
Exploring the Precise Dynamics of Single-Layer GAN
Models: Leveraging Multi-Feature Discriminators for

High-Dimensional Subspace Learning

Andrew Bond
KUIS AI Center
Koç University

abond19@ku.edu.tr

Zafer Doğan ∗

MLIP Research Group, KUIS AI Center
Electrical and Electronics Engineering

Koç University
zdogan@ku.edu.tr

Abstract

Subspace learning is a critical endeavor in contemporary machine learning, par-
ticularly given the vast dimensions of modern datasets. In this study, we delve
into the training dynamics of a single-layer GAN model from the perspective of
subspace learning, framing these GANs as a novel approach to this fundamental
task. Through a rigorous scaling limit analysis, we offer insights into the behavior
of this model. Extending beyond prior research that primarily focused on se-
quential feature learning, we investigate the non-sequential scenario, emphasizing
the pivotal role of inter-feature interactions in expediting training and enhancing
performance, particularly with an uninformed initialization strategy. Our investi-
gation encompasses both synthetic and real-world datasets, such as MNIST and
Olivetti Faces, demonstrating the robustness and applicability of our findings to
practical scenarios. By bridging our analysis to the realm of subspace learning,
we systematically compare the efficacy of GAN-based methods against conven-
tional approaches, both theoretically and empirically. Notably, our results unveil
that while all methodologies successfully capture the underlying subspace, GANs
exhibit a remarkable capability to acquire a more informative basis, owing to their
intrinsic ability to generate new data samples. This elucidates the unique advantage
of GAN-based approaches in subspace learning tasks.

1 Introduction

Subspace learning is a widely explored task, especially with the growth of dimensionality in modern
datasets. It is important to identify meaningful subspaces within the data, such as those determined
by principal component analysis (PCA). However, due to the high dimensionality of the data, it
is common to employ online methods such as Oja’s method [1] and GROUSE [2]. Meanwhile,
Generative Adversarial Networks (GANs) [3], primarily used as generative models, have also
demonstrated the ability to learn meaningful representations of data [4, 5]. Inspired by this, we
explore how single-layer GAN models can be viewed as a form of subspace learning.

We seek to improve the understanding of GAN training by relaxing some common assumptions
made in previous analysis of GANs [6]. Specifically, we focus on the training dynamics of the
gradient-based learning algorithms, which can be converted into a continuous-time stochastic process
characterized by an ordinary differential equation (ODE). Furthermore, the dynamics of the model
weights form a stochastic process modeled by a stochastic differential equation (SDE). Understanding
these two equations provides the relevant information to understand convergence behaviour of the

∗Corresponding Author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

training. We extend previous work to discriminators with same dimensionality as the generator.
Finally, we discuss the new training outcomes that can arise in the higher-dimensionality case.

Our work explores what happens when the training switches from sequential learning in the single-
feature discriminator case [6], to the non-sequential (multi-feature) learning of our discriminator. We
show that the non-sequential learning of features not only allows for faster learning and convergence,
but also a higher maximum similarity with the true subspace compared to the sequential case, when
everything else is kept the same. This shows that contrary to the general approach of making
discriminators much weaker than generators, it is still possible to use a powerful discriminator. In
fact, doing so can lead to much faster training with better performance, through careful choice of
learning rates.

We further show that our new framework can be used to analyze the cases where we assume different
dimensionalities between the true subspace, fake subspace, and discriminator. Through the use of a
simple uplifting trick on the relevant Grassmannians, we are able to extend our analysis to arbitrary
dimensionalities. To understand how GANs compare with existing subspace learning algorithms, we
provide both theoretical and empirical comparisons with existing such algorithms. We see that the
features learned by a GAN model are more meaningful and represent the data better as compared to
Oja’s method, due to the requirement of being able to generate new data from the underlying data
distribution.

Finally, we test our approach using two prominent real-world datasets: MNIST and Olivetti Faces,
comparing our method against a sequential discriminator, and show that all of the key insights
gained through the theoretical analysis are visible in training on this dataset as well. This shows
that our analysis has very practical applications, and can lead to interesting research directions
exploring these ideas in more powerful GAN architectures. This testing is additionally done on
the case where we assume different dimensionalities for each component of the model, showing
that the results are as expected. We release all our code at https://github.com/KU-MLIP/
SolvableMultiFeatureGAN.

Overall, our contributions are as follows:

1. We investigate the distinctions between multi-feature and single-feature discriminators and
fully characterize the learning dynamics through a rigorous scaling limit analysis.

2. We introduce a novel method for analyzing cases where the true feature dimensionality is
unknown, enabling broader future analyses under uncertain conditions.

3. We position the multi-feature GAN models as a new type of subspace learning algorithm,
and compare against existing algorithms, both theoretically and empirically.

4. We further validate our findings on image datasets (MNIST and Olivetti Faces), highlighting
the practical implications of our insights for real-world applications.

2 Related Work

2.1 Training dynamics for GANs

Much of this work is inspired by Wang et al. [6], which was one of the first to undertake this
task. However, in this case, they use a single-feature discriminator, and show that the choice of
learning rates relative to the strength of noise is what determines the outcome of the training process:
convergence, oscillations, or mode-collapse.

There have been further attempts to understand the convergence of GANs through other approaches,
not just the dynamics of the gradient-based optimization. Heusel et al. [7] showed that under
reasonable assumptions on the training process and hyperparameters, using a specific update rule will
guarantee that the GAN converges to a local Nash equilibrium. Mazumdar et al. [8] introduced a new
learning algorithm under which the local Nash equilibria are the only attracting fixed points, so that
the training algorithm tends to move towards these points. This type of analysis is very similar to our
approach, focused on understanding fixed points. Other types of models have also been analyzed in
the high-dimensional regime, such as linear VAEs [9], two-layer neural networks solving a regression
task [10], and two-layer autoencoders [11]. A review of these methods can be found in [12].

2

https://github.com/KU-MLIP/SolvableMultiFeatureGAN
https://github.com/KU-MLIP/SolvableMultiFeatureGAN

2.2 Subspace learning

Subspace learning is a heavily explored field, with many algorithms. However, when the noise of
the data has a non-zero variance, most approaches fail, and the general technique used to solve the
problem is some type of online PCA-based method. In Wang et al. [13], a similar analysis of dynamics
through ODEs is performed for multiple algorithms which learn subspaces with non-zero variance of
noise. This analysis allows for steady-state and phase transition analysis of these algorithms. Balzano
et al. [14] presents a survey of different online PCA algorithms used for subspace learning, in the
case where only some of the data is visible at each timestep, and discuss how it is possible to find a
unique subspace of a given rank which matches all the provided data.

3 Background and problem formulation

3.1 True data model

Our data yk is drawn from the following generative model, known as a spiked covariance model [15]:
yk = Uck +

√
ηT ak (1)

Here, U ∈ Rn×d is the true subspace we wish to learn represented as an orthonormal basis, ck ∈ Rd

is a zero-mean random vector with covariance matrix Λ, ak ∈ Rn is a standard Gaussian vector, and
ηT represents the noise level.

The spiked covariance model is very widely studied, due to the non-triviality of learning U whenever
ηT > 0. The key property of this model is that the top d eigenvectors of the data covariance E[ykyTk]
are given by the columns of U. If there exists a strict eigengap between the top d corresponding
eigenvalues and the other eigenvalues, then the reconstruction loss function is proven to have U as a
global minima [16].

3.2 Online subspace learning algorithms

Subspace learning is a very important task in machine learning, most commonly performed by algo-
rithms such as PCA or ICA. However, these approaches involve costly operations such as calculating
covariance matrices or calculating matrix inverses, infeasible in high dimensions. Therefore, it is
very common to use an online version of these algorithms, processing samples one at a time.

Online subspace learning algorithms typically fall into two categories: algebraic methods and
geometric methods. Algebraic methods are based on computing the top eigenvectors of some
representation of a sample covariance matrix. Assuming a strict eigengap, the top eigenvectors
will yield the true subspace. Meanwhile, geometric methods optimize a certain loss function over
some geometric space (Euclidean space or a Grassmannian manifold). We review two subspace
learning algorithms here, Oja’s Method [1] and GROUSE [2]. While GROUSE was introduced for
the missing data case, it can be used for full data too. For further details about these algorithms and
their categorization, we direct the reader to [14].

However, we suggest a third category of online subspace learning algorithms, which we call the
generative methods. Such methods, including single-layer GANs, do not have information about the
specific task, and instead aim to learn the data simply by seeing the data and attempting to generate
data from the same distribution.

3.2.1 Oja’s method

Oja’s method [1] is a classical algebraic approach to online subspace learning. Given an orthonor-
malized initial matrix X0, we perform the following update at every timestep given a data sample
yk:

Xk+1 = Π
[
Xk + τykyT

k Xk

]
(2)

Here, Π is an orthonormalization operator, and τ is the learning rate.

3.2.2 GROUSE

GROUSE [2] performs gradient descent on the Grassmannian manifold, which guarantees orthonor-
mality of the updates. In the full data case, we again start with an orthonormal initial matrix X0, and

3

at each timestep, given a data sample yk, our update is:

Xk+1 = Xk + (cos θk − 1)
pk

||pk||
wT

k

||wk||
+ sin θk

rk
||rk||

wT
k

||wk||
(3)

Here, θk = τ ||rk||||pk||, wk = argminw ||yk − Xkw||22, pk = Xkwk, rk = yk − pk, and τ is our
learning rate.

3.3 Generative Models

Here, we focus specifically on GANs. A GAN model seeks to learn a representation of the underlying
subspace through the use of two components: a generator and a discriminator. The generator learns
the subspace by trying to generate new samples from the subspace, while the discriminator acts as a
classifier, attempting to distinguish data from the true subspace from data produced by the generator.

Note that measuring performance through cosine similarity can actually be viewed as a way to
measure the generalization performance of the generator, as it doesn’t depend on any specific instance
of generated data and instead provides a concrete measure of how similar the generated data will be.

3.3.1 Generator

We assume that the generator also follows a spiked covariance model:
ỹk = Vk c̃k +

√
ηGãk (4)

However, we do not assume that ηG = ηT , or that the covariance of c̃k, Λ̃, is the same as Λ. The goal
of the generator is to learn Vk.

3.3.2 Discriminator

The learning in the GAN model critically depends on the choice of discriminator, which aims to
separate the data from the true and generated subspaces.

The most common approach when training GANs is to use a discriminator that is weaker than the
generator. If the discriminator is too strong, then it will easily learn to distinguish between true and
generated samples, leading to vanishing gradients for the generator and thus preventing learning.
However, a weak discriminator results in sequential learning, where the generator is only able to
learn a subset of the features at a time. In multi-feature cases, this will lead to very slow learning.

Motivated by this, we seek to analyze a model in which the discriminator has the same strength as the
generator. Thus, we let W ∈ Rn×d, and define the discriminator as

D(y;W) = D̂(yT W) (5)

where D̂ : Rn → R is some function (see the assumptions below). Since this discriminator is able to
focus on all the features at once, this means the generator is also able to learn every feature at once.
This is in contrast to the single-feature case (where W ∈ Rn) analyzed previously. While this is a
strong assumption on the discriminator, we show below how this assumption can be relaxed.

3.3.3 Training procedure

GAN training is modeled as a two-player minimax game, where the discriminator attempts to
maximize some loss function and the generator attempts to minimize it. This is used as a way to learn
a "surrogate" subspace which represents the true subspace. Therefore, the GAN model can be seen as
a form of subspace learning, except that the focus is on generating new samples from the subspace.

Specifically, let L(y, ỹ;W) be a loss function depending on the discriminator weights, and true and
fake samples. If G denotes the true distribution and G̃ denotes the generator distribution, the minimax
game can be represented as

min
V

max
W

Ey∼GEỹ∼G̃L(y, ỹ;W).

Following the approach of Wang et al. [6], and in order to compare the sequential and multi-feature
cases, we use the following loss function:

L(y, ỹ;W) = F (D̂(yT W))− F̂ (D̂(ỹT W))− λ

2
tr(H(WT W)) +

λ

2
tr(H(VT V)) (6)

4

Here, F, F̂ are functions affecting the outputs of the discriminator, H is an element-wise function
used for regularizing the weights of the generator and discriminator, and λ > 0 controls the strength
of the regularization. As λ → ∞, the matrices V,W will become orthonormal.

The standard approach to solve this minimax game is using stochastic gradient descent (SGD). At
timestep k, given a sample yk from the true subspace and a sample ỹk from the generator subspace,
we perform the following updates:

Vk+1 = Vk − τ̃

n
∇Vk

L(yk, ỹk;Wk),

Wk+1 = Wk +
τ

n
∇Wk

L(yk, ỹk;Wk).
(7)

Here, τ denotes the learning rate of the discriminator, and τ̃ denotes the learning rate of the generator.
Note that while it is common to use a batch of data at a time when using SGD, we focus on a single
element at a time in order to simplify all the analysis.

4 Development of ODE

Similar to [6], we make the following definitions:
Definition 4.1. Xk := [U,Vk,Wk] ∈ Rn×3d is called the microscopic state of the training process
at time k.
Definition 4.2. The tuple {Pk,Qk,Rk,Sk,Zk} is called the macroscopic state of Xk at time k, where
Pk := UT

k Vk, Qk := UT Wk, Rk := VT
k Wk, Sk := VT

k Vk, and Zk := WT
k Wk. The macroscopic

state can be written in matrix notation as Mk = XT
k Xk, in which we get

Mk =

 I Pk Qk

PT
k Sk Rk

QT
k RT

k Zk

 . (8)

4.1 Macroscopic dynamics

To analyze the macroscopic dynamics, we reduce to a special case, which leads to a slightly modified
set of the assumptions from Wang et al. [6].

(A.1) The sequences ck, c̃k are i.i.d. random variables with bounded moments of all orders, and
{ck} is independent of {c̃k}.

(A.2) The sequences {ak}, {ãk} are both independent Gaussian vectors with zero mean and
covariance matrix In.

(A.3) H(A) = log coshA − I, D̂(x) = ||x||, and F (x) = F̂ (x) = x2

2 . We note that the first
derivative of H exists, the first four derivatives of F (D̂(·)), F̂ (D̂(·)) exist, and all the
derivatives are uniformly bounded. Thus, our choices satisfy the conditions of assumption
(A.3) from Wang et al. [6].

(A.4) Let [U,V0,W0] be the initial microscopic state. For i = 1, · · · , n, we have E[
∑d

l=1([U]4i,l+

[V0]
4
i,l + [W0]

4
i,l)] ≤ C/n2, where C is some constant not depending on n.

(A.5) The initial macroscopic state M0 satisfies E||M0 −M∗
0|| ≤ C/

√
n, where M∗

0 is a determin-
istic matrix and C is some constant not depending on n.

(A.6) The columns of the discriminator matrix W are orthonormal, so that WT W = Id.

Assumptions (A1) and (A2) are the usual i.i.d assumptions common in machine learning. (A3) is
important for deriving the update equations. (A4) and (A5) are used to guarantee that the macroscopic
state can converge. Our assumption (A6) of orthonormal discriminator matrix allows us to simplify
the equations since the Z matrix of the macroscopic state is always just Id.

Under these assumptions, as well as letting λ → ∞, we obtain a modified Theorem 1 from Wang
et al. [6], specifically considering the reduced case of equation (13). Note that our choice of F, F̃ , D̂
means that our equations become an arbitrary-dimensional version of the original equations.

5

Theorem 4.3. Fix T > 0. Under Assumptions (A.1) - (A.6), it holds that

max
0≤k≤nT

E||Mk − M(
k

n
)|| ≤ C(T)√

n
, (9)

where C(T) is some constant depending on T but not n, and M(t) : R+ ∪ {0} → R3d×3d is a
deterministic function. Moreover, M(t) is the unique solution of the following ODE:

d

dt
Pt = τ̃(QtR

T
t Λ̃ + PtLt),

d

dt
Qt = τ(ΛQt − PtΛ̃Rt + HtQt)

d

dt
Rt = τ(PT

t ΛQt − StΛ̃Rt + HtRt) + τ̃(Λ̃ + Lt)Rt

d

dt
St = τ̃(RtRT

t Λ̃ + Λ̃RtRT
t + StLt + LtSt),

d

dt
Zt = 0

(10)

with the initial condition M(0) = M∗
0, where

Lt = −diag(RtRT
t Λ̃), Ht = (1− τηG

2
)RT

t Λ̃Rt − (1 +
τηT
2

)QT
t ΛQt − τ

η2G + η2T
2

I. (11)

A sketch of the proof of this theorem can be found in Appendix B. The proof closely mirrors the
proof of the original theorem in [6].

4.2 Microscopic dynamics

The microscopic dynamics are concerned with how the terms U,V,W change over time. Following
previous work, we consider the empirical measure

µk(U,V,W) =
1

n

n∑
i=1

δ([û, v̂, ŵ]−
√
n[[U]i,:, [Vk]i,:, [Wk]i,:]). (12)

where δ is the delta measure. This is a discrete-time stochastic process, which can be embedded
in continuous time as µ

(n)
t = µk, with k = ⌊nt⌋. Then, as n → ∞, this process converges to a

deterministic process µt, which is the measure of the solution of the SDE

dût = 0, dv̂t = τ̃(ŵtΛ̃Rt + Ltv̂t)dt,

dŵt = τ(ûTΛQt + ŵht)dt+ τAdBt,
(13)

where A is some diffusion term, negligable due to our assumption on the discriminator (A.6).

From this equation and the convergence of the measure, we can obtain the following weak PDE

d

dt
⟨µt, φ(û, v̂, ŵ)⟩ = τ̃

〈
µt,
(

ŵtΛ̃Rt + Ltv̂t
)
∇v̂φ

〉
+ τ

〈
µt,
(

ûTΛQt + ŵht

)
∇ŵφ

〉
(14)

where φ is a bounded, smooth test function. The ODE in the main theorem can be derived from this
weak PDE.

5 Simulations

In order to demonstrate that the ODE properly represents the training dynamics of the GAN model,
we first perform simulations and show that the empirical results match the ODE, seen in Figure 1.
To understand how the training dynamics change based on the generator learning rate, we fix the
discriminator learning rate as τ = 0.2 and fix the generator learning rate τ̃ = 0.04. We show the
results on 4 different noise levels. In all cases, we let Λ = Λ̃ = diag([

√
3,
√
5]).

We set P0 = Q0 = 0.1 ∗ I , and we ensure that the empirical setup is initialized with exactly matching
P and Q values. We note that the ODE will never learn when the initialization is exactly 0, and so
we must provide some level of similarity to start training. However, this is not very restrictive, as our
experiments show that even random matrices will have approximately 0.001 ∗ I for both P and Q,
which is sufficient to escape the fixed point around 0.

6

Figure 1: ODE results for learning rate τ̃ = 0.04, τ = 0.2 and four different noise levels, with d = 2.
The columns represent ηG = ηT = 2, 1, 3, 4 respectively. At η = 5 or higher, the generator is unable
to learn anything. In all cases, the green and red represent the two diagonals of P, and the blue and
yellow represent the two diagonals of Q. We see that the simulations do match the predicted ODE
results.

5.1 Off-diagonal simulations

A key insight found from the multi-feature discriminator is that the interaction between different
features can help learning. When the macroscopic states are initialized to non-diagonal matrices, we
see that the dimension with smaller covariance is actually able to attain better results and reach a
similar cosine similarity to the dimension with higher covariance. Such an outcome is not possible in
the sequential learning regime, due to the lack of interaction between features. In sequential learning,
features are learned one at a time, and once a feature has been learned, the training will focus on a
different feature instead. This phenomenon can be seen in Figure 2, showing that the off-diagonal
initialization allows for not only faster training (which also happens in the diagonal initialization
case), but also higher steady-state values compared to the sequential learning case. We are unable to
provide a detailed characterization of these fixed points, as a neat closed-form solution cannot be
obtained.

Figure 2: ODE results when initialized with off-diagonal entries. We focus on the case ηG = ηT = 2,
as that noise level is seen above to be ideal for learning. Additionally, in all cases, τ̃ = 0.04, τ = 0.2.
The solid lines are with our approach, while the dashed lines are using the discriminator in Wang et al.
[6]. From left to right, we use an initialization of 0.1, 0.01, 0.001, 0.0001 for each component of the
macroscopic states. It can be seen that our approach outperforms the single-feature discriminator in
every case, with the gap becoming larger as the initialization approaches 0.

6 Unknown number of features

While this type of analysis can provide interesting insights, it has a very restrictive assumption that
we know the number of features d. This is done so that the macroscopic states are well-defined.
However, we now seek to extend this analysis to the case where the true subspace has d features, the
generator subspace has p features, and the discriminator learns q features, where we do not assume
that d = p = q. While this analysis can be performed under any assumptions on the relative size of d,
p, and q, we focus on the single case d ≤ q ≤ p ≪ n.

To simplify the demonstration of this approach, we make the assumption that U =

[
Id
0

]
, so that U

contains the first d standard basis vectors. We introduce the idea of uplifting (inspired by the work in
[17]) the matrices U,W to the dimensionality of V.

7

Figure 3: The graph shows the Grassmann distance over time on the Olivetti Faces dataset, for Oja’s
method (Blue) and the GAN model (Orange), as well as the single-feature GAN model (Green).
We use the same hyperparameters as all previous experiments, measured with respect to a full PCA
decomposition which acts as a surrogate for the true subspace.

First, since U is an orthonormal matrix, it lives in the Grassmannian Gr(d, n) of d-dimensional
subspaces of Rn. Similarly, W ∈ Gr(q, n). Our goal is to embed U and W into Gr(p, n). Once we
do this, we can again calculate the macroscopic states we are interested in. To do this, we use the
following map:

U =

[
Id

0n−d

]
7→
[

Id 0n−p×p−d

0n−d×d Ip

]
. (15)

This produces a new matrix Ū ∈ Gr(p, n). We can perform a similar trick with W to obtain a matrix
W̄ . The important details about this uplifting trick are the following: (1) Due to the construction,
we preserve orthonormality of all the matrices, (2) the subspaces of interest are found as the first d
columns of the matrix Ū and the first q columns of the matrix W̄, and (3) the analysis of the diagonal
case is unchanged under this uplifting (In the diagonal case, there is no interaction between the
different dimensions, so we ignore the other dimensions. In the non-diagonal case, these additional
dimensions only provide minor noise, and so don’t affect the training at all).

7 Real image subspace learning

In order to demonstrate the practicality of this analysis, we test our approach on the MNIST [18] and
Olivetti Faces [19] dataset, and compare our approach with the single-feature discriminator from
Wang et al. [6]. Here, we include some qualitative results regarding the learned features, and provide
a quantitative analysis on the performance differences between the multi-feature and single-feature
discriminators. We include the Olivetti Faces results in Figure 4, and the MNIST results can be found
in Appendix A.

To perform these visualizations and measure performance, we first perform PCA on the entire dataset
and extract the top K (16 or 36) features. We then use this as an approximation of the true subspace
U, which allows us to compare the distances. We then track the Grassmann distance between the
true and learned subspaces for both the multi-feature and single-feature approaches. The Grassmann
distance between two d-dimensional subspaces of an n-dimensional space is given by

d(U,V) =

(
d∑

i=1

θ2i

)1/2

, (16)

where the θi are the principal angles between the subspaces. Here, a lower distance means a
better similarity between the subspaces. If the two matrices are orthonormal, the principal angles
are the singular values of the cosine similarity matrix, explicitly connected with the macroscopic
states.Figure 3 shows the Grassmann distances for the sequential and multi-feature learning cases on

8

GAN Multi-feature GAN Single-Feature Oja

E
po

ch
1

E
po

ch
20

0
Fi

na
lE

po
ch

Figure 4: We provide results on the Olivetti Faces dataset, a well-known dataset. We show the top 16
learned features for all approaches at 3 stages of training: after the 1st epoch, the 200th epoch, and
the end of training. We train all approaches for 500 epochs, equivalent to approximately 50 timesteps
of simulated training. It can be clearly seen that while Oja’s method learns quicker than the GAN
model, eventually the GAN model outperforms it. Additionally, we see that the features learned by
the GAN model are much more diverse and meaningful than those learned by Oja’s method (whose
learned features are more similar). For the single-feature GAN model, we can see that the learning is
significantly slower, and never approaches anywhere close to the other two results.

the Olivetti Faces dataset. This provides empirical justification on a real dataset, showing first that
the phenomenon of faster training identified by the ODE in Figure 1 applies to practical settings as
well. Furthermore, due to having no restrictions on off-diagonal entries of the macroscopic states, we
see that the results in Figure 2 also apply to practical datasets, since our multi-feature discriminator
attains better performance even in less time.

8 GANs as a subspace learning algorithm

In the linear setting, GANs attempt to perform subspace learning. However, GANs do not fall
into either of the categories introduced earlier. The other subspace learning algorithms all seek to
minimize the following loss function

J(U) = Ex

[
x − UUT x

]
(17)

known as the reconstruction error. This is because the global optima of this loss function is the true
subspace itself, and so, we can view this as a prior included in the subspace learning algorithms.
GANs do not have such information, and instead seeks to learn the subspace simply through seeing
the datapoints. Therefore, we can consider GANs to be a third type of subspace learning algorithm,
which we call the generative algorithms. We seek to understand how well the GAN model is able to

9

learn a subspace compared to the existing subspace learning algorithms. We compare both analytically
using the derived ODEs, as well as empirically on synthetic and the MNIST dataset, in order to see
under what circumstances GANs learn a subspace at a comparable rate.

8.1 Learned features

Figure 6 in the Appendix compares the features learned by the GAN model to the features learned by
Oja’s method. Both models are initialized to exactly the same weights, and trained on the same data
at the same time, for a single epoch. For the GAN model, we use the same hyperparameters as the
previous experiments above. For Oja’s method, we used a learning rate of 0.1, which experimentally
we found to produce the best results. We can clearly see that the features learned by the GAN model
are more meaningful and more clearly resemble the true data, while most of the features that Oja’s
method learns aren’t very interpretable. This suggests that because the GAN needs to be able to
generate the images, this acts as a form of regularization on what types of features are learned.

9 Conclusion

Our investigation into single-layer GAN models through the lenses of online subspace learning and
scaling limit analysis has provided valuable insights into their data subspace learning dynamics. By
extending our analysis to include multi-feature discriminators, we’ve unearthed novel phenomena
pertaining to the interactions among different features, significantly enhancing learning efficiency.
This advantage is particularly pronounced in scenarios of near-zero initialization, where the generator
achieves higher maximum and steady-state performances compared to the sequential discriminator.
Moreover, the interaction between dimensions enables the generator to closely match variances across
dimensions, a feat unattainable in the sequential scenario. In the context of subspace learning, we see
that in higher noise levels, the GAN is able to more consistently outperform Oja’s method on a wide
range of generator, discriminator, and Oja learning rates.

Introducing an uplifting method for analysis in arbitrary dimensionalities enables us to better model
uncertainties inherent in real-world subspace modeling. Practical validation on the MNIST and
Olivetti Faces datasets reaffirms the applicability of our theoretical findings, underscoring the supe-
riority of overparametrization in single-layer GANs over data availability. This prompts intriguing
avenues for research in multi-layer GANs, probing whether similar phenomena persist in more
complex architectures. Exploring these directions holds promise for further advancements in the field.
Finally, we observe that GAN models excel in acquiring a more meaningful feature basis compared to
Oja’s method when applied to the real-world datasets, which we attribute to their ability to generate
new data samples.

Acknowledgements

We acknowledge that this work was supported in part by TUBITAK 2232 International Fellowship for
Outstanding Researchers Award (No. 118C337) and an AI Fellowship provided by Koç University &
İş Bank Artificial Intelligence (KUIS AI) Research Center.

References
[1] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathematical

Biology, 15:267–273, 1982.

[2] Laura Balzano, Robert D. Nowak, and Benjamin Recht. Online identification and tracking
of subspaces from highly incomplete information. 2010 48th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 704–711, 2010.

[3] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. Communica-
tions of the ACM, 63:139 – 144, 2014.

[4] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4396–4405, 2018.

10

[5] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip:
Text-driven manipulation of stylegan imagery. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 2065–2074, 2021.

[6] Chuang Wang, Hong Hu, and Yue M. Lu. A solvable high-dimensional model of gan. In
Neural Information Processing Systems, 2018. URL https://api.semanticscholar.org/
CorpusID:44033959.

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Neural
Information Processing Systems, 2017.

[8] Eric V. Mazumdar, Michael I. Jordan, and S. Shankar Sastry. On finding local nash equilibria
(and only local nash equilibria) in zero-sum games. 2019.

[9] Yuma Ichikawa and Koji Hukushima. Learning dynamics in linear vae: Posterior collapse
threshold, superfluous latent space pitfalls, and speedup with kl annealing. In International
Conference on Artificial Intelligence and Statistics, 2023.

[10] Rodrigo Veiga, Ludovic Stephan, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborov’a.
Phase diagram of stochastic gradient descent in high-dimensional two-layer neural networks.
Journal of Statistical Mechanics: Theory and Experiment, 2023, 2022.

[11] Maria Refinetti and Sebastian Goldt. The dynamics of representation learning in shallow,
non-linear autoencoders. Journal of Statistical Mechanics: Theory and Experiment, 2023, 2022.

[12] Luca Arnaboldi, Ludovic Stephan, Florent Krzakala, and Bruno Loureiro. From high-
dimensional & mean-field dynamics to dimensionless odes: A unifying approach to sgd in
two-layers networks. Proceedings of Machine Learning Research, vol 195:1–29, 2023.

[13] Chuang Wang, Yonina C. Eldar, and Yue M. Lu. Subspace estimation from incomplete observa-
tions: A high-dimensional analysis. IEEE Journal of Selected Topics in Signal Processing, 12:
1240–1252, 2018.

[14] Laura Balzano, Yuejie Chi, and Yue M. Lu. Streaming pca and subspace tracking: The missing
data case. Proceedings of the IEEE, 106:1293–1310, 2018.

[15] Iain M. Johnstone and Arthur Y. C. Lu. On consistency and sparsity for principal components
analysis in high dimensions. Journal of the American Statistical Association, 104:682 – 693,
2009. URL https://api.semanticscholar.org/CorpusID:30706008.

[16] Bin Yang. Projection approximation subspace tracking. IEEE Trans. Signal Process., 43:
95–107, 1995.

[17] Ke Ye and Lek-Heng Lim. Schubert varieties and distances between subspaces of different
dimensions. SIAM J. Matrix Anal. Appl., 37:1176–1197, 2014.

[18] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[19] AT&T Laboratories Cambridge. The database of faces. URL https://www.cl.cam.ac.uk/
research/dtg/attarchive/facedatabase.html.

11

https://api.semanticscholar.org/CorpusID:44033959
https://api.semanticscholar.org/CorpusID:44033959
https://api.semanticscholar.org/CorpusID:30706008
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

A MNIST results

A.1 Comparisons with Single-Feature Discriminator and Oja’s Method

In order to demonstrate that our approach works in more practical settings, we train our model on
the MNIST dataset. Then, in order to understand what the model has learned about the dataset, we
compute the SVD of the generator weights V, and plot the left singular vectors. Each of these vectors
correspond to a single feature learned by the model, and so viewing these will help understand the
model performance. Finally, we perform the same tests using the single-feature discriminator, to
demonstrate the effects of sequential vs non-sequential learning of features.

Our theory and development in the paper operated under the assumption that we knew ev-
erything about the true subspace. While this is not possible for these image datasets (since we cannot
determine the true subspace U or the distribution of c), we can still use the same assumptions and
model structure. Therefore, the generator still samples a c̃ from a standard Gaussian distribution, and
the choice of covariance and noise levels are determined through testing.

The dataset is flattened into a 1 × 784 vector, so our ambient dimension n = 784. For our
multi-feature model, we train for a single epoch. For the sequential discriminator, we train for 5
epochs. We focus on the d = 36 case, although it can be further scaled up as necessary. Through test-
ing, we fix the covariance matrix Λ̃ = 5∗Id and ηG = 1. We use a generator learning rate of τ̃ = 0.04
and a discriminator learning rate of τ = 0.2. While the multi-feature discriminator is able to learn
good representations of all 36 basis elements as seen in Figure 5, the sequential discriminator is un-
able to learn even half of them in the 5 epochs. As can be seen, the last 18 basis elements are just noise.

This scaling becomes very problematic as the number of features increases. Even with just
36 features, a small amount given modern datasets, such a model requires significantly more training
and is still unable to perform as well as the multi-feature model.

Finally, we provide a comparison of the GAN learned features with the Oja’s learned features in
Figure 6. It can be seen that most of the GAN features are more visually representative of the dataset
compared to Oja’s method.

Figure 5: Comparison between the generator basis vectors learned by the multi-feature and single-
feature discriminators on 36 features. The multi-feature model is trained for 1 epoch, while the
single-feature model is trained for 5 epochs.

A.2 Grassmann distances

Figure 7 contains a comparison of the Grassmann distances for the multi-feature and single-feature
cases. Even after 5 epochs, the sequential discriminator still has a much higher Grassmann distance
than the multi-feature model, even though it has seen 5 times as much data. Specifically, after one
epoch of training, the multifeature discriminator has a distance of 2.46, while the single-feature

12

Figure 6: After training both GAN and Oja’s method on the MNIST dataset with 16 features, we use
SVD to extract their learned features, and compare them here. We can see that despite Oja’s method
learning quicker than the GAN model (seen in previous analysis), the GAN features learned are a
better representation of the data, while most of Oja’s features do not resemble the data. Note that Oja
learning an 8 as the first feature is due to the order of training samples seen.

discriminator finishes with a distance of 3.17, showing a significant gap. We tested with up to 20
epochs, but saw no improvements for the sequential discriminator past 5 epochs.

We also see an example of the training outcomes predicted by the ODE in Figure 7. Specifically,
our choice of learning rates τ̃ = 0.04, τ = 0.2 and noise level η = 1 is seen in Row 1, Column 2 of
Figure 1, and we see the expected result of the generator oscillating around its steady state.

Figure 7: In the first figure, using PCA on the MNIST dataset, we obtain the top 16 features of
the data, and use these features as an approximation for the true subspace U. We then track the
Grassmann distance between the learned subspace and this approximation, for both our model trained
for 1 epoch, and the sequential discriminator trained for 1 and 5 epochs. It is clearly seen that our
discriminator learns much faster than the sequential discriminator, while at the same time obtaining a
much lower distance, even when the sequential discriminator has sees 5 times as much data.

B Proof of main theorem

This proof mirrors the proof of Theorem 1 in [6]. However, for completeness, we re-state the key
results and sketch the proof here.

The proof relies on the following result, found in [13]:

13

Lemma B.1. Consider a sequence of stochastic processes {x(n)k , k = 0, 1, 2, · · · , ⌊nT ⌋}n=1,2,···

with some constant T > 0. If x(n)k can be decomposed into three parts

x(n)
k+1 − x(n)k =

1

n
ϕ(x(n)k) + ρ

(n)
k + δ

(n)
k , (18)

such that

(C.1) The process
∑k

k′=0 ρ
(n)
k′ is a martingale, and E||ρ(n)k ||2 ≤ C(T)/n1+ϵ1 for some ϵ1 > 0;

(C.2) E||δ(n)k || ≤ C(T)/n1+ϵ2 for some ϵ2 > 0;

(C.3) ϕ(x) is a Lipschitz function, i.e., ||ϕ(x)− ϕ(x̃) ≤ C||x − x̃||;

(C.4) E||x(n)k ||2 ≤ C for all k ≤ ⌊nT ⌋;

(C.5) E||x(n)0 − x∗
0|| ≤ C/nϵ3 for some ϵ3 > 0 and deterministic vector x∗0,

then we have
||x(n)

k − x(
k

n
)|| ≤ C(T)n−min(1

2 ϵ1,ϵ2,ϵ3), (19)

where x(t) is the solution of the ODE
d

dt
x(t) = ϕ(x(t)) with x(0) = x∗0. (20)

The relevant stochastic process is the macroscopic states introduced in Section 4. The macroscopic
states are decomposed as

Mk+1 − Mk =
1

n
ϕ(Mk) + (Mk+1 − EkMk+1) +

[
EkMk+1 − Mk − 1

n
ϕ(Mk)

]
. (21)

Note that our macroscopic state can just be written as an n2 dimensional vector, and it is equivalent to
using the Frobenius norm in the conditions above. We seek to show that this decomposition satisfies
the conditions (C.1) - (C.5).

Immediately, Condition (C.5) is satisfied by the assumption (A.5) for the theorem. Additionally, (C.3)
is satisfied by assumption (A.3) and Lemma 4 in the supplementary material of [6].

Next, we slightly modify Lemmas 2 and 7 in the supplementary material of [6] for our case.
Lemma B.2 (Lemma 7 of [6]). Under the assumptions (A.1) - (A.6), given T > 0, we have

||Ekvk+1,i − vk,i|| ≤ Cn−1(||vk,i||+ ||wk,i||),
||Ekwk+1,i − wk,i|| ≤ Cn−1(||ui||+ ||vk,i||+ ||wk,i||).

(22)

The proof of this follows exactly from Lemma 7 of [6].
Lemma B.3 (Lemma 2 of [6]). Under the assumptions (A.1) - (A.6), given T > 0, we have

E

(
d∑

l=1

[Vk]
4
i,l + [Wk]

4
i,l

)
≤ C(T)n−2. (23)

Proof. We show that this holds for a fixed i.
First, we know that

Ek||wk+1,i − wk,i||γ ≤ C

nγ
(1 + ||ui||γ + ||vk,i||γ + ||wk,i||γ). (24)

whenever γ = 2, 3, 4, due to boundedness of h, f, f̃ . Additionally, we can write

E[wk+1]
4
i,l − E[wk]

4
i,l = 4E

[
[wk]

3
i,lE([wk+1]i,l − [wk]i,l)

]
,

+ 6E
[
[wk]

2
i,lE([wk+1]i,l − [wk]i,l)

2
]
,

+ 4E
[
[wk]i,lE([wk+1]i,l − [wk]i,l)

3
]
,

+ EEk([wk+1]i,l − [wk]i,l)
4.

(25)

14

Combining both of these, we get that

E[wk+1]
4
i,l − E[wk]

4
i,l ≤

C

n

(
n−2 + E||ui||4 + E||vk,i||4 + E||wk,i||4

)
,

≤ C

n
E(n−2 +

d∑
l=1

[Vk]
4
i,l + [Wk]

4
i,l).

(26)

which follows from assumption (A.4). Similarly, we get

d∑
l=1

E([Vk+1]
4
i,l − [Vk]

4
i,l) ≤

C

n
E(n−2 +

d∑
l=1

[Vk]
4
i,l + [Wk]

4
i,l). (27)

Combining these for both terms and iteratively applying it, we get

E(
d∑

l=1

[Vk]
4
i,l + [Wk]

4
i,l) ≤ (n−2 +

d∑
l=1

[V0]
4
i,l + [W0]

4
i,l)e

k
nC . (28)

Then, due to assumption (A.4), we get the required result.

Once we have Lemmas B.2 and B.3, we can show that condition (C.4) is satisfied.
Lemma B.4. Condition (C.4) is satisfied for our macroscopic state stochastic process.

Proof. We show that the expected norm squared of each macroscopic state is less than some C(T).
The cases of Pk and Sk are proven in Lemma 3 of [6], and require no changes. Additionally, by
our assumption (A.6) that the matrix Wk is orthonormalized, we know that Zk = Id, and so the
requirement is trivially satisfied for Zk. Thus, it remains to show this for Qk and Rk. We show this
for Qk, and Rk follows similarly.

E[Qk]
2
l,l′ = E(

n∑
i=1

[U]i,l[Wk]i,l′)
2,

≤ E(
n∑

i=1

[U]2i,l)E(
n∑

i=1

[W]2i,l′),

≤

√√√√E(
n∑

i=1

[U]2i,l)
2E(

n∑
i=1

[W]2i,l′)
2,

≤ C(T),

(29)

as required.

Lemma B.5. Condition (C.2) above is satisfied, meaning that for all k = 0, 1, · · · , ⌊nT ⌋, and for a
given T > 0, we have

E||EkMk+1 − Mk − 1

n
ϕ(Mk)|| ≤ C(T)n−3/2. (30)

Proof. To prove this, we can split it into five parts, one for each of the macroscopic states. For the
macroscopic state Zk, this just requires showing that

E||EkZk+1 − Zk|| ≤ C(T)n−3/2. (31)

But the left side is just zero, since Zk = Id for all k. Thus, this is trivially satisfied.
For the macroscopic state Pk, we want to show that

E||EkPk+1 − Pk − τ̃

n
(QkRT Λ̃ + PkLk)|| ≤ C(T)n−3/2. (32)

However, from the gradient of our update equation for V , averaging over c̃k, ãk we see that

EkVk+1 − Vk =
τ̃

n

[
WkRT

k Λ̃ + VkLk

]
. (33)

15

Multiplying both sides by UT on the left, we get

EkPk+1 − Pk =
τ̃

n

[
QkRT

k Λ̃ + PkLk

]
. (34)

But then, the left side of the equation we wanted to show is just zero, and so the inequality is satisfied.
Applying a similar process to the update equation for Wk, we want to show that

E||EkQk+1 − Qk − τ

n
(ΛQk − PkΛ̃Rk + HkQk)|| ≤ C(T)n−3/2, (35)

and by averaging over c̃k, ãk, ck, ak and multiplying by UT on the left, we get

EkQk+1 − Qk =
τ

n

[
ΛQk − PkΛ̃Rk + HkQk

]
. (36)

Again, this results in the left side of the expression we want to show just being zero.
Finally, we show the result for Sk. The case for Rk follows similarly to the previous results.
Using the property that

Sk+1 − Sk = VT
k (Vk+1 − Vk) + (Vk+1 − Vk)

T Vk + (Vk+1 − Vk)
T (Vk+1 − Vk), (37)

and averaging over c̃k, ãk, we get

EkSk+1−Sk =
τ̃

n

[
RkRT

k Λ̃ + SkLk + Λ̃RkRT
k + LkSk

]
+
τ̃2

n2

[
WkRT

k Λ̃ + VkLk

]T [
WkRT

k Λ̃ + VkLk

]
.

(38)
The second term in the sum above has expected norm

E|| τ̃
2

n2

[
WkRT

k Λ̃ + VkLk

]T [
WkRT

k Λ̃ + VkLk

]
|| ≤ E||WkRT

k Λ̃ + VkLk||2,

≤ 2||Zk||||RT
k Λ̃||2 + 2||Sk||||Lk||2,

≤ CE [||Zk||+ ||Sk||] ,
≤ C(T).

(39)

This concludes the proof.

For condition (C.1), the requirement of being a martingale is automatically satisfied by construction.
To show that the remainder of condition (C.1) is satisfied, it suffices to prove that

E||Mk+1 − Mk||2 ≤ C(T)n−2. (40)
Lemma B.6.

E||Mk+1 − Mk||2 ≤ C(T)n−2. (41)

Proof. We can break this up into each of the 5 macroscopic states separately. As before, doing this
for Zk is trivial. We show this for Pk and Qk, and the rest follow similarly. For Pk, we get

E||Pk+1 − Pk||2 ≤ Cn−2E
[
||Qk||Ek||c̃22k + ||Pk||2

]
,

≤ Cn−2E
[
1 + ||Qk||2 + ||Pk||2

]
,

≤ C(T)n−2.

(42)

This finishes the proof for Pk.
For Qk, we have
E||Qk+1 − Qk||2,

≤ τ2

n2
E
[
||ck||2f2

k + ||UT ak||2f2
k + ||Pk||2||c̃2k||2f̃2

2k + ||UT ã2k||2f̃2
2k + ||Qk||2||Hk||2

]
,

≤ Cn−2

[
1 +

√
E||UT ak||4

√
Ef4

k +

√
E||UT ãk||4

√
Ef̃4

k + E||Zk||2 + E||Sk||2
]
,

≤ Cn−2
[
1 + E||Zk||2 + E||Sk||2

]
,

≤ C(T)n−2.

(43)

where in the last line, we used the previously calculated values for E||Zk||2 and E||Sk||2. The values
fk and f̃2k are the values of f = F ′ and f̃ = F̃ ′ evaluated on the corresponding inputs.
The conditions for the rest of the macroscopic states can be shown in the same way.

Given the previous lemmas, the proof of the theorem then follows immediately from Lemma B.1.

16

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims made in the abstract reflect our analysis, and figures throughout
our text support our claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We make clear the assumptions we require for our analysis, and exactly what
setting our analysis is performed in. We also discuss the areas we are unable to extend our
analysis towards.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17

Answer: [Yes]
Justification: For completeness, we provide a proof of our theorem in the appendix, even
though it closely matches the proof of a similar theorem in a different work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed information about the true data model and generative
model, the training procedure and loss function, and state the required ODE formulas. For
each set of experiments, we specify the choice of hyperparameters we used to produce those
figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

18

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

We provide a link to our code in the Abstract, from which all of our experiments can be
reproduced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We are careful about specifying choice of hyperparameters, training algorithms,
and information about the data. We analyze a wide range of hyperparameters in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Much of our analysis is performed theoretically, based on ODEs that are
deterministic. Some of the experiments are meant for producing visual results such as
learned features, and for these, it does not make sense to consider statistical significance.
Furthermore, the premise of our paper deals with convergence in high dimensionalities to
a deterministic result. Therefore, for the experimental results we do provide, due to the
high dimensionalities involved, we can expect results very close to the deterministic result.
Because of this, error bars would not provide meaningful information and instead would
simply clutter our charts.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: All of our experiments do not need any compute setup, and is doable using a
single computer with a single CPU. Therefore, it is not important for us to provide these
specific details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work focuses on theoretical results and analysis. We use our own data
model as well two freely available and widely used datasets (MNIST and Olivetti Faces).
Our work does not involve new data or interactions with humans. Additionally, there are no
legal implications for our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

20

https://neurips.cc/public/EthicsGuidelines

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: While models such as GANs do have important societal impacts, due to the
theoretical nature of our work and the toy GAN model used, we do not feel that any of these
societal impacts are directly relevant to our current work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All data and models discussed in this paper do not have any high risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

21

Justification: We have cited our original inspirations, as well as the MNIST and Olivetti
Faces datasets where used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not use crowdsourcing or any research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

22

paperswithcode.com/datasets

Answer: [NA]
Justification: We do not use crowdsourcing or any research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Related Work
	Training dynamics for GANs
	Subspace learning

	Background and problem formulation
	True data model
	Online subspace learning algorithms
	Oja's method
	GROUSE

	Generative Models
	Generator
	Discriminator
	Training procedure

	Development of ODE
	Macroscopic dynamics
	Microscopic dynamics

	Simulations
	Off-diagonal simulations

	Unknown number of features
	Real image subspace learning
	GANs as a subspace learning algorithm
	Learned features

	Conclusion
	MNIST results
	Comparisons with Single-Feature Discriminator and Oja's Method
	Grassmann distances

	Proof of main theorem

