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Abstract
We introduce Metric-Learning Encoding Mod-001
els (MLEMs) as a new approach to understand002
how neural systems represent the theoretical003
features of the objects they process. As a proof-004
of-concept, we apply MLEMs to neural repre-005
sentations extracted from BERT, and track a006
wide variety of linguistic features (e.g., tense,007
subject person, clause type, clause embedding).008
We find that: (1) linguistic features are ordered:009
they separate representations of sentences to010
different degrees in different layers; (2) neural011
representations are organized hierarchically: in012
some layers, we find clusters of representations013
nested within larger clusters, following succes-014
sively important linguistic features; (3) linguis-015
tic features are disentangled in middle layers:016
distinct, selective units are activated by distinct017
linguistic features. Methodologically, MLEMs018
are superior (4) to multivariate decoding meth-019
ods, being more robust to type-I errors, and020
(5) to univariate encoding methods, in being021
able to predict both local and distributed rep-022
resentations. Together, this demonstrates the023
utility of Metric-Learning Encoding Methods024
for studying how linguistic features are neurally025
encoded in language models and the advantage026
of MLEMs over traditional methods. MLEMs027
can be extended to other domains (e.g. vision)028
and to other neural systems, such as the human029
brain.030

1 Introduction031

An open question in neuroscience and Artificial In-032

telligence is how neural networks, biological or ar-033

tificial, encode and process natural language. Mod-034

ern neural language models provide new means035

to study this question: Unlike in experiments in-036

volving humans, language models can be exposed037

to an extensive range of stimuli while their neu-038

ral activity is entirely recorded. However, despite039

this new opportunity, how natural language is neu-040

rally encoded, either in models or the human brain,041

remains largely unknown.042

Figure 1: Encoding vs. Decoding models: Encoding
models predict unit activation from the stimuli, Decod-
ing models predict stimulus features from activations.

An important step towards understanding the 043

neural mechanisms underlying language process- 044

ing is to understand where and how linguistic fea- 045

tures are neurally encoded. Linguistic features, 046

such as grammatical number (singular vs. plural), 047

tense (e.g. past, present and future) or verb type (in- 048

transitive vs. transitive), are theoretical constructs 049

from linguistics, which aid in the analysis and un- 050

derstanding of natural language, and to discern and 051

categorize various aspects of language, such as its 052

structure and usage. Linguistic features are the 053

building blocks to study more complex linguistic 054

phenomena. 055

Two general approaches to study the neural en- 056

coding of linguistic features can be discerned in 057

the literature: decoding and encoding methods 058

(Fig. 1; e.g. King et al., 2020b). In the decod- 059

ing setup, the goal is to predict features of the 060

stimulus from neural activations, typically using 061

standard machine-learning classifiers (aka, ‘diag- 062

nostic probes’) (Alain and Bengio, 2016; Adi et al., 063

2016; Hupkes and Zuidema, 2017; Belinkov and 064

Glass, 2018; Conneau et al., 2018; Tenney et al., 065

2019; Arps et al., 2022). In the encoding setup, 066

the arrow is reversed, and the goal is to predict 067

neural activity from a set of features, typically, us- 068

ing regularized regression methods. The encoding 069

approach is most commonly used in neuroscience 070

(e.g. Wehbe et al., 2014; Caucheteux et al., 2021; 071

Caucheteux and King, 2022; Pasquiou et al., 2022; 072

Oota et al., 2022; Pasquiou et al., 2023). 073
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Decoding and encoding methods have different074

merits and limitations. One main limitation of de-075

coding methods is that the decodability of a given076

feature does not guarantee its causal role. For in-077

stance, a certain feature can be decodable from078

neural activations not because it has a mechanis-079

tic role but only because it correlates with another080

feature that has such a role. In encoding models,081

this limitation can be addressed to some extent by082

introducing the feature of interest and confound fea-083

tures, testing their relative importance in predicting084

neural activations. However, a common limitation085

of encoding models is that they are uni- rather than086

multi-variate, where the goal is typically to predict087

the neural activity of one single unit of the model088

at a time, from a single electrode in the brain or089

from a single fMRI voxel. Encoding approaches090

are thus limited in their ability to study distributed091

representations across many units.092

Here, we introduce a simple approach, which093

preserves the good from both worlds, by extending094

encoding methods to the multivariate case within a095

metric-learning framework (Kulis, 2013). We call096

it Metric-Learning Encoding Models, or MLEMs097

for short. To study the neural encoding of linguis-098

tic features, we created four new datasets, whose099

stimuli contrast various linguistic features. We then100

presented stimuli from these datasets to BERT (De-101

vlin et al., 2019), extracted its neural activations102

and studied them using MLEMs.103

The main contributions of our study are: (1) A104

new framework to study neural encoding in large105

language models; (2) A new set of probing datasets106

with their corresponding generating codes; (3) Iden-107

tification of orders among linguistic features, for108

all model layers, with respect to their dominance109

in the neural representations; (4) Identification of110

hierarchical patterns in the neural representations111

of linguistic information; (5) Identification of a112

strong disentanglement of linguistic features in lay-113

ers of BERT, discovered by contrasting uni- and114

multivariate encoding models; (6) Demonstration115

of the limitation of multivariate decoding methods116

compared to encoding approaches.117

2 Related Literature118

Metric-Learning Encoding Models (MLEMs) start119

from the assumption that to effectively capture mul-120

tivariate, distributed neural encoding of linguistic121

information, one should model distances among122

neural representations rather than individual activa-123

tions (e.g. units or electrodes). Given a set of inputs 124

(e.g. sentences), where each is represented along 125

a set of features (e.g. linguistic features), the goal 126

is to learn a metric function (aka, a distance func- 127

tion), which is defined over pairs of inputs and com- 128

puted based on their features. The optimal metric 129

function is the one that minimizes the differences 130

between the modelled distances among the inputs 131

and the empirical (neural) ones. This optimal met- 132

ric can be derived using standard metric-learning 133

methods (Kulis, 2013). 134

MLEMs are therefore closely related to classic 135

work on second-order isomorphism between rep- 136

resentations of a given system and the represented 137

entities (Shepard and Chipman, 1970). Second- 138

order isomorphism suggests that while the repre- 139

sentations and the represented entities belong to 140

different spaces, the similarity between the enti- 141

ties and their representations can be quantified by 142

comparing the pairwise distances within each do- 143

main, thus ‘second-order’ similarity. Second-order 144

isomorphism has also been used to compare repre- 145

sentations of two different systems, such as two ar- 146

tificial neural networks (Laakso and Cottrell, 2000) 147

or brains, which is known as Representational Sim- 148

ilarity Analysis (RSA; Kriegeskorte et al., 2008; 149

Abnar et al., 2019). 150

However, in its simple form, second-order iso- 151

morphism does not include any learning, which is 152

a limitation when operations performed by the rep- 153

resenting system strongly deform the input struc- 154

ture. Feature-reweighted representational similar- 155

ity analysis (FR-RSA; Jozwik et al., 2017; Storrs 156

et al., 2021; Kaniuth and Hebart, 2022), a vari- 157

ant of RSA, addresses this limitation by learning 158

a set of weights over the set of features. However, 159

feature weighing is not enough to ensure that the 160

modelled neural distances have metric properties 161

(e.g. non-negativity and triangle inequality). 162

MLEMs extend second-order isomorphism 163

methods by: (1) explicitly learning a metric func- 164

tion, which ensures that the learned weights pre- 165

serve distance properties; (2) allowing the intro- 166

duction of interactions among features into the 167

model, while preserving metric properties (unlike 168

FR-RSA); (3) incorporating conditional permuta- 169

tion importance testing (Chamma et al., 2023), 170

which is the current state-of-the-art in handling 171

possible strong correlations among features. 172

The closest variant of RSA, which is similar to 173

our approach is Representational Similarity Learn- 174

ing (RSL; Oswal et al., 2016). However, our work 175
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differs from this work by learning an encoding176

rather than a decoding model. Furthermore, our fo-177

cus here is on neural encoding of linguistic feature178

in large language models. Finally, we highlight179

other multivariate encoding approaches, which fol-180

low different approaches, such as Reduced-Rank181

Ridge Regression (Mukherjee and Zhu, 2011), and182

the Back-to-back regression (King et al., 2020a).183

3 Experimental Setup184

3.1 Datasets185

To study the neural encoding of linguistic features,186

we created four original datasets. Each dataset con-187

tains a list of sentences and their corresponding list188

of linguistic features. They were generated using189

grammars manually-crafted to cover central phe-190

nomena from linguistics. The first three datasets191

target specific linguistic phenomena by contrast-192

ing a small set of linguistic features: (1) The193

Short-Sentence Dataset mostly targets word-level194

features, such as grammatical number, subject195

type or tense; (2) The Relative-Clause Dataset196

targets more structural phenomena, and in par-197

ticular, center-embedding vs. right-branching em-198

beddings; (3) The Long-Range-Agreement Dataset199

targets sentence-level features, and in particular,200

long-range subject-verb dependencies. Finally, the201

fourth dataset, (4) The Large Dataset lumps to-202

gether all the linguistic phenomena from the first203

three datasets, and adds others such as quantified204

sentences, with and without bound pronouns, and205

full clause embeddings. The datasets are described206

in Table A.1, with templates and examples, and207

they are fully available online with their generative208

code. To secure a clean interpretation of the relative209

contributions of the different features, we checked210

for correlations between linguistic features in all211

four datasets. Fig. A.1 shows that strong correla-212

tions only remain in the Large Dataset.213

3.2 Language Model and Neural214

Representations215

We studied the neural encoding of linguistic fea-216

tures in BERT (Devlin et al., 2019), a highly stud-217

ied model, which allows us to compare our results218

to previous findings about layer-wise neural encod-219

ing of language in this model. Furthermore, the220

original BERT was trained not only on masked-221

language modeling but also on next-sentence pre-222

diction using a special <CLS> token. Here, we con-223

sider the embedding on <CLS> as an aggregated224

DF,W DN

Figure 2: A Metric-Learning Encoding Model:
MLEMs infer the relative importance of features by
finding the best alignment between distances in feature
space and in neural space.

sentence-level representation (Jawahar et al., 2019; 225

Rogers et al., 2021). For each sentence, we thus 226

obtain one representation vector in R768 per layer. 227

3.3 Metric-Learning Encoding Models 228

We consider a set of N stimuli (sentences), each
characterized by a set of (linguistic) features F .
MLEMs compute two types of pairwise distances.
First, we compute pairwise neural distances DN

(right branch in Fig. 2) as the standard distance
(e.g. Euclidean or cosine distance) between the
neural responses of a set of units (e.g. a layer) for
any two sentences. Second, we compute pairwise
feature distances DF ,W (left branch of Fig. 2) as
follows. We start from feature difference vectors,
which indicate on which features two sentences dif-
fer: ∆(si, sj) = (1f(si )̸=f(sj))f∈F . Then, feature
distances are computed using a standard bi-linear
form parameterized by a PSD matrix W ∈ M+

n :(
DF ,W

ij

)2
= ∆(si, sj)

TW∆(si, sj)

MLEMs, as metric-learning methods, optimize 229

W to bring the pairwise feature distances as close 230

as possible to the neural ones, across all (i, j) pairs 231

of stimuli: 232

W ∗ = argmin
W∈M+

n

∑
i<j

((
DF ,W

ij

)2
−
(
DN

ij

)2
)2

+ λ||W ||22 233

Algorithms such as OASIS (Chechik et al., 2010) 234

solve this optimization problem under the PSD con- 235

straint, by projecting the weight matrix on the PSD 236
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manifold every several optimization steps. When237

W is assumed to be diagonal (no interaction terms),238

the optimization problem can be reduced to a least-239

squares problem, and the PSD constraint becomes240

a non-negativity constraint on the diagonal terms.241

Feature Importance To properly derive the242

contribution of each feature to the neural dis-243

tances, we estimated feature importance by con-244

ducting conditional-permutation tests (Chamma245

et al., 2023), which is the state-of-the-art for feature246

importance estimation in the case of mild correla-247

tions among features.248

Model Training and Evaluation For simplic-249

ity, we focused here on the diagonal case of W250

and trained a standard Ridge model with a non-251

negativity constraint on the parameters. We op-252

timized for λ using nested cross-validation (CV;253

λ ∈ 10[−4,4]; To facilitate λ optimization across254

all models, target values were min-max scaled255

into [0, 1]). We evaluated the model using the256

coefficient-of-determination score R2 and report257

the average across CV splits.258

4 Results259

4.1 The Processing Profiles of Linguistic260

Features across BERT’s Layers261

The geometry of neural representations, and in par-262

ticular, distances among representations, is infor-263

mative about underlying computations in the model.264

Representations that are nearby in neural space are265

more prone to confusion, having similar effects on266

downstream computations. Conversely, represen-267

tations that are relatively distant in neural space268

can have disparate effects and be thus important269

for downstream computations. Identifying which270

linguistic features cause large neural separations271

among sentence representations would thus suggest272

their computational role in each processing stage273

of the model. Which linguistic features create large274

neural distances among sentence embeddings in275

BERT? How do the effects of linguistic features on276

neural distances vary as a function of layer?277

To study these questions, we presented each of278

the four datasets to BERT, extracted the correspond-279

ing embeddings, and trained an MLEM on the em-280

beddings from each layer. We then inspected the281

resulting Feature Importances (FIs; Section 3.3),282

which quantify the contribution of each linguistic283

feature in predicting neural distances. Figure 3A284

shows Feature Importance (continuous lines) in log285

scale for the Short-Sentence Dataset, for the top 286

four features achieving maximum FI across all lay- 287

ers (p < 0.01). See Figure B.2 for more features. 288

This provides, for each feature, a processing profile 289

across all layers of the model. 290

The Processing Profiles of Simple Features 291

(clause type, subject properties, tense). Fig- 292

ure 3A shows that the clause type feature (“He 293

smiles" vs. “Who smiles?") is the most dominant 294

feature across all layers of the models, followed by 295

subject type (“He smiles" vs. “The boy smiles"), 296

tense (“He smiles" vs. “He smiled") and then sub- 297

ject person (“He smiles" vs. “I smile"), which 298

achieves significant FIs only in deeper layers (sta- 299

tistically insignificant FIs were removed from the 300

plot). Note that for Tense and Subject Person, the 301

profile of FIs significantly changes from early to 302

deeper layers of the model. In particular, the tense 303

feature becomes more important in middle layers 304

of the model, peaking at layer 5 of the model. Sim- 305

ilarly, the feature importance of subject person be- 306

comes significant only in later layers of the mod- 307

els, from layer 7 on. A control analysis, training 308

MLEMs on a non-trained BERT presented with the 309

same datasets, showed that, without training, FI 310

profiles remain largely constant across all layers 311

(Figure B.4). This discrepancy between the pro- 312

cessing profiles of trained and non-trained BERT, 313

in particular for tense and subject person, suggests 314

that neural computations associated with these fea- 315

tures are triggered in middle layers of BERT - tense 316

at layer 5 and subject person at layer 7. 317

The Processing Profile of Attachment site for 318

Relative Clauses and Prepositional Phrases. 319

For the Relative-Clause and Long-Range- 320

Agreement Datasets, Figure 3C shows the 321

processing profiles for the top 4 features with 322

maximal FIs. These datasets contain structural 323

features, such as whether the relative clause is 324

attached to the subject (center embedded) or to the 325

object (right branching) of the verb, and whether 326

the embedded clause itself lacks its subject or its 327

object. The dataset also traces word features, such 328

as grammatical number (singular/plural), and low- 329

level confound features, such as word frequency. 330

The most striking change in FI profile, which 331

is consistent for the two datasets (Figure B.1A), 332

occurs for the attachment-site feature (red color). 333

At layer 5, the processing profile of attachment 334

site crosses three orders of magnitude of FI values. 335

This suggests that neural computations associated 336
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Figure 3: Processing Profiles of Linguistic Features and Hierarchical Patterns. A&C: Feature Importances
for the Short-Sentence and Relative-Clause datasets for the top 4 features. The area under of curve (AUC) of a
decoding baseline is shown on a second y-axis. B&D: Multidimensional (MDS) plots for example layers with high
FIs (layer 11 and 7). Hierarchical patterns are observed according to the order of FIs: Quest./Decl. > Subj. type >
Tense and Subj. num. > Attach. site > Verb lemma.
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Figure 4: Performance of Univariate Model (blue)
vs. Multivariate MLEMs (orange). Univariate: barplot
of the unit R2-scores per layer, outlier units (R2 above
1.5 Interquantile Range above 75%) are shown with
crosses, and counted (light-blue background with the
second y-axis). Multivariate: The R2 for the MLEMs
trained on the entire layer (continuous line) and the op-
timal MLEM (dashed; section 4.3) are shown in orange.

with attachment site becomes dominant in these337

layers.338

Processing Profiles are Robust across Model Ini-339

tializations. Are the processing profiles robust340

across BERT initializations? To test this, we re-341

peated the analyses for the Short-Sentence dataset342

with 25 more models of BERT, trained with differ-343

ent seeds. Results show that the processing profiles344

are consistent across all models (Figure B.3), and345

that, for all models, the resulting order among lin-346

guistic features is the same: clause type, subject347

type, tense and subject person.348

Hierarchical Representations of Linguistic Fea-349

tures in BERT Embeddings. Is the order among350

linguistic features reflected in the geometry of neu-351

ral representations? To visualize the results for the352

FIs, we projected the sentence representations from353

the original BERT onto the plane while preserving354

their pairwise neural distances in the original space355

as much as possible using Multi-Dimensional Scal-356

ing (MDS; Kruskal, 1964). Figure 3B illustrates357

this for one layer of BERT, where FI values are358

all high. Sentence embeddings (dots in the plot)359

are marked following the ordered linguistic fea-360

tures, showing that embeddings are first mostly361

separated by clause type (declarative and interroga-362

tive sentences; circles vs. triangles), then by subject363

type (different colors) and, finally, based on tense364

(shades). This shows that the order of FIs is re-365

flected in the geometrical organization of sentence366

representations in neural space.367

Figure 3D illustrates this for layer 7 of BERT, 368

for the Relative-Clause Datasets. It shows that 369

sentences are first clustered based on grammatical 370

number (circles vs. triangles), then each cluster is 371

divided into two identifiable clusters for sentence 372

structure (different colors), and, finally, each of 373

the sub-clusters is further divided into subsequent 374

nested clusters for verb lemma (shades). Sentence 375

representations at layer 7 thus form a hierarchical 376

structure, with nested clusters, whose levels fol- 377

low the order among the most dominant linguistic 378

features. This hierarchical organization is not a 379

necessity: it does not hold for earlier layers of the 380

model and only emerges at layer 5, where the sud- 381

den increase of the sentence-structure feature oc- 382

curs (Fig. 3C). A similar hierarchical organization 383

is also identified for the Long-Range-Agreement 384

Dataset with respect to the same three features 385

(Fig. B.1). These hierarchical patterns become visi- 386

ble when sentences in the MDS are marked follow- 387

ing the ordered features, and they would therefore 388

have been hard to detect without the results from 389

the MLEM. 390

4.2 Local and Distributed Neural Encoding of 391

Linguistic Information 392

A central question about information encoding in 393

neural networks is whether information is locally 394

encoded - in a single unit, or a small set of units 395

(Quiroga et al., 2005; Bowers, 2009) – or whether 396

it is encoded distributedly, ‘spread out’ across sev- 397

eral units in the network (Rumelhart et al., 1986; 398

Smolensky, 1990; Gelder, 1992). Which linguistic 399

features are locally encoded and which are distribut- 400

edly encoded in BERT embeddings? 401

To study this question, we suggest a new ap- 402

proach, which contrasts univariate and multivari- 403

ate encoding models. If a unit of the model lo- 404

cally encodes a specific feature, then a univariate 405

encoding model containing this feature would per- 406

form well in predicting unseen neural activity (high 407

R2). However, if a feature is distributedly encoded, 408

across many units, then univariate models would 409

only capture part of the variance and would there- 410

fore have low performance compared to a multi- 411

variate encoding model. Comparing univariate and 412

multivariate models could therefore reveal the type 413

of encoding (local or distributed) in a network. 414

We thus trained univariate encoding models, 415

which minimally differ from the multivariate 416

MLEMs, by training an MLEM on the activations 417

of each unit of each layer of the model. This en- 418
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Figure 5: Disentanglement of Linguistic Features into Separate Clusters of Units in Layer 5 of BERT. The first
four clusters from a K-means clustering of the univariate FI profiles of all units in layer 5. Each stacked bar shows
the feature-importance profile (colors) of a single unit. Every cluster shows a specialization in one single feature,
which is clearly observable from the dominant color (feature) in each cluster. Units in each cluster are sorted by
decreasing R2 (black line).

sures a close comparison between the univariate419

and multivariate methods. This resulted in a total420

of 768 units × 12 layers univariate models, each421

providing a profile of feature importance and a per-422

formance score (R2).423

We applied these models to the Short-Sentence424

Dataset. Figure 4 compares the performances of the425

univariate models and the MLEMs, showing that:426

(1) overall, MLEMs outperform the univariate mod-427

els, across all layers. Thus, neural separation can be428

better predicted at the population compared to the429

unit level, which suggests that at least some linguis-430

tic information is distributedly encoded; (2) from431

layer 4 on, the median of the univariate distribu-432

tions decreases (horizontal lines) while the distri-433

bution also becomes narrower (blue boxes). This434

tendency suggests an increase in distributed code435

in middle layers of the model; (3) However, from436

layer 4 on, the number of outlier units starts to in-437

crease (shaded background), and the performance438

of these units becomes comparable to that of the439

multivariate models. This increase in outlier units440

in middle layers of the model suggests that at least441

some linguistic information is locally encoded by442

such units. We further study this in what follows.443

Strong Disentanglement in the Neural Encod-444

ing of Linguistic Features in Layer 5 of BERT.445

Comparing the performances of uni- and multi-446

variate models suggests, so far, that some linguistic447

information is distributedly encoded in middle lay-448

ers of the model, whereas other types of informa-449

tion are more locally encoded, by specific ‘outlier’450

units. However, comparing model performances451

cannot tell which type of linguistic information is 452

encoded in these units. We therefore next inspected 453

the feature importances of the univariate models. 454

For this, we clustered all units based on their FI pro- 455

files, using a standard K-means algorithm, and the 456

silhouette method to determine the right number of 457

clusters. Before clustering, to make FI profiles of 458

different units comparable, we normalized the FI 459

profile of each unit by its R2. Figure 5 shows, for 460

each cluster, the individual FI profile of each of its 461

units (in a stacked bar), sorted by the performance 462

of the univariate model. 463

Remarkably, every cluster (except for a fifth 464

catch-all cluster; Figure E.1) has a single dominant 465

linguistic feature whose feature importance is an 466

order of magnitude above that of any other feature. 467

Many of the units in each cluster, and in particular 468

‘outlier’ units, are selective to the dominant feature. 469

These results show a strong specialization and dis- 470

entanglement of linguistic information in layer 5 471

of BERT. BERT, unlike other models such as varia- 472

tional auto-encoders (Higgins et al., 2016), is not 473

trained with an explicit disentanglement term. Dis- 474

entanglement therefore spontaneously emerges in 475

the model during training. Finally, we note that ear- 476

lier layers of BERT also show disentanglement, but 477

to a smaller number of features. Later layers show 478

no disentanglement with respect to our features and 479

all have a catch-all cluster (see Figure E.1). 480

4.3 Advantages of MLEMs over Traditional 481

Decoding and Encoding Approaches 482

Our analyses show that MLEMs are better suited 483

for the study of multivariate encoding of linguis- 484
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tic features than Diagnostic Probes (e.g. Jawahar485

et al., 2019; Puccetti et al., 2021; Miaschi et al.,486

2020; Rogers et al., 2021). The limitation of diag-487

nostic probes is visible in Figure 3A&C. Each of488

the four top features can be perfectly decoded from489

the sentence representations of any layer of BERT.490

The Area Under the Curve (AUC; 3-fold nested491

cross-validation) of a linear Ridge classifier is at492

ceiling, in all cases. In fact, it is possible that the493

entire stimulus can be recomposed, and hence the494

features. MLEMs, unlike diagnostic probes, jointly495

includes several features, as well as possible ‘low-496

level’ confound features (e.g. sentence length), and497

disentangle their respective contributions (FIs) in498

explaining neural activity. MLEMs are thus less499

prone to false-positive errors by including possible500

confound variables in the model, and specifically501

detect which features are encoded, and where.502

MLEMs also have advantages over univariate503

encoding methods in that they better predict dif-504

ferences in neural activity. To show this, for each505

layer, we also trained an optimal MLEM in the fol-506

lowing way. We first sorted the units of each layer507

based on the R2 performance of corresponding uni-508

variate models. We then, incrementally, trained an509

MLEM on only the top-d units, for d ∈ [1, 768].510

Finally, we define the optimal number of encoding511

units, d∗, as the number of units required to achieve512

maximal MLEM performance, which we denote513

by R2∗ (Figure D.1). Figure 4 shows the resulting514

R2∗ for all layers of the models, showing that the515

MLEMs outperform univariate models, across all516

layers, including all outliers in each layer. Taken517

together, this shows the superiority of MLEMs over518

traditional decoding and encoding approaches.519

5 Discussion520

We introduce Metric-Learning Encoding Models521

(MLEMs): a new framework for the study of neu-522

ral encoding of linguistic features. Like decoding523

approaches, it is unit-multivariate, that is, all units524

enter the same model. As such, it can capture525

distributed encoding of features. Like encoding526

approaches, it is feature-multivariate, that is all527

features enter the same model. As such, it can528

properly disentangle the specific contributions of529

different features. MLEMs extend other multivari-530

ate approaches, such as Representational Similarity531

Analysis (Kriegeskorte et al., 2008), by precisely532

modelling a distance (i.e. imposing the matrix of533

parameters to be positive-semi definite).534

We tested MLEMs on BERT, using 4 original 535

probing datasets, which provided: quantitative mea- 536

sures for the dominance of various linguistic fea- 537

tures across layers, the identification of previously 538

undescribed hierarchical patterns of neural activity, 539

encoding profiles of linguistic features and strong 540

disentanglement of representations in several lay- 541

ers. This demonstrates the capability of MLEMs to 542

study neural encoding in large language models. 543

MLEMs are applicable to the activations of any 544

language processing system, be they other artificial 545

models, or the human brain. As such, the current 546

results provide a reference point for predictions of 547

how other systems process language. 548

MLEMs are also applicable to domains outside 549

of language, such as vision: they are designed to 550

close the gap between theoretically motivated fea- 551

tures in any domain (linguistic features, geometric 552

features, etc.) and any system of representations. 553

6 Conclusions 554

Linguistic features can be represented in vastly dif- 555

ferent ways in language models. Metric-Learning 556

Encoding Models show that some features dom- 557

inate the neural representations, creating large 558

neural distances among sentence representations. 559

These features can be encoded locally in single 560

units, or in multiple, redundant units, or they can 561

be encoded in a more complex, distributed manner. 562

The method is applicable to any measurable neural 563

system (artificial or human), and to any domain 564

(language, vision) with a feature-based theory. 565

Ethical statement 566

This paper presents work whose goal is to bridge 567

closer together the fields of Machine Learning and 568

Linguistics; being theoretical in nature, we do not 569

feel like any societal risks need to be specifically 570

highlighted. 571

Limitations 572

For simplicity, we assumed here that there are no 573

interactions among linguistic features in predicting 574

neural distances among sentence representations. 575

However, such interactions are common in many 576

problems, including in language. The framework 577

of MLEMs allows a straightforward way to intro- 578

duce interactions (Section 3.3), while, in contrast 579

to other approaches (such as RSA), it preserves 580

the metric property of the learned distances. The 581

introduction of interaction terms into the study of 582

8



linguistic features with MLEMs is therefore an in-583

teresting direction for future work.584

The question of the type of encoding - local or585

distributed - has been a major topic of research in586

neuroscience (Rumelhart et al., 1986; Rolls, 2017;587

Bowers, 2017). This work shows how this ques-588

tion can be addressed by contrasting univariate and589

multivariate MLEMs. However, it only provides590

a proof of concept for a single model. Calibrat-591

ing this more and extending this with additional592

models and datasets could in the future reveal how593

different systems may find different solutions to594

the same computational problem.595
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A Datasets 771

In this appendix, we provide a description of the datasets. They are available online, together with the 772

labels and the grammars used to generate and extend them.

Dataset Template #features #sentences
Short Sentences

Simple 2/3 words sentences
Subj. verb. I play.

Who/Which [subj.] verb? Which princess sang?
9 522

Relative Clause
2 by 2 design

Peripheral/Center Embedding (CE)
Subj./obj. relative clause (s/oRC)

[CE, sRC]: Subj. who verb obj. verb obj.
The woman who sees the princess admires the actress.

[Periph., oRC]: Subj. verb obj. who subj. verb.
The woman sees the princess who the actress admires.

[CE, oRC] ... [Periph., sRC] ...

14 7680

Long-Range Agreement (*)
2 by 2 design
Periph./CE

Number (in)congruence (NC/NI)

[Periph., NC]: Subj. verb obj. who subj. verb.
The woman sees the princess near the actress.

[CE, NI] (*): Subj. who verb obj. verb obj.
The woman near the princesses sees the actress.

[Periph., NI] ... [CE, NC] ...

14 7680

Large

All of the above
Embedding under propositional attitude

John knows that/whether/who...
Quantification and binding theory

Everyone sees himself/him/me

25 3120

Table A.1: Brief description of the 4 datasets. The Large dataset contains more linguistic phenomena and features;
it is nonetheless smaller because it uses less lexical variability.

773

Figure A.1: Correlations between all the features of the 4 datasets in the matrix of pairwise feature distances. Only
correlations above 0.5 are annotated. The Large dataset has more features and could benefit from a re-encoding, as
some correlations are not negligible.
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B MLEM Feature Importance774

In this appendix, we provide more information about feature importances across datasets, and even models775

(showing several seeds of BERT as well as untrained versions).776

Figure B.1: This is the continuation of Fig. 3 for the remaining datasets: MLEM FIs along with the corresponding
decoding AUC for the top 4 features for the Long-Range Agreement and Large datasets. The MDS plot at layer
8 and 7, respectively, show hierarchical clustering according to Subj. num. > Verb lemma > Attach. site and
Quest./Decl. > Trans./Intrans. > Subj. pers..
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Figure B.2: MLEM FIs with more features displayed (top 10) for all datasets.

Figure B.3: MLEM FIs for the 25 available seeds of MultiBERTS (Sellam et al., 2022) on the 4 datasets. The
average over the seeds is in dark and the 95% confidance interval in light. For readability, only the top 4 features for
each dataset are shown.
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Figure B.4: MLEMs FIs on untrained BERT (multiberts-seed-0-step-0k) for the top 4 features on each dataset.
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C Visualization of the features in the representations 777

In this appendix we offer various visualizations of the way the different features spread in representation 778

space, revealing both order and hierarchical effects. 779

Figure C.1: MDS for the Relative Clause and Long-Range Agreement datasets. It shows the increasing importance
of Attachment site across layers.

D Univariate vs. multivariate encoding 780

In this appendix, we show how one can combine the univariate and multivariate analysis to reveal that 781

there is an optimal number of units, between 10 and 100 units across the 768 unit layers, at which maximal 782

fit is achieved. We also show that at each layer the units are grouped in clusters specialized in a feature. 783

Figure D.1: Left: Multivariate R2 for each layer when considering more and more units, sorted by their univariate R2.
Right: Maximum R2 score achieved for each layer on the previous plot, namely R2∗, along with the dimensionality
d∗, i.e. the number of units needed to achieve R2∗.
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E Clusterization of units and feature specialization784

cluster 1 cluster 2 cluster 1 cluster 2 cluster 1 cluster 2

cluster 1 cluster 2 cluster 1 cluster 2 cluster 1 cluster 2

cluster 1 cluster 2cl1 cl2 cl3 cl4 cl5cluster 1 cluster 2 cluster 3

cluster 1 cluster 2 cluster 1 cluster 2 cluster 1 cluster 2

Layer 1 Layer 2 Layer 3

Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9

Layer 10 Layer 11 Layer 12

Figure E.1: Average FIs by cluster obtained by K-means and the silhouette method for each layer. We see that
layers 1-3 have two clusters, one specialized in Quest./Decl. and the other in Subj. type. At layer 4 there are three
clusters with a new one for Subj. animacy. Layer 5 has five clusters, a new one for Tense and a catch-all one. Layers
6-12 have two clusters each, one for Quest./Decl. and a catch-all one.
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