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Figure 1: The original AIGIs from AIGIQA-20K, optimized by different refiners in terms of perceptual and alignment quality.
Inspired by quality indicators, G-Refine better optimizes low-quality regions while avoiding affecting the high-quality regions.

ABSTRACT
With the evolution of Text-to-Image (T2I) models, the quality de-

fects of AI-Generated Images (AIGIs) pose a significant barrier to

their widespread adoption. In terms of both perception and align-

ment, existing models cannot always guarantee high-quality results.

To mitigate this limitation, we introduce G-Refine, a general image

quality refiner designed to enhance low-quality images without

compromising the integrity of high-quality ones. The model is

composed of three interconnected modules: a perception quality

indicator, an alignment quality indicator, and a general quality en-

hancement module. Based on the mechanisms of the Human Visual

System (HVS) and syntax trees, the first two indicators can respec-

tively identify the perception and alignment deficiencies, and the

last module can apply targeted quality enhancement accordingly.

Extensive experimentation reveals that when compared to alterna-

tive optimization methods, AIGIs after G-Refine outperform in 10+

quality metrics across 4 databases. This improvement significantly

contributes to the practical application of contemporary T2I models,

paving the way for their broader adoption.
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1 INTRODUCTION
Text-to-Image (T2I) generation models have revolutionized the pro-

duction and consumption of visual content. These models, guided

by free-form text prompts, aim to generate high perceptual quality

images that closely match the text. Recent advancements in diffu-

sion models have led to significant leaps in T2I capabilities, making

AI-generated images (AIGIs) increasingly relevant for advertising,

entertainment, and even scientific research. However, the quality

of AIGIs varies significantly, hindering their widespread adoption

in industrial production. According to Hugging Face, over 10,000

T2I models have been developed since 2024. While some advanced

models can address the challenge of high-quality generation, their

usage is much lower than that of mainstream models like Stable Dif-

fusion (SD) 1.5. Older models deployed by users often yield subpar

results due to their earlier development. Additionally, even the lat-

est models like Playground v2.5 suffer from inconsistent generation

performance, with both master-class artworks and Low-Quality

(LQ) AIGIs coexisting.

To ensure high-quality T2I generation in the industry, several so-

lutions are employed. The most common approach is multiple runs

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Table 1: Using different optimizers for AI-Generated Images
with low/high quality. [Keys:¥¥ strong positive,¥ positive,
○ zero, q negative optimization.]

Optimizer Input

LQ optimization HQ optimization

Percept Align Percept Align

Restoration Image ¥ ○ ¥ ○
Reconstruction Image, text ¥ ¥ ¥ ¥
Refinement Image, text ¥¥ ¥¥ q q
Proposed Image, text ¥¥ ¥¥ ¥ ¥

followed by manual selection, reporting only the best-quality AIGI.

However, this method incurs significant computational waste and

inevitable human labeling. More efficient methods include modify-

ing T2I’s U-Net to improve the perceptual quality or adjusting the

text encoder for better alignment, such as FreeU [30], TextCraftor

[17], and DPT [24]. However, these methods require access to the

original model’s parameters, making them only suitable for devel-

opment rather than online consumption for the user end.

To overcome these challenges and facilitate the deployment of

AIGI at the user end, a tailored optimization strategy is needed.

This strategy should focus on generating images directly based on

prompts, without relying on complex backend processes. However,

there are three major obstacles: (i) Understanding the perception
defects of AIGI. Unlike traditional Image Quality Assessment (IQA)

methods that primarily address distortions such as blur and noise

in Natural Sense Images (NSIs), AIGI’s defects stem from hardware

limitations and technical limitations, like unnaturalness and arti-

facts. To accurately assess AIGI quality, a new approach is required

to distinguish these unique types of artifacts. Moreover, beyond

a single quality score, a pixel-level perceptual quality map is

needed to locate spatial quality defects. Limited by spatial relation-

ship knowledge, it’s difficult for existing IQA indicators to expand

the overall score into a two-dimensional weight map. (ii) T2I align-
ment also requires similar maps instead of scores. The alignment
quality map should indicate how well each part of the prompt

corresponds to the generated image, and combine these insights

into a comprehensive map. This task is more complex than simply

assessing perceptual quality, as it involves understanding the se-

mantic structure of the prompt. (iii) After identifying LQ regions,

the challenge lies in optimizing them without compromising the

quality of the rest of the image. Optimization balancing must be

struck between applying just enough optimization to improve the

image without introducing artifacts in High-Quality (HQ) regions.

Thus, we propose G-Refine, a general quality optimizer as shown

in Figure
1
1 with the following contributions:

PQ-Map: An accurate perceptual quality map indicator. It can

accurately understand the connotation of the word “quality”, espe-

cially the quality defects of AIGIs. Considering the three quality-

related factors (rationality, naturalness, and technical quality), it

can accurately identify LQ regions for AIGIs. While outputting a

2D map, its performance can even ensemble single score models.

AQ-Map: An efficient alignment quality map indicator. By con-

ducting syntactic parsing on a syntax tree, it can divide the prompt

1
The perceptual and alignment quality is from Q-Align [37] and CLIPScore [25]

into nodes representing different semantic information and analyze

the relationship between the nodes. For nodes that do not align

with the original AIGI, it uses the backtracking method to increase

the weight of the ancestor node to give a complete alignment map.

Balanced-refiner: An optimization strategy for AIGI refiners.

Inspired by PQ/AQ-Map, the refiner will retain the HQ while im-
proving LQ. Themodel specifically consists of two stages. Stage 1 is

similar to the traditional Refiner to fundamentally modify LQ; stage

2 refers to the restoration model by tuning LQ and HQ altogether.

On 4 AIGI databases and 8 T2I generation models, compared to sota

optimizers, G-Refiner has remarkable advantages in 9 perceptual

quality and 4 alignment quality indicators.

2 RELATEDWORKS
Without changing the internal generative model, to optimize AIGIs

only through the prompt-image pairs, existing optimization strate-

gies are mainly divided into the following categories as Table 1,

which we summarize as three R’s.

Restoration: Treat AIGIs directly as NSIs by leveraging Super

Resolution (SR) or Image Restoration (IR) algorithms through Con-

volutional Neural Networks (CNNs) based on prior knowledge. This

method can improve the perceptual quality, but it does not support

text modality as input. As the prompt cannot be used as a reference,

the alignment quality is almost unchanged.

Reconstruction: A text-guided IR technique for AIGIs using

the CLIP[25] model to encode prompts. This approach modifies

low-level image features referring to the prompt, such as adjusting

global brightness or altering the colors of an object, thereby en-

hancing alignment to a certain extent. However, its effectiveness is

limited when dealing with LQ images, as it cannot significantly al-

ter object structures. Similarly, when the alignment quality is poor,

the model fails to generate non-existent objects from the prompt.

Consequently, the overall optimization impact of this strategy is

insufficient across both image quality dimensions.

Refinement: According to the prompt, AIGIs can be signifi-

cantly modified at the semantic level. Among them, the conserva-

tive Refine strategy will denoise the image at a lower intensity. This

cascade paradigm (generation + refiner) has been widely used in

today’s T2I models, such as IF [7], SDXL [23], and SD Cascade [22].

A generator first provides a rough outline, then optimized through

one or more refiners. A more radical strategy is to use the image di-

rectly as the starting point and perform the whole diffusion process.

Compared with Reconstruction and Restoration, it can significantly

optimize LQ regions. However, it usually contains certain AI arti-

facts, indicating an upper limit to its capabilities. While improving

LQ, there will be negative optimization of HQ regions.

Therefore, distinguishing the LQ regions from the HQ is of great

significance. However, though most of the existing IQA and T2I

alignment indicators have excellent performance, their outputs are

limited to a single score. Only Paq-2-Piq [42] supports the percep-

tual quality map and CLIP-Surgery [18] supports the alignment

quality map. Unfortunately, the performance of these two methods

is far inferior to the former, whose results are inconsistent with the

subjective preference of the Human Visual System (HVS). There-

fore, towards a targeted optimization of AIGIs, better quality map

indicators are needed to inspire the refiner.
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Figure 2: Framework of G-Refine, including a perceptual quality and an alignment quality indicator module. The refining
process is targeted at optimizing unmatched prompts and both maps. The perceptual quality is optimized by introducing more
texture while the alignment quality is improved by implementing “blowing in the wind” into the image.

3 PROPOSED METHOD
The framework of the proposed method is briefly illustrated in

Figure 2, which includes a perceptual quality, an alignment quality

indicator module for quality maps; and a quality refiner that merges

quality maps spatially while emphasizing unmatched prompts se-

mantically, towards a perceptual/alignment joint refinement.

3.1 Perceptual Quality Indicator
This PQ-Map module adjusts CLIP’s image and text encoders re-

spectively, thereby obtaining the perceptual quality weight map

of the image. Intuitively, using CLIP to find the region correlated

with the word ‘high quality’ is the most direct method. However,

existing research [27] reveals that CLIP tends to prioritize back-

ground over foreground, which contradicts the HVS mechanism.

Therefore, referring to the solution of CLIP-Surgery [18], PQ-Map

first changes CLIP’s original QKV self-attention into VVV:

C𝐼 .QKV = softmax(𝑉 ·𝑉𝑇 · 1

| |𝑉 | |
2

) ·𝑉 , (1)

where 𝑉 stands for value parameters for CLIP image encoder C𝐼 (·)
and 𝐼 represents the original AIGI. Next, we also modify the text

encoder. Existing Segmentation Model [12] can easily identify ob-

jects such as ‘cats’ and ‘dogs’. However, the ‘perceptual quality’ is

different from the objective concept, which is a highly subjective

concept that combines multiple factors. Therefore, the text encoder

should not take "perceptual quality" directly, but decompose it into

quality-related factors and encode them together. According to sub-

jective analysis [4], AIGIs perceptual quality defects mainly include

three categories: technical, rationality, and naturalness. On this

basis, a 4 × 2 token embedding with 512 length 𝑇𝑝 is given:

𝑇𝑝 = C𝑇 (𝑡0, 𝑡1, 𝑡2, 𝑡3), (2)

where the text encoder C𝐼 (·) process the text pairs of CLIPIQA [33]

𝑡0 representing the overall perceptual quality, and text pairs 𝑡1∼3 for
three perceptual quality defects. Generally, the perceptual quality

follows the cask effect. The excellence of a single factor cannot

guarantee a score improvement, but its defects will inevitably lead

to a decrease. Thus we express the perceptual quality map 𝑃 and

the score 𝑝 as:
𝐿𝑟𝑎𝑤 = C𝐼 ⊙ (𝑇𝑝 [:, 0] −𝑇𝑝 [:, 1])

𝐿𝑝𝑒𝑟 = 𝐿𝑟𝑎𝑤 [0] ·
3∏

𝑖=1
min( 𝐿𝑟𝑎𝑤 [𝑖 ]

𝛼 [𝑖 ] , 1)

𝑃 = BIC(𝐿𝑝𝑒𝑟 ), 𝑝 = 𝐿𝑝𝑒𝑟 [0],

(3)

where 𝐿(𝑟𝑎𝑤,𝑝𝑒𝑟 ) stands for the raw logit embedding, and final

perceptual quality embedding combined with four logits. BIC(·)
rescales the logit into the size of 𝐼 from bi-cubic interpolation.

Logits below 𝛼 will introduce a penalty to 𝐿𝑝𝑒𝑟 . From the difference

between 𝑝 and subjective quality annotation, PQ-Map can update

𝑇𝑝 to a better embedding, in order words, to fully interpret the

complex connotation of the word ‘perceptual quality’, as shown in

Figure 3.

In the subsequent quality map calculation, the token embedding

layer can be disabled, without extracting any text features, but di-

rectly input the features𝑇𝑝 representing the perceptual quality into

the text encoder. Figure 4 shows the map results using the original

CLIP or the improved encoder. The map obtained from the origi-

nal image encoder has almost no regularity and only shows high

correlation at a few meaningless points; after improving the image
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Figure 3: Using overall perceptual quality, and (technical,
rational, natural) defected images to train the CLIP model.
Both image and text encoder are modified in terms of self-
attention and token embedding.
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Figure 4: Visualization result of the perceptual quality map,
using the original CLIP or improved image/text encoders.
The original image encoder generates meaningless results
while the original text encoder labels reversely. Reasonable
results are available only when two encoders are modified.

encoder, the original text encoder can perform certain semantic

segmentation of the image, but due to the limited understanding

of ‘perceptual quality’, it cannot mark all LQ regions and might

even reverse LQ and HQ. An accurate perceptual quality map is

available only by applying two improved encoders simultaneously.

The results above prove the modifications of the two encoders bring

significant positive effects jointly to the perceptual quality map.

3.2 Alignment Quality Indicator
This AQ-Map module first decomposes the prompt into phrases

with different semantic meanings, analyzes the T2I alignment of

each phrase, and finally merges them to obtain an alignment quality

map for the whole prompt. Considering the length of prompts and

complex subordination relationships betweenwords, it is unrealistic

to directly input prompts into C𝑇 to calculate alignment. Therefore,

Algorithm 1 get_phrase_ancestor

1: function get_phrase_ancestor(𝑝𝑛𝑠, 𝑝ℎ𝑠,𝑇𝑟𝑒𝑒, 𝑜𝑏 𝑗 )

2: 𝑎𝑛𝑠, 𝑠𝑡𝑎𝑐𝑘 ← {}, {}
3: for 𝑝𝑛 in 𝑝𝑛𝑠 do
4: 𝑎𝑛𝑠 [𝑝𝑛] ← 𝑝𝑛

5: for 𝑝ℎ in 𝑝ℎ𝑠 do
6: 𝑠𝑡𝑎𝑐𝑘 [𝑝ℎ] ← 𝑝𝑛

7: 𝑝𝑞 ← [𝑇𝑟𝑒𝑒.𝑟𝑜𝑜𝑡]
8: while 𝑝𝑞 is not empty do
9: 𝑜𝑏 𝑗 ← 𝑝𝑞.ℎ𝑒𝑎𝑑

10: for 𝑐ℎ𝑖𝑙𝑑 in 𝑜𝑏 𝑗 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
11: 𝑝𝑞.𝑎𝑑𝑑 (𝑐ℎ𝑖𝑙𝑑)
12: if 𝑠𝑡𝑎𝑐𝑘 [𝑐ℎ𝑖𝑙𝑑.𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ] ≠ 𝑠𝑡𝑎𝑐𝑘 [𝑐ℎ𝑖𝑙𝑑] then
13: find the first ancestor with tag "NOUN"
14: for 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 in 𝑐ℎ𝑖𝑙𝑑.𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 do
15: if 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 .𝑝𝑜𝑠 == ”𝑁𝑂𝑈𝑁 ” then
16: 𝑎𝑛𝑠 [𝑠𝑡𝑎𝑐𝑘 [𝑐ℎ𝑖𝑙𝑑]] ← 𝑠𝑡𝑎𝑐𝑘 [𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ]
17: break
18: 𝑝𝑞.𝑑𝑒𝑞𝑢𝑒𝑢𝑒

19: return 𝑎𝑛𝑠

we build a syntax tree𝑇𝑟𝑒𝑒 from theNLTK(·) package, using nouns
𝑝𝑛𝑠 as the clustering center, and assign each tree node to different

phrases 𝑝ℎ𝑠 :
𝑇𝑟𝑒𝑒 = NLTK(𝑝𝑟𝑜𝑚𝑝𝑡)
𝑝ℎ𝑠 = 𝑝𝑛𝑠 = 𝑇𝑟𝑒𝑒.𝑁𝑜𝑢𝑛

𝑝ℎ𝑠 [ 𝑗] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑒𝑒 [| |𝑝𝑛𝑠 [ 𝑗],𝑇𝑟𝑒𝑒 | |
min
]),

(4)

where 𝑝𝑟𝑜𝑚𝑝𝑡 is the original input prompt. The 𝑝ℎ𝑠 is initialized as

noun nodes 𝑝𝑛𝑠 , while the remaining nodes will be associated with

the closest 𝑝𝑛𝑠 to form several different phrases. The above method

effectively segments prompts, at the cost of destroying the syntax

tree. To solve this problem, according to the original dependency

relationship of 𝑝𝑛𝑠 , AQ-Map allocates a new ancestor 𝑎𝑛𝑠 for each

𝑝ℎ𝑠 using the Algorithm 1. After segmentation, AQ-Map calculates

the alignment quality map and score (𝐴𝑝ℎ𝑠 , 𝑎𝑝ℎ𝑠 ) for each phrase

separately:{
𝐴𝑝ℎ𝑠 [ 𝑗, :] = softmax(C𝐼 (𝐼 ) ⊙ C𝑇 (𝑝ℎ𝑠 [ 𝑗], “”))
𝑎𝑝ℎ𝑠 [ 𝑗] = 𝐴𝑝ℎ𝑠 [ 𝑗, 0],

(5)

where index 𝑗 ∈ [0, len(𝑝ℎ𝑠)−1]. 𝑝𝑛𝑠 experience a similar computa-

tion with (𝐴𝑝𝑛𝑠 , 𝑎𝑝𝑛𝑠 ). An empty string “” is encoded as redundant

feature and removed by softmax(·). Therefore, AQ-Map can sum-

marize the alignment defect into the following two types, with

typical examples shown in Figure 5:

• Noun unmatched: 𝑎𝑝𝑛𝑠 < 𝑎𝑏𝑜𝑢𝑛𝑑 which indicates the noun

doesn’t exist in the image. Here, the whole phrase should be

drawn on the correlated region of its ancestor node.

• Adj. unmatched: 𝑎𝑝ℎ𝑠 < 𝑎𝑝𝑛𝑠 which means the noun exists,

but adjectives are not well-represented on it. In this case, the

phrase should be drawn on the region itself.

Thus, initialize the overall alignment quality map 𝐴 = 1, AQ-Map

implement the weight of 𝐴𝑝𝑛𝑠 on 𝐴 as:

𝐴 =

{
𝐴 · 𝐴𝑝𝑛𝑠 [ 𝑗] 𝑎𝑝𝑛𝑠 < 𝑎𝑏𝑜𝑢𝑛𝑑

𝐴 · 𝐴𝑝𝑛𝑠 [𝑝ℎ𝑠 [ 𝑗] .𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ] 𝑎𝑝ℎ𝑠 < 𝑎𝑝𝑛𝑠 .
(6)
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Prompt：
Mr. Beans wearing sun 

glasses with blue doctor 

suit and stripe tie

Beans

wearing

glasses

sun

with

suit

blue doctor and tie
stripe

Mr.

Mr. Beans

sun glasses blue doctor suit

stripe tie

Mr. Beans:

0.3510

Beans:

0.1656 ✅

sun glasses:

0.0656

glasses:

0.0854 ❎
No “sun glasses”

blue doctor suit:

0.2236

suit:

0.0987⬇️ ✅
“blue doctor” is 

contained in “suit”

stripe tie:

0.1333

tie:

0.1380 ⬆️ ❎
“stripe” is not 

contained in “tie”

Syntax tree

Noun tree

Case 1: Noun unmatched

Draw “sun glasses” on the region 

of its ancestor node “Beans”

Case 2: Adj unmatched

Draw “stripe” on node “tie” itself

+ =

Mask:

Beans

Mask:

tie

Mask:

overall

Figure 5: The mechanism of identifying alignment quality
defects. Include syntax tree construction, quality defect iden-
tification, and mask processing. Both unmatched nouns and
adjectives can be enhanced on their correlated region.

For all index 𝑗 with two alignment defects above, the phrases are

also emphasized in the prompt for stronger refining strength:

𝑝𝑟𝑜𝑚𝑝𝑡 = 𝑝𝑟𝑜𝑚𝑝𝑡 + 0.1𝑝ℎ𝑠 [ 𝑗] . (7)

Then following the cask effect same as equation (3), the alignment

quality score 𝑎 will be:

𝑎 = C𝐼 (𝐼 ) ⊙ C𝑇 (𝑝𝑟𝑜𝑚𝑝𝑡)
∏
𝑗

min(
𝑎𝑝ℎ𝑠 [ 𝑗]

𝛽
, 1), (8)

where for each phrase, alignment score below 𝛽 will introduce

penalty to 𝑎. From this, AQ-Map emphasized the phrases unaligned

with the original image and mapped their corresponding regions

that needed improvement based on the alignment defects.

3.3 Quality Refiner
The quality refiner is designed to optimize the image for both

perceptual and alignment quality. This model is cascaded by a

refinement and a restoration stages, the former conducts a strong

denoising process according to the map and score given above, and

the latter performs a mild denoising globally. Since the targeted

refining region has a relatively lower quality and more alignment

defects, the probability densities for two stages are 𝑧1/𝑧2:{
𝑧1 =

𝑝+𝑎
2
· QKV(𝑝𝑟𝑜𝑚𝑝𝑡, Bi(1 − 𝑃 +𝐴))

𝑧2 = 𝛿 · QKV(𝑝𝑟𝑜𝑚𝑝𝑡, 1), (9)

where the strength of 𝑧1 depends on quality (𝑝, 𝑎) while 𝑧2 takes
a extremely small strength 𝛿 . Bi(·) binarizes the map into a mask.

After obtaining the probability densities, we can denoise the image

with the refined result 𝑅:

𝑅 = D𝑧2
𝑛2
· · · D𝑧2

1
(D𝑧1

𝑛1
· · · D𝑧1

1
(𝐼 )), (10)

where D𝑧
𝑛 denotes the diffusion operation at the 𝑛-th iteration and

(𝑛1, 𝑛2) are the specific diffusion steps for each stage.

4 EXPERIMENT
4.1 Validation Databases
To assess the efficacy of the proposed G-Refine method across di-

verse generative models, we conducted performance evaluations

on four commonly used AIGI databases: DiffusionDB [35], Gen-

Image [47], AGIQA-1K [46], and AGIQA-3K [16]. Considering the

huge scale of the first two, we randomly selected 3,000 images for

refining, while using the complete set for the latter two. Since these

AIGIs only come from traditional models like SD1.5, to verify our

versatility for other generative models, we randomly generated

500 images each by 7 commonly-used models
2
for our G-Refine

pipeline to optimize. Besides the whole G-Refine, we adopt the

subjective scoring result from the two most popular AIGI quality

databases, AIGIQA-20K (testing set) [14] and AGIQA-3K (full set)

[16], to validate the effectiveness of PQ/AQ-Map quality indicators.

These databases contain fine-grained Mean Opinion Score (MOS) as

perceptual and alignment quality labels, to measure the correlation

between them and objective evaluation results.

4.2 Experiment Settings
For quality optimization, we include 13 representative methods in

different categories as baselines, including (Restoration): RFDN
[20], Swin2SR [5], StableSR [34], and DASR [36]; (Reconstruction):
SD-Upscale [28], Instructpix2pix [1], DiffBIR [19], PASD [41]; and

(Refinement): SDXL-Refiner [23], SD (full-model) [28], SDXL (full-

model) [29], InstructIR [6], and Q-refine [15]. All models are run by

20 iterations for a fair comparison. The optimization quality is com-

prehensively evaluated in 13 indicators, namely four (Perceptual)3:
CLIPIQA [33], UNIQUE [44], LIQE [45], DBCNN [43], TOPIQ [2],

CNNIQA [10], MUSIQ [11], BRISQUE [21], Q-Align [37]; and nine

(Alignment): CLIPScore [25], ImageReward [40], PicScore [13],

and HPSv2 [38]. Effective models should have lower BRISQUE

and higher scores for other quality indicators. For quality assess-

2
The 7 models are selected by the download times on huggingface. For some other ad-

vancedmodels with less popularity, the refining result is attached in the supplementary.

3
FID is not considered as it shows less correspondence with human preference.
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Table 2: Using different quality optimizers on GenImage database. Abbreviations: BRISQ: BRISQUE; CLIPS: CLIPScore; ImgRw:
ImageReward; PicS: PicScore. Left/right for perceptual/alignment quality. [Key: Best; Second Best; Negative optimization ].

Optimizer Method / Indicator CLIPIQA↑ UNIQUE↑ LIQE↑ DBCNN↑ TOPIQ↑ CNNIQA↑ MUSIQ↑ BRISQ↓ Q-Align↑ CLIPS↑ ImgRw↑ PicS↑ HPSv2↑
N/A Original Images 0.6911 1.1634 3.6417 0.6004 0.5605 0.6347 66.337 17.344 3.9609 0.9809 0.0724 0.7117 0.2563

Restoration

RFDN (ECCV2020) 0.6558 1.1119 3.5193 0.5579 0.5176 0.6225 65.416 22.748 3.8633 0.9830 0.0479 0.7027 0.2556

Swin2SR (ECCV2022) 0.6982 1.1651 3.6435 0.6021 0.5617 0.6346 66.378 17.379 3.9609 0.9807 0.0721 0.7124 0.2563

StableSR (Arxiv2023) 0.7306 1.3611 3.9148 0.6639 0.6441 0.6497 71.360 14.595 3.9883 0.9807 -0.0577 0.6858 0.2574

DASR (CVPR2021) 0.6345 0.8340 2.8897 0.6309 0.5205 0.6921 61.111 53.082 3.4648 0.9784 -0.0349 0.6498 0.2533

Reconstruct

-ion

SD-Upscale (CVPR2022) 0.6655 1.1363 3.5722 0.5335 0.5178 0.5998 66.119 24.979 3.8574 0.9835 0.0373 0.6993 0.2558

Instructpix (CVPR2023) 0.6204 0.8441 3.0683 0.5098 0.4791 0.5588 61.714 26.031 3.7422 0.9814 0.0255 0.6701 0.2562

DiffBIR (Arxiv2024) 0.7313 1.1327 3.6557 0.6113 0.5853 0.6436 65.987 11.505 3.9297 0.9843 -0.1569 0.6769 0.2542

PASD (Arxiv2024) 0.7214 1.3444 4.0707 0.6534 0.6501 0.6280 69.691 13.852 4.0156 0.9845 0.0038 0.7358 0.2565

Refinement

SDXL-Refiner (ICLR2023) 0.6068 0.9338 3.2709 0.4932 0.4723 0.5062 62.343 30.049 3.8672 0.9841 0.2027 0.7153 0.2571

SD (CVPR2022) 0.6110 0.8163 2.9576 0.4903 0.4636 0.4212 60.341 24.632 3.6191 0.9335 0.0013 0.6591 0.2545

SDXL (ICLR2024) 0.6390 0.9696 3.3239 0.5074 0.4968 0.5846 63.598 28.300 3.9355 0.9918 0.2683 0.7652 0.2578
InstructIR (Arxiv2024) 0.6866 1.0776 3.5751 0.5819 0.5566 0.6371 64.668 28.945 3.8867 0.9871 -0.0395 0.6680 0.2542

Q-Refine (ICME2024) 0.7358 1.1833 3.7128 0.6122 0.5877 0.6491 66.943 11.630 3.9668 0.9889 -0.1109 0.6818 0.2548

G-Refine (Ours) 0.7444 1.5139 4.1280 0.6817 0.6679 0.6603 73.004 11.225 4.3366 0.9906 0.2290 0.7656 0.2604

Table 3: Using different quality optimizers on DiffusionDB database. Abbreviation and keys follow Table 2.
Optimizer Method / Indicator CLIPIQA↑ UNIQUE↑ LIQE↑ DBCNN↑ TOPIQ↑ CNNIQA↑ MUSIQ↑ BRISQ↓ Q-Align↑ CLIPS↑ ImgRw↑ PicS↑ HPSv2↑
N/A Original Images 0.7147 0.9106 3.5127 0.6094 0.5714 0.6263 65.003 15.093 3.8672 0.9822 -0.1085 0.7372 0.2550

Restoration

RFDN (ECCV2020) 0.7147 0.9117 3.5127 0.6093 0.5714 0.6256 65.004 15.076 3.8672 0.9822 -0.1089 0.7372 0.2550

Swin2SR (ECCV2022) 0.7125 0.9122 3.5156 0.6103 0.5725 0.6265 65.004 15.093 3.8711 0.9824 -0.1089 0.7371 0.2550

StableSR (Arxiv2023) 0.6920 1.1946 3.5930 0.6458 0.6045 0.6301 69.200 16.035 3.8789 0.9637 -0.2011 0.6592 0.2551

DASR (CVPR2021) 0.6411 0.4695 2.8614 0.6526 0.5802 0.6811 61.413 15.539 3.4785 0.9781 -0.1997 0.7016 0.2552

Reconstruct

-ion

SD-Upscale (CVPR2022) 0.6576 0.9454 3.4477 0.5756 0.5459 0.5837 65.256 14.392 3.8340 0.9724 -0.1393 0.7302 0.2545

Instructpix (CVPR2023) 0.6325 0.6157 3.2975 0.5007 0.4739 0.5056 59.299 16.236 3.6270 0.9690 -0.1068 0.7001 0.2542

DiffBIR (Arxiv2024) 0.7111 0.9046 3.2790 0.5691 0.5238 0.6265 67.302 11.438 3.8152 0.9784 -0.1835 0.7057 0.2547

PASD (Arxiv2024) 0.7047 1.3098 3.7973 0.6393 0.6568 0.6436 67.146 16.468 3.8215 0.9819 -0.1836 0.6721 0.2517

Refinement

SDXL-Refiner (ICLR2023) 0.5602 0.4098 2.8306 0.4973 0.4426 0.4613 61.377 14.429 3.5816 0.9686 0.0380 0.6948 0.2517

SD (CVPR2022) 0.6553 0.6896 2.7884 0.4896 0.4611 0.4816 59.392 21.925 3.5996 0.9438 -0.0269 0.6961 0.2549

SDXL (ICLR2024) 0.6203 0.7874 3.7208 0.5772 0.5501 0.5899 63.440 15.161 3.9785 0.9895 0.1402 0.7861 0.2575
InstructIR (Arxiv2024) 0.7370 0.9459 3.6083 0.6402 0.6181 0.6410 63.179 15.192 3.9414 0.9863 -0.1738 0.7111 0.2529

Q-Refine (ICME2024) 0.7194 1.0040 3.4199 0.5981 0.5593 0.6431 66.085 12.018 3.9336 0.9915 -0.1834 0.6728 0.2533

G-Refine (Ours) 0.7153 1.4706 3.8922 0.6762 0.6471 0.6569 72.193 13.934 4.2034 0.9933 0.1412 0.7277 0.2593

ment, we apply 12 advanced quality indicators for comparison, as

(Perceptual) DBCNN [43], CLIPIQA [33], CNNIQA [10], HyperIQA

[31], NIMA [32], and Paq2Piq [42]; (Alignment) CLIPScore [25],
ImageReward [40], HPSv1 [39], HPSv2 [38], and CLIP-Surgery [18].

We measure the correlation between subjective labeling objective

prediction, namely Spearman Rank-order Correlation Coefficient

(SRCC) and Pearson Linear Correlation Coefficient (PLCC). Higher

SRCC/PLCC indicates better prediction monotonicity/accuracy. All

quality indicators are fine-tuned on the AIGIQA-20K (training set).

During the training process of PQ-Map, we froze the parameters of

the image encoder as CLIP-Surgery [18] and only updated the text

encoder. While for the AQ-Map, the parameters of the image en-

coder are initialized as ImageReward [40]. The refiner Stage 1 adapts

SDXL-Inpainting [29] model mixing PQ/AQ-Map as a mask; Stage

2 applies PASD [41] model globally. Each stage takes half of the

iterations. We generate original AIGIs and train quality indicators

for 50 epochs using Adam optimizer on a server with four NVIDIA

RTX A6000, and validate the quality optimization/assessment per-

formance on a local NVIDIA GeForce RTX 4090.

4.3 Quality Optimization Results
Table 2, 3, 4, and 5 listed the perceptual/alignment quality opti-

mization result. G-Refine’s advantages are primarily showcased in

its superior positive optimization capabilities for AIGI quality.

Across 13 indicators assessed on 4 databases, G-Refine secured first

or second place in over 90% of the cases (47/52). The performance is

more exceptional on the standard AIGI database GenImage, and the

AGIQA-3K with significant internal quality variation. Though Sta-

bleSR and SDXL also exhibit certain optimization for perceptual and

alignment quality, G-Refine stands out by offering general optimiza-

tion for both qualities. G-Refine’s ability to excel in BRISQUE and

LIQE, which represent signal fidelity and aesthetics, respectively,

underscores its multi-dimensional perceptual quality optimization.

Similarly, its dominance in CLIP and ImagReward, indicative of

word-level and sentence-level semantic alignment, demonstrates

its capacity to understand and enhance word relationships for im-

ages. Considering some indicators are inconsistent with human

real preferences, to enhance the credibility of real scenarios, we

considered the indicators most relevant to human subjective pref-

erences, namely Q-Align and HPSv2. Notably, G-Refine achieved

the best in both, indicating its ability to enhance human genuine

contentment with AIGIs beyond fixed indicators.

Another key strength of G-Refine lies in itsminimized nega-
tive optimization. On 52 indexes, we marked results with lower

quality than the original image. It can be seen that almost all other

methods have experienced more than 10 negative optimizations
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Table 4: Using different quality optimizer on AGIQA-1K database. Abbreviation and keys follow Table 2.
Optimizer Method / Indicator CLIPIQA↑ UNIQUE↑ LIQE↑ DBCNN↑ TOPIQ↑ CNNIQA↑ MUSIQ↑ BRISQ↓ Q-Align↑ CLIPS↑ ImgRw↑ PicS↑ HPSv2↑
N/A Original Images 0.6314 1.2237 3.6079 0.5730 0.5386 0.6332 68.330 31.727 3.5527 0.6648 -1.4530 0.4079 0.2465

Restoration

RFDN (ECCV2020) 0.6324 1.2249 3.6054 0.5732 0.6338 0.6383 68.304 31.754 3.5566 0.6617 -1.4509 0.4077 0.2464

Swin2SR (ECCV2022) 0.6374 1.2250 3.6076 0.5746 0.6397 0.6285 68.365 31.515 3.5566 0.6659 -1.4522 0.4083 0.2465

stablesr (Arxiv2023) 0.7664 1.5365 4.4375 0.7128 0.7233 0.7597 75.111 14.401 3.9629 0.7025 -1.4702 0.4435 0.2489

DASR (CVPR2021) 0.6337 1.0618 3.3594 0.6271 0.5470 0.6933 62.765 45.635 3.3086 0.6663 -1.4715 0.3990 0.2464

Reconstruct

-ion

SD-Upscale (CVPR2022) 0.6262 1.2746 3.7111 0.5578 0.5477 0.6236 69.246 36.646 3.5488 0.6694 -1.4621 0.4086 0.2463

Instructpix (CVPR2023) 0.6306 1.1273 3.4683 0.5646 0.5261 0.6330 75.321 31.365 3.4824 0.6564 -1.4671 0.4031 0.2465

DiffBIR (Arxiv2024) 0.6994 1.8592 4.3359 0.6539 0.6482 0.6855 77.562 27.518 3.9258 0.6905 -1.5073 0.4389 0.2455

PASD (Arxiv2024) 0.6926 1.5653 4.3969 0.6829 0.6875 0.6532 73.684 23.431 3.9453 0.6899 -1.5007 0.4230 0.2445

Refinement

SDXL-Refiner (ICLR2023) 0.7021 1.5065 4.3324 0.6185 0.5887 0.6550 76.521 52.893 3.9473 0.7841 -1.1106 0.5319 0.2523

SD (CVPR2022) 0.6523 1.3299 3.7332 0.5827 0.5520 0.5702 69.585 26.675 3.5508 0.9366 -0.5347 0.5967 0.2561

SDXL (ICLR2024) 0.5849 1.1592 3.6301 0.5251 0.5106 0.6161 68.755 36.184 3.6621 0.8261 -0.8687 0.5738 0.2527

InstructIR (Arxiv2024) 0.6766 1.4906 4.2460 0.6287 0.6135 0.6810 72.514 33.462 3.8398 0.9703 -0.1914 0.6463 0.2584
Q-Refine (ICME2024) 0.7394 1.6307 4.4129 0.6613 0.6486 0.6897 73.164 19.420 3.9785 0.9122 -1.3007 0.4563 0.2475

G-Refine (Ours) 0.7741 1.6773 4.6922 0.7351 0.7542 0.6594 76.487 9.3422 4.1703 0.9610 -0.3064 0.6704 0.2611

Table 5: Using different quality optimizer on AGIQA-3K database. Abbreviation and keys follow Table 2.
Optimizer Method / Indicator CLIPIQA↑ UNIQUE↑ LIQE↑ DBCNN↑ TOPIQ↑ CNNIQA↑ MUSIQ↑ BRISQ↓ Q-Align↑ CLIPS↑ ImgRw↑ PicS↑ HPSv2↑
N/A Original Images 0.5941 0.9001 3.3994 0.5330 0.5187 0.5856 60.740 35.261 3.7500 0.9527 -0.0727 0.6849 0.2508

Restoration

RFDN (ECCV2020) 0.5929 0.8986 3.3971 0.5325 0.5817 0.5867 60.713 35.197 3.7520 0.9521 -0.0716 0.6849 0.2507

Swin2SR (ECCV2022) 0.5996 0.9010 3.3997 0.5344 0.5195 0.5857 60.725 35.167 3.7559 0.9529 -0.0710 0.6852 0.2465

StableSR (Arxiv2023) 0.7453 1.3792 4.1906 0.6849 0.6805 0.7090 70.516 11.496 4.2539 0.9555 -0.1249 0.7030 0.2539
DASR (CVPR2021) 0.5302 0.5361 2.8626 0.5611 0.5079 0.6993 57.476 53.068 3.0566 0.9510 -0.1927 0.6470 0.2490

Reconstruct

-ion

SD-Upscale (CVPR2022) 0.5884 0.9373 3.4210 0.5196 0.5188 0.5977 62.294 35.139 3.8809 0.9449 -0.1204 0.6771 0.2501

Instructpix (CVPR2023) 0.5876 0.8473 3.3395 0.5212 0.5047 0.5958 69.330 35.132 3.6680 0.9448 -0.1179 0.6705 0.2510

DiffBIR (Arxiv2024) 0.6734 1.1664 3.7956 0.6358 0.6536 0.6815 67.950 15.634 4.1094 0.9608 -0.1979 0.6796 0.2514

PASD (Arxiv2024) 0.7161 1.8243 3.9960 0.6258 0.6372 0.6535 65.630 24.230 4.1222 0.9673 -0.1674 0.7067 0.2521

Refinement

SDXL-Refiner (ICLR2023) 0.6694 1.2785 3.9161 0.5497 0.5372 0.6527 66.365 28.948 3.4399 0.9598 0.1350 0.7597 0.2523

SD (CVPR2022) 0.6267 1.0776 3.6229 0.5299 0.5147 0.5702 64.414 30.296 3.7109 0.9595 0.1083 0.7187 0.2538

SDXL (ICLR2023) 0.5358 0.7406 3.1452 0.4486 0.4610 0.5310 59.397 41.067 3.8652 0.9749 0.2310 0.7697 0.2527

InstructIR (Arxiv2024) 0.6526 1.0183 3.6662 0.5666 0.5587 0.6207 63.344 39.948 3.8691 0.9934 0.0311 0.7009 0.2532

Q-Refine (ICME2024) 0.7183 1.1291 3.7658 0.5990 0.5735 0.6539 89.897 22.001 4.1367 0.9783 -0.0992 0.7027 0.2521

G-Refine (Ours) 0.7717 1.5990 4.5163 0.7099 0.7168 0.6891 73.551 8.0697 4.3198 0.9865 0.2663 0.7643 0.2589

(only Q-Refine has less negative optimization but at the cost of

limited positive optimization). In contrast, G-Refine produced only

one negative optimization. This superiority stems from G-Refine’s

superior control over optimization intensity. Traditional methods

often struggle to strike a balance, as enhancing LQ inevitably leads

to degradation in HQ regions. However, G-Refine demonstrates a

unique capability, achieving just one negative optimization. This

demonstrates its capacity to discern between LQ and HQ regions,

performing targeted, moderate denoising of defective areas without

resorting to global operations.

Considering the above four databases are all generated by tradi-

tional, single T2I models, Figure 6 shows the performance
4
of the

above optimizers on a variety of advanced T2I models, containing

AnimateDiff [9] , DALLE2 [26], Dreamlike [8], IF [7], PixArt [3],

SD1.5 [28], SD Cascade [22], and SDXL [29]. Intriguingly, G-Refine

exhibits a stronger impact on models with lower initial quality, with

notable collaborative optimization of perceptual/alignment quality

for AnimateDiff, Dreamlike, SD1.5, and SD Cascade. For models

with higher original generation quality, G-Refine still leads in per-

ceptual quality, but the alignment optimization is less pronounced,

particularly for PixArt, where all optimizers, including G-Refine,

negatively affect alignment. Consequently, given the success of

4
To simplify the image structure, we selected the three best-performing optimizers in

Table 2-5 along with the original image for comparison.

G-Refine with traditional models, exploring further optimization

of advanced models’ generative quality (especially for alignment)

is a pertinent research question.

4.4 Quality Assessment Results
The two sub-modules of G-Refine, namely PQ/AQ-Map, can also

be used independently for quality evaluation tasks. Tables 6 and

7 illustrate their performance on AIGI-20K and cross-validated

with AGIQA-3K. The existing methods generally excel in providing

accurate quality scores, but are unable to offer quality maps. On

the other hand, methods that support quality maps as outputs

often have unacceptable correlations with human subjective ratings,

rendering them less practical. PQ-Map and AQ-Map stand out in

this regard, as they not only offer accurate scores but also produce

quality maps that are both usable and comparable to the most

advanced models in terms of perception and alignment quality

evaluation. Their ability to output quality maps makes them highly

applicable in tasks such as image annotation and restoration, with G-

Refine serving as a prime example. We are eager to see the potential

for these maps to be further integrated into related fields.

4.5 Ablation Study
To assess the individual impact of the two stages in G-Refine and the

guidance provided by PQ/AQ-Map, we temporarily disabled stage
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Figure 6: Radar maps for G-Refine on different original generative models.

Table 6: Perceptual quality assessment result of PQ-Map and
different indicators. [Key: Best; Below 0.6 ]
Database AIGI-20K AGIQA-3K

#Support Map?
Method SROCC PLCC SROCC PLCC

DBCNN 0.8506 0.8688 0.7488 0.7407 ✘

CLIPIQA 0.7500 0.6375 0.6364 0.4518 ✘

CNN-IQA 0.5968 0.5483 0.5913 0.5418 ✘

HyperIQA 0.8223 0.5209 0.8407 0.4901 ✘

NIMA 0.8466 0.7851 0.8764 0.7954 ✘

Paq2Piq 0.1709 0.5030 0.2928 0.5727 ✔

PQ-Map (Proposed) 0.7073 0.6910 0.7054 0.7084 ✔

Table 7: Alignment quality assessment result of AQ-Map and
different indicators. [Key: Best; Below 0.6 ]
Database AIGI-20K AGIQA-3K

#Support Map?
Method SROCC PLCC SROCC PLCC

CLIPScore 0.4033 0.4903 0.4701 0.5341 ✘

ImageReward 0.6113 0.6620 0.7298 0.7862 ✘

HPS 0.5550 0.4971 0.6349 0.7000 ✘

HPSv2 0.6053 0.6385 0.6061 0.7164 ✘

PicScore 0.5923 0.6106 0.6977 0.7633 ✘

CLIP Surgery 0.4160 0.5225 0.5441 0.6648 ✔

AQ-Map (Proposed) 0.6117 0.6797 0.7303 0.7862 ✔

2 and excluded these components in Table 8. The result demon-

strates the optimization effect, with Q-Align [37] and PicScore [13]

representing perceptual/alignment quality respectively.

On SD1.5 with lower original quality, stage 1 plays a significant

role in the optimization process. Conversely, on SD Cascade, which

has a higher quality initially, the contribution of stage 1 is less pro-

nounced and stage 2 becomes the primary driver of improvement.

When using only one quality map, they excel in enhancing per-

ceptual or alignment quality individually, but their combined effect

Table 8: Using G-Refine to optimize traditional and emerging
generative models with different original quality. Abandon-
ing PQ/AQ-Map as indicators, and deactivating Stage 2.

Database SD1.5 SD Cascade

Indicator Stage PicScore Q-Align PicScore Q-Align

PQ+AQ 1,2 -0.1216 4.2436 0.8371 4.6149
AQ 1,2 -0.1914 3.9463 0.8647 4.4621

PQ 1,2 -0.2481 4.0368 0.8072 4.5983

PQ+AQ 1 -0.2399 4.0409 0.8133 4.4690

Original Images -0.4183 3.3082 0.8003 4.4294

on the other aspect is less effective. This highlights the importance

of integrating both stages and utilizing both indicators for a com-

prehensive optimization of traditional and advanced T2I models,

ensuring general optimization in perceptual/alignment quality.

5 CONCLUSION
In this study, we address the inconsistent generative quality of T2I

models by proposing a quality-inspired general optimizer. Firstly,

we enhance the CLIP’s image and text encoders towards accurate

perceptual quality maps for AIGIs. Secondly, we analyze prompts

using a syntax tree, employing an ancestor tracing mechanism to

yield alignment quality maps. Lastly, for precise and moderate opti-

mization, these maps are employed to guide a multi-stage denoising

process for AIGIS. These meticulously designed pipelines work in

synergy to boost positive optimization for LQ while minimizing

the negative impact on HQ images. Experimental results demon-

strate that G-Refine improves AIGI’s quality across 13 perceptual

and alignment indicators and effectiveness to various T2I models,

facilitating the adoption of T2I models in industrial production.
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