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ABSTRACT

We design a novel Transformer for continuous unconstrained black-box optimiza-
tion, called BOptformer. Inspired by the similarity between Vision Transformer and
evolutionary algorithms (EAs), we modify Tansformer’s multi-head self-attention
layer, feed-forward network, and residual connection to implement the functions
of crossover, mutation, and selection operators. Moreover, we devise an iterated
mode to generate and survive potential solutions like EAs. BOptformer learns the
optimization strategies from the target task automatically without human interven-
tion, which addresses the poor generalization of human-designed EAs when given
a new task. Compared to baselines, such as EAs, Bayesian optimization, and the
learning-to-optimize (L2O) method, BOptformer shows the top performance in six
black-box functions and two real-world applications. We also find that untrained
BOptformer can achieve good performance on the simple tasks. Deep BOptformer
performs better than shallow ones. We bring a new and efficient Transformer-based
black-box optimization framework for the L2O and EA communities.

1 INTRODUCTION

Many tasks, such as neural architecture search (Elsken et al., 2019) and hyperparameter optimization
(Hutter et al., 2019; Golovin et al., 2017), can be abstracted as black-box optimization problems,
which means that although we can evaluate f(x) for any x ∈ X , we have no access to any other
information about f , such as the Hessian and gradients. A series of hand-designed algorithms, such
as evolutionary algorithms (EAs) (Mitchell, 1998; Khadka & Tumer, 2018; Zhang & Li, 2007),
Bayesian optimization (Snoek et al., 2012; Mutny & Krause, 2018; Li et al., 2017; Kandasamy
et al., 2015; Balandat et al., 2020), and evolutionary strategies (ES) (Wierstra et al., 2014; Hansen
& Ostermeier, 2001; Auger & Hansen, 2005; Salimans et al., 2017), have been designed to solve
black-box optimization.

Recently, the learning to optimize (L2O) framework (Chen et al., 2022) gives an new insight on
optimization by leveraging the recurrent neural network (RNN), long short-term memory architecture
(LSTM) (Chen et al., 2020; Andrychowicz et al., 2016; Chen et al., 2017; Li & Malik, 2016;
Wichrowska et al., 2017; Bello et al., 2017) or multilayer perceptron (MLP) (Metz et al., 2019) as
the optimizer to develop optimization methods, aiming at reducing the laborious iterations of hand
engineering (Sun et al., 2018; Vicol et al., 2021; Flennerhag et al., 2021; Li & Malik, 2016; Sun
et al., 2018). They don’t concentrate on issues with black-box optimization. The core of L2O is
constructing a strong mapping from the initial solutions to the optimal solution. Although several
efforts like (Cao et al., 2019; Chen et al., 2017) have coped with the black-box problems, their
effectiveness may be hindered by the limited representational capabilities of RNN, LSTM, and MLP.

In EAs, the hand-designed crossover, mutation, and selection operators make the initial population
move near the optimal solution. This updated model has stood the test of time. Because the
evolutionary operators must be modified to maximize their performance on the target task, human-
designed EAs have a low generalization ability to a new black-box problem. Most notably, the limited
use of target function information in EA design due to expert knowledge limitations makes it difficult
to adapt to the target task. Learning the optimization strategies from the taget task is the key step to
overcome this limitation.

This paper designs a novel L2O framework based on the advantages of Vision Transformer (Doso-
vitskiy et al., 2021) and EAs to overcome the above limitations, termed BOptformer. Moreover,
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Transformer (Han et al., 2022) owns a strong representation ability, and there is currently no work to
use Transformer for optimization. Inspired by the similarity of EAs and Transformer (Zhang et al.,
2021; 2022), BOptformer revised the critical part of Transformer to realize the mapping from the ran-
dom and optimal populations. To generate potential individuals to approach the optimal solution, we
first design an self-attention (SA)-based crossover module (SAC) to simulate the crossover operator of
EA, and then the output of this module is input into the proposed feed-forward network (FFN)-based
mutation module (FM) to perform mutation. Moreover, the residual and selection module (RSSM) is
designed to survive the fittest individuals. RSSM is a pairwise comparison between the output of
SAC, FM, and the input population regarding their fitness. We design an BOptformer Block (OB)
consisting of SAC, FM, and RSSM. Finally, we construct BOptformer by stacking OBs to simulate
generations of EAs.

Moreover, to cope with black-box optimization, we establish a function set to train BOptformer under
an unsupervised mode. We construct a set of differentiable functions with similar properties to the
targeted black-box optimization problems. This training set contains the pair of the initial population
and the designed function. Thus, we can use gradient-based methods to train BOptformer.

We tested BOptformer on six standard functions, the protein docking (Cao & Shen, 2020) problem,
and the planar mechanic arm problem (Wang et al., 2021). The experimental results demonstrate
the top rank of BOptformer and the strong representation compared with three population-based
baselines, Bayesian optimization, and one learning-to-optimize method (Cao et al., 2019). Moreover,
we also analyze the effect of learning rate, deep structure, and weight sharing between OBs. The
highlights of this paper are summarized as follows:

1) We propose a solid Transformer-based L2O framework addressing black-box problems to the L2O
community. We have demonstrated its benefit when compared with standard black-box optimization
methods, particularly for the L2O-based method.

2) BOptformer efficiently uses the target black-box function’s information to aid in the development
of the optimization strategy. Compared to the human-designed EA, BOptformer has a substantially
greater degree of task fit.

2 RELATED WORK

Transformer Transformer structure achieves significant progress for machine translation task
(Vaswani et al., 2017), computer vision task (Dosovitskiy et al., 2021), time series task (Zhou et al.,
2021), and so on. Many improved models are proposed and obtain great achievements (Han et al.,
2022). There are no Transformer-based efforts for handling optimization problems, which is crucial in
the machine learning community. (Vaswani et al., 2017) proposed the meta-learning hyperparameter
optimization framework with Transformers to learn both policy and function priors from data across
different search spaces. However, the BOptformer proposed in this paper expands the application
scope of Transformer and can effectively deal with this case. The basic modules of Transformer are
shown in Appendix A.1.

Evolutionary Algorithm Inspired by the evolution of species, EAs have provided surprising
performance for black-box optimization (Mitchell, 1998). The basic modules of EAs are shown in
Appendix A.2. Many influential variants have been proposed to deal with different problems (Das
& Suganthan, 2010; Wu & Liu, 2019), but at their core they are: 1) recombination and mutation,
how to produce the excellent solution; 2) selection, how to choose the best individuals between the
parents and offspring. Thus, many algorithmic components have been designed for different tasks.
The performance of algorithms varies towards various tasks, as different optimization strategies
may be required given diverse landscapes. Current methods manually adjust genetic operators’
hyperparameters and design the combination between them (Kerschke et al., 2019; Tian et al., 2020)
to map the random population to the optimal solution. We require an expert to design or choose the
evolutionary operations when given a new black-box optimization task to maximize its performance
on the target task, which negatively impacts generalization ability. Most notably, the limited use of
target function information in EA design due to expert knowledge limitations makes it difficult to
adapt to the target task. The suggested BOptformer uses a Transformer framework instead of the
manually designed crossover, mutation, and selection operators. The genetic operator is then designed
automatically by the built Transformer rather than by a human designer. BOptformer efficiently

2



Under review as a conference paper at ICLR 2023

uses the target black-box function’s information to aid in developing the optimization strategy. In
comparison to the human-designed EA, BOptformer has a substantially greater degree of task fit.

3 BOPTFORMER

3.1 PROBLEM DEFINITION

A black-box optimization problem can be transformed as a minimization problem, as shown in
Equation (1), and constraints may exist for corresponding solutions:

min f(x), s.t. xi ∈ [li, ui] (1)

where x = (x1, x2, · · · , xd) represents the solution of optimization problem f , the lower
and upper bounds l = (l1, l2, · · · , ld) and u = (u1, u2, · · · , ud), and d is the dimension
of x. Suppose n individuals of one population be X1 = (X1,1, X1,2, · · · , X1,d),X2 =
(X2,1, X2,2, · · · , X2,d), · · · ,Xn = (Xn,1, Xn,2, · · · , Xn,d), then BOptformer are required to find
the population near the optimal solution x̂. We suppose that X0 is the initial population and Xt is
the output population.

3.2 SELF-ATTENTION CROSSOVER MODULE

Similar to the crossover operator in EAs, we propose a new module based on SA to generate the
potential solutions by maximizing information interaction among individuals in a population. The
crossover operator generates a new individual by

∑n
i=1 XiW

c
i (Zhang et al., 2021). W c

i is the
diagonal matrix. If W c

i is full of zeros, the ith individual has no contribution. Suppose a population
X is arranged in a non-descending order of fitness, and F ∈ Rn×1 be the fitness matrix of X . Then,
this module can be represented as follows:

Xc = SAC(X,F ) (2)

where Xc is the output population of the proposed SAC module.

Since the object processed by BOptformer is the population, and the order of individuals in the
population does not affect the population distribution, SA does not require position coding. Standard
SA projects the input sequence X into a d-dimensional space via the queries (Q), keys (K), and
values (V ). These three mappings enable the SA module to capture better the characteristics of
the problems encountered during training. In other words, these three mappings strengthen the
ability of SA to focus on specific problems but do not necessarily make SA have good transferability
between different problems. Therefore, we consider removing these three mappings for enhanced
transferability, and Xc = AX . A ∈ Rn×n is a self-attention matrix that can be learned to maximize
inter-individual information interaction based on individual ranking information. This is why the
population needs to be sorted in non-descending order.

However, designing crossover operations based solely on population ranking information is a coarse-
grained approach. Because this method only considers the location information of individuals in the
population, but does not consider the fitness relationship between individuals. Therefore, we further
introduce fitness information to assist in learning crossover operators:

AF = SA(F ) = Softmax
(
FWQ(FWK)T /sqrt(dk)

)
Thus, Xc = AX +AFX . To better balance the roles of A and AF , we introduce two learnable
weights W c

1 ∈ Rn×1 and W c
2 ∈ Rn×1. Therefore, the final crossover operation is shown as follows:

Xc = tile(W c
1 )⊙ (AX) + tile(W c

2 )⊙ (AFX) (3)

where Xc ∈ Rn×d is the population obtained by X through the SAC module; ⊙ represents Hadamard
product; the tile copy function extends the vector to a matrix.

3.3 FFN-BASED MUTATION MODULE

The mutation operator brings random changes into the population. Specifically, an individual Xi

in the population goes through the mutation operator to form the new individual X̂i, formulated
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Figure 1: Overall architecture of BOptformer and OB. Nx stands for BOptformer is composed of
Nx stacked OBs. These OBs can be set to share weights with each other or not share weights with
each other.

as X̂i = XiW
m
i . Wm

i is the diagonal matrix. In Transformer, each patch embedding carries on
directional feature transformation through the FFN module. We take one linear layer as an example:
X = XW F , where W F is the weight of the linear layer, and it is applied to each embedding
separately and identically. This equation and the mutation operator have the same formula format,
which inspires us to design a learnable mutation module FM based on FFN with ReLU activation
function:

Xm = FM(Xc) = (ReLU(XW F
1 + b1))W

F
2 + b2 (4)

where Xm is the population after the mutation of Xc. W F
2 and W F

1 represent the weight of the
second layer of FFN and the weight of the first layer of FFN, respectively. b2 and b1 represent the
bias of the second layer and the first layer of FFN, respectively.

3.4 SELECTION MODULE

The residual connection in the transformer can be analogized to the selection operation in EA (Zhang
et al., 2021). We combine the residual structure and selection module (SM) (Anonymous, 2023) to
design a learnable selection module RSSM. The RSSM generates the offspring population according
to the following equation:

X̂ = RSSM(X,Xc,Xm)

= Sort(SM(X, tile(W s
1 )⊙X + tile(W s

2 )⊙Xc + tile(W s
3 )⊙Xm))

(5)

where X̂ is the fittest population for the next generation; the learnable weights W s
1 ∈ Rn×1,

W s
2 ∈ Rn×1, and W s

3 ∈ Rn×1 are the weights for X , Xc, and Xm, respectively. Sort(X)
represents that X is sorted in non-descending order of fitness. We use quicksort to sort the population.
These three learnable weight matrices realize the weighted summation of residual connections,
thereby simulating a learnable selection strategy. Meanwhile, the introduction of residual structure
also enhances the model’s representation ability, enabling BOptformer to form a deep architecture.

SM updates individuals based on a pairwise comparison between the offspring and input population
regarding their fitness. Suppose that X and X

′
are the input populations of SM. We compare the

quality of individuals from X and X
′

pairwise based on fitness. A binary mask matrix indicating the
selected individual can be obtained based on the indicator function lx>0(x), where lx>0(x) = 1 if
x > 0 and lx>0(x) = 0 if x < 0. SM forms a new population X̂ by employing Equation (6).

X̂ = tile(lx>0(MF ′ −MF ))⊙X + tile(1− lx>0(MF ′ −MF ))⊙X
′

(6)

where the tile copy function extends the indication vector to a matrix, MF (MF ′) denotes the fitness
matrix of X(X

′
).

3.5 STRUCTURE OF BOPTFORMER

BOptformer comprises basic t BOptformer blocks (OBs), and parameters can be shared among these
t OBs or not. The overall architecture of BOptformer and OB is shown in Figure 1. Each OB consists
of SAC, FM, and RSSM. X0 ∈ Rn×d represents the initial population input into BOptformer, which
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needs to be sorted in non-descending order of fitness. In Equation 7, Xi−1 is fed into OBt to get Xi,
where i ∈ [1, t]. BOptformer realizes the mapping from the random initial population to the target
population by stacking t OBs.

Xi = OB(Xi−1); Xc = SAC(Xi−1,F ); (7)

Xm = FM(Xc); Xi = RSSM(Xi−1,Xc,Xm)

3.6 TRAINING OF BOPTFORMER

Training Dataset Before introducing the details of the training dataset, fidelity (Kandasamy et al.,
2016) is defined as follows: Suppose the differentiable surrogate functions f1, f2, · · · , fm are the
continuous exact approximations of the black-box function f . We call these approximations fidelity,
which satisfies the following conditions: 1) f1, · · · , fi, · · · , fm approximate f . ||f − fi||∞ ≤ ζm,
where the fidelity bound ζ1 > ζ2 > · · · ζm. 2) Estimating approximation fi is cheaper than estimating
f . Suppose the query cost at fidelity is λi, and λ1 < λ2 < · · ·λm.

Training data is a crucial factor beyond the objective functions. This paper establishes the training set
by constructing a set of differentiable functions related to the optimization objective. This training
dataset only contains (X0, fi(x|ω)), the initial population and objective function, respectively.
The variance of ω causes the shift in landscapes. The training dataset is designed as follows: 1)
Randomly initialize the input population X0; 2) Randomly produce a shifted objective function
fi(x|ω) by adjusting the parameter ω; 3) Evaluate X0 by fi(x|ω); 4) Repeat Steps 1)-3) to generate
the corresponding dataset. We show the designed training and testing datasets as follows:

F train = {f1(x|ωtrain
1,i ), · · · , fm(x|ωtrain

m,i )} (8)

where ωtrain
m,i represents the ith different values of ω in mth function fm.

Loss Function BOptformer attempts to search for individuals with high quality based on the
available information. The loss function tells how to obtain the parameters of BOptformer to generate
individuals closer to the optimal solution by maximizing the difference between the initial population
and the output population of BOptformer. The following loss function is employed (Anonymous,
2023),

li(X
0, f(x|ω)) =

1
|X0|

∑
x∈X0

fi(x|ω)− 1
|Eθ(X0)|

∑
x∈Eθ(X0)

fi(x|ω)∣∣∣∣∣ 1
|X0|

∑
x∈X0

fi(x|ω)

∣∣∣∣∣
(9)

where θ denotes parameters of BOptformer (E). Equation (9) calculates the average fitness difference
between the input and output, further normalized within [0, 1]. To encourage BOptformer to explore
the fitness landscape, for example, the constructed Bayesian posterior distribution over the global
optimum (Cao & Shen, 2020) can be added to Equation (9). Since the derivatives of functions in the
training dataset are available, we can obtain the gradient information of Equation (9) for the training
process. Also, we can employ REINFORCE (Williams, 1992) to approximate these derivatives.

Training BOptformer We then train BOptformer under a supervised mode. Since the gradient
is unnecessary during the test process, BOptformer can solve black-box optimization problems. To
prepare BOptformer to learn a balanced performance upon different optimization problems, we
design a loss function formulated as follows:

lΩ = − 1

K

∑
X0∈Ω

li(X
0, fi(x|ωtrain

i )) (10)

We employ Adam (Kingma & Ba, 2014) method with a minibatch Ω to train BOptformer upon the
constructed training dataset.

Detailed Training Process The goal of the training algorithm is to search for parameters θ∗ of the
BOptformer. Before training starts, BOptformer is randomly initialized to get initial parameters θ.
Then the algorithm will perform the following three steps in a loop until the training termination
condition is satisfied: Step 1, randomly initialize a minibatch Ω comprised of K populations X0;
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Step 2, for each fi ∈ F train, given training data (X0, fi), update θ by minimizing the lΩ; Step 3,
given X0, update θ by minimizing −1/m

∑
i lΩ, where m is the number of functions in F train.

After completing the training process, the algorithm will output θ∗.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

Synthetic Functions This paper first employs nine commonly used functions to show the effective-
ness of the proposed BOptformer. The characteristics of these nine functions are shown in Tables 6
and 7 (Appendix). Here, BOptformer is trained on F train is generated based on functions in Table 6,
and the target functions are shown in Table 7 (Appendix). Here, d = {10, 100}.

Protein Docking We also handle the problem of Ab initio protein docking (Cao & Shen, 2020),
which optimizes a noisy and costly function in a high-dimensional conformational space. Mathemati-
cally, this problem is formulated as optimizing the Gibbs binding free energy f(x) for conformation
x. We calculate the energy function in a CHARMM 19 force field as in (Moal & Bates, 2010) and
shift it so that f(x) = 0 at the origin of the search space. f(x) is differentiable when we parameterize
the search space as R12 (Smith & Sternberg, 2002). Here, only 100 interface atoms are considered.
The details of this problem can be found in Appendix A.8.

Planner Mechanic Arm We further evaluate the performance of the proposed scheme on the
planner mechanic arm problem, which has been widely used to evaluate the performance of the
black-box optimization algorithms (Cully et al., 2015; Vassiliades et al., 2018; Vassiliades & Mouret,
2018; Mouret & Maguire, 2020). The optimization goal of this problem is to minimize the distance
from the top of the mechanic arm to the target position by optimizing a set of lengths angles. The
detailed problem can be found in Appendix A.5. r represents the distance from the target point to the
origin of the mechanic arm, as shown in Fig. 4 (Appendix).

Table 1: The compared results on six functions.
d f DE ES CMA-ES L2O-swarm Dragonfly BOptformer

10

F4 0.13(0.06) 0.22(0.30) 4.2e-4(3.5e-4) 16.92(2.10) 1.3e3(1.3e3) 1.2e-4(5e-5)
F5 4.99(1.24) 0.55(0.37) 0.03(0.01) 2.97(0.01) 48.4(9.58) 8e-3(2e-3)
F6 210.2(49.7) 60.02(48.28) 61.90(96.25) 26.83(21.48) 3.8e8(1.4e8) 8.93(0.03)
F7 17.83(3.59) 51.53(8.05) 45.74(17.02) 4.88(3.55) 81.1(24.0) 0.01(0.03)
F8 0.21(0.07) 0.26(0.18) 7.6e-3(0.01) 1.02(1.4e-3) 35.4(22.6) le-5(2e-5)
F9 1.90(0.32) 20.56(0.03) 0.04(0.02) 9.06(0.67) 16.2(3.64) 0.01(3.4e-3)

100

F4 8.2e3(3.8e2) 8.9e4(9.5e3) 7.8e3(1.2e3) 0.32(0.03) 11200(3750) 0.11(0.09)
F5 28.2(0.61) 80.2(2.10) 78.3(9.18) 0.28(1.3e-3) 50(0) 0.14(0.15)
F6 2.4e8(2.3e7) 2.5e10(4.5e9) 3.3e8(8.7e7) 692(108) 99(0) 129(346)
F7 9410(548) 8.9e4(1.1e4) 8050(775) 85.7(18.6) 144(13.1) 24.1(13)
F8 3.04(0.14) 23.0(3.00) 3(0.22) 0.16(2.4e-4) 125(11.3) 0.02(0.03)
F9 18.9(0.14) 21.4(0.02) 21.4(0.04) 2.49(2.5e-3) 10.5(0.32) 0.15(0.05)

4.1.2 BASELINES

BOptformer is compared with standard EA baselines, such as DE(DE/rand/1/bin) (Das & Suganthan,
2010), ES((µ,λ)-ES), and CMA-ES, where DE and ES are implemented based on geatpy (Jazzbin,
2020), and CMA-ES is implemented by pymoo (Blank & Deb, 2020). L2O-swarm (Cao et al., 2019)
is a representative L2O method for black-box optimization. Moreover, Dragonfly (Kandasamy et al.,
2020), a representative algorithm for Bayesian optimization, is employed as a reference. We design
three BOptformer models, including 3 OBs with WS (weight sharing), 5 OBs without WS, and 30
OBs with WS. The parameters of these methods are shown in Appendix A.4.
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4.2 RESULTS

Synthetic Functions The results on six functions are provided in Table 1. BOptformer outperforms
three EA baselines, Dragonfly, and L2O-swarm in all cases, but loses once to Dragonfly in F6 with
d = 100. These cases also show the excellent generalization ability of BOptformer on more tasks
unseen during the training stage. We think the transferability of BOptformer is proportional to
the fitness landscape similarity between the training set and the problem. Although new problem
attributes are not available in the training set, BOptformer can still perform better. However, this
conclusion only holds when the similarity between the problem and training dataset is high. We
plot the convergence curves of BOptformer (10 OBs with WS), ES, DE, and CMA-ES on F7 (see
Appendix A.7, Figure 5). BOptformer converges quickly and can obtain better solutions. BOptformer
can only iterate ten times to get the best solution relative to EA baselines. ES and DE converge
around 100 generations, and CMA-ES shows a slow convergence rate.

Table 2: The results on the problem of protein docking.
Methods 1ATN 7 2JEL 1 7CEI 1

L2O-swarm 2090(25.08) 2765(24.80) 1689(23.64)
30OBs with WS -6.03e3(145) -6.03e3(127) -5.97e3(125)
5OBs without WS -6.01e3(146) -6.02e3(125) -5.98e3(131)

Protein Docking We also test
the performance of BOptformer on
the problem of protein docking.
The experimental results is shown
in 2. The performance of BOpt-
former exceeds that of L2O-swarm.
During training, L2O-swarm does not converge. At the same time, we find that better solutions exist
in the initial population than those found by L2O-swarm. However, during testing, L2O-swarm lost
these good solutions.

Planner Mechanic Arm The detailed experimental results are given in Tables 3. BOptformer
selects 5 OBs without WS as the example, which evolves only five generations. Untrained represents
the untrained BOptformer. DE, ES, and CMA-ES are tested when the maximum generations is set to
100. EA baselines have 100/5 times as many function evaluations as BOptformer. However, even in
this unfair situation, BOptformer achieves the best results. We have observed that BOptformer can
achieve better results with deeper architectures. However, it is currently difficult for us to train deep
BOptformer. Moreover, as far as we know, the use of ES to optimize deep models has been studied a
lot (Vicol et al., 2021), which will be an essential research prospect in the future.

Table 3: The results of planar mechanical arm. Simple Case (SC): searching for different angles with
the fixed lengths. Complex Case (CC): searching for different angles and lengths.

r DE ES CMA-ES L2O-Swarm BOptformer Untrained

SC
100 1.20(0.64) 10.6(5.58) 1.36(0.35) 40.4(3.89) 0.30(0.18) 243(238)
300 1.38(0.71) 44.9(43.3) 1.38(0.41) 69.5(3.77) 0.48(0.37) 1210(820)
1000 93.8(137) 183(239) 43.7(110) 176(7.20) 26.6(57.4) 5070(2770)

CC
100 0.81(0.47) 8.95(6.42) 0.76(0.20) 31.9(1.78) 0.06(0.05) 243(238)
300 6.15(12.2) 47.8(56.0) 0.87(0.37) 89.1(1.96) 0.50(0.79) 1210(820)
1000 232(233) 251(258) 88.4(158) 262(2.99) 25.0(55.8) 5070(2770)

4.3 PARAMETER ANALYSIS

Table 4: The performance of different BOptformer structures.

f Untrained 5 OBs 30 OBs 3 OBs
without WS with WS with WS

F4 0.28(0.09) 0.08(0.03) 1.2e-4(5e-5) 8.16(3.44)
F5 0.37(0.05) 0.15(0.03) 0.008(0.002) 1.47(0.40)
F6 45.8(16.9) 15.43(2.34) 8.93(0.03) 1891(1396)
F7 1.08(0.72) 4.43(1.82) 0.01(0.03) 35.72(8.52)
F8 0.69(0.09) 0.06(0.03) 1e-5(2e-5) 0.82(0.10)
F9 0.85(0.20) 0.29(0.07) 0.01(0.003) 3.28(1.00)

We consider the performance of
different BOptformer architectures.
Here, d = 10. The experimental re-
sults are shown in Table 4. We find
that they were sorted from good to
worst by their performance, and the
result is 30 OBs with WS>5 OBs with-
out WS>3 OBs with WS. Deep archi-
tectures have better representation ca-
pabilities and also lead to better per-
formance. However, it is challenging to train non-weight sharing BOptformers with more layers due
to the difficulty of training deep architectures. Untrained represents that the parameters of 5 OBs
without WS are randomly initialized. The results show that 5 OBs without WS outperforms Untrained,
which demonstrates the effectiveness of the designed training process.
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Table 5: The results of ablation study. d = 10.

f Not SAC Not FM Not RC Not RSSM BOptformer

F4 52.7(15.0) 23.3(6.68) 50.5(6.81) 271(346) 3.03(5.82)
F5 5.08(0.98) 2.94(0.41) 3.75(0.09) 3.51(1.49) 1.02(0.20)
F6 1.25e5(9.26e4) 1.10e4(1.44e4) 5.22e4(1.28e4) 6.99e6(1.21e8) 4.03e3(6.94e4)
F7 47.2(5.11) 19.7(4.27) 63.4(8.60) 40.6(8.10) 44.8(8.34)
F8 1.18(0.04) 1.19(0.07) 0.87(0.07) 3.28(1.14) 0.60(0.17)
F9 4.49(1.09) 3.42(0.78) 8.36(0.43) 3.56(0.72) 3.03(0.70)

We also find an interesting phenomenon: 5 OBs without WS outperforms 3 OBs with WS in all
cases. Our untrained deep architecture, 5 OBs without WS, can achieve good results on simple cases,
which shows that BOptformer retains the advantages of Transformer architecture and has strong
generalization ability. We use the untrained 5 OBs with WS to test on the complex plannar mechanic
arm problem and find that it performs poorly.

We train BOptformer on the F1-F3 function set with different learning rates (lr) and then test them
on the F4-F9 function set. The experimental results are shown in Table 9 (Appendix A.6). For 5 OBs
without WS, setting lr = 0.01 achieves the relatively best performance. Using lr = 0.0001 would be
a good choice for 30 OBs with WS and 3 OBs with WS.

4.4 ABLATION STUDY

This section considers the performance impact of different parts in BOptformer. We take BOptformer
with 3 OBs and weight sharing as an example, which is trained on F1-F3 and tested on F4-F9. We
remove SAC, FM, RSSM, and RC in BOptformer, respectively, and denote them as Not SAC, Not
FM, Not RSSM, and Not RC. The experimental results are shown in Table 5. When their results
were sorted from good to worst, the rank is BOptformer > Not FM > Not RC ≈ Not SAC ≈ Not
RSSM. The role of FM is slightly weaker than that of the other three modules. Taken as a whole, the
parts of SAC, RSSM, and RC are of equal importance. The absence of these core components can
seriously affect the performance of BOptformer. At the same time, it also shows the effectiveness of
the proposed four modules. The removal of any one of the modules in the crossover, mutation, and
selection of EAs will degrade the performance of EAs. This shows that BOptformer implements a
learnable EA framework that does not require human-designed parameters.
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Figure 2: Crossover Strategy learned by BOptformer.

4.5 VISUALIZATION ANALYSIS

The tested model is 5 OBs with WS trained on F1-F3 with d = 100. The population size is 100.

Visual Analysis of SAC The crossover strategies learned by the five SAC are shown in Fig. 2. For
the presentation, we select individuals with fitness rankings 1st, 50th, and 100th. The horizontal axis
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represents the fitness ranking of individuals, and the vertical axis represents the attention (weight when
performing crossover) on these individuals. OB1 tends to crossover with lower-ranked individuals,
showing a preference for exploration. From OB1 to OB5, the bias of SAC gradually changes from
exploration to exploitation.

Visual Analysis of FM We test 5 OBs with WS on F4 with d = 2. The mutation strategies learned by
the five OBs are shown in Fig. 3. Input and output represent the input and output populations of the
FM module, respectively. OB1 tends to explore a broad solution space, and the next 4 OBs gradually
shift from searching the vast space to searching the space near the input population. The strategies
learned by FM and SAC modules show a common feature: the preference for generating solutions
gradually shifts from exploration to exploitation as the population converges.
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Figure 3: Mutation strategy learned by BOptformer.

5 CONCLUSIONS

We successfully designed the Transformer-based L2O framework for black-box optimization, which
does not need hand-designed operators. The better performance than that of EA baselines, Bayesian
optimization, and the L2O method demonstrates the effectiveness of BOptformer. Moreover, BOpt-
former can be well adapted to unseen black-box optimization. Meanwhile, we experimentally
demonstrate that the proposed three modules have positive effects. BOptformer still has room for
improvement.

1) Our scheme is not limited to black-box optimization. Similar to the LSTM architecture, our scheme
can directly optimize differentiable functions. However, the architecture of BOptformer does not
directly involve the gradient information of the optimization target, which makes BOptformer inferior
to existing L2O schemes. In future work, we will design a new module that embeds the gradient
information of the optimization target;

2) In the loss function, we did not effectively consider the diversity of the population, and the
population can be regularized in the future;

3) The training set seriously affects the performance of BOptformer. If the similarity between the
training set and the optimization objective is low, it will cause the performance of BOptformer to
degrade drastically. Building the dataset as relevant to the target as possible is essential.
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A APPENDIX

A.1 VISION TRANSFORMER

We mainly introduce the core part of Vision Transformer, such as the multi-head self-attention layer
(MSA), feed-forward network (FFN), layer normalization (LN), and residual connection (RC).

MSA MSA fuses several SA operations to handle the queries (Q), keys (K), and values (V ) that
jointly attend to information from different representation subspaces. MSA is formulated as follows:
MultiHead(Q,K,V ) = Concat(H1,H2, · · ·Hh)W

O. where Concat means concatenation
operation. The head feature Hi can be formulated as:

Hi = SA(QWQ
i ,KWK

i ,V W V
i )

= Softmax
(
QWQ

i (KWK
i )T /sqrt(dk)

)
V W V

i = AV W V
i

where WQ
i ∈ Rdm×dq , WK

i ∈ Rdm×dk , and W V
i ∈ Rdm×dv are parameter matrices for queries,

keys, and values, respectively; WO ∈ Rhdv×dm maps each head feature Hi to the output. Moreover,
dm is the input dimension, while dq , dk, and dv are hidden dimensions of the corresponding projection
subspace; h is the head number. A ∈ Rl×l is the attention matrix of hth head, l is the sequence
length.

FFN FFN employs two cascaded linear transformations with a ReLU activation to handle X , which
is shown as: FFN(X) = max(0,XW1 + b1)W2 + b2, where W1 and W2 are weights of two
linear layers, and b1 and b2 are corresponding biases.

LN LN is applied before each layer of MSA and FFN, and the output of LN is calculated by
X + [MSA|FFN ](LN(X)).

A.2 PRELIMINARY EAS

The crossover, mutation, and selection operators form the basic framework of EAs. EA starts with a
randomly generated initial population. Then, genetic operations such as crossover and mutation will
be carried out. After the fitness evaluation of all individuals in the population, a selection operation
is performed to identify fitter individuals to undergo reproduction to generate offspring. Such an
evolutionary process will be repeated until specific predefined stopping criteria are satisfied.

Crossover The crossover operator generates a new individual X̂i by Equation (11), and cr is the
probability of the crossover operator.

X̂c
i,k =

{
Xj,k rand(0, 1) < cr
Xi,k otherwise

(11)

where k ∈ [1, · · · , d]. This operator is commonly conducted on n individuals. After an expression
expansion, we re-formulate Equation (11) as

∑n
i=1 XiW

c
i (Zhang et al., 2021). W c

i is the diagonal
matrix. If W c

i is full of zeros, the ith individual has no contribution.

Mutation The mutation operator brings random changes into the population. Specifically, an
individual Xi in the population goes through the mutation operator to form the new individual X̂i,
formulated as follows:

X̂m
i,k =

{
rand(lk, uk) rand(0, 1) < mr

X̂c
i,k otherwise

(12)

where mr is the probability of mutation operator and k ∈ [1, · · · , d]. Similarly, Equation (12) can be
re-formulated as XiW

m
i , where Wm

i is the diagonal matrix.
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Selection We introduce the binary tournament mating selection operator in Equation (13). The
selection operator survives individuals of higher quality for the next generation until the number of
individuals is chosen.

pi =

{
1 f(Xi) < f(Xk)
0 f(Xi) > f(Xk)

, (Xi,Xk) ∈ X, (13)

where pi reflects the probability that Xi is selected for the next generation, and (Xi,Xk) in Equa-
tion (13) are randomly selected from the population X ∪ X̂m.

A.3 SYNTHETIC FUNCTIONS

Table 6: Training functions.

ID Functions Range

F1
∑

i |wisin(xi − bi)| x ∈ [−10, 10], b ∈ [−10, 10]
F2

∑
i |xi − bi| x ∈ [−10, 10], b ∈ [−10, 10]

F3
∑

i |(xi − bi) + (xi+1 − bi+1)|+
∑

i |xi − bi| x ∈ [−10, 10], b ∈ [−10, 10]

Table 7: Testing Functions.

ID Functions Range

F4(Sphere)
∑

i z
2
i , zi = xi − bi x ∈ [−100, 100], b ∈ [−50, 50]

F5 max{|zi|, 1 ≤ i ≤ D}, zi = xi − bi x ∈ [−100, 100], b ∈ [−50, 50]

F6(Rosenbrock)
D−1∑
i=1

(100(z2i − zi+1)
2 + (zi − 1)2), zi = xi − bi x ∈ [−100, 100], b ∈ [−50, 50]

F7(Rastrigin)
D∑
i=1

(z2i − 10 cos(2πzi) + 10), zi = xi − bi x ∈ [−5, 5], b ∈ [−2.5, 2.5]

F8(Griewank)
D∑
i=1

z2i
4000

−
∏D

i=1 cos(
zi√
i
) + 1, zi = xi − bi x ∈ [−600, 600], b ∈ [−300, 300]

F9(Ackley) −20 exp(−0.2
√

1
D

∑D
i=1 z

2
i ) −

exp( 1
D

∑D
i=1 cos(2πzi)) + 20 + exp(1), zi =

xi − bi

x ∈ [−32, 32], b ∈ [−16, 16]

A.4 PARAMETERS

BOptformer. For example, 30 OBs with WS contains 30 OBs, and each OB consists of 1 SAC, 1 FM,
and 1 RSSM. In 30 OBs with WS, these 30 OBs share parameters. 5 OBs without WS has 5 OBs, and
no parameters are shared among them. During the training process, BOptformer is iterated for 1000
epochs. The initial learning rate (lr) was set to 0.01 and lr = lr × 0.9 each 100 cycles. The 2-norm
of the gradient is clipped so that it is not larger than 10. The bias of the function is regenerated each
epoch, and a new batch of random initial populations is generated.

Baselines. The number of generations of the reference algorithms is set to 100. The population size
of ES, DE, and CMA-ES is set to 100. For all cases, we choose the optimal hyperparameters. To
ensure validity, all experimental results are averaged over 10 runs. All experiments were performed
on a Ubuntu20.04 PC with Intel(R) Core I7 (TM) I3-8100 CPU at 3.60GHz and NVIDIA GeForce
GTX 1060.

A.5 PLANNER MECHANIC ARM PROBLEM

The optimization goal of this problem is to search for a set of lengths L = (L1, L2, · · · , Ln) and a
set of angles α = (α1, α2, · · · , αn) so that the distance f(L,α, p) from the top of the mechanic arm
to the target position p is the smallest, where n represents the number of segments of the mechanic
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arm, and Li ∈ (li, ui) and αi ∈ (−Π,Π) represent the length and angle of the ith mechanic arm,
respectively. Typically, d is calculated as follows:

f(L,α, p) =

√√√√( n∑
i=1

cos(αi)Li − px

)2

+

(
n∑

i=1

sin(αi)Li − py

)2

(14)

where px and py represent the x-coordinate and y-coordinate of the target point, respectively.

Here, n = 100, li = 0 and ui = 10. We design two groups of experiments. 1) Simple case. We fixed
the length of each mechanic arm as li = 10 and only searched for the optimal α. 2) Complex case. We
need to search for L and α simultaneously. We randomly selected 600 target points within the range
of r ≤ 1000 to form a set S, where r represents the distance from the target point to the origin of the
mechanic arm, as shown in Fig. 4. During the training process of BOptformer, a sample point set s is
re-extracted from S for training every T training cycle. In the testing process, we extracted 128 target
points (Stest) in the range of r ≤ 100, r ≤ 300, and r ≤ 1000, respectively, for testing. The purpose
of testing in three different regions is to explore the generalization performance of BOptformer further.
We evaluate the generalization ability of the algorithm by

(∑Stest

s f(L,α, s)
)
/|Stest|.

d
r

1L
2L

3L

4L

1

2

3

4

Figure 4: Planar Mechanical Arm.

DE, ES, and CMA-ES are tested when the maximum generations Maxgen is set to 10, 50, and 100,
respectively. We find that BOptformer outperforms all baselines.

A.6 EFFECT OF LEARNING RATE ON BOPTFORMER

We train BOptformer on the F1-F3 function set with different learning rates, and then test it on the
F4-F9 function set. The experimental results are shown in Table 9. 5 OBs without WS and 30 OBs
with WS perform poorly when the learning rate is 0.1, which may be because the learning rate is too
large, which affects the convergence of BOptformer during the training process. For 5 OBs without
WS, setting the learning rate to 0.01 achieves relatively best performance. Using a learning rate of
0.0001 would be a good choice for 30 OBs with WS and 3 OBs with WS. However, our experiments
are coarse-grained. The learning rate has a greater impact on BOptformer. Then using Auto-ML
to search for the optimal hyperparameter combination of the model is expected to achieve better
performance.

A.7 CONVERGENCE OF BOPTFORMER

We plot the convergence curves of 30 OBs with WS, ES, DE, and CMA-ES on F7. BOptformer
converges quickly and can obtain better solutions. BOptformer can only iterate ten times to get the
best solution relative to EA baselines. ES and DE converged around 100 generations, and CMA-ES
showed a slow convergence rate.
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Table 8: The results of planar mechanical arm on searching for different angles with the fixed lengths.
Maxgen=10

r DE ES CMA-ES L2O-Swarm BOptformer

100 2.96(1.63) 11.2(4.70) 236(46.8) 40.4(3.89) 0.30(0.18)
300 11.3(14.7) 45.3(43.3) 243(125) 69.5(3.77) 0.48(0.37)

1000 227(226) 257(246) 397(321) 176(7.20) 26.6(57.4)

Maxgen=50

r DE ES CMA-ES L2O-Swarm BOptformer

100 1.28(0.60) 10.7(5.91) 2.42(0.65) 40.4(3.89) 0.30(0.18)
300 1.54(0.89) 42.0(41.0) 4.06(6.54) 69.5(3.77) 0.48(0.37)

1000 110(152) 193(235) 103(182) 176(7.20) 26.6(57.4)

Maxgen=100

r DE ES CMA-ES L2O-Swarm BOptformer

100 1.20(0.64) 10.6(5.58) 1.36(0.35) 40.4(3.89) 0.30(0.18)
300 1.38(0.71) 44.9(43.3) 1.38(0.41) 69.5(3.77) 0.48(0.37)

1000 93.8(137) 183(239) 43.7(110) 176(7.20) 26.6(57.4)

Table 9: Ablation study on learning rate.
5 OBs without WS

lr F4 F5 F6 F7 F8 F9

0.1 0.93(7.42) 0.31(0.49) 2.04e7(2.03e8) 15.3(6.4) 0.36(0.16) 0.61(0.18)
0.01 0.01(0.003) 0.05(0.02) 9.57(0.22) 1.62(0.60) 0.03(0.01) 0.06(0.03)

0.001 0.88(3.41) 0.36(0.12) 226(1750) 6.18(2.66) 0.56(0.16) 1.36(0.36)
0.0001 0.06(0.03) 0.13(0.03) 13.6(2.11) 0.83(0.50) 0.17(0.04) 0.28(0.10)

30 OBs with WS

0.1 1.64(1.19) 0.85(1.59) 493(3110) 28.4(4.35) 0.47(0.11) 2.82(0.5)
0.01 0.05(0.30) 0.09(0.03) 39.2(240) 1.05(1.40) 0.01(0.06) 0.28(0.07)

0.001 1.01e-3(0.001) 0.02(0.01) 9.03(0.18) 0.03(0.02) 0.003(0.001) 0.03(0.01)
0.0001 1.50e-3(0.001) 0.016(0.004) 9.01(0.13) 0.02(0.02) 0.006(0.002) 0.02(0.0.01)

3 OBs with weights sharing

0.1 3.04(5.55) 0.98(0.4) 1150(7930) 43.3(8.87) 0.64(0.12) 2.43(0.98)
0.01 29.9(47.7) 2.68(1.30) 6.24e4(4.87e5) 40.4(8.52) 1.05(0.06) 4.45(0.85)

0.001 1.82(1.20) 0.76(0.32) 654(4780) 7.00(7.11) 0.79(0.13) 1.91(0.53)
0.0001 0.39(0.21) 0.33(0.07) 46.8(79.4) 2.22(2.41) 0.66(0.09) 0.59(0.19)
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Figure 5: Convergence curves of Boptformer and EA baselines. The figure shows the convergence
curve of these algorithms on F7 in Table 7.

A.8 THE DETAILS OF PROTEIN DOCKING

Protein Docking We also handle the problem of Ab initio protein docking (Cao & Shen, 2020),
which optimizes a noisy and costly function in a high-dimensional conformational space. Mathemati-
cally, this problem is formulated as optimizing the Gibbs binding free energy f(x) for conformation
x. We calculate the energy function in a CHARMM 19 force field as in (Moal & Bates, 2010) and
shift it so that f(x) = 0 at the origin of the search space. f(x) is differentiable when we parameterize
the search space as R12 (Smith & Sternberg, 2002). Here, only 100 interface atoms are considered.

Training dataset. 25 protein-protein complexes (see Appendix A.8) from the protein docking
benchmark set 4.0 (Hwang et al., 2010), each of which has 5 starting points (top-5 models from
ZDOCK (Pierce et al., 2014)).

Testing dataset. Three complexes (with one starting model each) of different levels of docking
difficulty are selected, including 1ATN 7, 2JEL 1, and 7CEI 1.

25 Protein-protein Complexes The training dataset contains 25 protein-protein complexes from
the protein docking benchmark set 4.0 (Hwang et al., 2010). The detailed information is shown as
follows: 1ATN, 1AVX, 1AY7, 1BJ1, 1BVN, 1CGI, 1DFJ, 1EAW, 1EWY, 1EZU, 1GRN, 1IBR, 1IJK,
1IQD, 1JPS, 1KXQ, 1M10, 1MAH, 1N8O, 1PPE, 1R0R, 1XQS, 2B42, 2C0L, and 2HRK.

18


	Introduction
	Related Work
	BOptformer
	Problem Definition
	Self-Attention Crossover Module
	FFN-based Mutation Module
	Selection Module
	Structure of BOptformer
	Training of BOptformer

	Experiments
	Experimental Setup
	Datasets
	Baselines

	Results
	Parameter Analysis
	Ablation Study
	visualization analysis

	Conclusions
	Appendix
	Vision Transformer
	Preliminary EAs
	Synthetic Functions
	Parameters
	Planner Mechanic Arm Problem
	Effect of Learning rate on BOptformer
	Convergence of BOptformer
	The Details of Protein Docking


