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Abstract
Large Language Models (LLMs) perform well001
across diverse tasks, but aligning them with hu-002
man demonstrations is challenging. Recently,003
Reinforcement Learning (RL)-free methods004
like Direct Preference Optimization (DPO)005
have emerged, offering improved stability and006
scalability while retaining competitive perfor-007
mance relative to RL-based methods. However,008
while RL-free methods deliver satisfactory per-009
formance, they require significant data to de-010
velop a robust Supervised Fine-Tuned (SFT)011
model and an additional step to fine-tune this012
model on a preference dataset, which con-013
strains their utility and scalability. In this paper,014
we introduce Triple Preference Optimization015
(TPO), a new preference learning method de-016
signed to align an LLM with three preferences017
without requiring a separate SFT step and using018
considerably less data. Through a combination019
of practical experiments and theoretical analy-020
sis, we show the efficacy of TPO as a single-021
step alignment strategy. Specifically, we fine-022
tuned the Phi-2 (2.7B) and Mistral (7B) mod-023
els using TPO directly on the UltraFeedback024
dataset, achieving superior results compared to025
models aligned through other methods such as026
SFT, DPO, KTO, IPO, CPO, and ORPO. More-027
over, the performance of TPO without the SFT028
component led to notable improvements in the029
MT-Bench score, with increases of +1.27 and030
+0.63 over SFT and DPO, respectively. Addi-031
tionally, TPO showed higher average accuracy,032
surpassing DPO and SFT by 4.2% and 4.97%033
on the Open LLM Leaderboard benchmarks.034

1 Introduction035

LLMs are trained across a wide array of tasks,036

demonstrating their remarkable versatility in solv-037

ing diverse tasks (Brown et al., 2020; Narayanan038

et al., 2021; Bubeck et al., 2023). However, their039

training on data of varying quality can lead to many040

issues, such as the generation of toxic or harmful041

text under certain contexts (Perez et al., 2022; Gan-042

guli et al., 2022), and in general, the generation of043
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Figure 1: Comparison of the loss functions of TPO and
DPO. TPO’s loss function incorporates two main ob-
jectives. Its first term optimizes the log probability of
preferences (Lpreference (πθ)), which demonstrates that
optimizing preferences doesn’t necessitate a reference
model (See Section 3). Through its second term, TPO
aims to learn the gold standard response (Lreference).
This aspect of the loss function is regulated by a pa-
rameter α, which serves as a parameter controlling the
extent to which the policy model learns the gold stan-
dard response.

outputs that are not desired by humans. Hence, it 044

is crucial to align LLMs with human expectations 045

and preferences that prioritize their helpfulness, 046

honesty, and harmlessness (Bai et al., 2022). 047

Supervised Fine-Tuning (SFT) is a direct align- 048

ment method that involves fitting a model to human- 049

written data (Sanh et al., 2022). However, this ap- 050

proach fails to fully impart the human perspective 051

to the model. During training, the model only re- 052

ceives a reference response for each input, thus 053

lacking exposure to incorrect answers and prefer- 054

ences, which ultimately constrains its performance 055

on downstream tasks (Touvron et al., 2023). 056

A prominent method in AI alignment for LLMs 057
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is Reinforcement Learning with Human Feedback058

(RLHF) (Ouyang et al., 2022). Despite its impres-059

sive performance relative to SFT, RLHF faces limi-060

tations such as instability and susceptibility to re-061

ward hacking (Liu et al., 2024). Consequently, a062

recent approach called Direct Preference Optimiza-063

tion (DPO) (Rafailov et al., 2023) has emerged.064

DPO is an RL-free method that directly optimizes065

human preferences by shifting from RL to simple066

binary cross-entropy. However, DPO encounters067

several limitations: 1) high dependency on the SFT068

part (Tunstall et al., 2023), 2) tendency to overfit069

beyond a single epoch (Azar et al., 2023), and 3) in-070

efficient learning and memory utilization (Xu et al.,071

2024).072

To address these limitations, various alignment073

methods have been proposed for dialogue systems074

(Tunstall et al., 2023), harmful and helpfulness075

question answering (Wu et al., 2023), summariza-076

tion (Zhao et al., 2023), and translation (Xu et al.,077

2024) and all these studies include a separate SFT078

component. During SFT, models are fine-tuned to079

generate appropriate responses to the correspond-080

ing input prompts. Meanwhile, in DPO, models are081

fine-tuned to enhance the likelihood of generating082

preferred responses over less desirable ones and083

not to stray far away from the SFT model (Rafailov084

et al., 2023).085

In this paper, we introduce the Triple Pref-086

erence Optimization (TPO), a new preference087

learning approach. In TPO, we combine the088

two separate optimization steps (supervised089

fine-tuning and preference learning) into a single090

step based on Pareto Front concept (Lotov and091

Miettinen, 2008), with the training data having092

both the gold standard response (as in SFT) and093

the preferences (as in PPO/DPO) in a consolidated094

format. Thus, our training data will be of the095

form (input prompt, gold standard response (yref ),096

preferred response (yw), less-preferred response097

(yl)). Specifically, we jointly optimize a policy098

model with −E(x,yref)∼D [log πθ (yref | x)] and099

−E(x,yw,yl)∼D [log σ (β log πθ (yw | x) −β log πθ (yl | x))]100

in one step (See Figure 1).101

Our results show that TPO exhibits impres-102

sive performance compared to SFT across vari-103

ous benchmarks and outperforms other alignment104

methods such as DPO. Specifically, Mistral (7B),105

fine-tuned by TPO and trained with six times less106

data than other alignment techniques, outperforms107

SFT, DPO, KTO, IPO, CPO, and ORPO across nine108

benchmarks on the Open LLM Leaderboard. No- 109

tably, Mistral aligned with TPO achieved a +0.72 110

increase in the MT-Bench score over SFT. 111

Overall, TPO addresses two key shortcomings in 112

alignment tasks. Firstly, by removing πref justified 113

in Section 3, TPO mitigates the inefficient learning 114

and memory utilization issues observed in DPO, 115

IPO, and KTO, allowing for more computational 116

efficiency with less memory usage. Secondly, TPO 117

enhances performance over SFT and other align- 118

ment methods by maximizing the likelihood of 119

gold response, regularized by parameter α. and si- 120

multaneously optimizing between two preferences 121

(preferred and less-preferred responses). Despite 122

TPO’s need for three preferences and its higher cost 123

relative to other methods, our findings reveal that 124

it’s possible to considerably lessen the training data 125

required and still achieve superior outcomes (See 126

Table 1). 127

Our findings suggest that a separate SFT step 128

is not necessary for TPO and, in certain scenarios, 129

having one may even hinder TPO’s performance 130

(See Tables 1 and 2). 131

We summarize our primary contributions as fol- 132

lows: 133

1. We propose a new preference learning method 134

called Triple Preferences Optimization (TPO) 135

that simplifies the alignment process and re- 136

duces two stages to one stage. 137

2. Theoretically, we derive the TPO objective 138

and show that combining the human expec- 139

tation data and preference dataset achieves 140

better performance. 141

3. Comprehensive experiments reveal that the 142

TPO method, applied to two distinct base- 143

line models—Mistral (7 B) and Phi-2 (2.7 144

B)—outperforms SFT, KTO, IPO, DPO, CPO, 145

and ORPO in terms of performance across ten 146

different benchmarks (refer to Tables 1, 2, and 147

3). 148

4. Integrating the SFT step with the preference 149

alignment step and moderating it with a regu- 150

larization parameter (α) enhances the model’s 151

performance while reducing the data required 152

for training (See Figure 3). 153

2 Related Works 154

The performance of Large Language Models 155

(LLMs) on a variety of tasks are remarkable (Anil 156

et al., 2023). Nonetheless, effectively aligning 157

LLMs remains a significant challenge. Current 158
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studies have fine-tuned LLMs using datasets of159

human preferences, leading to improvements in160

translation (Kreutzer et al., 2018), summarization161

(Stiennon et al., 2022), story-telling (Ziegler et al.,162

2019), instruction-following (Ramamurthy et al.,163

2023), and dialogue systems.164

RLHF (Christiano et al., 2023) aims to optimize165

for maximizing the expected reward by interacting166

with a reward model trained using the Bradley-167

Terry (BT) model (Bong and Rinaldo, 2022), typi-168

cally through RL-algorithms like Proximal Policy169

Optimization (Schulman et al., 2017). While RLHF170

enhances model performance, it faces challenges171

such as instability, reward hacking, and scalability172

inherent in RL-settings.173

Recent works (Zhao et al., 2023; Yuan et al.,174

2023) have presented techniques to overcome these175

challenges by optimizing relative preferences with-176

out relying on reinforcement learning. In partic-177

ular, DPO (Rafailov et al., 2023) offers a method178

to directly fit an SFT model to human preferences179

using the Bradley-Terry (BT) model, providing the-180

oretical insights into the alignment process. How-181

ever, IPO (Azar et al., 2023) has mathematically182

revealed the limitations of the DPO approach con-183

cerning overfitting and generalization. It proposes184

a comprehensive objective for learning from hu-185

man preferences. Zephyr (Tunstall et al., 2023) has186

improved DPO by utilizing the distillation method.187

KTO (Ethayarajh et al., 2023), drawing inspi-188

ration from Kahneman and Tversky’s influential189

work on prospect theory (Tversky and Kahne-190

man, 1992), seeks to maximize the utility of LLM191

outputs directly rather than optimizing the log-192

likelihood of preferences. By prioritizing the de-193

termination of whether a preference is desirable194

or undesirable, this method eliminates the require-195

ment for two preferences for the same input.196

Recently, CPO (Xu et al., 2024) introduced an197

efficient method for learning preferences by com-198

bining maximum-likelihood loss with the DPO loss199

function, aiming to improve memory usage and200

learning efficiency. Additionally, ORPO (Hong201

et al., 2024) proposed a novel approach by incor-202

porating a penalty term to prevent the learning of203

unpreferred responses while enhancing the likeli-204

hood of learning preferred responses.205

We observe two primary challenges in the206

alignment process addressed in mentioned stud-207

ies. Firstly, alignment methods like DPO require208

an SFT component or perform better with one.209

Secondly, there are concerns regarding inefficient 210

learning and memory usage. Although the CPO 211

approach has shown effectiveness in learning, con- 212

flicts between its objectives may limit the policy 213

model’s performance. In this research, we explore 214

these limitations and propose a new algorithm to 215

address them. 216

3 Triple Preference Optimization 217

In this section, we introduce Triple Preference 218

Optimization (TPO), a new approach to prefer- 219

ence learning. This method optimizes a policy 220

model (πθ) by maximizing the likelihood of the 221

gold response and optimizing for the preferences 222

simultaneously. 223

224

Typically, in NLP tasks, we utilize a dataset 225

Dreference = {xi, yiref}Ni=1, where x is the input 226

and yref is the gold standard response, crafted 227

by humans or large models like GPT-4 and 228

validated by humans. Additionally, for applying 229

preference optimization methods, a dataset 230

Dpreference = {xi, yiw, yil}Ni=1 is needed, where 231

yw and yl are the preferred and unpreferred re- 232

sponses respectively, generated by smaller models 233

such as LLaMA-3. The aim of TPO is to optimize 234

three preferences concurrently. To achieve this, we 235

merge the reference and preference datasets 236

into one dataset DTPO = {xi, yiref , yiw, yil}Ni=1, es- 237

tablishing a response hierarchy of yref ≻ yw ≻ yl. 238

Further details on the TPO objective will be 239

discussed in the following subsection. 240

3.1 Deriving the TPO objective 241

Motivated by the goal of simplifying the alignment 242

process to a single step and enhancing the learn- 243

ing mechanisms of the DPO, we derive the TPO 244

objective. We start with a simple RL objective 245

for aligning an LLM parameterized with θ, repre- 246

sented as πθ with preferences. The RL objective is 247

just maximizing the expected reward (Ziegler et al., 248

2019) as shown in Equation 1: 249

max
πθ

[
Ex∼D,y∼πθ(y|x)[rϕ(x, y)]

]
(1) 250

where rϕ represents the expected reward that the 251

model receives for a given input x and output 252

y. However, maximizing the reward without con- 253

straints can lead to distribution collapse in an 254

LLM. Drawing inspiration from the Maximum 255

Entropy Reinforcement Learning (MERL) frame- 256

work (Hejna et al., 2023), we have modified the 257
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RLHF objective, as detailed in Equation 4. The258

MERL framework aims to maximize causal entropy259

alongside the expected reward. This objective is260

formally defined in Equation 2.261

max
πθ

Ex∼D
[
Ey∼πθ(y|x)[rϕ(x, y)] + βHπθ

(y|x)
]
(2)

262

By definition of Entropy,263

Hπθ
(y|x) = −

∑
y

πθ(y|x)log(πθ(y|x)) (3)264

The objective becomes,265

max
πθ

Ex∼D,y∼πθ(y|x) [rϕ(x, y)− β log πθ(y|x)]

(4)
266

Based on this, the optimal policy model induced267

by a reward function r(x, y) could be derived as268

shown in Equation 5 (See Appendix A.1). It takes269

the following form:270

πr(y|x) =
1

Z(x)
exp

( 1
β
r(x, y)

)
(5)271

where Z(x) =
∑

y exp
(
1
β r(x, y)

)
is the new par-272

tition function. Inspired by (Rafailov et al., 2023),273

we show that the reward function, in terms of the274

optimal policy that it induces, is calculated as per275

Equation 6 given below:276

r(x, y) = β log πr(y|x) + β logZ(x) (6)277

Subsequently, we can represent the ground-truth278

reward r∗(x, y) in the form of its corresponding279

optimal policy π∗ that it induces.280

Since the Bradley-Terry model is dependent only281

on the difference between the two reward functions,282

i.e., p∗(yw > yl|x) = σ(r∗(x, yw) − r∗(x, yl)),283

where, we can reparameterize it as follows in Equa-284

tion 7:285

p∗(yw > yl | x) = σ

(
β log π∗(yw | x)

− β log π∗(yl | x)
) (7)286

Similar to the reward modeling approach, we287

model the human preferences, which is now in288

terms of a parameterized policy πθ. Thus, we for- 289

mulate maximum-likelihood objective (preference 290

objective) for a dataset D = {xi, yiw, yil}Ni=1 as 291

outlined in Equation 8: 292

Lpreference (πθ) =− E(x,yw,yl)∼D[
log σ

(
β log πθ(yw | x)

− β log πθ(yl | x)
)] (8) 293

Looking at the Equation 8, the objective is fitting 294

an reward which is reparameterized as r(x, y) = 295

β log π(y|x). In section 3.2, we theoretically ex- 296

plain that fitting this reward would ultimately re- 297

cover the optimal policy. 298

The comparison between the loss function in 299

Equation 8 and the DPO loss function indicates 300

that the new function is more efficient because it 301

requires only one model during training. How- 302

ever, even though maximizing the objective under 303

the MERL setting prevents distribution collapse, it 304

trains a pessimistic model, which also limits the 305

model from learning the preferred responses effec- 306

tively. To counteract this limitation, we maximize 307

the likelihood of the gold response. The adjustment 308

is specified in Equation 9. 309

Lreference = −E(x,yref)∼D [log πθ (yref | x)]
(9) 310

Based on Equations 8, and 9, the TPO is de- 311

fined as a multi-objective (bi-objective) optimiza- 312

tion problem as supported by Pareto Front con- 313

cept (Lotov and Miettinen, 2008). The TPO loss 314

function is framed as follows: 315

LTPO = Lpreference + αLreference (10) 316

where hyper-parameter (α) plays a crucial role in 317

moderating the model’s learning of the gold re- 318

sponse. The impact of the α on the model’s perfor- 319

mance is detailed in Section 4.3. 320

Insights into the TPO update. A deeper mech- 321

anistic understanding of TPO can be achieved by 322

analyzing the gradient of the LTPO loss function. 323

The expression of this gradient in relation to the 324

parameters θ is as follows: 325
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∇θLTPO =−E(x,yref ,yw,yl)∼D [α∇θ log π(yref |x)︸ ︷︷ ︸
increase likelihood of yref

326

+ βσ(β log πθ(yl|x)− β log πθ(yw|x)︸ ︷︷ ︸
increase weight when reward estimate is wrong

)327

× [ ∇θ log π(yw|x)︸ ︷︷ ︸
increase likelihood of yw

− ∇θ log π(yl|x)︸ ︷︷ ︸
decrease likelihood of yl

]] (11)328

where r(x, y) = β log πθ (y | x) is the reward in-329

herently determined by the policy model πθ. In-330

tuitively, the gradient of the TPO loss function331

works to increase the likelihood of the gold com-332

pletions yref , simultaneously enhancing the pref-333

erence aspect by amplifying the likelihood of pre-334

ferred completions yw and reducing the likelihood335

of the less-preferred completions yl, which are336

weighed by how incorrectly the implicit reward337

model orders the preferences. (more details on Ap-338

pendix A.2). Notably, the hyper-parameters β and339

α significantly influence the performance of the340

policy model, as discussed further in Section 4.3.341

3.2 Theory behind TPO342

In this section, we provide a theoretical founda-343

tion for the TPO algorithm, drawing inspiration344

from (Rafailov et al., 2023). We observe that the345

preference optimization objective aligns with the346

principles of a Bradley-Terry model, where the347

reward parameterization is defined as r(x, y) =348

β log πθ(y|x). Consequently, we optimize our para-349

metric model πθ in a manner similar to reward350

model optimization, as shown by (Ouyang et al.,351

2022). We expand on the theory underlying this352

reparameterization of the reward function, illustrat-353

ing that it does not constrain the range of reward354

models that can be modeled and ensures accurate355

retrieval of the optimal policy. We initiate this dis-356

cussion by following the insights presented in DPO357

about the equivalent class of reward models.358

Definition 3.1 Two reward functions r(x, y) and359

r
′
(x, y) are equivalent iff r(x, y)−r

′
(x, y) = g(x)360

for some function g.361

362

We can state the following two lemmas as it363

is apparent that there exists an equivalence relation,364

dividing the set of reward functions into distinct365

classes.366

Lemma 3.1 Under the Plackett-Luce, and in par-367

ticular the Bradley-Terry preference framework,368

two reward functions from the same class induce369

the same preference distribution. (Rafailov et al., 370

2023) 371

Lemma 3.2 Two reward functions from the same 372

equivalence class induce the same optimal policy 373

under the constrained RL problem. (Rafailov et al., 374

2023) 375

The proofs are shown in Appendix A.3. 376

Theorem 3.1 Under mild assumptions, all re- 377

ward classes consistent with Plackett-Luce mod- 378

els can be represented with the reparameteriza- 379

tion r(x, y) = β log π(y|x) for some model π(y|x). 380

(Rafailov et al., 2023) 381

As proposed in DPO, upon imposing certain 382

constraints on the under-constrained Plackett-Luce 383

family of preference models, such that we preserve 384

the class of representable reward model, it possi- 385

ble to explicitly make the optimal policy in Equa- 386

tion 5 analytically tractable for all prompts x. The 387

theorem is elaborated in Appendix A.4. We fur- 388

ther elaborate our theoretical basis for defining and 389

optimally addressing the TPO objective within a 390

multi-objective optimization framework. 391

Definition 3.2 Let fi denote ith objective, S 392

denote the feasible policy space, then in a multi- 393

objective optimization setting, a policy π∗ ∈ S is 394

said to be Pareto optimal if there does not exist 395

another policy π ∈ S such that fi(π) ≤ fi(π
∗) for 396

all i = 1, ..., k and fj(π) < fj(π
∗) for at least 397

one index j. 398

399

Looking at the objectives in Equation 8 and 400

Equation 9, it is obvious that optimizing them 401

together is non-trivial; that is, there does not 402

exist a policy that is optimal with respect to both 403

objectives. It can be seen that the objectives 404

are conflicting with each other, especially when 405

yref ∼ yw, as one objective is maximizing the 406

log probability and the other is minimizing the 407

log probability. This means that the objectives are 408

at least partly conflicting. For a multi-objective 409

problem, (Miettinen, 1999) show that optimizing 410

one objective and converting the other objective/s 411

as a constraint with an upper bound, the solution to 412

this ϵ − constrained problem is Pareto optimal. 413

This shows that optimizing the TPO objective, 414

which is a bi-objective problem, gives an optimal 415

policy that is Pareto optimal as defined in 3.2. 416

4 Experiments and Results 417

In this section, we present a comprehensive em- 418

pirical analysis of TPO, yielding several key find- 419
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Model Align ARC TruthfulQA Winogrande HellaSwag MMLU Average
Mistral SFT 60.41 43.73 74.19 81.69 60.92 64.18

Mistral+SFT DPO 59.04 46.70 76.63 82.10 60 64.91
Mistral+SFT IPO 59.30 42.22 76.4 81.02 59.93 63.77
Mistral+SFT KTO 57.84 49.88 76.47 81.61 59.73 65.1
Mistral+SFT CPO 57.50 53.22 75.92 80.37 58.41 65.08

Mistral ORPO 58.61 52.77 77.5 82.04 63.26 66.83

Mistral+SFT TPO (our) 58.02 59.05 76.47 80.6 59.48 66.72
Mistral TPO (our α = 1 | β = 0.1) 61.34 60 78.21 83.18 63.18 69.18
Mistral TPO (our α = 0.9 | β = 0.2) 60.23 57.34 78.29 83.01 63.75 68.52

Table 1: Comparing TPO’s performance with other alignment methods reveals that the Mistral+TPO model exhibits
comparable performance across different benchmarks and, on average, outperforms other methods. In particular,
Mistral+TPO performed remarkably on the TruthfulQA benchmark. It’s worth noting that the Mistral+TPO model is
directly trained with TPO, which contributes to its superior performance. Additionally, for all benchmarks, accuracy
is the metric used to gauge performance. More detail about ORPO in Appendix B.1.

Model Align MT-Bench BB-causal BB-sports BB-formal OpenBookQA

Mistral SFT 5.94 51.57 61.76 51.4 43.8
Mistral+SFT CPO 6.2 49.47 70.68 51.07 44.6
Mistral+SFT DPO 6.64 52.1 71.9 51 46.2
Mistral+SFT IPO 6.43 51.57 65.01 51.22 44.6
Mistral+SFT KTO 6.48 53.68 73.42 51.33 45.8

Mistral ORPO 5.47 54.21 73.93 50.4 44.4

Mistral+SFT TPO (our) 6.66 54.21 73.93 50.84 45.6
Mistral TPO (our α = 1 | β = 0.1) 6.22 55.26 73.63 51.06 48.2
Mistral TPO (our α = 0.9 | β = 0.2) 6.66 56.31 73.32 50.5 47.8

Table 2: In our comparison of TPO with other alignment methods across more benchmarks, Mistral+SFT+TPO
and Mistral+TPO emerge as the top performer, surpassing other methods in MT-Bench and BB-causal, BB-sports,
OpenBookQA. For BB-causal, BB-sports, BB-formal, and OpenBookQA, performance is evaluated based on
accuracy, while MT-Bench uses a scoring system generated by GPT-4. More detail about ORPO in Appendix B.1.

ings: 1) Phi-2+TPO and Mistral+TPO trained on420

10K data outperform Phi-2+SFT and Mistral+SFT421

trained on 200K data by 12.7% and 7.2% on MT-422

Bench respectively. 2) Phi-2 fine-tuned with TPO423

surpasses the performance of models aligned with424

other methods on the MT-Bench. 3) Similarly, Mis-425

tral fine-tuned with TPO exceeds the performance426

of other alignment techniques across the majority427

of Open LLM Benchmarks. 4) Within the TPO428

method, the hyper-parameters α and β play a criti-429

cal role in influencing performance outcomes. 5)430

An ablation study focusing on batch size adjust-431

ments reveals that enlarging the batch size leads to432

improved performance for models optimized with433

TPO.434

4.1 Experimental Setup435

Models. All experiments were conducted using436

zephyr-sft-full and Mistral-7B-v0.1 as Mis-437

tral (7 B), and Phi-2 (2.7 B) (Javaheripi et al., 2023).438

We utilized the Transformer Reinforcement Learn-439

ing (TRL) library for fine-tuning (von Werra et al., 440

2020). It’s noted that the notation "+" is used to 441

indicate that a model has been fine-tuned with a 442

specific algorithm, such as "+TPO". Further train- 443

ing details for each method are in Appendix B. 444

Datasets. In this study, we employ two dialogue 445

datasets: 1) UltraChat (Ding et al., 2023) and 446

2) UltraFeedback (Cui et al., 2023). UltraChat 447

comprises 200k examples generated by GPT-3.5- 448

TURBO across 30 topics and 20 text material types, 449

offering a high-quality dataset utilized for train- 450

ing the SFT model. Meanwhile, UltraFeedback 451

consists of a 64K set of responses generated by 452

state-of-the-art models such as LLaMA-2 evalu- 453

ated by a teacher model such as GPT-4. To train 454

TPO, which requires three preferences, we create 455

a custom dataset from the UltraFeedback dataset. 456

Here, the response with the highest score serves as 457

the reference response, the second-highest score as 458

the chosen response, and the lowest score as the 459
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rejected response. In light of findings from (Saeidi460

et al., 2024), which indicate that alignment meth-461

ods perform better with smaller training sets on one462

epoch, and due to computational limitations, we re-463

strict our analysis to 12K (10K for training and 2K464

for evaluation) data points, randomly selected from465

the custom UltraFeedback dataset (More details in466

Appendix B).467

Evaluation. We evaluate our models in both468

single-turn and multi-turn scenarios using the MT-469

Bench benchmark (Ding et al., 2023). MT-Bench470

is composed of 160 questions covering eight dif-471

ferent knowledge domains, designed to be evalu-472

ated by GPT-4. To have a comprehensive evalua-473

tion we assess all alignment methods using five474

Open LLM Leaderboard benchmarks including475

ARC (Clark et al., 2018), HellaSwag (Zellers et al.,476

2019), MMLU (Hendrycks et al., 2021), Truthful477

QA (Lin et al., 2022), and Winogrande (Sakaguchi478

et al., 2019). We further explore the performance of479

the models by evaluating them on four benchmarks480

from Big Bench (bench authors, 2023), including481

Causal Judgment (causal reasoning), Sports Under-482

standing (commonsense reasoning), Formal Falla-483

cies, and OpenBookQA (Mihaylov et al., 2018).484

4.2 Demonstration of TPO Performance485

We evaluate the TPO approach against other align-486

ment techniques, such as KTO, IPO, CPO, DPO,487

and ORPO, using MT-Bench and the Open LLM488

Leaderboard Benchmarks. Our comparison in-489

volves two distinct model configurations: 1) the490

alignment of an SFT model using TPO and vari-491

ous other alignment methods, and 2) applying TPO492

directly to fine-tune a pre-trained model. Across493

all alignment approaches, we utilized Phi-2 (2.7494

B) and Mistral (7 B) as the baseline models (More495

details in Appendix B). Additionally, we compared496

the ORPO method with a version that excludes497

the SFT part, the rationale for which is detailed in498

Appendix B.1.499

MT-Bench. The data presented in Table 3 reveals500

that the Phi-2+TPO method outperforms other501

alignment techniques, enhancing the MT-Bench502

score by 12.7% and 7.2% over Phi-2+SFT+DPO503

and Phi-2+SFT, respectively. Remarkably, Phi-504

2+TPO achieves this superior performance even505

when trained on just 10K data, in stark contrast to506

Phi-2+SFT’s training on 200K data (See Table 3).507

Additionally, the results in Table 2 demonstrate508

that Mistral+TPO surpasses competing alignment509
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Figure 2: The MT-Bench score for various α and β
settings in Mistral+TPO illustrates the influence of α on
performance.

methods in MT-Bench scores. Mistral+TPO 510

trained on 10K data shows a 7.2% improvement 511

over Mistral+SFT, which is trained on 200K data. 512

513

The results in Table 2 and Table 6 in the 514

Appendix indicate that TPO exceeds the perfor- 515

mance of other alignment methods, inspite of 516

the SFT step being skipped (See Appendix C.1). 517

Furthermore, additional experiments show that 518

TPO achieves greater improvements over DPO, 519

KTO, IPO, and CPO by 13.3%, 13.6%, 2.5%, and 520

13.3% respectively, on SFT trained on 10K data 521

(See Appendix C.2). 522

Open LLM Leaderboard Benchmarks. The 523

primary findings, as detailed in Table 1, high- 524

light that Mistral+SFT+TPO, on average, sur- 525

passes other alignment methods. This supe- 526

rior performance is largely attributed to its no- 527

table success in the TruthfulQA benchmark de- 528

spite lagging behind Mistral+SFT+DPO in per- 529

formance. An intriguing observation from the 530

data is that Mistral+TPO not only excels on 531

average but also leads in performance across 532

all benchmarks, showcasing the effectiveness of 533

the TPO strategy. Specifically, Mistral+TPO 534

achieved average accuracy improvements over Mis- 535

tral+SFT, Mistral+SFT+DPO, Mistral+SFT+IPO, 536

Mistral+SFT+KTO, Mistral+SFT+CPO, and Mis- 537

tral+ORPO by 4.97%, 4.27%, 5.37%, 4.07%, 538

4.07%, and 2.35%, respectively. For additional 539

results, readers are directed to Appendix D. 540
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Model

Alignment Method

+SFT +SFT+DPO +SFT+IPO +SFT+KTO +SFT+CPO +ORPO +SFT+ORPO +SFT+TPO +TPO

Phi-2 5.42 6.06 5.91 6.64 6.42 6.06 4.32 6.18 6.69

Table 3: The comparison of Phi-2’s performance when aligned with various methods on MT-Bench shows that
Phi-2+TPO surpasses other alignment techniques. More detail about ORPO in Appendix B.1.

Exploration on More Benchmarks. For a com-541

prehensive evaluation, we assessed the efficacy542

of the TPO method against various alignment543

strategies across different benchmarks: BB-causal,544

BB-sports, BB-formal, and OpenBookQA. As545

detailed in Table 2, Mistral+SFT+TPO exhib-546

ited superior performance on BB-causal and547

BB-sports benchmarks, while it showed less548

impressive results on BB-formal and Open-549

BookQA. Notably, Mistral+TPO not only en-550

hanced the Mistral+SFT+TPO’s outcomes on BB-551

causal and OpenBookQA but also surpassed Mis-552

tral+SFT, Mistral+SFT+DPO, Mistral+SFT+IPO,553

Mistral+SFT+KTO, Mistral+SFT+CPO, and Mis-554

tral+ORPO in accuracy by 4.81%, 1.71%, 3.91%,555

1.01%, 3.01%, and 1.3%, respectively. Additional556

results can be found in Appendix D.557

4.3 Ablation Studies558

In this subsection, we delve into the impact of α559

and β values, batch size, and learning rate on the560

performance of the TPO method. Central to our561

exploration is the TPO method’s ability to bypass562

the SFT stage, thereby assessing its efficacy with-563

out this component. Our evaluation focuses on the564

MT-Bench score and the Open LLM Leaderboard565

benchmarks to gauge the models’ performance.566

Impact of α and β. Alpha and Beta serve as567

crucial hyper-parameters that simultaneously en-568

hance the likelihood of the correct response and569

refine preference learning. Figure 2 illustrates that570

the Mistral+TPO model, when set with α=0.9 and571

β=0.2, outperforms alternatives in terms of perfor-572

mance on the MT-Bench. Additionally, Figure 3573

highlights that Mistral+TPO notably excels in the574

Open LLM Leaderboard benchmarks, boasting an575

average accuracy performance increase of 5.12%576

over the SFT method.577

Other hyper-parameters. We extend our anal-578

ysis to examine the influence of various hyperpa-579

rameters on the TPO’s efficacy, including differ-580

ent epochs, learning rates, and batch sizes, specifi-581

cally with the Mistral+TPO model. We discovered 582

that the learning rate is particularly critical when 583

dealing with smaller datasets; a change by two 584

orders of magnitude prevented the model from con- 585

verging. Additionally, while different batch sizes 586

do affect performance, there’s a threshold beyond 587

which performance plateaus and no longer bene- 588

fits from increases. Interestingly, we observed that 589

Mistral+TPO, when trained on 10K data, tends to 590

overfit after just one epoch, with additional epochs 591

failing to enhance performance. Nonetheless, we 592

hypothesize that performance improves with larger 593

datasets beyond the initial epoch, as detailed further 594

in Appendix E. 595

5 Conclusions 596

In this paper, we begin by addressing the lim- 597

itations inherent in existing alignment methods. 598

Typically, alignment techniques require an SFT 599

component to achieve notable results. However, 600

incorporating SFT introduces two primary chal- 601

lenges: firstly, fine-tuning a model using SFT de- 602

mands a substantial dataset (for example, complet- 603

ing a chat task may require fine-tuning with 200K 604

data points). Secondly, generating a preferences 605

dataset by sampling from the SFT model poses 606

additional difficulties, including determining the 607

optimal configuration for producing preferred and 608

less preferred responses. To address these short- 609

comings, we introduce TPO, a new alignment ap- 610

proach aimed at concurrently optimizing for hu- 611

man preferences and gold responses. Our findings 612

demonstrate the impressive performance of TPO 613

compared to other alignment methods on ten bench- 614

marks. Particularly, Mistral and Phi-2 fine-tuned 615

by TPO achieve increases in the MT-Bench score 616

of +0.72 and +1.27, respectively, compared to SFT, 617

despite being trained on a dataset six times smaller. 618

Another intriguing insight is the significant influ- 619

ence that the values of α and β have on the model’s 620

performance. 621
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Limitations and Future Works622

While TPO has demonstrated impressive perfor-623

mance compared to other alignment methods624

across various benchmarks, the requirement to pre-625

pare three preferences for each input in a dataset626

poses challenges. In this section, we outline poten-627

tial directions for future work. Our evaluation of628

TPO focused on chat completion tasks, but we are629

particularly interested in examining its effective-630

ness in other areas, such as safety and reasoning.631

Another intriguing aspect for further study is inves-632

tigating how the quality of reference and preferred633

responses affects TPO’s performance. Notably, our634

current findings suggest that the reference response635

is generally better than the preferred response. In-636

vestigating whether increasing the preferential dif-637

ference between these responses enhances perfor-638

mance could yield valuable insights. Additionally,639

we are interested in exploring TPO’s effectiveness640

in larger models, such as those with 30 B or 70641

B, which represents a promising avenue for future642

work. Drawing inspiration from the new method643

proposed in (Chatterjee et al., 2024) for fine-tuning644

diffusion models, we are keen to investigate how645

these models perform when aligned using the TPO646

method.647

Ethics Statement648

We have used AI assistants (Grammarly and649

ChatGPT) to address the grammatical errors and650

rephrase the sentences.651
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Appendix921

A Derivation922

A.1 Deriving the optimal policy under the Preference Objective923

In this section, we derive the optimal policy achieved by optimizing the objective in Equation 4. For a924

given prompt x, the objective can be analogously written as follows:925

max
π

Ey∼π(y|x) [r(x, y)− β log π(y|x)] s.t.
∑
y

π(y|x) = 1
926

Next, we form a lagrangian for the above objective with λ being the lagrangian multiplier.927

L =
∑
y

π(y|x)r(x, y)− β

[∑
y

π(y|x) log π(y|x)
]
+ λ

[
1−

∑
y

π(y|x)
]

928

Differentiating L with respect to π(y|x) results in,929

∂L
∂π(y|x)

= r(x, y)− β

[
log π(y|x) + 1

]
− λ930

To obtain the optimal policy, we can set the above equation to zero and solve for π(y|x).931

r(x, y)− β

[
log π(y|x) + 1

]
− λ = 0932

log π(y|x) = 1

β
r(x, y)− λ

β
− 1933

π(y|x) = exp (
1

β
r(x, y)). exp (

−λ

β
− 1)934

Since
∑

y π(y|x) = 1, the second exponent is a partition function that does normalization as shown935

below:936

[∑
y

exp (
1

β
r(x, y))

]
. exp (

−λ

β
− 1) = 1937

exp (
−λ

β
− 1) =

[∑
y

exp (
1

β
r(x, y))

]−1

938

Hence, the partition function Z(x) =
∑

y exp (
1
β r(x, y)) and the optimal policy πr(y|x) induced by939

reward function r(x, y) is therefore given by,940

πr(y|x) =
1

Z(x)
exp (

1

β
r(x, y)) (1)941

Now, we can express the reward function in terms of an optimal policy πr by performing some algebraic942

transformations on Equation 1 as shown below,943
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πr(y|x).Z(x) = exp (
1

β
r(x, y)) 944

Taking logarithm and multiplying by β on both sides, 945

r(x, y) = β log πr(y|x) + β logZ(x) (2) 946

A.2 Deriving the Gradient of the TPO Objective 947

In this section, we derive the gradient of the TPO objective: 948

∇θLTPO = −∇θE(x,yref ,yw,yl)∼D [ α log πθ(yref |x) + log σ(β log πθ(yw|x)− β log πθ(yl|x)) ] (1) 949

We can rewrite the RHS of the Equation 1 as 950

∇θLTPO = −E(x,yref ,yw,yl)∼D [ α∇θ log πθ(yref |x)︸ ︷︷ ︸
(a)

+∇θ log σ(β log πθ(yw|x)− β log πθ(yl|x))︸ ︷︷ ︸
(b)

]

(2) 951

In equation 2, the part (b) can be rewritten with 952

u = β log πθ(yw|x)− β log πθ(yl|x) 953

∇θ log σ(u) =
1

σ(u)
∇θσ(u) 954

∇θ log σ(u) =
σ

′
(u)

σ(u)
∇θ(u) 955

Using the properties of sigmoid function function σ
′
(u) = σ(u)(1− σ(u) and σ(−u) = 1− σ(u), 956

∇θ log σ(u) =
σ(u)(1− σ(u))

σ(u)
∇θ(u) 957

∇θ log σ(u) = (1− σ(u))∇θ(u) 958

∇θ log σ(u) = σ(−u)∇θ(u) 959

∇θ log σ(u) = βσ(β log πθ(yl|x)− β log πθ(yw|x)) [∇θ log π(yw|x)−∇θ log π(yl|x)] (3) 960

Plugging Equation 3 into Equation 2 we get, 961

∇θLTPO =− E(x,yref ,yw,yl)∼D [α∇θ log π(yref |x) 962

+ βσ(β log πθ(yl|x)− β log πθ(yw|x)) 963

× [∇θ log π(yw|x)−∇θ log π(yl|x)]] (4) 964

A.3 Proof of Lemma 965

In this section, we will prove the lemmas from Section 3.2. 966
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Lemma 1 Restated. Under the Plackett-Luce preference framework, and in particular the Bradley-Terry967

framework, two reward functions from the same equivalence class induce the same preference distribution.968

Proof. Let’s consider two reward functions, r(x, y) and r′(x, y). They are said to be equivalent if they969

can be related by r′(x, y) = r(x, y) + g(x) for some function g. We analyze this in the context of the970

general Plackett-Luce model, which includes the Bradley-Terry model (special case when K = 2). Here,971

we denote the probability distribution over rankings generated by a given reward function r(x, y) as pr.972

Given any prompt x, responses y1, ..., yK , and a ranking τ , we can establish the following:973

pr′(τ | y1, . . . , yK , x) =
K∏
k=1

exp(r′(x, yτ(k)))∑K
j=k exp(r

′(x, yτ(j)))
974

=
K∏
k=1

exp(r(x, yτ(k)) + g(x))∑K
j=k exp(r(x, yτ(j)) + g(x))

975

=
K∏
k=1

exp(g(x)) exp(r(x, yτ(k)))

exp(g(x))
∑K

j=k exp(r(x, yτ(j)))
976

=
K∏
k=1

exp(r(x, yτ(k)))∑K
j=k exp(r(x, yτ(j)))

977

= pr(τ | y1, . . . , yK , x),978

This completes the proof.979

Lemma 2 Restated. Two reward functions from the same equivalence class induce the same optimal980

policy under the constrained RL problem.981

Proof. Let’s consider two reward functions, r(x, y) and r′(x, y). They are said to be equivalent if they982

can be related by r′(x, y) = r(x, y) + g(x) for some function g. Let πr and πr′ be the optimal policies983

induced by their corresponding reward functions. By Equation 5, for all x, y we have,984

πr′(y | x) = 1∑
y exp

(
1
β r

′(x, y)
) exp

(
1

β
r′(x, y)

)

=
1∑

y exp
(

1
β (r(x, y) + g(x))

) exp

(
1

β

(
r(x, y) + g(x)

))

=
1

exp
(

1
β g(x)

)∑
y exp

(
1
β r(x, y)

) exp

(
1

β
r(x, y)

)
exp

(
1

β
g(x)

)

=
1∑

y exp
(

1
β r(x, y)

) exp

(
1

β
r(x, y)

)
= πr(y | x),

985

This completes the proof.986

A.4 Proof of Theorem987

Theorem 1 Restated. For a parameter β > 0, all reward equivalence classes can be reparameterized988

as r(x, y) = β log π(y|x) for some model π(y|x).989

990

Proof. Consider a reward function r(x, y), which induces an optimal model πr(y|x) under the MERL991

framework, which takes the form as shown in Eq.5 in Section 3.1. Following, Equation 2 in Section A.1992

of Appendix, we have:993
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r(x, y) = β log πr(y|x) + β logZ(x) (1) 994

where Z(x) =
∑

y exp (
1
β r(x, y)) is the partition function of the optimal policy induced by the reward 995

function r(x, y). Let r
′
(x, y) be a new reward function such that r

′
(x, y) = r(x, y)− β logZ(x). It is 996

obvious that the new reward function is within the equivalence class of r, and the we have: 997

r
′
(x, y) = r(x, y)− β logZ(x) 998

From the Equation 1, we get 999

r
′
(x, y) = β log πr(y|x) + β logZ(x)− β logZ(x) 1000

r
′
(x, y) = β log πr(y|x) 1001

This completes the proof. 1002

Proposition 1. For a parameter β > 0, every equivalence class of reward functions has a unique reward 1003

function r(x, y), which can be reparameterized as r(x, y) = β log π(y|x) for some model π(y|x). 1004

Proof − by − Contradiction. Let us assume that we have two reward functions from the same class, 1005

such that r
′
(x, y) = r(x, y) + g(x). Assume that r

′
(x, y) = β log π

′
(y|x) for some model π

′
(y|x) and 1006

r(x, y) = β log π(y|x) for some model π(y|x), such that π
′ ̸= π. We then have, 1007

r
′
(x, y) = r(x, y) + g(x)

= β log π(y|x) + g(x)

= β log π(y|x) + β log exp (
1

β
g(x))

= β log π(y|x) exp ( 1
β
g(x))

= β log π
′
(y|x)

1008

for all prompts x and completions y. Then, we must have π(y|x) exp ( 1β g(x)) = π
′
(y|x). Since these are 1009

probability distributions, summing over y on both sides, 1010

∑
y

[
π(y|x) exp ( 1

β
g(x))

]
=

∑
y

π
′
(y|x)

exp (
1

β
g(x)) = 1

1011

Since β > 0, g(x) must be 0 for all x. Therefore, we will have r(x, y) = r
′
(x, y), which contradicts 1012

our initial condition of π
′ ̸= π. 1013

Thus, by contradiction, we have shown that every reward class has a unique reward function that can be 1014

represented by the reparameterization in Theorem 3.1. 1015

15



Datasets ARC TruthfulQA Winogrande HellaSwag MMLU BB-causal BB-sports BB-formal OpenBookQA
# few-shot 25 0 5 10 5 3 3 3 1

Metric acc_norm mc2 acc acc_norm acc mc mc mc acc_norm

Table 4: Detailed information of Open LLM Leaderboard and Big Bench benchmarks.

B Training and Evaluation Details1016

All models were trained using the AdamW optimizer without weight decay. Furthermore, parameter-1017

efficient techniques such as LoRA (Hu et al., 2021) were not employed. The experiments were conducted1018

on 4 A100 GPUs, utilizing bfloat16 precision, and typically required 5-8 hours to complete. All models1019

are trained for one epoch, employing a linear learning rate scheduler with a peak learning rate of 5e-071020

and 10% warmup steps. Additionally, the global batch size is set to 16, and β = 0.1 is used to regulate1021

the deviation from the reference model. For every dataset used in our evaluation, we detail the count of1022

few-shot examples utilized along with the specific metric employed for assessment in Table 4.1023

The custom UltraFeedback dataset includes yref , yw, and yl for each input x. For a fair comparison,1024

when training alignment methods based on the SFT model, we utilized yw and yl under the assumption1025

that the model was trained on yref during supervised fine-tuning. Conversely, in scenarios where we1026

directly trained a model using alignment methods, we used yref and yl.1027

B.1 Detail Evaluation for ORPO1028

The central hypothesis of the ORPO method (Xu et al., 2024) suggests that skipping the SFT component1029

can achieve performance comparable to that of SFT and DPO methods. Based on this premise, it is1030

essential to compare a model directly fine-tuned using ORPO against other alignment methods. To test this1031

hypothesis, we designed two experiments: 1) Fine-tuning an SFT model using ORPO, and 2) Fine-tuning1032

a pre-trained model using ORPO.1033

Model Align MT-Bench ARC TruthfulQA Winogrande HellaSwag MMLU BB-causal BB-sports BB-formal OpenBookQA
Mistral ORPO 5.47 58.61 52.77 77.5 82.04 63.26 54.21 73.93 50.41 44.4

Mistral+SFT ORPO 4.93 53.92 48.03 75.69 79.69 59.62 50.52 71.19 51.07 43.4
Phi-2 ORPO 6.06 61.17 45.68 74.42 74.69 58.33 55.78 50.7 49.01 52.8

Phi-2+SFT ORPO 4.32 55.11 49.15 74.74 70.38 55.36 54.21 50.91 49.27 44.8

Table 5: Comparison OPRO method on different scenarios.

The results presented in Table 5 indicate that, consistent with the hypothesis outlined in the paper (Xu1034

et al., 2024), ORPO performs better when the SFT component is omitted. Thus, for our comparisons, we1035

utilized the Mistral+ORPO and Phi-2+ORPO models.1036

C More Experiments1037

In this section, we assess the performance of alignment methods in two distinct scenarios: 1) skipping1038

the SFT component and 2) aligning an SFT model that has been fine-tuned on a dataset of 10K instances1039

using various alignment techniques.1040

C.1 Skipping the SFT Component1041

The primary benefit of using TPO is the ability to skip the SFT component, which often results in better1042

performance for TPO without SFT. In this experiment, we also investigate the effectiveness of other1043

alignment methods without the SFT part. For this purpose, we directly trained a Mistral-7B-v0.1 model1044

using various alignment techniques like DPO, KTO, IPO, CPO, and ORPO.1045

The results in Table 6 indicate that without the SFT component, both DPO and IPO fail to match1046

the performance levels of Mistral+SFT. Additionally, the results for KTO and CPO show negligible1047

differences when compared with SFT. Although ORPO recommends bypassing the SFT phase in the1048

alignment process, it seems that a policy model fine-tuned with ORPO underperforms when only one1049

epoch is used. A comparison between the results in Tables 2 and 6 reveals that most of the alignment1050

methods perform better when the SFT part is retained.1051
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Model Align MT-Bench

Mistral SFT 5.94
Mistral DPO 5.45
Mistral KTO 6.21
Mistral IPO 2.06
Mistral CPO 6.3
Mistral ORPO 5.47
Mistral TPO (our α = 0.9 | β = 0.2) 6.22
Mistral TPO (our α = 0.3 | β = 0.7) 6.61
Mistral TPO (our α = 1 | β = 0.1) 6.66

Table 6: Comparison of the performance of various alignment methods on skipping the SFT part using MT-Bench.

C.2 Aligning an SFT Model with Less Data 1052

In this experiment, we investigate how alignment methods perform when applied to an SFT model trained 1053

on significantly less data. TPO utilizes the dataset D = {xi, yiref , yiw, yil}Ni=1. Initially, we fine-tune a 1054

Mistral-7B-v0.1 model on 10K data, which are designated as yref for TPO. Subsequently, we applied 1055

various alignment methods to this fine-tuned model. 1056

Model (training Size) DPO CPO KTO IPO

+ Mistral+SFT (200K) 6.64 6.2 6.48 6.43
+ Mistral+SFT (10K) 5.33 5.89 5.3 6.41

Table 7: Comparison of the performance of various alignment methods on different SFT models using the MT-Bench.
Notably, the score for Mistral+SFT trained on 10K data is 4.2, while the score for Mistral+SFT trained on 200K
data is 5.94.

The findings presented in Table 7 suggest that alignment methods yield superior results when applied to 1057

an SFT model trained on a larger dataset. It is evident that, when using the same data as for Mistral+TPO, 1058

other models perform significantly worse. These results confirm our hypothesis that TPO surpasses other 1059

methods with considerably less data. 1060

D More results on Open LLM Leaderboard and Big Bench Benchmarks 1061

Our assessment of Phi-2 through the Open LLM Leaderboard benchmarks, in comparison with various 1062

alignment methods, showed that Phi-2+TPO, trained on a dataset of 10K, achieved performance on par 1063

with other alignment strategies across the ARC, TruthfulQA, and MMLU benchmarks. Also, The results 1064

showed that this model performs better on BB-causal and OpenBookQA. 1065

Model Align ARC TruthfulQA Winogrande HellaSwag MMLU BB-causal BB-sports BB-formal OpenBookQA
Phi-2 SFT 61 46.01 74.58 74.66 56.48 55.26 51.72 49.54 50.2

Phi-2+SFT DPO 61.34 51.53 74.82 75.88 56.99 57.36 52.63 49.5 52.2
Phi-2+SFT IPO 61.43 49.05 75.05 75.36 56.83 55.26 51.31 49.69 51.2
Phi-2+SFT KTO 61 52.35 74.98 75.43 57.02 56.31 51.62 49.47 51.4
Phi-2+SFT CPO 60.49 53.3 75.05 74.78 56.94 54.21 50.5 49.48 49.8

Phi-2 ORPO 61.17 45.68 74.42 74.69 58.33 55.78 50.7 49.01 52.8

Phi-2+SFT TPO (our) 61.09 53.6 74.82 74.98 56.95 54.21 50.3 49.27 50.6
Phi-2 TPO (our α = 1 | β = 0.1) 61.51 45.41 74.34 75.27 58.38 55.78 51.44 49.28 53.2
Phi-2 TPO (our α = 0.9 | β = 0.2) 61.6 46.21 74.66 74.91 58.12 57.36 51.31 48.35 53.4

Table 8: Comparison between TPO and other alignment methods on Open LLM Leaderboard and Big Bench
benchmarks based on Phi-2 model.

E More results on Ablation Studies 1066

This section presents the performance of Mistral+TPO across various learning rate, epoch, and batch size 1067

utilizing the MT-Bench score as the benchmark for assessment. 1068

In Figure 3 we compared TPO with SFT on different value of α and β on Open LLM Leaderboard 1069

benchmarks. 1070
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Model Align Learning Rate Epoch Batch Size
First Turn

(Score)
Second Turn

(Score)
Average
(Score)

Mistral TPO (α=1|β=0.1) 5e-07 1 16 6.78 5.66 6.22
Mistral TPO (α=1|β=0.1) 2e-05 1 16 1 1 1

Mistral TPO (α=0.9|β=0.2) 5e-07 1 16 7.12 6.2 6.66
Mistral TPO (α=0.9|β=0.2) 5e-07 1 32 6.98 6.1 6.54
Mistral TPO (α=0.9|β=0.2) 5e-07 2 16 7.2 6 6.61

Table 9: Performance of the Mistral+TPO on different values of hyper-parameters.
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Figure 3: This figure displays the performance of Mistral+TPO across various settings of α and β. In several
configurations, Mistral+TPO outperforms SFT on the Open LLM Leaderboard benchmarks. Further discussion is
provided in Section 4.3.
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