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ABSTRACT

Uniform sampling is a highly efficient method for data summarization. However,
its effectiveness in producing coresets for clustering problems is not yet well
understood, primarily because it generally does not yield a strong coreset, which
is the prevailing notion in the literature. We formulate stable coresets, a notion
that is intermediate between the standard notions of weak and strong coresets, and
effectively combines the broad applicability of strong coresets with highly efficient
constructions, through uniform sampling, of weak coresets. Our main result is
that a uniform sample of size O(ϵ−2 log d) yields, with high constant probability,
a stable coreset for 1-median in Rd under the ℓ1 metric. We then leverage the
powerful properties of stable coresets to easily derive new coreset constructions,
all through uniform sampling, for ℓ1 and related metrics, such as Kendall-tau
and Jaccard. We also show applications to fair clustering and to approximation
algorithms for k-median problems in these metric spaces. Our experiments validate
the benefits of stable coresets in practice, in terms of both construction time and
approximation quality.

1 INTRODUCTION

Clustering is a fundamental problem in data analysis, machine learning, and optimization, facilitating
various downstream tasks such as classification, anomaly detection, and efficient retrieval. In general,
the input is a set of points in a metric space, and the objective is to partition this set into disjoint
clusters, each sharing a high degree of similarity. In center-based clustering, the goal is to further
assign a representative point, called center, to each cluster. The famous k-median problem, where the
number of clusters is denoted by k, seeks to minimize the sum of distances from each input point to
its assigned center.

In the era of big data, clustering often involves huge datasets, where direct processing is computation-
ally prohibitive. This challenge has given rise to the sketch-and-solve paradigm, which employs a
summarization step prior to the desired computational task, i.e., the data is first preprocessed into a
compact summary, ideally of size that is independent of the original dataset size, and then the desired
algorithms for learning or optimization are applied only to this smaller summary. This approach
significantly reduces computational resources, such as running time, memory, and communication,
but requires balancing between the summary’s size and its information loss.

A coreset represents a concrete formalization of data summarization, and is typically defined as
a small subset of the input that provably captures the relevant geometric properties for a specific
objective function. Over the past two decades, coresets have been extensively studied and successfully
applied to a wide range of problems (see the surveys (Feldman, 2020; Phillips, 2017) and references
therein), and two fundamental types of coresets have dominated the literature. A weak coreset,
which aligns with the sketch-and-solve paradigm, ensures that an optimal or near-optimal solution
computed for the coreset is near-optimal also for the original dataset, without necessarily preserving
the objective value itself. In contrast, a strong coreset provides a more comprehensive guarantee by
preserving the objective value, up to small error, for all potential solutions, i.e., all centers in the
metric space. This notion is indeed stronger and has broader range of applications. In particular, it
exhibits a powerful property: if a metric space X admits a strong coreset (meaning that every instance
in X admits a small coreset), then every submetric X ′ ⊆ X also admits a strong coreset. It follows
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that coreset results for one metric space X extend to every metric that can be embedded isometrically
in X . A concrete example here is the Kendall-tau metric on rankings, which embeds into ℓ1.

This property regarding submetrics is very useful also when the optimal solution is constrained
to meet specific criteria. One such example is the problem of fair rank consensus, which asks to
aggregate multiple rankings into a single ranking, viewed as a center point, that satisfies certain
fairness constraints among the candidates being ranked (Chakraborty et al., 2022; Patro et al., 2022;
Pitoura et al., 2022). Another example emerges in biological research, where molecular data needs
to be aggregated while satisfying structural properties that are critical for maintaining molecular
stability (Tian et al., 2021; Zeng et al., 2023). Furthermore, constraints can be modified over time,
e.g., to reflect knowledge or demands, effectively restricting the center points each time to a different
submetric.

However, the advantages of strong coresets come with nontrivial computational challenges, as their
construction algorithm must inevitably read the entire dataset.1 Can we construct coresets in sublinear
time? Weak coresets demonstrate that this is possible, as they can sometimes be constructed through
uniform sampling (Huang et al., 2023a;b; Marom & Feldman, 2019), a highly efficient method that is
easy to implement in streaming and distributed settings, and is well-known to be extremely useful
in practice. However, uniform sampling cannot reliably capture small clusters, which motivates
us to study the fundamental case k = 1, where uniform sampling can succeed without additional
assumptions about the dataset. This case arises naturally in many practical scenarios and serves as an
important building block for the general problem.

We formulate stable coresets, a notion that captures key properties of strong coresets while avoiding
many of their computational pitfalls. More precisely, they are intermediate between strong and weak
coresets, and effectively provide a sweet spot between these two standard notions. We investigate
stable coresets within the framework of the 1-median problem under the ℓ1 metric. This metric
emerges naturally in data analysis, particularly in high-dimensional settings, and also serves as a
unifying framework for understanding numerous distance metrics. Indeed, many important metrics–
including Hamming, Kendall-tau, Jaccard, tree metrics, various graph-based distances, as well as
ℓ2–can be embedded into Rd with the ℓ1 metric either isometrically or with low distortion. Yet
another application is in computational biology, where the genome median problem seeks to find
a consensus genome that minimizes evolutionary distance to a set of input genomes, often using
metrics that embed in ℓ1 space. The upshot is that results for stable coresets in ℓ1 immediately imply
new coreset constructions also for these embedded metrics, in contrast to weak coresets, which would
require a separate analysis for each individual metric.

1.1 PROBLEM SETUP AND DEFINITIONS

In k-median, the input is a finite set of points P in the metric space (X ,dist) and the goal is to find a
set of k centers C ⊆ X that minimizes the objective function

cost(C,P ) :=
∑
p∈P

min
c∈C

dist(c, p).

We focus on the case k = 1. For this single-center case, we denote an arbitrary optimal center (which
minimizes the objective) by cP ∈ X , and the optimal value by opt(P ) := cost(cP , P ).

We proceed to define formally the three coreset variants discussed above.2 In a weak coreset, the main
idea is that solving the coreset instance optimally, or even approximately, yields an approximately
optimal solution also for the original instance. Our definition below uses parameters ϵ and η to create
a tunable tradeoff in the approximation guarantee, although most literature restricts attention to a
single parameter by setting η = O(ϵ) or alternatively ϵ = 0.
Definition 1.1 (Weak Coreset). A subset Q ⊆ P is a weak (ϵ, η)-coreset for a 1-median instance
P ⊆ X if

∀c ∈ X , cost(c,Q) ≤ (1 + ϵ) opt(Q) → cost(c, P ) ≤ (1 + η) opt(P ). (1)
1Consider k = 1 and a dataset where all points are densely clustered, except for one "outlier" point extremely

far away. While this outlier hardly affects the optimal center, its impact on the objective value might be
significant, and thus it must be examined and even included in every strong coreset.

2Although coresets are traditionally defined as weighted subsets, we present our definitions without weights
for sake of clarity, as our focus is on coresets obtained through uniform sampling.
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A strong coreset provides a more comprehensive guarantee by ensuring that the objective value is
preserved for every possible center point in the metric space.
Definition 1.2 (Strong Coreset). A subset Q ⊆ P is a strong ϵ-coreset for a 1-median instance
P ⊆ X if

∀c ∈ X , cost(c,Q) ∈ (1± ϵ) cost(c, P ). (2)

A stable coreset imposes geometric constraints on all points in the metric space, similarly to a strong
coreset, but with a comparative structure like that of a weak coreset.
Definition 1.3 (Stable Coreset). A subset Q ⊆ P is a stable (ϵ, η)-coreset for a 1-median instance
P ⊆ X if

∀c1, c2 ∈ X , cost(c1, Q) ≤ (1 + ϵ) cost(c2, Q) → cost(c1, P ) ≤ (1 + η) cost(c2, P ). (3)

A key difference between strong and stable coresets is that the former preserve the actual cost of
every center, while the latter preserve only the relative order of the costs across different centers. For
illustration, consider a dataset whose points are clustered together except for one distant "outlier". A
strong coreset must include this outlier to preserve its large contributions to the cost, while a stable
coreset need not. This weaker requirement is crucial for uniform sampling to work effectively, and
reveals a natural compatibility between stable coresets and uniform sampling.

While not formalized as a coreset notion, the principle underlying (3) and its compatibility with
uniform sampling were first used by Indyk (Indyk, 1999; 2001), to compare the costs of two centers
in the context of 1-median with discrete centers (i.e., the center must be one of the dataset points).
For finite X , Indyk’s analysis would yield a stable (0, ϵ)-coreset of size O(ϵ−2 log |X |) (details in
Appendix A.1).

We establish some basic properties of these definitions in Section 2. In particular, there is a strict
hierarchy: every strong coreset is also a stable coreset, and every stable coreset is also a weak coreset,
however the opposite direction is not true in general. In addition, the guarantees of a stable coreset
transfer to every submetric, and thus also to any isometrically embedded metric, which is valuable
for analyzing discrete metric spaces that embed into ℓ1.

1.2 OUR CONTRIBUTION

While uniform sampling offers extensive practical advantages, it is often viewed as a heuristic method
for constructing coresets, due to limited theoretical foundations. We focus on the case k = 1, as
extending to k > 1 requires additional structural and algorithmic assumptions that we avoided for
theoretical clarity. Our main theorem shows that uniform sampling yields stable coresets in a rather
broad setting, namely, in ℓ1 and thus also in every metric that embeds into ℓ1. Our proof has two
parts: we first develop a framework for constructing stable coresets that is applicable to all metric
spaces (in Section 3), and then we instantiate this framework with ℓ1-specific analysis (in Section 4).
Theorem 1.4. Let P ⊂ Rd be finite and let 0 < ϵ ≤ 1

5 . Then, a uniform sample of size O(ϵ−2 log d)

from P is a stable (ϵ/6, 4ϵ)-coreset for 1-median in ℓd1 with probability at least 4/5.

Prior work on coresets constructed through uniform sampling works in restricted settings. A weak
(0, ϵ)-coreset in ℓ1 is known from (Danos, 2021), however using it would require solving the problem
optimally on the coreset. A weak (ϵ, O(ϵ))-coreset in ℓ2 is known from (Huang et al., 2023a),
however it offers much less generality than ℓ1 (recall ℓ2 embeds in ℓ1 with small distortion but not in
the opposite direction). There are also weak coresets in doubling metrics (Ackermann et al., 2010;
Munteanu & Schwiegelshohn, 2018; Huang et al., 2023a), which include ℓ1 and ℓ2 spaces, however
they are useful only when X is low-dimensional. Most importantly, these are all weak coresets and
need not extend to submetrics. A more comprehensive list of previous results appears in Section 1.4.

Additionally, our approach bridges an important gap – stable coresets provide almost as powerful
guarantees as strong coresets, while maintaining the simplicity and efficiency of uniform sampling.
It therefore establishes rigorously the broad range of applicability of uniform sampling. We further
conjecture that our bound can be improved to be dimension-independent, and our empirical evidence
supports this direction.

By utilizing Theorem 1.4 we can establish additional significant results (Section 5). First, we
explore implications to metric spaces that embed into ℓ1, either isometrically or with small distortion,
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obtaining the first coresets based on uniform sampling for important metric spaces, including Kendall-
tau and Jaccard, as well as new bounds for ℓ2. Second, building upon our coreset constructions
for 1-median, we derive approximation algorithms for the more general problem of k-median,
across all the aforementioned metric spaces. Furthermore, we apply our framework to show that in
certain scenarios, uniform sampling actually produces strong coresets, which in turn can speed up
O(1)-approximation algorithms.

Finally, we validate experimentally the performance of our approach in different settings and for
various datasets (Section 6). For instance, we show that a uniform sample achieves error rates that are
comparable to computationally expensive importance sampling techniques. We also show that when
applied to 1-median in the Kendall-tau metric, our coresets effectively preserve the performance of
practical heuristic algorithms (which are employed because this optimization problem is NP-hard).
We further validate that our coresets for Kendall-tau are effective, i.e., maintain the solution quality,
even when constraints such as fairness requirements are imposed on the solution.

1.3 TECHNICAL OVERVIEW

We now outline the proof of our main theorem, which consists of two parts, a general framework for
arbitrary metric spaces (Section 3) and its concrete application to the ℓ1 metric (Section 4).

Our framework establishes a key condition for a subset Q ⊂ P to be a stable coreset for P , called
relative cost-difference approximation. It asserts that for every potential center in the metric space,
the difference between its cost and the median’s cost remains approximately the same when measured
relative to the input P or to subset Q, see (4). This condition is not sufficient by itself and we need
another condition, which is rather simple and holds with constant probability for a uniform sample.

To prove that a uniform sample in ℓ1 satisfies this condition, we leverage ϵ-approximations, a
technique from PAC learning that is tightly connected to the range-counting problem in computational
geometry. Li, Long, and Srinivasan (Li et al., 2001) provided tight bounds for this problem, which
we apply in our analysis. While ϵ-approximations support range-counting queries (i.e., ensures that
the proportion of points in any range is preserved), we show through careful analysis that in ℓ1
metrics, ϵ-approximations for axis-aligned half spaces directly translate to preserving the relative cost
structure across the entire metric space. We further establish that the query family of axis-aligned
half spaces has VC dimension that is logarithmic in the dimension of the underlying space.

1.4 RELATED WORK

In ℓp metric spaces, the k-median problem for general k is APX-hard (Guruswami & Indyk, 2003; Tre-
visan, 2000), with some recent advances about its inapproximability (Cohen-Addad et al., 2022). In a
metric space of bounded doubling dimension D, this problem admits a polynomial-time approxima-
tion scheme (PTAS), namely, (1 + ϵ)-approximation that runs in time Õ(2(

1
ϵ )

O(D2)

n) (Cohen-Addad
et al., 2021a). Clearly this approach is only practical when the doubling dimensions is very low.

Coresets for k-median have been researched extensively over the years, with particular emphasis on
strong coresets in Euclidean space, see (Feldman, 2020; Munteanu & Schwiegelshohn, 2018) for
surveys and (Cohen-Addad et al., 2025; Huang et al., 2025; 2024) for the latest results. Uniform-
sampling-based coreset constructions originated in (Chen, 2009), which proposed partitioning the
metric space into “rings” and sampling uniformly from each part. This approach was further improved
in (Braverman et al., 2022; Cohen-Addad et al., 2021b), and while it yields strong coresets, the overall
sampling distribution is non-uniform, and thus the running time is not sublinear.

To enable truly uniform sampling, we must restrict our attention to weaker coresets and the case
k = 1. Uniform sampling was shown to yield weak (0, ϵ)-coresets for 1-median in Euclidean space
in (Ackermann et al., 2010; Munteanu & Schwiegelshohn, 2018; Danos, 2021), and these bounds
were improved by (Huang et al., 2023a) to weak (ϵ, O(ϵ))-coresets of size Õ( 1

ϵ3 ), alongside additional
results for spaces of bounded doubling dimension and graphs of bounded treewidth (and also an
extension to general k under additional assumptions about the dataset). For 1-median in ℓ1, a uniform
sample of size Õ( 1

ϵ2 ) produces a weak (0, ϵ)-coreset (Danos, 2021).
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In comparison, strong coresets for k-median in ℓ1 of size poly(k/ϵ) follow implicitly from (Jiang
et al., 2024), because ℓ1 is contained in ℓ2-squared, however, constructing such coresets requires at
least linear time.

Coresets for 1-center (aka Minimum Enclosing Ball) in ℓ1 and in related metrics were studied
in (Carmel et al., 2025). It was shown that for both strong and weak coresets, the coreset size must
depend on the dimension (in contrast to 1-median).

2 PRELIMINARIES

We begin by showing that every strong coreset is also a stable coreset, and every stable coreset is a
weak coreset, forming a clear hierarchy among these definitions.
Proposition 2.1. Let (X ,dist) be a metric space and let P ⊆ X be a 1-median instance.

(a). Every stable (ϵ, η)-coreset of P is also a weak (ϵ, η)-coreset.

(b). Every strong ϵ-coreset of P , for 0 < ϵ ≤ 1
5 , is also a stable (ϵ, 4ϵ)-coreset.

We next describe how stable coreset properties are preserved for submetrics through isometric
embeddings. An isometric embedding between metric spaces (X1,dist1) and (X2,dist2) is a mapping
f : X1 → X2 such that for every x, y ∈ X1, we have dist1(x, y) = dist2(f(x), f(y)). The following
fact is immediate.
Fact 2.2. Let f : X1 → X2 be an isometric embedding between metric spaces (X1,dist1) and
(X2,dist2). Then,

(a). f is injective; and

(b). for every P ⊆ X1 and c ∈ P , cost(c, P ) = cost(f(c), f(P )).

Observe that when f is injective, every subset of f(P ) can be written as f(Q) for some Q ⊆ P .
Proposition 2.3. Let f : X1 → X2 be an isometric embedding between metric spaces (X1,dist1)
and (X2,dist2). For every Q ⊆ P ⊆ X1, if f(Q) is a stable (ϵ, η)-coreset of f(P ) in X2, then Q is
a stable (ϵ, η)-coreset of P in X1.

3 A FRAMEWORK FOR STABLE CORESETS

We develop a general framework for proving that subsets Q ⊆ P in arbitrary metric spaces X are
stable coresets, with detailed proofs provided in Appendix B. We apply this framework to ℓ1 spaces
in Section 4, and believe that it will lead to more results in the future.

We use the notation from Section 1.1, and define also the normalized terms cost(x, P ) :=
1
|P | cost(x, P ) and opt(P ) := 1

|P | opt(P ). Denoting by µ ∈ X an optimal median point for
P , we say that Q is an ϵ-relative cost-difference approximation (ϵ-RCDA) of P in X if

∀x ∈ X ,
∣∣∣[ cost(x, P )− cost(µ, P )

]
−
[
cost(x,Q)− cost(µ,Q)

]∣∣∣ ≤ ϵ · cost(x, P ). (4)

Intuitively, this condition requires that Q preserves the gap in cost between every potential center
and a reference point, ensuring that the ranking of centers remains approximately the same whether
evaluated on the original set P or the coreset Q. We remark that it is not crucial for this definition
to have µ be a median point, and it can be substituted by any fixed point in the metric space, up to
constant-factor loss in ϵ. We now use this condition to establish that Q is a stable coreset.
Theorem 3.1. Let P ⊆ X and 0 < ϵ ≤ 1

5 , and suppose cost(µ,Q) ≤ c · cost(µ, P ) for some c ≥ 1.
If Q ⊆ P is an ϵ-RCDA of P in X then Q is a ( ϵc , 4ϵ)-stable coreset of P .

4 STABLE CORESETS IN ℓ1 THROUGH UNIFORM SAMPLING

In this section we prove the following theorem (some proofs appear in Appendix C). As usual, ℓd1
denotes the metric space (Rd, ∥·∥1).
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Theorem 1.4. Let P ⊂ Rd be finite and let 0 < ϵ ≤ 1
5 . Then, a uniform sample of size O(ϵ−2 log d)

from P is a stable (ϵ/6, 4ϵ)-coreset for 1-median in ℓd1 with probability at least 4/5.

For a point x ∈ Rd, we denote its i-th coordinate by x[i]. Let T := {τi,r : i ∈ [d], r ∈ R} denote the
class of threshold functions with τi,r(x) := 1{x[i]≤r} for i ∈ [d] and r ∈ R.

Definition 4.1 (VC dimension (Vapnik & Chervonenkis, 1971)). Let F be a class of functions from
X to {0, 1}. The growth function of F is defined as

∀ integer m ≥ 1, GF (m) := max
x0,...,xm−1∈X

|{(f(x0), . . . , f(xm−1)) : f ∈ F}|,

and GF (0) := 1. The VC dimension of F , denoted by VCdim(F), is the largest m ≥ 0 such that
GF (m) = 2m. Furthermore, a set {x0, . . . , xm−1} such that |{(f(x0), . . . , f(xm−1)) : f ∈ F}| =
2m is called a shattering set.

We now bound the VC dimension of the class of threshold functions T , showing that it essentially
logarithmic in the dimension d (see also (Gey, 2018) which provides tight bounds).

Proposition 4.2. ⌊log d⌋ ≤ VCdim(T ) ≤ 2 log d.

For a given P , define the empirical distribution function for the i-th coordinate by edfP (i, r) :=
1
|P |
∑

p∈P τi,r(p) =
1
|P |
∣∣{p ∈ P : p[i] ≤ r}

∣∣. When d = 1, we slightly abuse notation and omit the
parameter i. We use this notation to define ϵ-approximation for P .

Definition 4.3. Let P ⊂ Rd be finite and let ϵ ∈ (0, 1). A subset Q ⊆ P is an ϵ-approximation for
P if

∀i ∈ [d],∀r ∈ R, |edfQ(i, r)− edfP (i, r)| ≤ ϵ.

Using a theorem established by Yi, Long and Srinivasan (Li et al., 2001), we can bound the size of
such ϵ-approximation (see also (Har-Peled & Sharir, 2011)).

Theorem 4.4 ((Li et al., 2001)). Let F be a class of function from P to {0, 1}, with finite VC
dimension, and let D be some probability distribution over P . Then, with probability at least 1− δ, a
random sample Q ⊆ P of size O

(
ϵ−2(VCdim(F) + log 1

δ )
)

satisfies

∀f ∈ F ,
∣∣∣ 1

|Q|
∑
x∈Q

f(x)− E
x∼D

[f(x)]
∣∣∣ ≤ ϵ.

We now apply Theorem 4.4, taking F = T and D as the uniform distribution over P , and use the VC
dimension bound from Proposition 4.2.

Corollary 4.5. Let P ⊂ Rd be finite and let ϵ ∈ (0, 1). With probability at least 1− δ, a uniform
sample Q ⊆ P of size O(ϵ−2 log d

δ ) is an ϵ-approximation for P .

We now turn to showing how the above machinery can be applied to the 1-median problem under the
ℓ1 metric. Our main technical lemma, shows that an ϵ-approximation subset is also O(ϵ)-RCDA.

Lemma 4.6. Let ϵ ∈ (0, 1). If Q is an ϵ-approximation of P , then Q is a 20ϵ-RCDA of P .

Proof of Theorem 1.4. By Corollary 4.5 and Lemma 4.6, a uniform sample Q of size O(ϵ−2 log d)
yields an ϵ-RCDA of P with large constant probability. Observe that

E[cost(µ,Q)] = E
[ 1

|Q|
∑
q∈Q

∥µ− q∥1
]
=

1

|P |
∑
p∈P

∥µ− p∥1 = cost(µ, P ),

and thus by Markov’s inequality, Pr[cost(µ,Q) ≥ 6 cost(µ, P )] ≤ 1
6 . By a union bound, with

probability at least 4
5 , we have both that Q is an ϵ-RCDA of P and that cost(µ,Q) < 6 cost(µ, P ).

To complete the proof of Theorem 1.4, we now apply our framework, namely, Theorem 3.1.
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5 APPLICATIONS

Several applications of Theorem 1.4 follow immediately from known isometric embeddings into ℓ1.
In particular, Hamming distance, Kendall-tau, Spearman-footrule, and certain graph-based metrics,
such as tree metrics, can all be embedded isometrically into ℓ1, allowing our coreset results to transfer
directly to these spaces, see e.g. Corollary D.1. Another application that arises in computational
biology is the genome-median problem, where the goal is to find a consensus genome that minimizes
the total evolutionary distance to a set of input genomes. The breakpoint distance is a common metric
for genomic comparison that can sometimes (i.e., under some restrictions) be embedded isometrically
in ℓ1, with only a quadratic increase in the dimension (Tannier et al., 2009), making our approach
applicable. Below, we address the Jaccard metric separately, since its isometric embedding requires a
high dimension; however, low-distortion embeddings can be easily employed instead.

Near-isometric embeddings. We extend our results to metrics that embed into ℓ1 with distortion
close to 1, showing they admit stable coresets with parameters adjusted according to the distortion.
As usual, an embedding between metric spaces (X1,dist1) and (X2,dist2) is a map f : X1 → X2.
We say that it has distortion D2 ≥ 1, if there exists r > 0 (scaling factor) such that

∀x, y ∈ X1,
1
D · dist2(f(x), f(y)) ≤ r · dist1(x, y) ≤ D · dist2(f(x), f(y)). (5)

One can often assume that r = 1 by scaling f , e.g., when the target X2 is a normed space. We mostly
use the case D = 1 + ζ for ζ ∈ (0, 1), and then the distortion is D2 = 1 +O(ζ).
Proposition 5.1. Let f : X1 → X2 be an embedding between metric spaces (X1, dist1) and
(X2, dist2) with distortion D. For every Q ⊆ P ⊆ X1, if f(Q) is a stable (ϵ, η)-coreset of f(P ) in
X2 for some ϵ, η > 0, and the values ϵ′ := (1 + ϵ)/D2 − 1 and η′ := D2(1 + η)− 1 are positive,
then Q is a stable (ϵ′, η′)-coreset of P in X1.

This proposition extends our results in Theorem 1.4 to metric spaces that can be embedded into ℓ1
with small distortion. For example, our results extend to the Euclidean metric using Dvoretzky’s
Theorem, yielding stable coresets of size O(ϵ−2 log(d/ϵ)) for 1-median in ℓd2, see Appendix D.2. We
remark that it suffices to have the distortion guarantee (5) only for pairs that involve a point from P ,
which is known in the literature as terminal embedding, see Appendix D.1.
Corollary 5.2. Let (X , dist) be a metric space that embeds in (Rd, ∥·∥1) with distortion 1 + ϵ

3

for ϵ ∈ (0, 1
10 ). Then a uniform sample of size O(ϵ−2 log d) from a finite P ⊆ X is a stable

(ϵ, O(ϵ))-coreset for 1-median in X with probability at least 4
5 .

Stable coresets in Jaccard metric. Consider the Jaccard metric over d elements, i.e., over ground
set [d] without loss of generality. It follows immediately from (Broder et al., 1998) that the Jaccard
metric embeds with distortion 1 + ζ into ℓ1 space of dimension O(ζ−2d3). Thus, Corollary 5.2
implies coresets for the Jaccard metric, as follows.

Corollary 5.3. Let P ⊆ 2[d] and let ϵ ∈ (0, 1
10 ). Then a uniform sample of size O(ϵ−2 log(d/ϵ))

from P is a stable (ϵ, O(ϵ))-coreset for 1-median in Jaccard metric with probability at least 4
5 .

This result provides the first coreset construction based on uniform sampling for the Jaccard metric.
Prior work implies a strong coreset of size Õ(ϵ−4k2), because it holds for k-median in ℓ1 by (Jiang
et al., 2024), however its construction algorithm must read the entire dataset.

Approximation algorithms for k-median. In metric spaces that admit stable coresets through
uniform sampling, we can employ the framework introduced by Kumar et al. (2004) and further
refined for additional metric spaces by Ackermann et al. (2010). These papers design approximation
algorithms for k-median in metric spaces that have the property that for every instance P , a 1-median
of P is approximated (with high probability) by an optimal, or approximately optimal, solution for
a uniform sample Q ⊆ P . We restate the main theorem in (Ackermann et al., 2010) using stable
coresets, and it can now be applied to several metrics where it was previously unknown, including
Hamming, Kendall-tau and Jaccard, thereby extending existing 1-median algorithms to the more
general k-median problem.
Theorem 5.4 (Ackermann et al. (2010), Theorem 1.1). Let ϵ ∈ (0, 1

5 ) and let (X ,dist) be a metric
space such that
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• X admits a stable (ϵ, O(ϵ))-coreset through uniform sampling of size sϵ with constant
probability; and

• 1-median in X admits a (1 + ϵ)-approximation algorithm that runs on input of size n′ in
time f(n′, ϵ).

Then k-median in X admits a (1 + O(ϵ))-approximation algorithm that runs on input of size n in
time f(sϵ, ϵ) · (ksϵ/ϵ))O(ksϵ)n.

An alternative approach for ℓ1 metrics, proposed in (Jiang et al., 2024), is to build a strong coreset of
size Õ(ϵ−4k2) and then solve the coreset instance by enumerating over all its k-partitions. In both
approaches the running time is exponential in the coreset size, and in many reasonable settings, this
exponential term is larger than the input size n and thus dominates the total running time.

C-dispersed instances. We can actually refine Theorem 1.4 to prove that when the input P satisfies
a certain technical condition, uniform sampling yields a strong coreset, rather than merely a stable
coreset. This refinement is particularly valuable when (1 + β)-approximation algorithms, for β ≫ ϵ,
are available, because applying such an algorithm on the strong coreset achieves (1 + β)(1 +O(ϵ))-
approximation for the original input P , offering a significant speedup with marginal increase in
error, compared to applying that same algorithm directly on P . This advantage becomes especially
significant for in discrete metric spaces—such as Kendall-tau and Jaccard—where the median
problem is NP-hard. Although PTAS algorithms exist for these metrics, they are often complex to
implement and computationally expensive, making them impractical. In such scenarios, constant-
factor approximation algorithms and heuristics offer a more accessible and efficient alternative.

The technical condition we require is quite simple, and has been used in some literature without
defining or stating it explicitly. We say that an instance P is C-dispersed for C ≥ 1 if its diameter is
at most C times the average distance inside it, that is,

max
x,y∈P

∥x− y∥1 ≤ C · 1

|P |2
∑

x,y∈P

∥x− y∥1 .

Theorem 5.5. Let P ⊂ Rd be finite and C-dispersed, and let ϵ ∈ (0, 1
5 ). Then a uniform sample of

size O(C2ϵ−2 log d) from P is a strong ϵ-coreset for 1-median in ℓd1 with probability at least 3
4 .

6 EXPERIMENTS

We demonstrate the empirical effectiveness of stable coresets for the median problem through
experiments on real-world datasets across different metrics, comparing their performance against
importance-sampling methods. Our evaluation measures the relative error between the cost of a
solution computed on the coreset and the cost of a solution computed by the same method on the
original dataset, that is,

Ê =
cost(ĉQ, P )− cost(ĉP , P )

cost(ĉP , P )
, (6)

where ĉQ is a center computed for the coreset Q, and ĉP is a center computed for the original dataset
P . This relative error is expressed as a percentage. In our experiments, we examine points in Rd

endowed with the ℓ1 metric as well as permutations under the Kendall-tau metric. For points in
Rd, we efficiently compute the optimal median by taking the coordinate-wise median, while for
permutations we employ either heuristic methods or an Integer Linear Programming (ILP) approach.
Due to space constraints, some experiments are deferred to Appendix E.

Experimental setup. All experiments were conducted on a PC with Apple M1 and 16GB RAM
running Python 3.9.6 on Darwin 22.6.0. For each experiment, we report the average results over 20
independent runs to ensure statistical significance. The datasets used in our experiments are detailed
in Table 1. The source code used to run the experiments is available at anonymous.4open.
science/r/StableCoresets-A8CE.
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Table 1: Specifications of datasets used in Section 6.

Dataset Size n Dim. d Description

Yellow Taxi NYC (YT) (NYC Taxi and
Limousine Commission, 2024)

2.8MM 11 New York City taxi trips in Jan. 2024

Twitter (Chan et al., 2018) 1.3MM 3 Timestamp, latitude, longitude of tweets
Single-Cell Gene Expression (SCGE) (10x
Genomics, 2019)

7,865 33,586 Peripheral blood mononuclear cells gene expression

My Anime List (MAL) (Valdivieso, 2020) 234K 50 User rankings of anime titles

(a) YT (b) Twitter (c) SCGE

Figure 1: Tradeoff between coreset size and relative error, comparing importance sampling-based coresets with
uniform sampling-based coresets across three datasets. Shaded regions represent one standard deviation.

Experiment 1: comparison with importance sampling. We compare uniform sampling against
the importance sampling-based coreset construction proposed in (Jiang et al., 2024). Their method
works by iteratively computing sensitivity scores for each point and sampling progressively smaller
subsets, with each iteration reducing the size by a logarithmic factor until achieving a dimension-
independent coreset. In our implementation, we evaluated their approach using both one and two
iterations of this reduction process. The comparison focuses on the 1-median problem in ℓ1 metric
across three datasets from Table 1; Yellow Taxi NYC, Twitter and Single-Cell Gene Expression.

Figure 1 demonstrates that uniform sampling achieves comparable error rates to importance sampling
across all datasets. This efficiency difference is fundamental: importance sampling requires examining
the entire dataset, resulting in construction time linear in the dataset size, while uniform sampling
requires only constant time per sample and is completely dataset-oblivious—it requires no inspection
or processing of the dataset prior to sampling. In our experiments, importance sampling took
approximately 82/114/512 seconds for datasets YT/Twitter/SCGE respectively, whereas uniform
sampling required only 0.0001 seconds to sample 500 points. The shaded regions represent one
standard deviation, demonstrating comparable variability between the two methods.

Experiment 2: heuristic for Kendall-tau distance. As the 1-median in the Kendall-tau metric
space is an NP-hard problem (Bartholdi et al., 1989), practitioners usually employ heuristics. We
validate that our stable coreset construction (through uniform sampling) effectively preserves the
performance of heuristics when applied to ranking data, demonstrating that small coresets achieve
results comparable to those obtained on the original dataset even when using approximate algorithms.

Experiment 3: fairness constraints. Optimization problems may require solutions that satisfy
additional constraints beyond the primary objective. In rank aggregation, fairness constraints that
ensure balanced representation across different groups may be imposed. We validate that our stable
coresets preserve solution quality even when fairness constraints are imposed after the coreset has
been constructed.

Experiment 4: dimension dependency. While our theoretical analysis establishes stable coreset
size bounds that depend on the dimension d (Theorem 1.4), we designed an experiment to test our
conjecture that the theoretical bound could be tightened further, and dimension-independent bound
can be derived.
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A OMITTED PROOFS FOR SECTION 2

Proposition 2.1. Let (X ,dist) be a metric space and let P ⊆ X be a 1-median instance.

(a). Every stable (ϵ, η)-coreset of P is also a weak (ϵ, η)-coreset.

(b). Every strong ϵ-coreset of P , for 0 < ϵ ≤ 1
5 , is also a stable (ϵ, 4ϵ)-coreset.

Proof. To prove Item (a), let cP , cQ denote optimal medians for P,Q in X , respectively. Consider c ∈
X with cost(c,Q) ≤ (1+ϵ) opt(Q). Then, cost(c,Q) ≤ (1+ϵ) cost(cQ, Q) ≤ (1+ϵ) cost(cP , Q).
Then, following Equation 3, cost(c, P ) ≤ (1 + η) cost(cP , P ).

To prove Item (b), let c1, c2 ∈ X such that cost(c1, Q) ≤ (1+ϵ) cost(c2, Q). Following the definition
of strong ϵ-coreset, it follows that:

cost(c1, P ) ≤ cost(c1, Q)

1− ϵ
≤ (1 + ϵ) cost(c2, Q)

1− ϵ

≤ (1 + ϵ)(1 + ϵ)

1− ϵ
cost(c2, P ) ≤ (1 + 4ϵ) cost(c2, P ).

Fact 2.2. Let f : X1 → X2 be an isometric embedding between metric spaces (X1,dist1) and
(X2,dist2). Then,

(a). f is injective; and

(b). for every P ⊆ X1 and c ∈ P , cost(c, P ) = cost(f(c), f(P )).

Proof. For Item (a), if x1 ̸= x2, then dist1(x1, x2) ̸= 0, thus f(x1) ̸= f(x2). For Item (b),
cost(c, P ) =

∑
p∈P dist1(c, p) =

∑
p∈P dist2(f(c), f(p)) = cost(f(c), f(P )).

Proposition 2.3. Let f : X1 → X2 be an isometric embedding between metric spaces (X1,dist1)
and (X2,dist2). For every Q ⊆ P ⊆ X1, if f(Q) is a stable (ϵ, η)-coreset of f(P ) in X2, then Q is
a stable (ϵ, η)-coreset of P in X1.

Proof. Let c1, c2 ∈ X1 such that cost(c1, Q) ≤ (1 + ϵ) cost(c2, Q). By Fact 2.2, this implies
cost(f(c1), f(Q)) ≤ (1 + ϵ) cost(f(c2), f(Q)). Consequently, we have cost(f(c1), f(P )) ≤
(1 + η) cost(f(c2), f(P )). Applying Fact 2.2 again yields cost(c1, P ) ≤ (1 + η) cost(c2, P ).

A.1 STABLE CORESETS IN FINITE METRIC SPACES

We remind the reader the following result by Indyk (Indyk, 2001).
Theorem A.1 ((Indyk, 2001), Theorem 31). Let ϵ ∈ (0, 1), and Q be a random sample from P . For
arbitrary pair of points a, b ∈ X , if cost(a, P ) > (1 + ϵ) cost(b, P ), then

Pr[cost(a,Q) > cost(b,Q)] ≥ 1− e−ϵ2|Q|/64.

A folklore analysis based on Thoerem A.1 leads to the following result.
Corollary A.2. Fix a finite metric space X and let P ⊂ X . Then, for every ϵ, δ ∈ (0, 1), a uniform
sample Q ⊆ P of size |Q| ≥ 64ϵ−2(2 ln |X |+ ln(1/δ)) is a stable (0, ϵ)-coreset with probability at
least 1− δ.

Proof. Let S contain all unordered pairs a, b ∈ X such that cost(a, P ) > (1 + ϵ) cost(b, P ). For
each such pair, let Aa,b be the event that cost(a,Q) ≤ cost(b,Q), Then by applying Theorem A.1
and a union bound,

Pr[ Q is not a stable (ϵ, 0)-coreset ] ≤ Pr[∪a,b∈SAa,b] ≤
∑
a,b∈S

Pr[Aa,b] ≤ |X |2e−ϵ2
|Q|
64 ≤ δ.
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B PROOFS OMITTED FOR SECTION 3

Theorem 3.1. Let P ⊆ X and 0 < ϵ ≤ 1
5 , and suppose cost(µ,Q) ≤ c · cost(µ, P ) for some c ≥ 1.

If Q ⊆ P is an ϵ-RCDA of P in X then Q is a ( ϵc , 4ϵ)-stable coreset of P .

Proof. Let x, y ∈ X such that cost(x, P ) > (1 + 4ϵ) cost(y, P ). Using (4), we have

• cost(x,Q) ≥ (1− ϵ) cost(x, P )− cost(µ, P ) + cost(µ,Q).

• cost(y,Q) ≤ (1 + ϵ) cost(y, P )− cost(µ, P ) + cost(µ,Q).

We can then derive

cost(x,Q) ≥ (1− ϵ) cost(x, P )− cost(µ, P ) + cost(µ,Q)

> (1− ϵ)(1 + 4ϵ) cost(y, P )− cost(µ, P ) + cost(µ,Q)

= (1 + ϵ+ 2ϵ(1− 2ϵ)) cost(y, P )− cost(µ, P ) + cost(µ,Q)

≥ cost(y,Q) + 2ϵ(1− 2ϵ) cost(y, P ). (7)

Using (4) again, we can write

(1 + ϵ) cost(y, P ) ≥ cost(y,Q) + cost(µ, P )− cost(µ,Q) ≥ 1

c
cost(y,Q),

where the last inequality follows from the fact that cost(y,Q) ≥ cost(µ,Q) and cost(µ,Q) ≤
c cost(µ, P ). Consequently,

cost(y, P ) ≥ 1

c(1 + ϵ)
cost(y,Q).

Plugging this into (7) and using our assumption that ϵ ≤ 1
5 , we conclude that

cost(x,Q) ≥

(
1 +

2ϵ(1− 2ϵ)

c(1 + ϵ)

)
cost(y,Q) ≥ (1 +

ϵ

c
) cost(y,Q).

C PROOFS OMITTED FOR SECTION 4

Proposition 4.2. ⌊log d⌋ ≤ VCdim(T ) ≤ 2 log d.

Proof. For the upper bound, let VCdim(T ) = m, then there are m points x0, . . . , xm−1 ∈ Rd

such that V = {(τ(x0), . . . , τ(xm−1)) : τ ∈ T } is of size 2m. We restrict attention to tu-
ples (τ(x0), . . . , τ(xm−1)) ∈ V whose coordinates sum to ⌊m

2 ⌋, denoted Vm/2 := {v ∈ V :∑m−1
i=0 v[i] = ⌊m

2 ⌋}. For each v ∈ Vm/2, we select a threshold function τ ∈ T that realizes this
vector, i.e., such that v = (τ(x0), . . . , τ(xm−1)). We denote this function by τiv,rv , for some iv ∈ [d]
and rv ∈ R. We claim that if v1 ̸= v2 ∈ Vm/2 then iv1 ̸= iv2 . To see this, assume without loss of
generality that rv1

≤ rv2 . If iv1 = iv2 , then for every x ∈ R, τiv2 ,rv2 (x) = 1 implies τiv1 ,rv1 (x) = 1.
Since the coordinate sums of v1 and v2 are equal, we must have v1 = v2. Therefore, by the pigeonhole
principle, |Vm/2| ≤ d. However, using the known bound |Vm/2| =

(
m

⌊m
2 ⌋
)
≥ 1√

2m
2m, we get that

m ≤ 2 log d.

For the lower bound, we construct a shattering set of points x0, ..., xm−1 ∈ Rd where m = log d
(assuming for simplicity that d is a power of 2). We identify each coordinate with a binary vector
v ∈ {0, 1}m, corresponding to its binary representation, and define xi[v] = 1− v[i]. To show that
x0, ..., xm−1 is a shattering set, consider the functions (τv, 12 )v∈{0,1}m ⊆ T . For every v ∈ {0, 1}m,
we have:

(τv, 12 (x0), . . . , τv, 12 (xm−1)) = (1x0[v]≤ 1
2
, . . . ,1xm−1[v]≤ 1

2
) = (1v[0]≥ 1

2
, . . . ,1v[m−1]≥ 1

2
) = v
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Let µ ∈ Rd be a median of P ⊂ Rd of size n = |P |, and assume for simplicity that n is odd. Without
loss of generality we may assume that P contains no repeated points, as duplicate points can be
perturbed by an infinitesimal amount. We will also need the following well-known fact.

Fact C.1. Let P ⊂ Rd be finite. Then, µ ∈ Rd is a 1-median for P if and only if for every i ∈ [d],
µ[i] is a median value of the i-th coordinate of all points in P .

Lemma 4.6. Let ϵ ∈ (0, 1). If Q is an ϵ-approximation of P , then Q is a 20ϵ-RCDA of P .

Proof. We first consider d = 1, and without loss of generality assume x ≤ µ. To evaluate the
difference in average costs, we break the calculation into the three regions L, M , and U : L :=
{p ∈ P : p ≤ x}, M := {p ∈ P : x < p ≤ µ}, and U := {p ∈ P : µ < p}. In
each region, we can simplify the expression |x − p| − |µ − p| by expressing the absolute values
explicitly, which allows us to evaluate cost(x, P ) − cost(µ, P ). Notably, in regions L and U , the
value of |x − p| − |µ − p| depends only on x and µ, not on the specific value of p. Observe that
|L| = |P | edfP (x), |M | = |P | (edfP (µ)− edfP (x)) and |U | = |P | (1− edfP (µ)) =

|P |
2 . We can

write

cost(x, P )− cost(µ, P ) =
1

|P |

(∑
p∈L

|x− p|+
∑
p∈M

|x− p|+
∑
p∈U

|x− p|
)
− cost(µ, P )

=
1

|P |

(∑
p∈L

(
|µ− p| − |x− µ|

)
+
∑
p∈M

(
|x− µ| − |µ− p|

)
+
∑
p∈U

(
|µ− p|+ |x− µ|

))
− cost(µ, P )

=
1

|P |

(
−
∑
p∈L

|x− µ|+
∑
p∈M

|x− µ|+
∑
p∈U

|x− µ|

− 2
∑
p∈M

|µ− p|
)

= |x− µ|(1− 2 edfP (x))−
2

|P |
∑
p∈M

|µ− p|.

Similarly for Q (the fact thatµ is a median of P is not utilized in the argument above),

cost(x,Q)− cost(µ,Q) = |x− µ|(1− 2 edfQ(x))−
2

|Q|
∑

q∈M∩Q

|µ− q|,

and thus (
cost(x, P )− cost(µ, P )

)
−
(
cost(x,Q)− cost(µ,Q)

)
= 2|x− µ|

(
edfQ(x)− edfp(x)

)
− 2

|P |
∑
p∈M

|µ− p|+ 2

|Q|
∑

q∈M∩Q

|µ− q|. (8)

We will now bound each on of the terms in (8). The first term is bounded utilizing the ϵ-approximation
property of Q,

−2ϵ|µ− x| ≤ 2|x− µ|
(
edfQ(x)− edfp(x)

)
≤ 2ϵ|µ− x|. (9)

We now bound the term 1
|Q|
∑

q∈M∩Q |µ − q| − 1
|P |
∑

p∈M |µ − p|. Partition M to intervals
I0, I1, ..., It, such that each interval contains exactly 2ϵ|P | points, except for the last one which
might be smaller. Let ai = 1

|Q| |Ii ∩Q| − 1
|P | |Ii ∩ P | for i = 0, ..., t.

Here the idea is to partition M into intervals containing a controlled number of points, leveraging
the fact that Q approximates the proportion of points in each interval. By bounding each interval’s
contribution using the interval endpoints and the relative difference in point counts between P and Q,
then applying telescoping sums across all intervals, we can establish tight bounds on how much the
average distances in Q can deviate from those in P across the entire region M .
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Each interval contains at least 0 points from Q and at most 4ϵ|Q| points from Q. Consequently,
−2ϵ ≤ ai ≤ 2ϵ. We can write

1

|Q|
∑

q∈M∩Q

|µ− q| − 1

|P |
∑
p∈M

|µ− p| = 1

|Q|

t∑
i=0

∑
q∈Ii∩Q

|µ− q| − 1

|P |

t∑
i=0

∑
p∈Ii∩P

|µ− p|.

For the upper bound,

1

|Q|

t∑
i=0

∑
q∈Ii∩Q

|µ− q| − 1

|P |

t∑
i=0

∑
p∈Ii∩P

|µ− p|

≤ 1

|Q|

t∑
i=0

∑
q∈Ii∩Q

|µ− pi| −
1

|P |

t∑
i=0

∑
q∈Ii∩P

|µ− pi+1|

≤ 1

|Q|

t∑
i=0

|Ii ∩Q||µ− pi| −
1

|P |

t∑
i=0

|Ii ∩ P ||µ− pi+1|

≤
t∑

i=0

(
ai +

1

|P |
|Ii ∩ P |

)
|µ− pi| −

1

|P |

t∑
i=0

|Ii ∩ P ||µ− pi+1|

≤
t∑

i=0

ai|µ− pi|+
t∑

i=0

|Ii ∩ P |
|P |

(|µ− pi| − |µ− pi+1|)

≤
t∑

i=0

ai|µ− pi|+ 2ϵ

t∑
i=0

(pi+1 − pi) ≤ 4ϵ|µ− x|,

where the last inequality follows from the fact that for every j1 ≤ j2 we have −2ϵ ≤
∑j2

i=j1
ai ≤ 2ϵ.

Similarly for the lower bound,

1

|Q|

t∑
i=0

∑
q∈Ii∩Q

|µ− q| − 1

|P |

t∑
i=0

∑
q∈Ii∩P

|µ− p|

≥ 1

|Q|

t∑
i=0

∑
q∈Ii∩Q

|µ− pi+1| −
1

|P |

t∑
i=0

∑
q∈Ii∩P

|µ− pi|

≥
t∑

i=0

ai|µ− pi+1|+ 2ϵ

t∑
i=0

(pi − pi+1)

≥ −4ϵ|µ− x|.

We get that

−8ϵ|µ− x| ≤ − 2

|P |
∑
p∈M

|µ− p|+ 2

|Q|
∑

q∈M∩Q

|µ− q| ≤ 8ϵ|µ− x|. (10)

Thus, by combining both Equation 9 and 10, we obtain

−10ϵ|µ− x| ≤ (cost(x, P )− cost(µ, P ))− (cost(x,Q)− cost(µ,Q)) ≤ 10ϵ|µ− x|.

The case d = 1 follows because cost(x, P ) ≥ 1
|P |
∑

p∈U |x−p| ≥ 1
|P |
∑

p∈U |x−µ| = |U |
|P | |x−µ| =

1
2 |x− µ|, where the last equality uses |U | = 1

2 |P |.

The general case d ≥ 1 follows immediately because cost(x, P ) =
∑d

i=1 costi(x, P ), where
costi(x, P ) := 1

|P |
∑

p∈P

∣∣x[i]− p[i]
∣∣. This completes the proof of Lemma 4.6.
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D PROOFS OMITTED FOR SECTION 5

Stable coresets in Kendall-tau metric. To illustrate one concrete example of Theorem 1.4 in ℓ1
related metric space, consider the Kendall-tau metric on permutations. The Kemeny embedding maps
each permutation σ ∈ Sd to a binary vector in {0, 1}(

d
2) where ϕ(σ)[i, j] = 1σ[i]<σ[j]. Applying

Proposition 2.3 with Theorem 1.4 yields:

Corollary D.1. Let P ⊂ Sd be finite and let 0 < ϵ ≤ 1
5 . Then a uniform sample of size O(ϵ−2 log d)

from P is a stable (ϵ/6, 4ϵ)-coreset for 1-median in Sd under the Kendall-tau metric with probability
at least 4/5.

We emphasize that only the existence of an embedding into ℓ1 is necessary; the explicit form of this
embedding need not be known to derive these coreset guarantees.

D.1 LOW-DISTORTION EMBEDDINGS

Proposition 5.1. Let f : X1 → X2 be an embedding between metric spaces (X1, dist1) and
(X2, dist2) with distortion D. For every Q ⊆ P ⊆ X1, if f(Q) is a stable (ϵ, η)-coreset of f(P ) in
X2 for some ϵ, η > 0, and the values ϵ′ := (1 + ϵ)/D2 − 1 and η′ := D2(1 + η)− 1 are positive,
then Q is a stable (ϵ′, η′)-coreset of P in X1.

Proof. Let x, y ∈ X1 such that cost(x,Q) ≤ (1 + ϵ′) cost(y,Q). Using the fact that f has distortion
D2 we obtain

cost(f(x), f(Q)) ≤ Dr cost(x,Q) ≤ Dr(1 + ϵ′) cost(y,Q)

≤ D2(1 + ϵ′) cost(f(y), f(Q)) ≤ (1 + ϵ) cost(f(y), f(Q)).

Where the last inequality follows by our choice of ϵ′. Since f(Q) is stable (ϵ, η)-coreset it follows
that cost(f(x), f(P )) ≤ (1 + η) cost(f(y), f(P )). Using the properties of f again

cost(x, P ) ≤ D

r
cost(f(x), f(P )) ≤ D

r
(1 + η) cost(f(y), f(P ))

≤ D2(1 + η) cost(y, P ) ≤ (1 + η′) cost(y, P ),

where the last inequality follows by our choice of η′.

A terminal embedding with distortion D2 ≥ 1 between metric spaces (X1,dist1) and (X2,dist2)
with respect to P is a map f : X1 → X2, such that for some r > 0,

∀p ∈ P,∀y ∈ X1,
1
D · dist2(f(x), f(y)) ≤ r · dist1(x, y) ≤ D · dist2(f(x), f(y)). (11)

Clearly this is a weaker guarantee. Note that the proof of Proposition 5.1 holds immediately for this
definition as well. Moreover, it is worth noting that in many practical scenarios, the distortion in
Equation 5 is one-sided in which case the error propagation would occur only once, improving the
approximation guarantees in Proposition 5.1.

D.2 STABLE CORESETS IN EUCLIDEAN METRIC

Gordon refined Dvoretzky’s Theorem and showed that ℓd2 embeds with distortion 1 + ϵ into ℓ
O(ϵ−2d)
1

(Gordon, 1988; Schechtman, 2006). Thus, Corollary 5.2 implies the following.

Corollary D.2. Let P ⊆ Rd be finite and ϵ ∈ (0, 1
10 ). Then a uniform sample of size O(ϵ−2 log(d/ϵ))

from P is a stable (ϵ, O(ϵ))-coreset for 1-median in ℓd2 with probability at least 4
5 .

This result provides a different tradeoff than prior work (Huang et al., 2023a), which showed that a
uniform sampling of size Õ(ϵ−3) yields a weak (ϵ, O(ϵ))-coreset.
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D.3 C-DISPERSED INSTANCES

Theorem 5.5. Let P ⊂ Rd be finite and C-dispersed, and let ϵ ∈ (0, 1
5 ). Then a uniform sample of

size O(C2ϵ−2 log d) from P is a strong ϵ-coreset for 1-median in ℓd1 with probability at least 3
4 .

Proof. As before, let µ denote a median of P . First note that if P is a bounded instance then
maxx,y∈P ∥x− y∥1 ≤ C

|P |2
∑

x,y∈P ∥x− y∥1 ≤ 2C
|P |
∑

x∈P ∥µ− x∥1 = 2C opt(P ). By the trian-
gle inequality, for every x ∈ P ,

∥µ− x∥1 =
1

|P |
∑
y∈P

∥µ− y + y − x∥1 ≤ 1

|P |
∑
y∈P

(∥µ− y∥1 + ∥y − x∥1)

≤ opt(P ) + 2C opt(P ) ≤ (2C + 1) opt(P ).

Additionally, we have that E[cost(µ,Q)] = cost(µ, P ) = opt(P ). Hence, using Hoeffding’s bound.

Pr
[∣∣∣ cost(µ,Q)− cost(µ, P )

∣∣∣ < ϵ

2
cost(µ, P )

]
> 1− 2 exp

−ϵ2|Q|
2(2C + 1)2

> 1− 1

d2
.

Combining the union bound and Theorem 1.4, with probability at least 3
4 , Q is ϵ

2 -RCDA and for
every x ∈ Rd: ∣∣cost(m,P )− cost(m,Q)

∣∣ ≤ ϵ

2
cost(m,P ).

Consequently, we obtain that Q is a strong ϵ-coreset.∣∣cost(x, P )− cost(x,Q)
∣∣ =∣∣cost(x, P )− cost(m,P ) + cost(m,P )− cost(x,Q) + cost(m,Q)− cost(m,Q)

∣∣ ≤∣∣[cost(x, P )− cost(m,P )]− [cost(x,Q)− cost(m,Q)]
∣∣+ ∣∣cost(m,P )− cost(m,Q)

∣∣
≤ ϵ

2
cost(x, P ) +

ϵ

2
cost(m,P ) ≤ ϵ cost(x, P ).

E ADDITIONAL EXPERIMENTS

E.1 EXPERIMENT 2: HEURISTIC FOR KENDALL-TAU DISTANCE

Using the MAL dataset, we aggregated rankings of 234K users over 50 anime titles. We implemented
five widely used rank aggregation methods: three Markov Chain-based approaches (MC1, MC2,
MC3), Borda’s sorting algorithm and scaled footrule aggregation (SFO) (Dwork et al., 2001; Kaur
et al., 2017). Figure 2 illustrates the relative error of solutions computed on coresets of different
sizes. It is important to note that these heuristics do not directly optimize the Kendall-tau cost.
Consequently, solutions computed on the coresets can occasionally yield lower Kendall-tau costs
than those from the original dataset, resulting in negative relative error values. The results confirm
that relatively small coresets achieve results comparable to those obtained on the original dataset,
even when using heuristic approaches.

E.2 EXPERIMENT 3: FAIRNESS CONSTRAINTS

In this experiment, we sampled coresets of varying sizes from the dataset and then applied fairness
constraints based on an arbitrary partitioning of items into two groups. We implemented the fairness-
constrained integer linear programming algorithm by Kuhlman and Rundensteiner (Kuhlman &
Rundensteiner, 2020) on both the original dataset and the coresets. Due to algorithmic constraints, we
restricted the dataset to 8,700 user rankings, with each user ranking 16 anime titles. This algorithm
optimizes the Kendall-tau cost objective while enforcing the fairness measure as a linear constraint.
Negative error values occur because the ILP solver might find slightly better solutions on the coreset
rather than on the original dataset. Figure 3 demonstrates that solutions obtained from even-small
sized coresets closely approximate those from the original dataset. This confirms that uniform
sampling produces stable coresets that effectively support constraint-based optimization, even when
those constraints were not considered during the sampling process.
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Figure 2: Comparison of ranking method performance with respect to coreset sizes. The plot shows
relative error (%) between coreset approximation and original dataset results. Regression lines
demonstrate error trends as coreset size increases, with data points marking actual experimental
measurements.

Figure 3: Impact of fairness constraints on coreset approximation error. The parameter p represents
the probability of sampling popular anime titles across two distinct groups. p = 0.5 indicates balanced
sampling between groups, while lower p values indicate one group containing predominantly less
popular anime. Shaded regions represent the standard error of the mean across multiple experimental
runs.
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Figure 4: Relative error (%) versus number of dimensions (log scale) for different coreset sizes.
Regression lines demonstrate error trends as the number of dimensions increases. The slope is
outlined for each regression line. Note that as the coreset size increases, the variance decreases,
making the slope coefficient more statistically meaningful.

E.3 EXPERIMENT 4: DIMENSION DEPENDENCY

While our theoretical analysis establishes stable coreset size bounds that depend on the dimension d
(Theorem 1.4), we conjecture that this dependency is unnecessary. This experiment specifically tests
whether the uniform sampling coreset performance remains dimension-independent.

For this we utilized the high-dimensional Single-Cell Gene Expression dataset (7,865 samples across
33,586 dimensions). For a given dimension count d, we randomly selected d dimensions from the
input dataset and then uniformly sampled a coreset (for various coreset size 150,300,500). For each
coreset we measured the relative error as defined in Equation 6. Figure 4 illustrates the relationship
between dimension count and error rates. We note that the slight upward trend in error is very slight
and likely attributable to sampling variance rather than dimensional dependency. This demonstrate
that the relative error remains stable as dimension count increases and supports our conjecture that
the theoretical bounds could be tightened further, and dimension-independent bound can be derived.
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