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Abstract

The trend towards large language models (LLMs) for guardrailing against
undesired behaviors is increasing and has shown promise for censoring user
inputs. However, increased latency, memory consumption, hosting expenses
and non-structured outputs can make their use prohibitive. In this work,
we show that task-specific data generation can lead to fine-tuned classi-
fiers that significantly outperform current state of the art (SoTA) while
being orders of magnitude smaller. Secondly, we show that using a single
model, MultiTaskGuard, that is pretrained on a large synthetically gen-
erated dataset with unique task instructions further improves generaliza-
tion. Thirdly, our most performant models, UniGuard, are found using our
proposed search-based model merging approach that finds an optimal set
of parameters to combine single-policy models and multi-policy guardrail
models. On 7 public datasets and 4 guardrail benchmarks we created,
our efficient guardrail classifiers improve over the best performing SoTA
publicly available LLMs and 3rd party guardrail APIs in detecting unsafe
and safe behaviors by an average F1 score improvement of 29.92 points
over Aegis-LlamaGuard and 21.62 over gpt-4o, respectively. Lastly, our
guardrail synthetic data generation process that uses custom task-specific
guardrail policies leads to models that outperform training on real data.

1 Introduction
The widespread use of large language models (LLMs) in both the public and private do-
mains has led to an increasing concern around guardrailing against prompts that are mali-
cious or violate user-specified disallowed behaviours (Biswas & Talukdar, 2023; Zheng et al.,
2024; Yao et al., 2024). While there has been a concerted effort to defend against misuse
of LLMs, current guardrailing and safety alignment approaches can lead to considerable
performance degradation on safe and non-malicious prompts, reducing the models general
capabilities (Qi et al., 2023; Jain et al., 2023) Manczak et al. (2024). In contrast, guardrails
that are independent of the main LLM being used avoid the issue of safety alignment de-
grading generalization performance. However, it is desirable that an independent guardrail
model adds little inference time and storage overhead to the LLM. While 3rd party API
services and publicly available models (e.g PromptGuard and LlamaGuard (Inan et al.,
2023)) offer different solutions to this issue of guardrailing while not diminishing the LLMs
general capabilities, they are limited in performance, inference speed and adaptability (i.e
lacks transferability, requires retraining).
In this paper, we show that fine-tuning a sub 1GB classifier on high quality synthetic data
from our synthetic data pipeline can significantly outperform current state of the art (SoTA)
while being orders of magnitude smaller in size. We demonstrate the effectiveness of these
classifiers on various safety, toxicity and prompt injection public benchmarks and show major
improvements over LLamaGuard-[1,2,3]-7b (Inan et al., 2023), Nemo Guardrails (Rebedea
et al., 2023), Azure Content Safety, GPT-3.5-turbo/4/4o OpenAI (2023a), Meta Prompt-
Guard (Inan et al., 2023) and OpenAIs Content Moderation API (OpenAI, 2023b).
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Figure 2: Guardrailing process that includes synthetically generated datasets, single policy
fine-tuned models (TaskGuard), multi-policy finetuned models (MultiTaskGuard) used for
classification, model evaluation and model merging (UniGuard).

Figure 1: Blocking malicious input

Our approach is data-centric and is based on a syn-
thetic data pipeline shown in Figure 2. It involves de-
scribing each task with task definitions that include a
concise summary of the task, allowed and disallowed
behaviors and examples of safe and unsafe behaviors.
The data structure induces a strong learning signal,
allowing a small model to perform well on many poli-
cies. We empirically show that a model trained on
multiple policies outperforms single-policy models.
Lastly, to adapt and further optimize our unified guardrail, we show that single task
guardrails can be merged with our unified guardrail to combine past parameters of both
types of fine-tuned models to further maximize performance when both types of models are
available. One drawback of current model merging (MM) approaches is that efficient search
strategies are not yet explored in the literature and currently rely on manual tweaking or
grid searching for hyperparameters. Our proposed model merging search (MMS) addresses
this by viewing searching for parameters to merge as a multi-armed bandit (MAB) Slivkins
et al. (2019) problem that maximizes the F1 score (i.e reward) on a held-out validation
set. We highlight that when using MMS with the current SoTA for MM, we increase model
performance. Below we summarize these contributions:

• Guardrail classifiers that are 14 times faster than the best performing LLM (gpt-4)
while outperforming it on public datasets by 21.62 F1 and 5.48 F1 on our newly
proposed CustomGuardBenchmark.

• MultiTaskGuard: A multi-task learning approach to guardrailing that outperforms
a single-task guardrailing model, referred to as TaskGuard by performing guardrail
specific pretraining on synthetic data.

• UniGuard: A MAB approach to MMS that combines the best performing
MultiTaskGuard and TaskGuard that results in SoTA guardrailing performance.

• A comprehensive analysis of how guardrail performance varies as a function of 1)
the number of training samples used for training, 2) training on synthetic or real
data, 3) which model parameters are selected during model merge search and 4) the
number of active fine-tuning parameters required with and without pretraining.

2 Related work
Content moderation. Ensuring safety has been an active area of research for several years.
Bert-based classifiers have been used to detect offensive or toxic inputs (Vidgen et al., 2020;
Deng et al., 2022). More more recent work has focused on the use of LLMs through APIs

2
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such as Perspective API (Lees et al., 2022), OpenAI Content Moderation API (Markov et al.,
2023) (categories including toxicity, threat, harassment, and violence) and Azure Content
Safety API Microsoft (2023) (categories include hate and violence) that provide a severity
score between 0-6. While bert-based classifiers have the benefit of being much smaller than
current LLMs, to date they have lacked the necessary training data to be robust against
guardrail domains and topics of interest. Our work addresses these shortcomings.
Model Merging. Techniques for merging multiple models have been proposed as efficient
ways to benefit from the capabilities of multiple LLMs without retraining or accessing the
original datasets. In Model Soup Averaging (MSA) (Wortsman et al., 2022), they first pro-
pose to combine models with weight averaging, showing improved performance compared
to a single model. Ilharco et al. (2022) build on this by performing task arithmetics, i.e
element-wise operations on model parameters to edit their behavior towards specific tasks.
Similar alternatives are RegMean Jin et al. (2022), and Fisher Merging (Matena & Raffel,
2022). Model merging in non-linear spaces showed improved results, as in SLERP White
(2016). TIES Yadav et al. (2024) reduce merging interference due to redundant weights
and sign disagreements by resolving sign disagreements and only combining sign-aligned
weights. In contrast, DARE (Yu et al., 2024) prunes weights with little change post fine-
tuning and rescales the remaining weights to have similar output activation. Model Bread-
crumbs (Davari & Belilovsky, 2023) also use sparse masks for improved model merging.
EvoMM (Akiba et al., 2024) and LM-Cocktail Xiao et al. (2023) automate the merging pro-
cess by using downstream task-specific data. Unlike our work, none of the above consider
efficient Bayesian search techniques to explore weightings to combine model parameters.

3 Methodology
In this section, we begin by describing how we synthetically generate safe and unsafe samples
and refine policy definitions for improved generation on various guardrail tasks. We then
describe the proposed guardrail pretraining, fine-tuning and model merging search process.

3.1 Synthetic Data Generation
For Synthetic Data Generation (SDG), we begin by defining a specification of the task,
which we refer to as a policy P. Here, P includes a policy name Pname, description Pdesc,
allowed behaviors Pallowed, disallowed behaviors Pdisallowed and an optional Pexamples that
gives examples of safe and unsafe prompts. Given Pdisallowed, a seed dataset Dseed :=
{(xi

safe, r
i
safe, y

i
safe)}

Nsafe
i=1

⋃
{(xi

unsafe, r
i
unsafe, y

i
unsafe)}

Munsafe
i=1 is generated where xsafe, rsafe and

ysafe are a compliant prompt, a rationale for compliancy and label and xunsafe, runsafe and
yunsafe are a noncompliant prompt, a rationale for noncompliancy and label respectively. We
can formulate the SDG process as a conditional distribution p(D|P;G) where G is the LLM
data generator and an instruction is derived from Pdesc ⊂ P. Once D is generated, we refine
the policy to improve clarity using a prompt template that prompts G to self-reflect on its
own label judgements for all yunsafe and ysafe with the aim of recorrecting any incorrectly
generated prompts. For our public benchmarks that contain training datasets along with
test sets used for benchmarking (e.g BeaverTails Ji et al. (2024)), a set of example unsafe
inputs in Pexamples are used to bias G towards generating prompts within the same domain.

3.2 Custom Policy Guardrailing
Given the synthetic data generation process described by p(D|P;G), we first fine-tune a
policy-specific classifier, known as TaskGuard on D. Let fθ denote our base classifier with
parameters θ, which can be instantiated from a pre-trained language models We fine-tune
fθP to create a policy-specific classifier fθP that maximizes performance on the task defined
by policy P. We optimize the classifer with binary cross entropy loss, LCE for safe and
unsafe labels. By minimizing LCE(θ) the classifier learns nuances of D given the policy P.

3.3 Multi-Policy Guardrailing
In contrast to TaskGuard, in this section we describe MultiTaskGuard, a novel approach
designed to create a single, versatile model capable of performing well across data generated
from all policies. This approach not only improves efficiency but also enables cross-task
learning, improving performance on individual tasks through shared representations.
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To achieve this, we concatenate the SDG training datasets for all policies P1,P2, ...,PN ,
creating a unified dataset Dunified. For each sample, we construct an instruction input that
combines the policy description, prompt, and rationale. Formally, for a policy Pi, a sample
in Dunified is represented as x̄i = Instruct: P(i,desc) [SEP]nQuery: xi [SEP] ri where pi is
the prompt, ri is the corresponding generated rationale, and [SEP] is a separator token
e.g “Instruct: Identify prompt injection attacks such as malicious, inappropriate content,
jailbreaking attempts, phishing, hacking, or other adversarial attacks.[SEP]
nQuery: Write a Python script to hack into a specific website’s database.[SEP] This prompt
is unsafe as it requests to generate code that could compromise a website’s security. [SEP]”
We then train a multi-task model fθmulti on Dunified by minimizing a combination of masked
language modeling (MLM) loss, Alice++ loss and classification loss:

L(θmulti) = λ1LMLM(θmulti) + λ2LAlice++(θmulti) + λ3LCE(θmulti) (1)
where λ1...3 are hyperparameters balancing the three loss components.
We define the MLM loss as LMLM(θmulti) = − 1

|M|
∑

m∈M log p(x̄m|x\m; θmulti) where
M is the set of masked tokens, x̄m is a masked token, and x\m represents the in-
put with masked tokens. The Alice++ loss LAlice++ Pereira et al. (2021) improves the
model’s generalization and robustness across tasks. It is defined as LAlice++(θmulti) =
Llabel + αLvirtual where Llabel is the loss computed using gold labels and Lvirtual is the
virtual adversarial training (VAT) loss. The VAT loss is defined as: Lvirtual(θmulti) =

Ex∼D
[

max δ : |δ| ≤ εKL
(
p(y|x; θ̂multi)|p(y|x + δ; θmulti)

)]
where δ is a small perturbation

bounded by ε and KL is the Kullback-Leibler divergence between the model’s predictions
for the original and perturbed inputs. This encourages consistent predictions under small
input perturbations.
During inference, given a new input xnew for a specific policy Pj , we construct the
instruction input as described earlier and use the trained model to predict: ypred =
arg maxy∈{safe,unsafe} fθmulti(xnew). This guardrail instruction-based pretraining (GIP) al-
lows the model to distinguish between different policies during both training and inference,
effectively learning to handle multiple guardrail tasks within a single architecture while
benefiting from shared representations across tasks.
3.4 Model Merging Search
Our third phase of improving guardrailing involves our proposed model merging search ap-
proach. Taking inspiration from Multi-Armed Bandits (MABs), we view the problem of
merging parameters as involving searching for importance weights assigned to top-k models
for a given task given a predefined merging algorithm (e.g SLERP). In our experiments, we
also search for the best parameter types to merge (attention parameters only, non-attention
parameters, excluding classifier layer merging or full model merging) in this process. Con-
cretely, for each policy Pi, we select the top-k performing models {f i

θ,1, f
i
θ,2, ..., f

i
θ,k} based

on their performance on a validation set. A search algorithm is then used to find the op-
timal combination of these models. We experiment with random, ε-greedy and Thompson
sampling. For brevity, we describe MMS using Thompson sampling herein, refer to the
supplementary material for a full description.

We define the search space Ω := (w, τ) where w ∈ Rk,
∑k

j=1 wj = 1 and wj ≥ 0, τ ∈ T
where w represents the weight vector for model combinations and τ ∈ T denotes the merge
parameter type from a set of predefined strategies T = {θfull, θattention, θffn, θbase}. Here θfull
are all model parameters, θattention are attention parameters, θffn are fully-connected layers
of self-attention outputs and θbase are all parameters except the classification layer. The
objective function for our search is then defined as:

max
w,τ

f(w, τ) = L(Merge({f i
θ,1, f

i
θ,2, ..., f

i
θ,k},w, τ)) (2)

where Merge(·) is the merging function that combines the models (e.g SLERP) according
to the weights w, merge type τ and L(·) evaluates the merged model on the validation set.
For Thompson sampling, a probabilistic model of the objective function is used. Thus, for
each dimension j of W ∈ Rk×|T | and merge type τ , we maintain Beta distributions:

Wj,t ∼ Beta(αj,t, βj,t), j = 1, . . . , k τt ∼ Categorical(θt) (3)

4
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where θt is a vector of probabilities for each merge type, also modeled using Beta distribu-
tions. At each iteration t, we sample from these distributions and normalize Wt to ensure∑k

j=1 Wj,t = 1 as Wt = (W1,t, . . . ,Wk,t)/
∑k

j=1 Wj,t. After observing the performance `

from `t := L(yt, ŷt) where ŷt = f(Wt, τt), we update the distributions:

αj,t+1 = αj,t + `twj,t βj,t+1 = βj,t + (1− `t)wj,t θτ,t+1 = θτ,t + `t1[τt = τ ]
(4)

where 1[·] is the indicator function and Merge(·) is a weighted interpolation scheme given
θmerged =

∑k
j=1 wjθj where θj are the parameters of model fθj . The merge type τ determines

which subset of parameters are merged (e.g., only attention layers for τ = attention-only).

Algorithm 1 Thompson Sampling with TIES
Require: Models {θt}nt=1, θinit, k, λ, iterations I
Ensure: Best Merged Model θbest
1: Initialize αt = βt = 1, θbest = θinit, F1best = 0
2: for i = 1 to I do
3: wt ∼ Beta(αt, βt), wt ← wt/

∑n
t=1 wt

4: τt = θt − θinit, τ̂t = topk(τt, k)
5: γm = sgn(

∑n
t=1 wtτ̂t)

6: for p = 1 to d do
7: Ap = {t | sgn(τ̂pt ) = γp

m}
8: τpm =

∑
t∈Ap wtτ̂

p
t /

∑
t∈Ap wt

9: end for
10: θm ← θinit + λτm
11: F ← Evaluate(θm)
12: if F > Fbest then
13: θbest ← θm, Fbest ← F
14: end if
15: for t = 1 to n do
16: if wt > 0 then
17: αt ← αt+max(F, 1-F ) ·σ(F -Fbest)+F
18: βt ← βt+min(F, 1-F )·σ(F -Fbest)+1-F
19: end if
20: end for
21: end for
22: return θbest

Algorithm 1 outlines how our pro-
posed model merging search, in this
case using Thompson Sampling in
conjunction with Task-Invariant En-
semble Strategy (TIES) merging.
The algorithm iteratively samples
weights from the Beta distribution,
applies the TIES merging technique
and updates the distribution of pa-
rameters assigned to each model
based on the performance of the
merged model on a held-out valida-
tion set.We extend this to SLERP,
MSA and DARE and these merg-
ing methods are integrated into our
MMS framework and evaluated us-
ing random and Thompson Sam-
pling.

4 Experimental Setup
4.1 Dataset Details
In our experiments on public bench-
marks, we evaluate models that were
both pretrained and fine-tuned us-
ing synthetic data and also on real
fine-tuning data from the public
benchmark. If there is no real train-
ing dataset corresponding to the test dataset, we train on training data of the same domain.
For our private benchmark, all results for TaskGuard and MultiTaskGuard are fine-tuned
on synthetic data. In the appendix we describe policy descriptions used for both public and
private benchmarks. For TaskGuard a maximum of 5k training samples are used and <1k
for our best MultiTaskGuard models. For pretraining MultiTaskGuard, we use 1 million
samples that consists of 251k policies, generated using Llama-3-70B (Dubey et al., 2024).

Public Benchmarks We first benchmark against public datasets that are available
on the huggingface dataset hub1, which we now provide their hub names. This
includes 2 prompt-injection datasets (deepset/prompt-injections and xTRam1/safe-
guard-prompt-injection), 3 toxicity-based datasets (“toxicchat0124” from lmsys/toxic-
chat Lin et al. (2023) and SetFit/toxic_conversations_50k) and 3 content
safety datasets (nvidia/Aegis-AI-Content-Safety-Dataset-1.0, mmathys/openai-
moderation-api-evaluation and PKU-Alignment/BeaverTails). Each datasets test set
is converted into binary labels (safe/unsafe) where necessary (e.g openai-moderation).

Private Benchmarking We also test our proposed guardrails on a private benchmark
CustomGuardBench, which consists of datasets we refer to as Safety, Finance, Tax and
Injection. These 4 datasets cover the prohibiting of unsafe discussions, financial advice, tax

1 https://huggingface.co/datasets
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Models Score Average Latency Prompt Injection Toxicity Content Safety
Safe Unsafe DeepSet SafeGuard ToxicChat SetFit NVIDIA-CS OAI Moderation Beavertails

(avg.) (s/sec) (s/sec) (f1) (f1) (f1) (f1) (f1) (f1) (f1)
3rdParty API guard models
gpt4 69.41 0.018 0.018 82.41 89.67 45.40 42.88 87.26 62.27 76.11
gpt-4o 69.40 0.120 0.120 82.57 89.17 45.55 42.88 87.21 62.26 76.29
NemoGuardrails-gpt-4o 53.77(↓) 2.03 1.750 61.36 76.80 25.51 16.30 70.29 58.26 67.89
chatgpt-3.5-turbo-0125 65.54(↓) 0.027 0.027 81.42 85.82 45.46 19.92 87.32 62.75 76.10
Azure-CS 45.07(↓) 0.149 0.138 6.25 18.99 61.09 35.86 64.09 74.87 54.39
OpenAI-Moderation 30.25(↓) 0.41 0.25 0.0 5.33 24.59 39.32 36.42 79.01 27.05
Open guard LLM-based guard models
LlamaGuard-7b 41.51(↓) 0.129 0.194 54.19 58.22 16.14 19.14 43.13 35.59 64.18
LlamaGuard-2-8b 56.49(↓) 0.136 0.222 61.86 83.59 39.66 23.00 39.60 75.81 71.92
LlamaGuard-3-8b 57.56(↓) 0.535 0.162 49.14 82.43 53.33 17.38 53.33 80.83 66.48
nvidia/Aegis-AI-LlamaGuard 60.84(↓) 0.380 0.219 47.50 89.31 62.54 24.56 62.54 67.79 71.69
Meta-Llama-3.1-8B-Instruct 45.54(↓) 3.091 3.094 73.47 63.16 14.55 28.14 13.41 52.98 73.17
Prompt-Guard-86M - 0.018 0.028 70.37 48.45 - - - - -
Our Proposed Guardrails
TaskGuardSynthetic 81.99 (↑) 0.022 0.013 80.11 92.73 81.39 90.04 81.65 70.22 77.78
MultiTaskGuardSynthetic 90.48 (↑) 91.67 96.50 97.24 98.09 86.46 87.15 76.23
UniGuardSynthetic 90.76 (↑) 91.60 97.01 97.35 99.16 86.80 87.16 76.24
TaskGuardReal 84.23 (↑) 82.17 91.18 78.47 89.74 85.58 86.73 75.73
MultiTaskGuardReal 90.28 (↑) 91.39 95.72 96.81 98.91 85.81 87.44 75.89
UniGuardReal 90.57 (↑) 92.01 96.72 97.18 98.31 86.01 87.73 76.03

Table 1: Public Benchmark Results on Safety, Toxicity and Prompt Injection.
advice and prompt injection respectively. An expert compliance officer and policy informed
annotators manually annotate the benchmark datasets given the policy definitions.

4.2 Model Details

Baseline Models. For 3rd party API services we use 1) OpenAI GPT models such as gpt-
3.5-turbo, gpt-4 and gpt-4o (OpenAI, 2023a)) OpenAI Content Moderation (OpenAI,
2023b), 3) Azure Content Safety and 4) Nemo Guardrails using gpt-4o as the genera-
tor. For the GPT-models we use batch completion through litelllm2 library to reduce
API call response time. For our public SoTA LLMs, we use LlamaGuard-1/2/3 (Inan
et al., 2023), Meta-Llama-3.1-8B-Instruct (Dubey et al., 2024), nvidia/Aegis-AI-
LlamaGuard (Ghosh et al., 2024) and Prompt-Guard-86M (AI, 2023) (see appendix for
prompt templates).
Finetuning Setup. The base models used in finetuning and benchmarking TaskGuard
and MultiTaskGuard are RoBERTALarge (777MB in bfloat16) (Liu et al., 2019) and
Multilingual-E5Large-Instruct (1.1GB) (Wang et al., 2024). The former is a standard well-
established masked monolingual language model (MLM) model, while the latter is a multi-
lingual MLM that has been trained from instructions to produce high quality embeddings.
Model Merging Settings. We compare 4 well-established model merging methods when it
used with and without our MMS. Namely, SLERP, TIES, MSA and DARE aforementioned
in section 2. For all proceeding experiments when applying MMS we run a maximum of
50 iterations and a maximum of the top 6 most performant models to find the optimal
combination of either attention-only parameter merging, base model only merging or full
model (includes classification layer merging) merging and the associated weights given to the
models being merged. We carry out either through random search or a Bayesian (Thompson
sampling) search. See the supplementary material for further details.

5 Results
Public Benchmarking Table 1 shows the results on our curated public benchmark where
the base model used for our models is Multilingual-E5Large-Instruct. Here and for subsequent
tables, the best results are in bold and values represent F1 scores scaled to [0, 100] range.
For SDG, we align our policy allowed and disallowed behavior with the harmful categories
described for these public datasets if they are provided, leading to more relevant fine-tune
training data. Overall, we find superior performance across a diverse set of toxicity, safety
and prompt injection based tasks. MultiTaskGuard consistently outperforms task-specific
TaskGuard models in both cases where we fine-tune on our synthetically generated training
data (i.e Synthetic) and on the real training data (i.e Real). Most notably, TaskGuard,
MultiTaskGuard and UniGuard all significantly outperform both 3rd party and publicly
available LLMs. For example, gpt-4o, the best performing LLMs of our baselines, achieves
21.62 average F1 score points below our best performing guardrail model,UniGuardSynthetic.

2https://github.com/BerriAI/litellm
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Models Score Prompt Injection Toxicity Content Safety
DeepSet SafeGuard ToxicChat SetFit NVIDIA-CS Beavertails

TaskGuardSynthetic 57.89 56.81 81.31 36.54 15.99 80.87 75.85
MultiTaskGuardSynthetic 67.97 63.06 86.04 56.73 35.82 83.93 82.28
UniGuardSynthetic 68.85 64.29 86.81 58.31 37.06 83.70 82.91
TaskGuardReal 56.54 57.92 79.65 34.81 15.23 78.54 73.12
MultiTaskGuardReal 63.14 56.43 81.76 54.89 25.17 81.95 78.63
UniGuardReal 63.66 56.71 82.14 56.47 25.03 82.37 79.25

Table 2: Comparing synthetic vs real training data with RoBERTALarge.

Models Score CustomGuardBenchmark
Safety Finance Tax Injection

gpt-4o 84.04 87.07 80.07 83.67 85.34
Azure-CS 37.25 (↓) 45.04 15.20 41.80 46.96
OpenAI-Moderation 25.03 (↓) 25.91 8.91 52.86 12.42
NemoGuardrails-gpt-4o 66.54 (↓) 73.50 74.15 69.57 48.92
LlamaGuard-2-8B 70.37 (↓) 78.69 65.18 73.81 63.78
LlamaGuard-3-8B 69.01 (↓) 80.00 67.33 75.34 53.37
nvidia-Aegis-LlamaGuard 74.81 (↓) 84.19 70.84 76.01 68.19
TaskGuard 87.34 (↑) 87.70 86.15 82.50 88.30
MultiTaskGuard 88.54 (↑) 91.07 90.81 85.00 87.30
UniGuard 89.52(↑) 91.83 91.49 86.14 88.62

Table 3: Private benchmark results on CustomGuardBenchmark.
Table 2 shows the results when using RoBERTaLarge as the base model, which unlike

Multilingual-E5Large-Instruct has not been pretrained specifically for high performing sen-
tence embeddings, nor has it been further pretrained with an instruct-based corpus. Due
to this we see a drop in performance, however, we are still within 0.56 average F1 score
points compared to 69.41 F1 obtained by gpt-4 in Table 1. Moreover, all other baselines
are outperformed and significant improvements are found when using our synthetic training
data compared to the real data training data that is available from each public dataset.
Additionally, MultiTaskGuard consistently outperforms TaskGuard as we posit the effects
of GIP in MultiTaskGuard has more impact than Multilingual-E5Large-Instruct since it has
not been pretrained with instructions prior to GIP.

Private Benchmark Results From Table 3, we find that UniGuard demonstrates su-
perior performance across all categories of the CustomGuardBenchmark3. UniGuard con-
sistently outperforms strong baselines, including gpt-4 and other SoTA models, with an
increase 5.48 F1 score points over gpt-4 (89.52 vs. 84.04 average across all categories).
This is a result of using TIES model merging of base model parameters combined with
Thompson sampling search. UniGuard performance is particularly noteworthy in the Safety
and Injection categories, where it achieves the highest scores of 91.83 and 88.62, respectively.
While gpt-4 is competitive in performance for safety and prompt injection, it suffers in per-
formance on more specialized guardrail tasks, namely in Finance (i.e prohibiting financial
advice) and to a lesser extent Tax (i.e Avoid Tax Advice).

MultiTaskGuard requires less task-specific fine-tuning During our experiments we
found that MultiTaskGuard classification layer fine-tuning (CFT) outperforms full fine-
tuning (FFT) while TaskGuard requires FFT for optimal performance. This can be observed
from our results in Figure 3. Across each task of CustomGuardBenchmark we find that in
fact TaskGuard heavily relies on FFT to generalize well, particularly on the “Avoid financial
advice” and “Avoid Unsafe Discussions” policies. In contrast, on average, the F1 is higher
with CFT compared to FFT for MultiTaskGuard. From these results, we conclude that GIP
plays a vital role in generalizing well to novel (unseen) policies such as those corresponding
to tasks within CustomGuardBenchmark and requires only few-shot samples to obtain a slight
generalization increase for optimal performance.

MultiTaskGuard needs less fine-tuning data to generalize well Not only do we
find that less active parameters (i.e classification layer only) are required for optimal per-
formance, but also less training samples. Figure 4 shows the F1 scores after fine-tuning
TaskGuard (no GIP) and MultiTaskGuard (with GIP) with an increasing number of train-
ing samples across Safety and Finance CustomGuardBenchmark test sets. We find that
not only does MultiTaskGuard also converges quicker than TaskGuard as for these experi-
ments the average number of epochs require to train per task is 1 for MultiTaskGuard and

3 CustomGuardBenchmark will be made public at https://huggingface.co/datasets
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(a) TaskGuard (b) MultiTaskGuard
Figure 3: Model Performance Differences of Classifier-Only vs Full Model Tuning
8 for TaskGuard. Moreover, it is also observed that MultiTaskGuard performance is nearly
on par without any additional task-specific fine-tuning. Hence, the zero-shot performance
and generalization to new unseen guardrailing policies/tasks has been drastically improved
due to our GIP step on synthetic guardrail data. Moreover, MultiTaskGuard zero-shot
performance exceeds the baseline LLMs from Table 1, 2 and 3.

Figure 4: TaskGuard & MultiTaskGuard Learn-
ing Curves on Safety and Finance test sets.

Model Merging Ablation Results
Table 4 shows SLERP, TIES, DARE and
MSAAverage when used with and without
our proposed MMS for improve guardrail-
ing. These results show the use of
Thompson sampling for Bayesian search
of the optimal top-k model weightings.
We find that in all cases, the use of MMS
to produce UniGuard improves results when
the number of search iteration is increase
from T = 1 → 50. We increase 0.55
F1 on SafeGuard (prompt-injection) using
TIES, 0.31 F1 on ToxicChat (toxicity) using
SLERP and 0.68 F1 on NVIDIA-CS (safety)
using TIES. In all cases, increasing the num-
ber of MMS iterations leads to improved generalization. After 50 iteration we find F1 scores
plateaued across all benchmarks. Moreover, Thompson sampling consistently improves over
random search for the optimal weight combinations for each model merging algorithm. We
also find that on average the attention-only parameters or base model parameters are the
best choice for MMS and using it with the top-1 models embeddings and classification layer.

6 Conclusion
Model Iter. SafeGuard ToxicChat NVIDIA-CS
TaskGuard - 92.73 81.39 81.65

TIES 1 96.11 96.41 85.33
SLERP 1 95.68 96.41 85.33
DARE 1 95.82 95.49 84.90
MSAAverage 1 95.62 96.13 85.40

TIES 50 96.66 97.18 86.01
SLERP 50 96.29 96.72 85.72
DARE 50 95.89 96.20 85.75
MSAAverage 50 96.48 96.82 85.94

Table 4: Comparison of Model Merging
Techniques for Guardrailing.

This work proposed a process for produc-
ing high performing classifiers that general-
ize well the custom policies that define the
scope of a guardrail. We find that with
models that are less than 1GB in storage
we can outperform models of magnitudes
of order larger, such as gpt-4, by 21.62
F1 points and outperform well-established
and publicly available guardrails, such as
those from the LlamaGuard suite, by 29.92
points. This was achieved via our proposed
guardrail instruction pretraining and then
further improved with our model merging search. Our guardrail models require relatively
less training data and active fine-tuning parameters to adapt to new policies. We view this
as a breakthrough for faster, customizable and low cost guardrailing of general purpose large
language models and on-device given the reduced memory and storage footprint.
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