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ABSTRACT

Implicit Neural Representations (INRs) represent data as continuous functions us-
ing the parameters of a neural network, where data information is encoded in
the parameter space. Therefore, modeling the distribution of such parameters is
crucial for building generalizable INRs. Existing approaches learn a joint dis-
tribution of these parameters via a latent vector to generate new data, but such
a flat latent often fails to capture the inherent hierarchical structure of the pa-
rameter space, leading to entangled data semantics and limited control over the
generation process. Here, we propose a Controllable Hierarchical Implicit Neural
Representation (CHINR) framework, which explicitly models conditional depen-
dencies across layers in the parameter space. Our method consists of two stages:
In Stage-1, we construct a Layers-of-Experts (LoE) network, where each layer
modulates distinct semantics through a unique latent vector, enabling disentangled
and expressive representations. In Stage-2, we introduce a Hierarchical Control-
lable Diffusion Model (HCDM) to capture conditional dependencies across lay-
ers, allowing for controllable and hierarchical data generation at various semantic
granularities. Extensive experiments on CelebA-HQ, ShapeNet, SRN-Cars, and
AMASS datasets demonstrate that CHINR improves generalizability and offers
flexible hierarchical control over the generated content.

1 INTRODUCTION

Implicit Neural Representations (INRs) are powerful tools to represent complex data as continu-
ous functions with neural network parameters (Tancik et al., 2020; Mildenhall et al., 2021; Dupont
et al., 2022a; You et al., 2024). This functional representation is agnostic to the underlying data
modality, making INRs a universal way to represent diverse data types, including audio, images,
and 3D volumes. Unlike conventional discrete data structures with explicit formats, INRs implicitly
encode data in the parameter space. This allows for more detailed, compact, and flexible repre-
sentations. Recent advancements in the quality and efficiency of INRs greatly enhanced their per-
formance across various applications, such as image fitting (Sitzmann et al., 2020; Dupont et al.,
2021a), video compression (Chen et al., 2021a; 2023; Li et al., 2022), shape modeling (Zhao et al.,
2022; Michalkiewicz et al., 2019), novel view synthesis (Mildenhall et al., 2021), and beyond.

The generalization ability of INRs, however, remains limited, since INRs are typically trained to
overfit individual data instances. Keeping in mind that all data information is embedded in INR’s
parameters, the parameter space acts as a hidden manifold that captures the structures and variations
of data. Building on this concept, a recent line of work (Perez et al., 2018; Chan et al., 2021; Dupont
et al., 2022a; You et al., 2024) has focused on modeling the parameter distribution to generalize
INRs. A common approach is to adopt a two-stage framework. First, a collection of INRs is fitted to
each data instance. Given a collection of data {(x, f)}, each INR fθ : X → F is learned by finding
weight θ to minimize the distance between fθ(x) and f ∈ F . x ∈ X denotes coordinates (e.g. pixel
locations) and f ∈ F denotes signals (e.g. RGB values). Second, the weight distribution p(θ) is
learned through generative models. Since the raw INR parameters are intractably high-dimensional,
a condensed latent vector h is often used to represent each INR via modulation (Dupont et al.,
2022a). This simplifies the task of learning p(θ) by transforming it into the surrogate task of learning
p(h), which exists in a more manageable lower-dimensional space.
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Figure 1: Hierarchical generation of universal data modality. Top: expanded representational capabilities of a
Layers-of-Experts INR model. Bottom: aligning these capabilities with hierarchical data patterns enables pre-
cise control over the generation process. Each column presents generated samples resulting from a divergence
in routing at a specific layer, with arrows indicating the shared routing in the preceding layers.

Despite the various modeling approaches, these methods learn the joint distribution of all parame-
ters of an INR, treating each INR’s parameters indiscriminately via a flattened latent. This approach
overlooks the inherent hierarchical structure of INRs, particularly in multilayer perceptron (MLP)-
based architectures such as SIREN (Sitzmann et al., 2020), where each layer’s representation ca-
pacity depends conditionally on the previous layers. As a result, these methods fail to capture the
hierarchical patterns in the data. Taking the facial image as an example, hierarchical semantics refer
to progressively detailed facial characteristics, such as overall facial shape, expression, and shape of
eyes. Meanwhile, the parameters of INRs exhibit layer-wise expanded representation capacity (Yüce
et al., 2022), determined by its hierarchical structure. However, learning the joint distribution with
flattened parameters ignores the correspondences between the INRs’ expanded representation capac-
ity across layers and the hierarchical patterns in the data. This misalignment brings two challenges:
(1) The generalizability of INRs to unseen data is impaired. The joint distribution learning encodes
the entangled semantics together into one flat latent, where the co-occurrence of certain semantics
is inevitable. Therefore, the diversity of the generated data is limited. (2) Control over the generated
content is limited. While generative models, such as latent diffusion, are employed with INRs to
generate new data, they cannot link the sampled noise to the expected semantics in the output.

To address these challenges, we propose a novel approach that models the hierarchical structure
of INRs, promoting layer-wise control in the generation process. Our method starts by training a
collection of INRs on a dataset. Each layer of an INR is parameterized as a Mixture-of-Experts
(MoE) layer to increase expressivity, where a set of expert weights and a latent vector are learned.
The experts at each layer are shared across the dataset, while the latents are data-specific, routing
the data flow and modulating the contribution of experts. Layers of MoE are cascaded to form an
INR, which we call a Layers-of-Experts (LoE) network. Consequently, a LoE with L layers will
have L latents adapted to the fitted data, effectively capturing and relating its complex patterns with
layers of latents. By modeling the conditional dependencies of these layer-wise latents with our
proposed hierarchical controllable diffusion model (HCDM), we maintain the hierarchical structure
of INRs. This unlocks a controllable generation process, aligning the layers in INRs with the hier-
archies of data semantics for the first time. As illustrated in Fig. 1, the data flow for a generation
process resembles a tree-like structure: the routing in the next layer is constrained by the paths in
previous layers, allowing full control of where a different routing strategy should be explored. Early
deviations in routing lead to significant semantic differences in the generated content, while a later
deviation results in minor differences in details.

The contributions of our paper are summarized as follows:

• We model the INR as a LoE framework, where each layer includes multiple experts to improve
expressivity. Additionally, the layer-wise latent structure aligns the inherent hierarchy of data
semantics with INR’s expanded representation capacity.

• We are the first to model the hierarchical and conditional dependencies within INR parameters
with the proposed HCDM, which enables hierarchical control over the generated data semantics
at different levels of granularity.
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• We offer theoretical analysis and empirical evidence to show the inherent connection between the
hierarchy of INR parameters and data semantics, validated through extensive experiments across
various modalities.

2 BACKGROUND

In this section, we introduce INRs and their generalization ability, while highlighting their connec-
tions to our proposed approach. We also analyze the inherent hierarchy in INR’s parameters.

2.1 IMPLICIT NEURAL REPRESENTATION AND GENERATIVE INRS

Implicit Neural Representations (INRs) parameterize data such as audio, images, video, and 3D vox-
els as mappings from coordinates to signals, enabling a unified framework for various data modal-
ities (Genova et al., 2019a;b; Xie et al., 2022). Remarkable progress has been made to enhance
the representation quality, efficiency and compactness for audio (Zuiderveld et al., 2021; Luo et al.,
2022; Su et al., 2022; Lanzendörfer & Wattenhofer, 2023), images (Sitzmann et al., 2020; Fathony
et al., 2020; Chen et al., 2021b; Xu et al., 2022; Saragadam et al., 2023), 3D contents (Mildenhall
et al., 2021; Barron et al., 2021; Tiwari et al., 2022; Ortiz et al., 2022; Zhao et al., 2022; Ruan et al.,
2024), and videos (Chen et al., 2021a; Li et al., 2022; Yan et al., 2024). Despite performing well
on different modalities, INRs struggle to generalize to multiple and unseen data, as each instance is
typically overfitted with a separate MLP. To address this, two key strategies have emerged: (1) learn-
ing content-specific input features (Yu et al., 2021; Hu et al., 2023; Lazova et al., 2023)(Xu et al.,
2024) and (2) modulating or customizing network parameters with latents or hypernetworks (Mehta
et al., 2021; Wang et al., 2022; Dupont et al., 2022b; Kim et al., 2023)(Xu et al., 2024). Generative
models (Goodfellow et al., 2014; Ho et al., 2020) further extend INR’s capability to generate new
data. GRAF (Schwarz et al., 2020) and GIRAFFE (Niemeyer & Geiger, 2021) generate shape and
appearance codes from noise, which are combined with coordinates to construct scenes. Erkoç et al.
(2023) use a diffusion model to generate INR weights. Dupont et al. (2021b); Du et al. (2021);
Koyuncu et al. (2023) train hyper-networks to generate INR parameters. Dupont et al. (2022a);
Bauer et al. (2023); Park et al. (2024) employ a two-stage framework to learn the distribution of
latents that map to or modulate INRs, and generate new content by sampling in the latent space.
mNIF (You et al., 2024) further enhances the expressivity of INR via model averaging. These meth-
ods essentially model the distribution of INR parameters p(θ) by learning latent distributions p(h),
but fail to capture the layer-wise hierarchical structure of INR parameters, limiting their ability to
accurately model distributions and control generation, which will be discussed in Sec. 2.2. Build-
ing on the latent modulation approach, we introduce a hierarchical controllable diffusion model,
capturing dependencies between layer-wise latents for improved generalization and control.

2.2 HIERARCHY ANALYSIS OF INR

In this section, we review the INR architecture and analyze its inherent hierarchical representation
ability. Using the SIREN (Sitzmann et al., 2020) as an example, a two-layer SIREN is generally
formulated as:

fθ(x) = W2 sin(W1 · γ(x)),θ = [W1,W2], (1)

where γ(x) = sin(Ω · x),Ω ∈ Rc1×cin denotes positional embedding of coordinates x, W2 ∈
Rcout×c2 , W1 ∈ Rc2×c1 denote the parameters of each layer. The bias is omitted for simplification.
From the perspective of Fourier-Transformation, the input frequency domain Ω is composed of c1
frequency basis, Ω = [Ω0,Ω2, · · · ,Ωc1−1]. According to the Tancik et al. (2020) and Yüce et al.
(2022), an MLP layer with periodic activation sin(·) only expands the input frequency basis in a
sparse and limited bandwidth. The equation 1 can be reformulated as:

fθ(x) =
∑

w′∈H(Ω)

αw′ sin(w′ · x), αw′ ∝ W2 ·
c1−1∏
c=0

Jsc(W1[·,c])

H(Ω) ⊆ {
c1−1∑
c=0

βcΩc|βc ∈ Z &

c1−1∑
c=0

βc ≤ K},

(2)
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Figure 2: The proposed CHINR consists of two stages. In Stage-1, a Layer-of-Experts (LoE) model is used
to represent large-scale data, utilizing instance-specific latents and shared experts. Stage-2 introduces a Hierar-
chical Controllable Diffusion Model (HCDM) to learn the layer-wise conditional distributions of the latents.

where Jsc denotes a Bessel function, W1[·,c] denotes the column c of W1. The equation 2 reveals
the properties of each sin(·) activated INR layer in two aspects. First, the output spectrum of layer 2,
i.e. αw′ , is dependent on the spectrum of layer 1, determined by W1; Second, the output frequency
domain H(Ω) is sparse since βc is an integer, so H(Ω) only covers sparse frequency space spanned
by the basis {βcΩc}. These suggest that INR layers’ spectrum and frequency basis inherently exhibit
a sparse and hierarchical structure, encoded by θ, which extends to their representation ability.
Latent-modulation approaches like mNIF (You et al., 2024), which model the parameter distribution
p(θ) with the surrogate task of modeling the latent distribution p(h), overlook the hierarchy in h
transferred from θ. Ignoring this hierarchy leads to reduced expressivity and generalizability, and
limited control over the generation process.

3 PROPOSED METHOD

Our method uses a two-stage framework to align the hierarchy of data semantic and INR’s expanded
representation ability, as shown in Fig. 2. In the first stage, we train individual INRs to fit a target
dataset. In the second stage, we use generative models to learn the weight distribution for generating
new data. Directly modeling the INR weight distribution brings three challenges: (1) independently
trained INRs make it hard to extract shared information for distribution learning, (2) the high di-
mensionality of raw weights makes distribution modeling highly challenging, and (3) it ignores the
hierarchical structure of INRs. To address these issues, we configure the INR as a Layers-of-Experts
(LoE) network, where each layer contains a set of shared expert weights and an instance-specific
latent vector. As shown in the left of Fig. 2, the inference process builds each INR layer by layer,
combining the experts with the corresponding latent vector. This structure captures shared informa-
tion through the experts, simplifies distribution learning by focusing on the latents, and explicitly
models the conditional dependencies within the hierarchical structure of INRs. In the following
sections, we first define the LoE structure and the learning task, followed by detailed explanations
of the two stages.

3.1 PROBLEM STATEMENT

Suppose an INR fθ has L layers. For layer l, we learn a collection of K cross-data shared expert
weights θl = {θl

1,θ
l
2, · · · ,θl

K} (each being a fully connected layer) and a unique latent hl ∈ RH

for each data instance. At inference, the operation for the LoE INR at layer l is:

yl+1 = sin(ω0 · (θ̄l · yl)), θ̄l =

K∑
n=1

θl
k · αl

k,

[αl
1, α

l
2, · · · , αl

K ]⊤ = αl = gϕ(h
l),

(3)

where y represents each layer’s output, ω0 is a constant factor, and θ̄l denotes instance-specific
parameters at layer l, modulated by a gating vector αl, which is computed by the gating module
gϕ(·). hl denotes the lth layer of latent h. Compared with directly learning the gating vectors, the
function gϕ(·) allows for a more compact latent that benefits distribution learning. By modulating
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the contribution of experts via latents, each layer gains the flexibility to adapt to individual data
samples using a shared basis. Since L layers are cascaded to form the final INR, its expressive
capacity is significantly enhanced through the integrated contributions across layers.

In Stage-1, we optimize the shared network parameters denoted as θ = {θ1,θ2, · · · ,θL,ϕ}, and
fully characterize each instance-specific INR by layer-wise stacked latents h = [h1,h2, · · · ,hL] ∈
RH×L. The layer-wise latent structure enables hierarchical modeling of INR parameters, which
aligns with the inherent hierarchy of data semantics, allowing for layer-wise dependency modeling
in Stage-2, and controllable data generation.

3.2 STAGE-1: LEARNING A DATASET OF LOE INRS

Similar to Functa (Dupont et al., 2022a) and mNIF (You et al., 2024), we use meta-learning and
auto-decoding to train both the data-specific latents h and the shared parameters θ for the LoE
INR during Stage-1. For meta-learning, we adopt an interleaved training procedure inspired by
CAVIA (Zintgraf et al., 2019), where the experts and latents are updated alternately in separate
training loops. In the inner loop, we fix θ and adapt the latents h to data samples. Within each inner
loop, h is first randomly initialized around zero and then updated for a few steps. In the outer loop,
θ is optimized based on the updated h. This ensures each data-specific latent can be effectively
learned within a few iterations, encouraging faster convergence and adaptation to new data, which is
essential for distribution modeling and generalization in Stage-2. In the case of auto-decoding, we
jointly optimize all parameters, maintaining a latent bank for the dataset and updating the sampled
batch of latents in each iteration. Unlike meta-learning, auto-decoding does not require second-order
derivatives, making it more computationally efficient. Due to this efficiency, we apply auto-decoding
specifically for NeRF training.

In both approaches, each data-specific latent h consists of L components separately modulating
the L layers in the LoE INR. This setup facilitates conditional distribution modeling for Stage-
2, as opposed to learning their joint distribution like mNIF and Functa, enabling hierarchical and
controllable generation.

3.3 STAGE-2: CONDITIONAL DISTRIBUTION LEARNING FOR GENERALIZABLE INRS

Given a collection of learned latents H = {h1,h2, · · ·hN |hn ∈ RH×L}, where N denotes the
number of data instances, L the number of layers, and H the dimension of each layer of the latent,
the Stage-2 aims at learning the distribution of latent p(h). Instead of blindly modeling the joint
distribution, we reformulate p(h) as follows:

p(h) = p(h1,h2, · · · ,hL) = p(h1)

L∏
l=2

p(hl|h<l), (4)

where p(h<l) = p(h1, · · · ,hl−1) denotes the joint probability of first l − 1 layers. We design a
hierarchical conditional diffusion model (HCDM) to learn the conditional dependency p(hl|h<l) in
equation 4. As shown in Fig. 2, Stage-2 illustrates the architecture of the HCDM, which includes a
forward process and a backward process.

3.3.1 FORWARD PROCESS

We initialize the h at step 0 as h0 = [h1
0, · · · ,hL

0 ] with a conditional chain of length L, the forward
process for each layer hl is formulated as:

q(hl
1:T |hl

0) :=

T∏
t=1

q(hl
t|hl

t−1), q(hl
t|hl

t−1) := N (hl
t;
√

1− βth
l
t−1, βtI), (5)

where q(hl
t|hl

t−1) denotes the posterior distribution of the hl
t given hl

t−1, T denotes the number of
diffusion steps. β1, · · · , βT denotes the variance schedule of the added Gaussian noise N (·). By the
forward process, the noise sample hT = [h1

T , · · · ,hL
T ] is generated from h0 = [h1

0, · · · ,hL
0 ].
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Figure 3: Condition formation. Layers of latent h are first concatenated and then compressed. The compressed
tensors are binarized to generate low-dimensional binary conditions.

3.3.2 BACKWARD PROCESS

The backward process models the prior distribution defined by equation 4. To model the hierarchi-
cal structure, the backward process should express the conditional dependency p(hl|h<l) for all L
components. Therefore, we take the h<l as condition, and generate hl for l = 1, · · ·L iteratively.
To understand how to process h<l as a condition, we first explain the details of condition formation.

Condition Formation. To generate a latent h = [h1, · · · ,hL], the condition formation prepares for
each hl a condition vector cl encapsulating h<l. Since h resides on a low-dimensional manifold
(e.g., 64), the condition cl should contain less information to prevent the HCDM from memorizing
all one-to-one mappings from h<l to hl, where p(h) inevitably degenerates into p(h1). Therefore,
we embed the conditions h<l into a lower-dimensional binary vector. Fig. 3 shows the framework
of condition formation, which includes two steps. (1) All h<l are concatenated and compressed
with a compressor W to get a compressed tensor vl ∈ RC : vl = W · concat(h1, · · · ,hL),W ∈
RC×HL,hj ∈ RH , where C denotes the compressed dimension. To match the dimensions of
W with the concatenated tensors, we set the values of the unused portion to zero. (2) Given the
compressed tensor vl, a binarized condition tensor cl is obtained by: cl = Q(σ(vl)), where Q(·)
denotes the binarization operation, σ denotes the “Sigmoid” function. For c1, we set it as a zero
tensor since h1 has no condition. Now we get the condition c1, · · · , cL.

Hierarchical generation. With the condition c = [c1, · · · , cL], noise sample hT = [h1
T , · · · ,hL

T ],
time step t, we are all prepared to generate a complete latent h0. To generate a component hl

0,
the backward process is formulated as: p(hl

0:T |cl) = p(hl
T )

∏T
t=1 p(h

l
t−1|hl

t, c
l). It is noted that

a complete backward process, generating a sample from p(hl
0|cl), is exactly the implementation of

p(hl|h<l) in equation 4, where cl corresponds to h<l. We adopt a UNet (Ronneberger et al., 2015)
µθ as in Song et al. (2020); Ho et al. (2020) to implement p(hl

t−1|hl
t, c

l):

p(hl
t−1|hl

t, c
l) = N (hl

t−1 : ϵθ(h
l
t, t, c

l),Σ(t))

ϵθ(h
l
t, t, c

l) =

√
at(1− āt−1)h

l
t +

√
āt−1(1− at)µθ(h

l
t, t, c

l)

1− āt

at = 1− βt, āt =

t∏
i=1

ai, Σ(t) =
(1− at)(1− āt−1)

1− āt
I.

(6)

Each backward process starts from a Gaussian noise sample hl
T and generates a latent component hl

0

with condition cl. By iteratively sampling from p(h1) and p(hl|h<l) with l = 2, · · ·L, a complete
latent h0 = [h1

0, · · · ,hL
0 ] is generated. The final objective is: Lhcdm = EH,t,l[λ||ϵ, ϵθ(hl

t, t, c
l)||2],

where H denotes all latents, ϵ denotes Gaussian sample from N (0, I), and λ is a constant coeffi-
cient. For inference, we first generate h1 from Gaussian noise, then perform a chain of conditional
sampling from p(hl|h<l) until we get the complete latent h used by the LoE to generate new data.

4 EXPERIMENTS

In this section, we begin by introducing the datasets and evaluation criteria. Then, we provide
quantitative and qualitative results to demonstrate the efficacy of our proposed framework. Next,
we highlight the controllability of the INR generation process, enabled by conditional dependency
modeling and hierarchical sampling. Furthermore, we analyze the latent space and illustrate how
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data semantics are embedded within INR’s weight space hierarchically. We show that this structure
grants the INR a compositional property across layers. Finally, we conduct ablation studies to show
the importance of conditional dependency modeling and the functionality of binary conditions.

In our experiments, both Stage-1 and Stage-2 are trained and evaluated on the CelebA-HQ
642 (Karras, 2017), ShapeNet 643 (Chang et al., 2015), SRN-Cars (Sitzmann et al., 2019), and
AMASS (Mahmood et al., 2019) datasets. All experiments are implemented in Pytorch and run on
a single Nvidia RTX3090 GPU. For evaluation metrics, we use peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) (Wang et al., 2004), and accuracy to assess Stage-1 reconstruction, and
Fréchet inception distance (FID) (Heusel et al., 2017), coverage, and maximum mean discrepancy
(MMD) (Achlioptas et al., 2018) to evaluate Stage-2 generation performance. Further details about
implementation can be found in the Appendix.

Table 1: Quantitative results on CelebA-HQ, ShapeNet, and SRN-Cars.

Model
CelebA-HQ ShapeNet SRN-Cars

Reconstruction Generation Reconstruction Generation Reconstruction Generation
PSNR↑ SSIM↑ FID↓ PSNR↑ Accuracy↑ Coverage↑ MMD↓ PSNR↑ SSIM↑ FID↓

Functa (Dupont et al., 2022a) 26.6 0.801 40.4 - - - - 24.2 0.739 80.3
GEM (Du et al., 2021) - - 30.4 21.3 - 0.409 0.0014 - - -

GASP (Dupont et al., 2021b) - - 13.5 16.5 - 0.341 0.0021 - - -
mNIF (You et al., 2024) 34.5 0.958 13.2 21.4 0.972 0.437 0.0013 25.9 0.758 79.5

CHINR 34.9 0.963 13.4 22.3 0.988 0.441 0.0011 26.2 0.772 77.9

4.1 QUANTITATIVE AND QUALITATIVE RESULTS

Table 1 presents the reconstruction and generation performance of the proposed CHINR compared
with baseline methods on different modalities. Our model outperforms existing methods on most
datasets. In Stage-1, it achieves the highest reconstruction PSNR, thanks to the expanded represen-
tation capacity of LoE and layer-wise latent learning. In Stage-2, it demonstrates superior general-
ization, highlighting the effectiveness of hierarchical conditional modeling in capturing the diverse
data semantics. On CelebA-HQ, our model achieves the second-lowest FID score, slightly behind
mNIF. However, we observe that mNIF tends to generate images resembling those from the train-
ing set. To verify this, we perform retrieval for 1, 000 generated samples and compute the average
of their minimum L2 distance to the training set images. A lower value indicates a higher chance
of “memorizing” the training set. mNIF obtains a value of 6.243 whereas CHINR obtains 15.971,
indicating that our model generalizes better by generating new images that differ more noticeably
from the training data. Examples of retrieval results are provided in the Appendix.

Fig. 4 displays uncurated samples generated by our model compared to existing methods. With
the proposed HCDM, our model generates high-quality samples with rich details. More results
including the AMASS dataset are provided in the Appendix.

4.2 HIERARCHICAL CONTROLLABLE GENERATION

In this section, we show the hierarchical controllable generation with conditional sampling. Since
the proposed HCDM successfully models the conditional dependencies of the modulation latents,
we can conduct a chain of conditional samplings to achieve hierarchical control over semantics at
different granularities in the generated contents. Specifically, to sample a latent h = [h1, · · · ,h5],
we begin by sampling h1 with HCDM taking a Gaussian noise as input. Next, we sample h2,
conditioned on the binary vector generated by h1. This process continues layer by layer until h5

is generated, forming a complete latent h. This layer-wise latent then modulates the LoE to render
output such as images, point clouds, or NeRF renderings. Fig. 5 illustrates this hierarchical control
on two modalities. For each modality, we show two samples generated through the full chain of
conditional sampling (h1 · · ·h5) in the first column. In the second column, we fix their h1 from the
first column and sample the remaining parts (h2 · · ·h5). In the third column, we fix both h1 and h2

as in the second column and conditionally sample the rest. This progressive fixation allows us to
control the finer details of the generated output.

As shown Fig. 5, two different chains of conditional sampling, each starting from a different initial
h1, result in highly different data semantics (first column). For the facial images, when h1 is fixed,
the generated samples exhibit similar overall contours but different contents, i.e., facial features,
facial orientation, and hairstyles (second column). When h1 and h2 are fixed, variations occur
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mNIF

CHINR

Ground
Truth

(a) ShapeNet (b) CelebA-HQ (c) SRN-Cars

Figure 4: Uncurated generations for ShapeNet, CelebA-HQ, and SRN-Cars datasets.

Sample latent
Fix latent

Figure 5: Controllable hierarchical generation by progressively fixing the layer-wise latent.

primarily in facial details, such as eye shape and hair color (third column). Fixing the first three
parts (fourth column) results in changes limited to skin tone. Lastly, h5 influences global properties
like foreground or background color, as highlighted by the heat maps in the last column. Similarly,
for voxels, the hierarchy control is manifested in category (e.g., chair and plane), object parts (e.g.,
armrest and back of the chair), and finer details of specific parts (e.g., structure of the chair back).

This hierarchical control via conditional sampling demonstrates that HCDM effectively captures
conditional dependencies of parameters, aligned with the hierarchy of data semantics. It also offers
practical benefits in digital content creation, allowing creators to fine-tune specific details in their
work. Additional examples of controllable generation are provided in the Appendix.

4.3 ANALYSIS

In this section, we unravel the reason behind the success of hierarchical controllable generation. We
show that each layer’s latent modulates disentangled semantics, giving our LoE model a composi-
tional property. Moreover, the layer-wise conditional dependency modeling successfully captures
the hierarchy of data semantics, ensuring the composed semantics are compatible across layers.

4.3.1 LATENT COMPOSITION

We explore the controllability of our method through latent composition and find that the learned
latents are layer-wise compositional. Given two latents h1 = [h1

1, · · · ,h5
1],h2 = [h1

2, · · · ,h5
2],

exchanging a specific part, e.g. h2
1 and h2

2, results in the corresponding semantic changes in the
generated content. As shown in Fig. 6, we randomly sample 9 latents from HCDM, trained on
CelebA-HQ, and render the images in the first row. These faces exhibit diverse characteristics in-
cluding expressions, hairstyles, facial orientations, skin tones, and background colors. In the second
row, we replace the second layer’s latent of the first sample with that of the other 8 samples, while
keeping the rest latents unchanged. It’s clear that the facial orientation, hairstyles, and background
colors change accordingly, while the facial features remain the same. This indicates that the second
part of the latent encodes these specific semantics disentangled from other semantics, laying the
foundation for the controllable hierarchical generation. In the third row, when the third layer’s latent
is replaced, we observe that only the facial features are swapped, while other characteristics, such

8
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Figure 6: Latent composition. The first row presents 9 randomly sampled images from Stage-2. The second
to the fourth rows present the images where the second to the fourth parts of the first sample’s latent (green
boxes) are replaced. The representative examples are highlighted in red boxes.

Figure 7: Layer-wise hierarchy analysis. (a): correlation between cross-layer latents, obtained on the train-
split of CelebA-HQ at Stage-1. (b) and (c): visualization of conditional distributions across layers. The gray
regions show the distribution of latents from Stage-1, while the colored regions represent the sampled latents
from Stage-2.

as facial orientation, remain unchanged. In the last row, only skin tone changes. More examples can
be found in the Appendix.

It’s important to note that latent composition disrupts the conditional chain, meaning the newly com-
posed latents may be incompatible across layers, resulting in lower-quality images. Nevertheless, we
conduct latent composition to illustrate how and why our method works. The results show that the
image semantics can be embedded and disentangled in parameter space, offering a new perspective
on image generation.

4.3.2 LAYER-WISE HIERARCHY ANALYSIS

Layer-wise correlation. We perform layer-wise correlation analysis on the latents to show the ne-
cessity of conditional dependency modeling. We compute the cross-layer correlation between latents
using Singular Vector Canonical Correlation Analysis (SVCCA) (Raghu et al., 2017), a metric that
measures the correlation between neural network representations. Fig. 7 (a) displays the pairwise
correlations between h across layers, trained on Celeba-HQ in Stage-1, showing the non-negligible
correlation between layers. This underscores the importance of modeling conditional distributions
p(hl|h<l), rather than independent marginal distributions p(hl) in Stage-2. More results on other
datasets can be found in the Appendix. We next show the learned hierarchical structures of latents.

Layer-wise dependency visualization. We visualize the hierarchical dependencies of latents to
better understand how data semantics are encoded in INR’s weight space, as the latents are mapped
to gating vectors that modulate the experts at each layer. Fig. 7 (b) and (c) show the conditional
distributions of latents from adjacent layers, trained on CelebA-HQ. Specifically, we apply PCA to
the latents and plot their distributions in grayscale. For example, the Fig. 7 (b) shows distributions
for layers 1 and 2. We then run the generation process five times to obtain five sampled latents at
each layer, as depicted in color in the left parts of Fig. 7 (b) and (c). Based on the HCDM, we
can plot the resulting conditional distributions of latents at each subsequent layer, represented by
colored regions in the right parts. Additionally, we show the final generated images corresponding
to different samples. We can see clear patterns of a hierarchical structure, which corresponds to the
semantic variations at different granularities. For example, the sampled latents in layer 1 determine
the overall contours of the face. When layer 2 is determined, variations in layer 3 modify the facial
expressions while keeping the orientation fixed. In fact, different layers govern different aspects of

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the generated data, as we have seen in the compositional analysis. Furthermore, the latent sampling
space at each layer is constrained by the preceding layers, ensuring compatibility between layers in
representing the data. Therefore, the generated data semantics are hierarchically controllable.

4.4 ABLATION STUDIES

(a) Without condition (b) With condition

Figure 8: Ablations on conditional modeling.

Ablation on condition modeling. To demon-
strate the importance of conditional depen-
dency modeling for hierarchical controllable
generation, we train an unconditional diffusion
model that directly maps noise to layer-wise la-
tents in Stage-2. We then sample p(hl) inde-
pendently for l = 1, · · · , L to generate the full
latents. The resulting images for CelebA-HQ
are shown in Fig. 8 (a), while images generated
with conditional modeling are shown in (b) for
comparison. Although human faces are recog-
nizable in (a), the noticeable artifacts highlight
that independently sampled layer-wise latents fail to ensure consistent semantic composition across
layers. In contrast, conditional modeling successfully achieves this compatibility.

Table 2: Ablation study of different binary condition lengths, 8, 12, 15, and 20, when training Stage-2 on
CelebA-HQ, ShapeNet, and SRN-Cars datasets.

Model CelebA-HQ ShapeNet SRN-Cars
std1 std12 std23 std34 std45 std1 std12 std23 std34 std45 std1 std12 std23 std34 std45

HCDM8 0.7766 0.9153 0.9363 0.8772 0.8631 0.8533 0.9510 0.8933 0.7682 0.7301 0.7223 1.1270 1.1108 0.9474 1.1210
HCDM12 0.7766 0.9092 0.9292 0.8663 0.8550 0.8533 0.9424 0.8712 0.7327 0.7110 0.7223 1.0663 1.0180 0.9331 1.1803
HCDM15 0.7766 0.5344 0.5478 0.3257 0.2570 0.8533 0.6125 0.5241 0.4088 0.3857 0.7223 0.6348 0.6432 0.5837 0.6578
HCDM20 0.7766 0.1032 0.1121 0.0853 0.0766 0.8533 0.1051 0.0823 0.0715 0.0522 0.7223 0.1048 0.1122 0.0821 0.0933

Ablation on binary condition. We demonstrate that the length of binary conditions impacts the
effectiveness of learning conditional dependencies, as shown in Table 2. We set the binary lengths
to 8, 12, 15, 20 and train the HCDM on different datasets. Initially, we sample 5000 latents and com-
pute the standard deviation of the first part, denoted as std1. Since the first part has no conditions
and is sampled from noises, it shows high values irrelevant to the binary lengths. Subsequently,
we select 10 random samples from the first part to use as conditions and get 5000 samples for the
second part. Here, the standard deviation, denoted as std2, decreases as the binary condition length
increases, because longer binary conditions contain more information from preceding layers. Once
the length reaches a certain threshold, the standard deviation approaches zero, turning the condi-
tional chain into a direct one-to-one mapping, thus diminishing controllability. However, if the
length becomes too small, e.g. 0, all parts will be independent thus losing conditional dependency.
Therefore, we empirically set the length to be 12 for Stage-2 training. We repeat this procedure for
other parts and observe similar results.

5 CONCLUSION

In this work, we proposed the Controllable Hierarchical Implicit Neural Representation (CHINR)
framework, addressing the limitations of existing generative INRs that learn joint parameter distri-
butions while ignoring the hierarchical structure of parameters and data semantics. By structuring
the INR as a Layers-of-Experts (LoE) network and leveraging a Hierarchical Controllable Diffusion
Model (HCDM), our approach captures conditional dependencies across layers, improving general-
izability and enabling controllable data generation.

One limitation is scalability to larger datasets, as the shared network may struggle to capture com-
plex and diverse data patterns. A possible solution is to incorporate local information using patch-
wise modulation (Mehta et al., 2021; Bauer et al., 2023) or INRs with localized nonlinearity (e.g.,
WIRE (Saragadam et al., 2023)). Future directions include exploring sparse gatings, as in Mixture
of Experts (MoE) methods Wang et al. (2022), to promote expert diversity and specialization. Addi-
tionally, the learning of layer-wise semantic hierarchy in Stage-1 can be guided through predefined
attributes or deep clustering. This would allow the model to develop more interpretable and distinct
semantics across layers, improving control over fine-grained details or desired characteristics.
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A DETAILS ON EXPERIMENTAL SETUP

Implementation details. The LoE structure can be configured with the number of layers L,
the number of experts at each layer K, the channel dimension of each expert C, and the di-
mension of the latent at each layer H , denoted as a tuple (L,K,C,H). We train LoEs of
(7, 384, 128, 128), (5, 256, 64, 256), (6, 256, 64, 64), and (5, 64, 64, 64) in CelebA-HQ (Karras,
2017), ShapeNet (Chang et al., 2015), SRN-Cars (Sitzmann et al., 2019), and AMASS (Mahmood
et al., 2019) datasets, respectively. We follow mNIF (You et al., 2024) on the data processing pro-
tocols for CelebA-HQ, ShapeNet, and SRN-Cars datasets. Details about the AMASS dataset are
provided in Sec. B.3.

Training details. In Stage-1, we train LoEs via meta-learning on CelebA-HQ, ShapeNet, and
AMASS, and with auto-decoding on SRN-Cars. We use a batch size of 32, an outer learning rate of
1e−4, an inner learning rate of 1 with 3 steps, and train the LoE for 800 epochs in the meta-learning
setting. For auto-decoding experiments on SRN-Cars, we use a batch size of 8, a learning rate of
1e−4, and train the LoE for 1000 epochs. In both settings, we use the AdamW (Loshchilov, 2017)
optimizer without weight decay. In Stage-2, we set the training batch size to be 32, learning rate
1e−4, and cosine scheduler with minimum learning rate 0.0. We train the HCDM for 1000 epochs
with the AdamW optimizer.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 GENERALIZABILITY ANALYSIS THROUGH RETRIEVAL

mNIF

CHINR

Generated Retrieved from training set

Figure 9: Retrieval on CelebA-HQ: mNIF retrieves images closely resembling those from the train-
ing set, while CHINR demonstrates better generalization by producing distinct new images.

We use retrieval to compare the generalizability of CHINR and mNIF on the CelebA-HQ dataset.
Specifically, we generate samples and retrieve the closest images from the training set. As shown
in Fig. 9, mNIF generates samples that are very similar to the training images, suggesting a higher
chance of “memorization”. In contrast, CHINR demonstrates better generalization by producing
“new” samples that differ more noticeably from the training data.

B.2 MORE GENERATED SAMPLES

Fig. 10 shows more generated samples on CelebA-Net, ShapeNet, and SRN-Cars datasets.
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Figure 10: More generated samples of CelebA-HQ, ShapeNet, and SRN-Cars data.

Table 3: Quantitative results on AMASS.

Model MSE↓

mNIF (You et al., 2024) 0.015
CHINR 0.011

Figure 11: Generated motions with HCDM. each row denotes one sampled data.

B.3 AMASS EXPERIMENTS

We apply our proposed CHINR model to the AMASS dataset of 3D human motions. For each
motion sequence, we use 200 frames, with each frame represented by 165 values corresponding to
the locations and rotations of body joints. As a result, each data instance is formatted as a grid with
size 200 × 165. In Stage-1, the LoE is employed to fit the motion instances. In Stage-2, we set the
binary lengths to 8 to avoid memorizing conditions.

Reconstruction and generation results. The reconstruction performance is shown in Table. 3. The
randomly generated motions are shown in Fig. 11.

Semantic-level Interpolation. Since the LoE successfully learns the consistent latent space, we can
perform semantic-level interpolation for motions. As shown in Fig. 12, given two fitted sequential
motions with LoE, each corresponds to a latent, we can interpolate the latent from the start motion
(indicated by the red dashed box) to the end motion (indicated by the green dashed box) linearly
with ratio [0.2, 0.4, 0.6, 0.8]. We can see that the interpolated motions change smoothly from the
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Figure 12: Semantic interpolation for AMASS data. Anchor sequential motions (indicated by the red
and green dashed boxes) are first fitted with LoE to obtain latents. Then semantic-level interpolation
is performed by interpolating the latents. The red dashed box denotes the start motion, and the green
dashed box denotes the end motion.

start to the end. Semantic-level interpolation can be useful in the gaming industry, and 3D-digital
content generation.

Temporal-level interpolation. Since the INR can generate data instances in any resolution, we can
easily enlarge the input coordinates’ resolution in the time dimension to achieve temporal-level inter-
polation. We set the length of the time dimension to be 200 and 400, then get motions with LoE. The
interpolated results are submitted as videos named “motion short.mp4” and “motion long.mp4”.

B.4 HIERARCHICAL CONTROLLABLE GENERATION

More examples of hierarchical controllable data generation are presented in Fig 13.

B.5 LATENT-BASED RETRIEVAL

We show an application of data retrieval by latents, since they already embed rich semantic mean-
ings. We first obtain the latents for the target data by fitting it to the LoE through a few gradient
steps. Once the latents are optimized, they can be used to retrieve similar data by comparing their
latent representations to the searched set, allowing us to search for semantically similar examples
within the latent space. Fig. 14 shows this process by using images from the test-split of CelebA-
HQ as the targets, and train-split images as the searched set. We demonstrate two approaches for
retrieval: (1) using the flattened h for all layers, and (2) layer-wise retrieval using each layer’s latent
hl. As shown in Fig. 14, retrieval by the flattened h will retrieve samples that are broadly similar,
while layer-wise retrieval retrieves samples with specific semantic similarities. For example, h2 re-
trieves faces with similar orientations, while h3 retrieves faces with similar facial features such as
eye shape and expressions.

C ANALYSIS

In this section, we provide more analysis of the latent space and the functionalities of binary condi-
tions.
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Sampled

Fixed

(a) CelebA-HQ

(b) ShapeNet (c) SRN-Cars

Figure 13: More examples of hierarchical controllable generation on CelebA-HQ, ShapeNet, and
SRN-Cars data.

C.1 LATENT SPACE ANALYSIS

Here, we analyze the latent space further, focusing on its interpolation capabilities and providing
additional results of correlation analysis.

C.1.1 LATENT INTERPOLATION

To illustrate that our model learns a consistent and metric latent space, following definitions in Du
et al. (2021), we perform latent space interpolation in two ways: complete interpolation, and layer-
wise interpolation.

Complete Interpolation is shown in Fig.15. Four corners present the signals with latent generated
from Stage-1. The intermediary signals are bilinearly interpolated from four corners in latent space.
The results demonstrate that the learned latent is metric and consistent with human perception.

Layer-wise Interpolation. Since our LoE embeds semantics hierarchically in different parts of
the latent, we can interpolate each part to control specific semantics. As shown in Fig. 16, we
interpolate the second, third, and fourth parts of the latent associated with red-boxed signals, with
the corresponding parts of the right side latent. For CelebA-HQ samples, we find that the facial
orientation, facial features, and skin tone can be interpolated independently. This demonstrates that
each part of the latent also constructs a metric and consistent manifold.
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Target

Retrival by 
all layers

Retrival by 
each layer

Closer

Closer

Closer

CloserTarget

Figure 14: Latent-based retrieval via two approaches: retrieval by all layers and retrieval by each
layer.

Figure 15: Latent space interpolation is performed for LoE, with four corner points representing the anchor
examples rendered in stage 1. The intermediary points are generated through the bilinear interpolation of the
latents associated with these four anchors. The interpolation is evaluated on datasets CelebA-HQ, ShapeNet,
and SRN-Cars.

Figure 16: Layerwise interpolation. The red boxes denote the start and the green boxes denote the end. For
the CelebA-HQ, the layers 2 → 4 are interpolated respectively while other layers are fixed. For the ShapeNet,
the layers 1 → 3 are interpolated respectively.
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(a) ShapeNet. (b) SRN-Cars.

Figure 17: Correlation between the learned latents across layers, trained on ShapeNet (Chang et al.,
2015) and SRN-Cars (Sitzmann et al., 2019). The non-negligible correlation between adjacent layers
(e.g., h1 and h2) reveals the necessity of conditional distribution learning.

C.1.2 LAYER-WISE CORRELATION ANALYSIS

We provide correlation analysis on additional datasets in Fig. 17 and Fig. 18. This highlights the
significance of conditional modeling in the hierarchical generation process.

Figure 18: Visualization of conditional distributions across layers 3, 4, 5. The gray regions present
the distribution of latents from Stage-1, while the colored regions represent the sampled latents from
Stage-2.

C.2 BINARY CONDITION ANALYSIS

We analyze the clustering of latents and binary conditions on CelebA-HQ dataset, as shown in
Fig. 19. Firstly, we use the KMeans algorithm to get 10 clusters of latents, shown as the dots in
the figure. Then we select three anchor latents, generate three binary conditions with HCDM, and
search the nearest binary-corresponded latents. The nearest neighbors are represented by the stars.
We can observe that the binary conditions embed the latents’ information and form a consistent
binary condition space. This binary condition space corresponds to the latent space.
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Figure 19: Clusters of each part of latent and binary conditions. The dotted plot presents clusters of
each part of latents trained on ClebA-HQ. The gray distribution plot presents the distribution of each
part of latents, and starred scatter plot presents clusters of latents with similar binary conditions.
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