval.

1 INTRODUCTION

The increasing need for multilingual information retrieval in today’s globalized environment has
brought to light several challenges, particularly when handling extremely long documents, mid-
context target information, and diverse linguistic structures. In such settings, retrieval methods often
suffer from a “lost-in-the-middle” phenomenon, where relevant details embedded deep within lengthy
texts are overlooked, and from difficulties in generalizing across varied language pairs and domains.
This work focuses on addressing the following core research questions:

1. RQ1: How can retrieval methods be designed to effectively capture and utilize long-context
information across languages while balancing computational efficiency and scalability?

2. RQ2: How can the “lost-in-the-middle” problem be mitigated in long-context retrieval
without sacrificing model expressiveness or adaptability to diverse linguistic domains?

3. RQ3: What scalable and robust frameworks can enhance context retrieval in scenarios with
lengthy inputs, especially for low-resource languages and heterogeneous data settings?

Recent works have made promising strides toward these questions. For instance, Liu et al. (2023)
and Xu et al. (2024a) highlight the degradation in performance when target information is located
mid-context, while studies such as Hengle et al. (2024) reveal that even models with extended context
windows (up to 8,000 tokens) suffer from reduced retrieval accuracy. Other approaches, including
the parameter-efficient re-ranking method by Litschko et al. (2022), XAMPLER Lin et al. (2024),
and OPTICAL for low-resource languages Huang et al. (2023), address aspects of computational
efficiency or multilingual adaptation but leave open the challenge of building a unified, scalable
solution that is robust to both long contexts and mid-context target positioning. Additionally, Yang
et al. (2024) expose inherent trade-offs when using probabilistic structured queries for cross-lingual
retrieval, underscoring the need for improved evaluation frameworks and scalable methodologies.

To tackle these challenges, we propose CROSS (Cross-lingual Retrieval Optimized for Scalable
Solutions), a novel framework that integrates a two-phase retrieval mechanism with robust needle-
positioning strategies. In the first phase, CROSS segments the extensive input context into man-
ageable units and employs a multilingual embedding model to filter and rank these segments based
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on semantic relevance. In the second phase, a language model processes only the top-ranked seg-
ments—irrespective of their position in the document—to extract or reason over the target information.

Recognizing the importance of cross-lingual capability, our evaluation emphasizes a wide spectrum of
language combinations. We introduce mLongRR-V2, a benchmark dataset spanning seven languages
(covering both Latin and non-Latin scripts) and varying context lengths. mLongRR-V2 is designed
with 49 language combinations in mind, of which 42 are cross-lingual pairs—where the query
language differs from the context language—and 7 are same-lingual pairs.

Our evaluation protocol covers both single-target (1-needle) scenarios—where a single target sen-
tence is embedded within a monolingual context—and multi-target (3-needles) scenarios, in which
multiple target sentences are present and the model must reason over them (e.g., by identifying the
largest value among several candidates). These tests are conducted across different needle positions,
context lengths, and sentence cap sizes to provide a comprehensive assessment of retrieval accuracy,
scalability, and robustness. In addition, we perform a comprehensive failure analysis to identify the
root causes of errors, distinguishing between failures in the embedding retrieval stage and those in
the language model’s reasoning process, particularly in complex multi-target scenarios.

2 RELATED WORKS

The field of cross-lingual information retrieval (CLIR) has evolved with advancements in multilingual
embeddings and transformer-based architectures.

Recent frameworks, such as LONGEMBED Zhu et al. (2024) and LongRAG Jiang et al. (2024),
extend context windows, enhancing retrieval for lengthy documents. However, these primarily focus
on monolingual or limited multilingual tasks. Approaches like DR-RAG Hei et al. (2024) and
McCrolin Limkonchotiwat et al. (2024) add dynamic relevance scoring and multi-task learning to
improve cross-lingual performance but are computationally intensive, limiting scalability.

Existing datasets have supported CLIR research but with notable gaps. mLongRR Agrawal et al.
(2024) and BordIRlines Li et al. (2024) are limited in linguistic diversity and context length. While
newer benchmarks like LONGEMBED Zhu et al. (2024) and DEBATEQA Xu et al. (2024b) address
long-context evaluation, they fall short in comprehensive cross-lingual testing.

Despite progress, CLIR models still face challenges in long-context scenarios, often losing accuracy
mid-document and struggling with diverse languages. Many solutions remain computationally
expensive and lack the scalability needed for real-world multilingual applications.

3 METHODOLOGY

3.1 CROSS FRAMEWORK

The CROSS framework (Cross-lingual Retrieval Optimized for Scalable Solutions) efficiently extracts
"needles" of relevant information from extensive, multilingual "haystacks." Using a two-phase
approach, CROSS improves retrieval accuracy, ensures cost efficiency, and overcomes the limitations
of current models in handling long, cross-lingual contexts.

3.1.1 TWO-PHASE RETRIEVAL MECHANISM

CROSS employs a Retrieval-Augmented Generation (RAG) framework that leverages a two-phase
retrieval process to enhance precision while minimizing computational overhead.

Phase 1: Tokenization and Embedding The context—potentially comprising hundreds of thou-
sands of words in multiple languages—is segmented into sentences using the Punkt tokenizer Kiss
& Strunk (2006). Each sentence is then embedded using the multilingual "bge-m3" model Chen
et al. (2024), which effectively captures semantic nuances across languages (see Appendix A for
more details about embedding model). Although operating at the sentence level might seem computa-
tionally demanding, particularly if one considers finer granularity, our cost analysis (see Part 4.6)
demonstrates that the expense of embedding and retrieval is negligible relative to the cost of LLM
processing.
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Phase 2: Candidate Selection and Model Input Within this RAG framework, CROSS calculates
the semantic distance between each sentence embedding and the query, selecting the top k most
relevant sentences based on a tunable hyperparameter. In our experiments, we evaluated k values of
3, 5, 10, 20, and 50. These selected sentences are then passed as concise, contextually rich inputs to
the language model (e.g., GPT-4o-mini or Llama 3.2 90b) for final answer extraction. This design
ensures that, despite the additional embedding and retrieval steps, the overall token processing by the
LLM is drastically reduced, preserving both accuracy and efficiency.

3.1.2 EFFICIENCY AND MODEL INDEPENDENCE

CROSS is model-independent, enhancing retrieval accuracy with any language model used in Phase
2. Tested with GPT-4o-mini and Llama 3.2, it dynamically adjusts the number of retrieved sentences,
ensuring consistent, cost-effective performance. By focusing on the most relevant context segments,
CROSS avoids attention drop-offs in long texts and maximizes precision. Its fixed input length
makes it scalable, effectively handling document lengths far beyond the native context limits of most
language models.

3.2 BENCHMARK DATASET: MLONGRR-V2

To evaluate CROSS, we introduce mLongRR-V2, an extended version of the mLongRR benchmark
Agrawal et al. (2024). This dataset:

• Covers seven languages spanning Latin and non-Latin scripts.
• Includes 49 language pairs, with 42 cross-lingual settings.
• Extends context lengths up to 512,000 tokens.
• Evaluates retrieval using single-target (1-needle) and multi-target (3-needles) tasks.

A full dataset description is provided in Appendix B.

3.3 EVALUATION PROTOCOL

We assess CROSS using two retrieval scenarios:

• 1-Needle Retrieval: A single target sentence is embedded in a long document, and the model
must retrieve the exact phrase.

• 3-Needles Retrieval: Three target sentences are embedded at different positions, requiring
the model to reason over multiple candidates.

The primary evaluation metric is retrieval accuracy, defined as the percentage of cases where the
correct target sentence is retrieved. To further assess performance, we analyze:

• Scalability: Accuracy across varying document lengths.
• Needle Position Sensitivity: Performance at different insertion points.
• Cross-lingual Robustness: Accuracy across diverse language pairs.
• Computational Efficiency: Reduction in token processing relative to full-document models.

A more detailed breakdown of experimental settings, and evaluation conditions is available in
Appendix C.

4 RESULTS AND ANALYSIS

This section presents the experimental results of our approach, which combines CROSS’s retrieval
framework with Llama 3.2 and GPT-4o-mini as the underlying language model. We analyze its
performance across retrieval accuracy, robustness to context length, needle position sensitivity,
cross-lingual consistency, and cost efficiency, comparing it to the baseline performance of LLMs
alone.
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(a) Comparison of Retrieval Accuracy Across Con-
text Lengths in 1-Needle Test

(b) Comparison of Retrieval Accuracy Across Con-
text Lengths in 3-Needles Test

Figure 1: Retrieval Accuracy Across Different Context Lengths

4.1 INITIAL LLM PERFORMANCE EVALUATION WITHOUT "CONTEXTS"

Before integrating CROSS, we tested both GPT-4o-mini and Llama 3.2 90b independently to verify
their ability to understand the prompts and correctly retrieve or reason answers without any provided
context. This evaluation was conducted for both the 1-needle (retrieval) and 3-needles (reasoning)
scenarios. Each model was tested 10 independent times using prompts and needles alone, without
contextual interference. Both models demonstrated flawless performance, successfully identifying the
correct answers in all tests. These results confirm that the prompts are clear and fully understandable
to the LLMs, establishing a solid foundation for evaluating the impact of CROSS in more complex
retrieval scenarios.

4.2 RETRIEVAL ACCURACY

CROSS achieved significant improvements in retrieval accuracy across all tested languages and
language pairs when paired with both GPT-4o-mini and Llama 3.2 90b. Compared to using the
language models alone, the CROSS-enhanced approach consistently retrieved the target sentence
with higher exact match accuracy, especially in long contexts and complex cross-lingual pairs.

On average, across all 49 language combinations, CROSS with GPT-4o-mini achieved a retrieval
accuracy of 87%, significantly outperforming the baseline GPT-4o-mini, which achieved only 37%.
Similarly, CROSS with Llama 3.2 achieved a remarkable improvement, with accuracy increasing
from 47% for Llama 3.2 alone to 92% when enhanced with CROSS.

Furthermore, for contexts under 64k words—the length supported by both models—CROSS-enhanced
GPT-4o-mini maintained a retrieval accuracy of 88%, compared to 59% for GPT-4o-mini alone.
Llama 3.2 also showed improvement under 64k words, with accuracy increasing from 75% for the
baseline model to 95% with CROSS. These substantial improvements across both context lengths
and models demonstrate CROSS’s effectiveness in preserving high retrieval accuracy.

As illustrated in the radar graphs in Figure 11 in Appendix E, CROSS enhances retrieval performance
across all prompt and context languages, indicating the robustness of this approach in varied multilin-
gual scenarios. These results highlight the effectiveness of the CROSS framework in maintaining
high accuracy across diverse linguistic contexts when paired with both GPT-4o-mini and Llama 3.2

4.3 CONTEXT LENGTH ROBUSTNESS

A key strength of CROSS is its robust performance across varied context lengths. Without CROSS,
both models exhibit a notable decline in retrieval accuracy as context length increases, with sharp
reductions observed beyond 64k words. In contrast, the CROSS-enhanced approach maintains
consistent accuracy across context lengths up to 512k words for both models, showing only minimal
reduction (Figure 1a). By narrowing the input to a fixed set of top-relevant sentences, CROSS
effectively mitigates the typical accuracy drop-off associated with large contexts, enabling both
GPT-4o-mini and Llama 3.2 to perform reliably on larger-scale retrieval tasks.
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Figure 2: Retrieval Accuracy Comparison Across Needle Positions

Notably, this pattern persists in the more challenging 3-needles test. CROSS continues to stabilize
retrieval accuracy across increasing context lengths for both models, as shown in Figure 1b, further
emphasizing its robustness in scenarios with multiple target sentences.

4.4 NEEDLE POSITION SENSITIVITY

To assess CROSS’s effectiveness in addressing the “lost in the middle” issue, we measured retrieval
accuracy across five needle positions (0%, 25%, 50%, 75%, and 100%). Both GPT-4o-mini and Llama
3.2 90b performed best when the needle was at the beginning (0%) or end (100%) of the context.
However, GPT-4o-mini exhibited a significant drop in accuracy for mid-context positions (25%, 50%,
75%), with an average accuracy of only 27%. Llama 3.2, being a newer model, handled mid-context
positions better, achieving an average accuracy of 45%, though it still showed a noticeable reduction
compared to its performance at the boundaries.

When paired with CROSS, both models demonstrated a dramatic improvement in positional re-
silience. CROSS maintained stable performance across all needle positions, achieving an average
mid-context accuracy of 86% for GPT-4o-mini and 91% for Llama 3.2. This indicates that CROSS
effectively mitigates the loss in retrieval accuracy commonly associated with middle-positioned target
information.

Notably, CROSS ensures consistent accuracy regardless of where the needle is located, addressing
the challenges inherent in finding information deeply embedded within extensive contexts. This
improvement underscores CROSS’s ability to generalize effectively across models, resolving the
"lost in the middle" problem even for a robust baseline like Llama 3.2 (Figure 2).

4.5 CROSS-LINGUAL CONSISTENCY

Notably, CROSS demonstrates strong performance across linguistically dissimilar language pairs,
such as Hindi-Russian, where the prompt and query are in Hindi and the context is in Russian.
In these challenging cross-lingual scenarios, GPT-4o-mini alone exhibits a marked reduction in
accuracy, while Llama 3.2 fares better. When paired with CROSS, both models maintain high
retrieval accuracy, demonstrating robust consistency even across varied linguistic structures. Recent
work has shown that cross-lingual effectiveness depends on intrinsic language features beyond data
quantity (Bagheri Nezhad & Agrawal, 2024; Bagheri Nezhad et al., 2025), and CROSS’s multilingual
embeddings help capture these nuances.

For GPT-4o-mini, CROSS significantly boosts accuracy in cross-lingual pairs, bridging the gap
between same-language and cross-language scenarios. Similarly, Llama 3.2 paired with CROSS
achieves consistently strong performance, making CROSS a robust solution for multilingual applica-
tions. Figure 3 illustrates the performance of both models in the 1-needle test, comparing retrieval
accuracy when the prompt and context languages are the same versus different. For the 3-needles
test, a similar comparison is provided in Figure 4, highlighting CROSS’s ability to maintain robust
accuracy even in complex reasoning tasks.
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Figure 3: Comparison of Retrieval Accuracy in Same-Language and Cross-Lingual Settings in the
1-needle test.

Figure 4: Comparison of Retrieval Accuracy in Same-Language and Cross-Lingual Settings in the
3-needles test.

4.6 COST EFFICIENCY ANALYSIS

A key advantage of CROSS is its dramatic reduction in the number of tokens processed by the
expensive language model. In a conventional setup, the entire context of T tokens is fed into the
LLM, incurring a cost that scales linearly with T . In contrast, CROSS first processes the full context
with a lightweight embedding model (BGE-M3) and then selects the top k sentences (each averaging
roughly T/N tokens) to pass to the LLM. Thus, the LLM processes approximately

k · T
N

tokens,

instead of T tokens.

Assuming that the computational cost per token for the LLM is proportional to the model’s parameter
count, and noting that BGE-M3 (568M parameters) is roughly 160 times more efficient per token
than Llama 3.2 (90B parameters), the cost incurred by the embedding stage is only a small fraction of
that of the LLM. In our experiments, this two-phase approach resulted in an average reduction of
token usage for the LLM by about 90% across various context lengths (see Figure 14 in Appendix E).

In addition to these costs, CROSS requires computing the semantic distances between the embedded
query and each sentence’s embedding. This involves a vector distance computation (typically a cosine
or Euclidean similarity) for each of the N sentence embeddings. The computational cost of these
distance calculations is generally:

Costdistances ∝ N × d,

where d is the embedding dimension (e.g., 1024). In practice, since d is relatively small and these
computations can be highly optimized (or even performed using approximate nearest-neighbor search
techniques), the overall cost of the distance calculations is modest compared to the cost saved by
significantly reducing the LLM’s input size.

Thus, the overall computational cost of CROSS can be expressed as:

CostCROSS = T · Cembed +

(
k · T

N

)
· CLLM +N · d · Cdist (1)

where:
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Figure 5: Failure rate in same vs different language

• Cembed is the per-token cost of the embedding model,

• CLLM is the per-token cost of the LLM,

• Cdist is the per-dimension cost of computing distances.

Given that Cembed ≪ CLLM and that the cost of the distance computations (N · d · Cdist) is relatively
low, the overall efficiency gains are overwhelmingly driven by reducing the number of tokens fed
into the LLM—an effect that is most pronounced when k ≪ N .

5 FAILURE ANALYSIS

While CROSS demonstrates significant improvements in retrieval accuracy, a closer examination of
failure cases provides insights into its limitations, particularly in multi-target scenarios. This section
analyzes the failure rates in both the 1-needle and 3-needles tests, distinguishing between failures
arising in the embedding retrieval phase and those occurring within the language model’s response
generation.

We categorize retrieval failures into two types:

• Embedding Failure: Cases where the target label is absent from the retrieved sentence cap,
indicating that the embedding model did not select the relevant sentences.

• LLM Failure: Cases where the language model fails to correctly extract or reason about the
label, despite it being present in the retrieved sentence cap.

5.1 FAILURE RATES AND TRENDS

Figure 6 illustrates the failure rates across different test scenarios. In the 1-needle test, both embedding
and LLM failures remain relatively low. The embedding model correctly retrieves the relevant
sentence in 96% of cases, with embedding failures accounting for only 4.0%. Similarly, LLM failures
remain low, at 10.1% for GPT-4o-mini and 4.6% for Llama 3.2.

However, in the 3-needles test, we observe a substantial increase in LLM failures. Although
embedding failures remain marginal at 5.7%, LLM failures escalate significantly. GPT-4o-mini
exhibits a failure rate of 52.2%, while Llama 3.2, though performing better, still registers a notable
22.9% failure rate. This indicates that while CROSS reliably retrieves relevant sentences, the
challenge in the 3-needles scenario primarily lies in the model’s ability to reason over multiple
retrieved labels and correctly extract the appropriate one.

5.2 ANALYSIS OF INCREASED LLM FAILURES IN 3-NEEDLES TEST

The increased failure rate in the 3-needles test suggests that the presence of multiple target sentences
creates ambiguity, making it more difficult for the language model to consistently select the correct
answer. Possible contributing factors include:

• Increased Distractors: The presence of multiple similar sentences in the sentence cap
introduces additional reasoning complexity, leading to incorrect selections.
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Figure 6: Failure rate analysis
Figure 7: Comparison of failure rates between
GPT-4o-mini and o1-mini in the 3-needles
scenario.

• Inconsistent Answer Prioritization: The LLM may struggle to determine the "largest" or
"most relevant" label when multiple valid answers exist.

• Ambiguity in Sentence Ranking: Despite successful embedding retrieval, the semantic
similarity between different needle sentences can lead to incorrect prioritization when
forming the final response.

To further investigate whether the LLM failure is due to a lack of reasoning capability, we tested
the 3-needles scenario on the o1-mini model, which is specifically designed for reasoning tasks
OpenAI (2024). The results, shown in Figure 7, indicate a significant reduction in LLM failure rates.
GPT-4o-mini exhibited a LLM failure rate of 52.2%, whereas o1-mini showed a much lower failure
rate of 9.7%.

5.3 INTERPLAY BETWEEN SENTENCE CAP SIZE, ACCURACY, AND FAILURE DYNAMICS

Our experiments reveal a nuanced interplay between sentence cap size, retrieval accuracy, and failure
dynamics, underscoring that more context is not always beneficial. We evaluated cap sizes of 3, 5,
10, 20, and 50 sentences under two scenarios: a single target needle (1-needle) and multiple target
needles (3-needles).

In the 1-needle scenario, increasing the sentence cap size consistently improved accuracy (Figure
12 in Appendix E). This suggests that for simpler tasks, providing additional top-relevant sentences
increases the likelihood of including the correct information, benefiting both GPT-4o-mini and Llama
3.2. However, when extending the task to the 3-needles scenario, a different trend emerged. Although
a larger cap still increases the pool of potential relevant sentences, it also introduces more distractors,
thereby reducing overall accuracy (Figure 13 in Appendix E). This inverse relationship highlights the
challenge of balancing context expansion with the introduction of noise.

These trends are further illuminated by our failure rate analysis. As the sentence cap size increases,
embedding failures—which occur when the correct sentence is omitted from the retrieved con-
text—decline in both scenarios (Figure 8). This indicates that a larger cap reliably captures the target
sentence. In contrast, LLM failures, defined by the language model’s inability to accurately extract or
reason about the correct label, tend to increase with a larger cap size, particularly in the more complex
3-needles scenario. This suggests that while more context aids the retrieval module, it simultaneously
burdens the reasoning process with superfluous information.

5.4 TYPES OF LLM FAILURES

To better understand the nature of LLM failures, we further categorize them into:

• Incorrect Answer Failures: Cases where the model provides an incorrect label despite the
correct label being present in the retrieved sentence cap.

• Unanswerable Failures: Cases where the model incorrectly responds with "UNANSWER-
ABLE" even though the correct label is available.
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Figure 8: Effect of Sentence Cap Size on Embedding and LLM Failure Rates in both 1-Needle and
3-Needles Scenarios.

Figure 9: LLM Failure Breakdown
Figure 10: Effect of Prompt Modification on
Failure Rates in the 3-Needles Scenario with
GPT-4o-mini.

Figure 9 presents the breakdown of these failure types in both the 1-needle and 3-needles scenarios.
In the 1-needle test, failure rates for both incorrect answers and unanswerable responses remain
relatively low. However, in the 3-needles test, we observe a significant increase in unanswerable
failures, particularly with GPT-4o-mini, where over 45% of total responses were classified as
unanswerable despite the correct label being retrievable.

5.4.1 EFFECT OF PROMPT MODIFICATION ON FAILURE RATES

To assess whether instructing models to return "UNANSWERABLE" when unsure contributes to
failure rates, we conducted an experiment where we removed the sentence "If the information is not
available in the context, respond UNANSWERABLE." from the prompt. The effect of this modification
was tested on GPT-4o-mini in the 3-needle scenario. The results, shown in Figure 10, indicate that
failure rates decreased when this instruction was omitted. In the original prompt setting, GPT-4o-mini
exhibited an LLM failure rate of 52.2%, which dropped to 18.1% when the instruction was removed.

6 CONCLUSION

In this work, we introduced CROSS (Cross-lingual Retrieval Optimized for Scalable Solutions), a
novel framework that addresses the challenges of long-context and cross-lingual retrieval. Through a
two-phase retrieval mechanism leveraging multilingual embeddings and targeted segment ranking,
CROSS significantly improves retrieval accuracy while maintaining computational efficiency. Our
evaluations on the mLongRR-V2 dataset, spanning 49 language combinations and context lengths up
to 512,000 words, demonstrate CROSS’s robustness in mitigating the “lost-in-the-middle" problem
and enhancing performance across diverse linguistic structures. Furthermore, CROSS reduces the
token processing burden on language models, offering a scalable and cost-effective solution for
multilingual information retrieval. Despite its strengths, failure analyses highlight areas for future
work, particularly in improving multi-target reasoning and optimizing retrieval strategies for complex
cross-lingual scenarios. These insights pave the way for further advancements in retrieval-augmented
generation (RAG) frameworks, fostering more efficient and accurate multilingual retrieval systems.
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A EMBEDDING MODEL: BGE-M3 FOR CROSS-LINGUAL COMPATIBILITY

The bge-m3 embedding model, with a 1024-dimensional embedding size, is key to CROSS’s multilin-
gual capabilities. It embeds sentences from different languages into a shared vector space, enabling
CROSS to assess sentence relevance across languages and significantly boosting cross-lingual accu-
racy. By capturing both syntactic and semantic features, bge-m3 ensures robustness across diverse
linguistic families, supporting accurate retrieval in languages like Persian, Hindi, Russian, and Arabic.

B DATASET: MLONGRR-V2

The mLongRR-V2 dataset builds on the original mLongRR by Agrawal et al., which evaluated
multilingual long-context models on retrieval tasks using five Latin script languages. However, the
original mLongRR was limited to a maximum context length of 64,000 tokens and lacked diversity
in script types Agrawal et al. (2024). mLongRR-V2 addresses these limitations by extending the
context length to 512,000 words and expanding the language set to include seven languages: English,
Vietnamese, Swahili, Persian, Russian, Hindi, and Arabic. This expansion not only enhances
linguistic diversity by incorporating non-Latin scripts such as Cyrillic, Devanagari, and Arabic, but
also introduces a crucial cross-lingual dimension, allowing for more robust evaluations of retrieval
models in multilingual and cross-script scenarios.

The cross-lingual aspect of mLongRR-V2 is designed to rigorously test retrieval models across
different language combinations. In this dataset, the haystack is always monolingual, meaning
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that all context within a given test case is written in a single language. However, the needle (target
sentence) is embedded within the haystack in the same language as the haystack itself. The
cross-lingual challenge arises from the fact that the query is presented in a different language from
the haystack, requiring the model to bridge linguistic differences to retrieve the correct information.

Needle Structure In this task, the model’s objective is to locate and extract information from a
single target sentence hidden within the context. We adopt the same needle pattern as used in previous
studies Agrawal et al. (2024); Team (2024); Anthropic (2024), which takes the form: “The special
magic {city} number is: {number}”. Here, {city} is randomly chosen from a list of 23 unique cities
worldwide, and {number} is a randomly generated 7-digit number. The list of cities was translated
into all the dataset languages to ensure accuracy and linguistic consistency.

Cross-Lingual Language Pairs and Needle Positioning To provide a rigorous assessment,
mLongRR-V2 includes 49 cross-lingual language pairs, pairing each language in the prompt
and query with every other language in the context. This setup simulates real-world scenarios where
queries and contexts are often in different languages, adding complexity to the retrieval task.

Building on the original mLongRR, mLongRR-V2 positions the target information (the "needle") at
five distinct locations within the context: the beginning (0%), near the start (25%), in the middle
(50%), near the end (75%), and at the end (100%). This systematic positioning tests model robustness
across varying depths, addressing challenges like the “lost in the middle” problem, where retrieval
accuracy typically drops for mid-context information.

To test the reasoning capability of CROSS, we introduced a 3-needles setup, where three needles are
placed randomly within the context. The task requires the model to identify and reason about the
needles to answer a query related to the largest one, further evaluating CROSS’s ability to process
complex multilingual scenarios.

Context Length mLongRR-V2 significantly extends the context length to a maximum of 512,000
words, enabling the evaluation of models on much longer texts compared to the original mLongRR
dataset. The dataset is carefully designed to test models across varying context lengths, consisting
of 2k, 8k, 16k, 32k, 64k, 128k, 256k, and 512k words. This range allows for a comprehensive
assessment of a model’s scalability and performance under diverse conditions.

C EVALUATION PROTOCOL

To comprehensively evaluate the effectiveness of CROSS, we designed two distinct evaluation tasks:
the 1-needle test and the 3-needles test. These tests assess retrieval and reasoning capabilities across
diverse cross-lingual scenarios.

1-Needle Test The 1-needle test evaluates the model’s ability to retrieve specific information
embedded within extensive multilingual contexts. In this task, a single "needle" (a target piece of
information) is placed in the context at one of five predefined positions: the beginning (0%), near the
start (25%), in the middle (50%), near the end (75%), or at the end (100%).

The prompt asks the model: “What is the special magic number?”, written in different languages to
assess cross-lingual retrieval. The model must locate the relevant information and provide the correct
answer, ensuring retrieval accuracy across both language pairs and varying context positions.

3-Needles Test The 3-needles test evaluates the model’s reasoning capability in addition to retrieval.
In this setup, three needles are randomly distributed throughout the context. The model is prompted
to identify and reason about the needles to answer the query: “What is the largest special magic
number?”

This task challenges the model to not only locate multiple relevant pieces of information but also
reason over them to produce the correct answer. The random placement of the needles tests robustness
against varying context complexity. Each case was tested three times to account for the variability
introduced by the random distribution of needles, ensuring a more reliable evaluation of the model’s
reasoning capabilities.
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Metric: Retrieval Accuracy We use retrieval accuracy as the primary metric to evaluate model
performance in both tasks. Accuracy is defined as the percentage of test cases where the model
correctly identifies and retrieves the required information. In the 1-needle test, this means correctly
locating the "special magic number." In the 3-needles test, accuracy measures the model’s ability to
reason and correctly identify the largest "special magic number."

Prompts and Queries The prompts and queries used in both the 1-needle and 3-needles tests are
carefully crafted to ensure clarity and fairness across languages. Detailed template of the prompts are
provided in the Appendix D for reference.

D PROMPT AND NEEDLE TEMPLATES

This appendix presents the English versions of the templates and data used in our experiments. For
the corresponding versions in other languages (Swahili, Vietnamese, Persian, Hindi, Arabic, and
Russian), please refer to the anonymous repository 1.

D.1 NEEDLE TEMPLATE

"The special magic {city} number is {number}."

Here, number represents a randomly generated 7-digit number, and city is selected at random from
the list below (with the city names translated into the context language):

• Chicago
• Yangon
• Antananarivo
• Colombo
• Almaty
• Sydney
• Mexico City
• Seattle

• Lagos
• Amsterdam
• Belgrade
• Cairo
• Baghdad
• Damascus
• Kigali
• Dakar

• Sofia

• Victoria

• Tashkent

• Mumbai

• Barcelona

• Amman

• Toronto

D.2 PROMPT TEMPLATES

The following boxes display the prompt templates used in our experiments. These prompts instruct
the LLM to generate concise and direct answers based on a provided context. Each prompt delineates
the context (enclosed between #CONTEXT and #ENDCONTEXT) followed by a specific question.

Prompt Template: 1 Needle test

You are a helpful AI bot that answers questions for a user. Keep your response short and
direct.

#CONTEXT
{text}
#ENDCONTEXT

#QUESTION
What is the special magic number? Don’t give information outside the document or repeat
your findings.
If the information is not available in the context, respond UNANSWERABLE.

1https://anonymous.4open.science/r/prompts-template-D729
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Prompt Template: 3 Needles test

You are a helpful AI bot that answers questions for a user. Keep your response short and
direct.

#CONTEXT
{text}
#ENDCONTEXT

#QUESTION
What is the largest special magic number? Don’t give information outside the document or
repeat your findings.
If the information is not available in the context respond UNANSWERABLE.

E LANGUAGE SPECIFIC FIGURES

This section presents additional figures that provide further insight into the performance and failures
of CROSS in different retrieval settings and languages.

(a) Comparison of Average Accuracy for Each
Prompt and Context Language in 1-Needle Test

(b) Comparison of Average Accuracy for Each
Prompt and Context Language in 3-Needles Test

Figure 11: Radar Plots Comparing Average Accuracy in Different Tests

Figure 12: Accuracy of CROSS with varying sentence cap sizes in the 1-needle scenario.
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Figure 13: Accuracy of CROSS with varying sentence cap sizes in the 3-needles scenario.

Figure 14: Mean Input Reduction Using CROSS by Context Length for Each Context Language

Figure 15: Accuracy by context length in 1-needle task

Figure 16: Accuracy by context length in 3-needles task
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Figure 17: Accuracy by needle position in 1-needle task

Figure 18: Failure rate by prompt language
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Figure 19: Failure rate by context language
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