IS CONDITIONAL GENERATIVE MODELING ALL YOU
NEED FOR DECISION-MAKING?

Anurag Ajay* "1 Yilun Du *31, Abhi Gupta***1, Joshua Tenenbaum!, Tommi Jaakkola*¥1,
Pulkit Agrawal 1

Improbable AI Lab'

Operations Research Center*

Computer Science and Artificial Intelligence Lab®

Massachusetts Institute of Technology

ABSTRACT

Recent improvements in conditional generative modeling have made it possible
to generate high-quality images from language descriptions alone. We investigate
whether these methods can directly address the problem of sequential decision-
making. We view decision-making not through the lens of reinforcement learning
(RL), but rather through conditional generative modeling. To our surprise, we
find that our formulation leads to policies that can outperform existing offline
RL approaches across standard benchmarks. By modeling a policy as a return-
conditional diffusion model, we illustrate how we may circumvent the need for
dynamic programming and subsequently eliminate many of the complexities
that come with traditional offline RL. We further demonstrate the advantages
of modeling policies as conditional diffusion models by considering two other
conditioning variables: constraints and skills. Conditioning on a single constraint
or skill during training leads to behaviors at test-time that can satisfy several
constraints together or demonstrate a composition of skills. Our results illustrate
that conditional generative modeling is a powerful tool for decision-making.

1 INTRODUCTION

Over the last few years, conditional generative modeling has yielded impressive results in a
range of domains, including high-resolution image generation from text descriptions (DALL-E,
ImageGen) (Ramesh et al., 2022; Saharia et al., 2022), language generation (GPT) (Brown et al.,
2020), and step-by-step solutions to math problems (Minerva) (Lewkowycz et al., 2022). The
success of generative models in countless domains motivates us to apply them to decision-making.
Conveniently, there exists a wide body of research on recovering high-performing policies from data
logged by already operational systems (Kostrikov et al., 2022; Kumar et al., 2020; Walke et al., 2022).
This is particularly useful in real-world settings where interacting with the environment is not always
possible, and exploratory decisions can have fatal consequences (Dulac-Arnold et al., 2021). With
access to such offline datasets, the problem of decision-making reduces to learning a probabilistic
model of trajectories, a setting where generative models have already found success.

In offline decision-making, we aim to recover optimal reward-maximizing trajectories by stitching
together sub-optimal reward-labeled trajectories in the training dataset. Prior works (Kumar et al.,
2020; Kostrikov et al., 2022; Wu et al., 2019; Kostrikov et al., 2021; Dadashi et al., 2021; Ajay
et al., 2020; Ghosh et al., 2022) have tackled this problem with reinforcement learning (RL) that uses
dynamic programming for trajectory stitching. To enable dynamic programming, these works learn
a value function that estimates the discounted sum of rewards from a given state. However, value
function estimation is prone to instabilities due to function approximation, off-policy learning, and
bootstrapping together, together known as the deadly triad (Sutton & Barto, 2018). Furthermore, to
stabilize value estimation in offline regime, these works rely on heuristics to keep the policy within
the dataset distribution. These challenges make it difficult to scale existing offline RL algorithms.

* denotes equal contribution. Correspondence to aajayemit.edu, yilundu@mit.edu, abhig@mit .edu

b 27\
onstraints /7 T
constrain (), z:

(Decision Diffuser
<

T
- \ -
skills Co)(7t) - T)

genery s
erateq trajecturies)

\\/‘;\),"\
007

4 '\ ‘oe\\ed tta')ector'\es
al

Figure 1: Decision Making using Conditional Generative Modeling. Framing decision making as a
conditional generative modeling problem allows us to maximize rewards, satisfy constraints and compose skills.

In this paper, we ask if we can perform dynamic programming to stitch together sub-optimal
trajectories to obtain an optimal trajectory without relying on value estimation. Since conditional
diffusion generative models can generate novel data points by composing training data (Saharia
et al., 2022), we leverage it for trajectory stitching in offline decision-making. Given a dataset
of reward-labeled trajectories, we adapt diffusion models (Sohl-Dickstein et al., 2015) to learn a
return-conditional trajectory model. During inference, we use classifier-free guidance with low-
temperature sampling, which we hypothesize to implicitly perform dynamics programming, to
capture the best behaviors in the dataset and glean return maximizing trajectories (see Appendix A).
Our straightforward conditional generative modeling formulation outperforms existing approaches
on standard D4RL tasks (Fu et al., 2020).

Viewing offline decision-making through the lens of conditional generative modeling allows going
beyond conditioning on returns (Figure 1). Consider an example (detailed in Appendix A) where a
robot with linear dynamics navigates an environment containing two concentric circles (Figure 2). We
are given a dataset of state-action trajectories of the robot, each satisfying one of two constraints: (i)
the final position of the robot is within the larger circle, and (ii) the final position of the robot is outside
the smaller circle. With conditional diffusion modeling, we can use the datasets to learn a constraint-
conditioned model that can generate trajectories satisfying any set of constraints. During inference,
the learned trajectory model can merge constraints from the dataset and generate trajectories that
satisfy the combined constraint. Figure 2 shows that the constraint-conditioned model can generate
trajectories such that the final position of the robot lies between the concentric circles.

Environment Training Dataset Generation

(xy)

Figure 2: Illustrative example. We visualize the 2d robot navigation environment and the constraints satisfied
by the trajectories in the dataset derived from the environment. We show the ability of the conditional diffusion
model to generate trajectories that satisfy the combined constraints.

Here, we demonstrate the benefits of modeling policies as conditional generative models. First,
conditioning on constraints allows policies to not only generate behaviors satisfying individual
constraints but also generate novel behaviors by flexibly combining constraints at test time. Further,
conditioning on skills allows policies to not only imitate individual skills but also generate novel
behaviors by composing those skills. We instantiate this idea with a state-sequence based diffusion
probabilistic model (Ho et al., 2020) called Decision Diffuser, visualized in Figure 1. In summary,
our contributions include (i) illustrating conditional generative modeling as an effective tool in
offline decision making, (ii) using classifier-free guidance with low-temperature sampling, instead of
dynamic programming, to get return-maximizing trajectories and, (iii) leveraging the framework of
conditional generative modeling to combine constraints and compose skills during inference flexibly.

2 BACKGROUND
2.1 REINFORCEMENT LEARNING

We formulate the sequential decision-making problem as a discounted Markov Decision Process
(MDP) defined by the tuple {pg, S,.A, T, R,~), where pg is the initial state distribution, S and A are
state and action spaces, 7 : S X A — S is the transition function, R : § x A x § — R gives the
reward at any transition and v € [0, 1) is a discount factor. The agent acts with a stochastic policy 7 :
S — A 4, generating a sequence of state-action-reward transitions or trajectory 7 := (Sk, ag, Tk) k>0
with probability p,(7) and return R(7) := Y, -, 7). The standard objective in RL is to find a

return-maximizing policy 7* = argmax, E.,_[R(7)].

Temporal Difference Learning TD methods (Fujimoto et al., 2018; Lillicrap et al., 2015) estimate
Q*(s,a) ==Erp_.[R(T)|s0 = $,a0 = a], the return achieved under the optimal policy 7* when
starting in state s and taking action a, with a parameterized @)-function. This requires minimizing the
following TD loss:

Lo () = E(s aranepl(r +7max Qo(s',a') — Qo(s,))’] (M

Continuous action spaces further require learning a parametric policy 7, (a|s) that plays the role of
the maximizing action in equation 1. This results in a policy objective that must be maximized:

j(¢) = EsE'D,aNﬂ¢(-|s) [Q(& CL)] (2)

Here, the dataset of transitions D evolves as the agent interacts with the environment and both Qg
and 4 are trained together. These methods make use of function approximation, off-policy learning,
and bootstrapping, leading to several instabilities in practice (Sutton, 1988; Van Hasselt et al., 2018).

Offline RL requires finding a return-maximizing policy from a fixed dataset of transitions collected
by an unknown behavior policy p (Levine et al., 2020). Using TD-learning naively causes the
state visitation distribution d™#(s) to move away from the distribution of the dataset d*(s). In
turn, the policy 74 begins to take actions that are substantially different from those already seen
in the data. Offline RL algorithms resolve this distribution-shift by imposing a constraint of the
form D(d™||d*), where D is some divergence metric, directly in the TD-learning procedure. The
constrained optimization problem now demands additional implementation heuristics to achieve any
reasonable performance (Kumar et al., 2021). The Decision Diffuser, in comparison, doesn’t have any
of these disadvantages. It does not require estimating any kind of Q-function, thereby sidestepping
TD methods altogether. It also does not face the risk of distribution-shift as generative models are
trained with maximum-likelihood estimation.

2.2 DIFFUSION PROBABILISTIC MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a specific type of generative model
that learn the data distribution ¢(z) from a dataset D := {z’}o<;< . They have been used most
notably for synthesizing high-quality images from text descriptions (Saharia et al., 2022; Nichol et al.,
2021). Here, the data-generating procedure is modelled with a predefined forward noising process
q(@pt1|xr) = N(@Trt1; /okxr, (1 — o)) and a trainable reverse process py(xp—1|xy) =

(@r—1|po(zk, k), X)), where N'(u, X) denotes a Gaussian distribution with mean p and variance
Y, ay, € R determines the variance schedule, g := @ is a sample, 1, s, ..., T are the latents,
and xx ~ N(0,I) for carefully chosen «y and long enough K. Starting with Gaussian noise,
samples are then iteratively generated through a series of ”denoising” steps.

Although a tractable variational lower-bound on log py can be optimized to train diffusion models,
Ho et al. (2020) propose a simplified surrogate loss:

Edenoise(e) = EkN[l,K],w(]Nq,ENN(O,I)[He - 69(33167 k)||2] 3)

The predicted noise eg(x, k), parameterized with a deep neural network, estimates the noise € ~
N (0, I) added to the dataset sample xq to produce noisy . This is equivalent to predicting the
mean of pg(xk_1|xk) since pg(xk, k) can be calculated as a function of eg(x, k) (Ho et al., 2020).

Guided Diffusion Modelling the conditional data distribution ¢(x|y) makes it possible to generate
samples with attributes of the label y. The equivalence between diffusion models and score-
matching (Song et al., 2021), which shows €g (g, k) x V, log p(xy,), leads to two kinds of methods
for conditioning: classifier-guided (Nichol & Dhariwal, 2021) and classifier-free (Ho & Salimans,
2022). The former requires training an additional classifier p,(y|xx) on noisy data so that samples
may be generated at test-time with the perturbed noise €p(xk, k) — wy/1 — &, Vg, log p(y|zk),
where w is referred to as the guidance scale. The latter does not separately train a classifier but
modifies the original training setup to learn both a conditional €y (x, y, k) and an unconditional
€9(xk, k) model for the noise. The unconditional noise is represented, in practice, as the
conditional noise € (xy, @, k) where a dummy value) takes the place of y. The perturbed noise
eg(xi, k) +w(eg(xr,y, k) — €a(xg, k)) is used to later generate samples.

3 GENERATIVE MODELING WITH THE DECISION DIFFUSER

It is useful to solve RL from offline data, both without relying on TD-learning and without risking
distribution-shift. To this end, we formulate sequential decision-making as the standard problem of

returns

Figure 3: Planning with Decision Diffuser. Given the current state s; and conditioning, Decision Diffuser
uses classifier-free guidance with low-temperature sampling to generate a sequence of future states. It then uses
inverse dynamics to extract and execute the action a; that leads to the immediate future state S¢41.

conditional generative modeling:
max E . pllogpe(xo(T)|y(r))] @)

Our goal is to estimate the conditional data distribution with py so we can later generate portions of a
trajectory xo(7) from information y(7) about it. Examples of y could include the return under the
trajectory, the constraints satisfied by the trajectory, or the skill demonstrated in the trajectory. We
construct our generative model according to the conditional diffusion process:

q(@pr1(7)|z(7)), po(@r—1(7)|@r(7), y(7)) ®)

As usual, g represents the forward noising process while py the reverse denoising process. In the
following, we discuss how we may use diffusion for decision making. First, we discuss the modeling
choices for diffusion in Section 3.1. Next, we discuss how we may utilize classifier-free guidance to
capture the best aspects of trajectories in Section 3.2. We then discuss the different behaviors that
may be implemented with conditional diffusion models in Section 3.3. Finally, we discuss practical
training details of our approach in Section 3.4.

3.1 DIFFUSING OVER STATES

In images, the diffusion process is applied across all pixel values in an image. Naively, it would
therefore be natural to apply a similar process to model the state and actions of a trajectory. However,
in the reinforcement learning setting, directly modeling actions using a diffusion process has several
practical issues. First, while states are typically continuous in nature in RL, actions are more varied,
and are often discrete in nature. Furthermore, sequences over actions, which are often represented as
joint torques, tend to be more high-frequency and less smooth, making them much harder to predict
and model (Tedrake, 2022). Due to these practical issues, we choose to diffuse only over states, as
defined below:

X (T) = (S, St41s s St4H-1)k (6)

Here, k denotes the timestep in the forward process and ¢ denotes the time at which a state was visited
in trajectory 7. Moving forward, we will view @ (7) as a noisy sequence of states from a trajectory
of length H. We represent x;(7) as a two-dimensional array with one column for each timestep of
the sequence.

Acting with Inverse-Dynamics. Sampling states from a diffusion model is not enough for defining
a controller. A policy can, however, be inferred from estimating the action a, that led the state s, to
s¢+1 for any timestep ¢ in o (7). Given two consecutive states, we generate an action according to
the inverse dynamics model (Agrawal et al., 2016; Pathak et al., 2018):

ay ‘= f¢($t,8t+1) @)

Note that the same offline data used to train the reverse process py can also be used to learn f;. We
illustrate in Table 2 how the design choice of directly diffusing state distributions, with an inverse
dynamics model to predict action, significantly improves performance over diffusing across both
states and actions jointly. Furthermore, we empirically compare and analyze when to use inverse
dynamics and when to diffuse over actions in Appendix F.

4

3.2 PLANNING WITH CLASSIFIER-FREE GUIDANCE

Given a diffusion model representing the different trajectories in a dataset, we next discuss how
we may utilize the diffusion model for planning. To use the model for planning, it is necessary
to additionally condition the diffusion process on characteristics y (7). One approach could be to
train a classifier py(y(7)|zr (7)) to predict y(7) from noisy trajectories (7). In the case that y(7)
represents the return under a trajectory, this would require estimating a (Q-function, which requires a
separate, complex dynamic programming procedure.

One approach to avoid dynamic programming is to directly train a conditional diffusion model
conditioned on the returns y(7) in the offline dataset. However, as our dataset consists of a set
of sub-optimal trajectories, the conditional diffusion model will be polluted by such sub-optimal
behaviors. To circumvent this issue, we utilize classifier-free guidance (Ho & Salimans, 2022) with
low-temperature sampling, to extract high-likelihood trajectories in the dataset. We find that such
trajectories correspond to the best set of behaviors in the dataset. For a detailed discussion comparing
Q-function guidance and classifier-free guidance, please refer to Appendix K. Formally, to implement
classifier free guidance, a xo(7) is sampled by starting with Gaussian noise € (7) and refining
@ (7) into &1 (7) at each intermediate timestep with the perturbed noise:

€= eg(xp(7), D, k) + wleo(xr(7), y(7), k) — €o(xk(7), D, k)), ®)

where the scalar w applied to (ep(xk(7),y(7), k) — eg(xi(7), D, k)) seeks to augment and extract
the best portions of trajectories in the dataset that exhibit y(7). With these ingredients, sampling from
the Decision Diffuser becomes similar to planning in RL. First, we observe a state in the environment.
Next, we sample states later into the horizon with our diffusion process conditioned on y and history
of last C states observed. Finally, we identify the action that should be taken to reach the most
immediate predicted state with our inverse dynamics model. This procedure repeats in a standard
receding-horizon control loop described in Algorithm 1 and visualized in Figure 3.

3.3 CONDITIONING BEYOND RETURNS

So far we have not explicitly defined the conditioning variable y (7). Though we have mentioned that
it can be the return under a trajectory, we may also consider guiding our diffusion process towards
sequences of states that satisfy relevant constraints or demonstrate specific behavior.

Maximizing Returns To generate trajectories that maximize return, we condition the noise
model on the return of a trajectory so eg(xx(7),y(7), k) := €s(xr(7), R(7), k). These returns are
normalized to keep R(7) € [0, 1]. Sampling a high return trajectory amounts to conditioning on
R(7) = 1. Note that we do not make use of any @)-values, which would then require dynamic
programming.

Satisfying Constraints Trajectories may satisfy a variety of constraints, each represented by the
set C;, such as reaching a specific goal, visiting states in a particular order, or avoiding parts of the
state space. To generate trajectories satisfying a given constraint C;, we condition the noise model on
a one-hot encoding so that e (xx(7), y(7), k) = es(xr(7), L(7 € C;), k). Although we train with
an offline dataset in which trajectories satisfy only one of the available constraints, at inference we
can satisfy several constraints together.

Composing Skills A skill ¢ can be specified from a set of demonstrations B;. To generate
trajectories that demonstrate a given skill, we condition the noise model on a one-hot encoding so
that ep (i (7), y(7), k) = eg(xr(7), L(T € B;), k). Although we train with individual skills, we
may further compose these skills together during inference.

Assuming we have learned the data distributions gq(xo(7)|y(7)),...,q(xo(7)|y" (7)) for
n different conditioning variables, we can sample from the composed data distribution
q(zo(T)|y*(7),...,y™ (7)) using the perturbed noise (Liu et al., 2022):

¢ = eg(xn(r), D, k) +w > (eo(a(r),y' (7). k) — ep(@i(7), D, k)) 9)

i=1

This property assumes that {y*(7)}"_, are conditionally independent given the state trajectory x (7).
However, we empirically observe that this assumption doesn’t have to be strictly satisfied as long as
the composition of conditioning variables is feasible. For more detailed discussion, please refer to
Appendix D. We use this property to compose more than one constraint or skill together at test-time.
We also show how Decision Diffuser can avoid particular constraint or skill (NOT) in Appendix J.

Algorithm 1 Conditional Planning with the Decision Diffuser

1: Input: Noise model €p, inverse dynamics f4, guidance scale w, history length C', condition y
2: Initialize h < Queue(length =C),t + 0 // Maintain a history of length C
3: while not done do
Observe state s; h.insert(s); Initialize zx (1) ~ N(0, al)
fork=K...1do
i (7)[: length(h)] < h // Constrain plan to be consistent with history
€+ eo(xr(7), k) + wleg(xr(1),y, k) — eo(xi (1), k)) /l Classifier-free guidance
(ftk—1,2k—1) ¢ Denoise(xr(7),€)
Tp—1 ~ N(pr—1,a3r1)
10: end for
11: Extract (s¢, s¢41) from zo(7)
12: Execute a; = fo(st,Se41)5t +t+1
13: end while

Decision Diffuser TD-learning Behavior Cloning

Performance
o
)

D4RL Locomotion D4RL Kitchen Kuka Block Stacking
Figure 4: Results Overview. Decision Diffuser performs better than both TD learning (CQL) and Behavorial
Cloning (BC) across D4RL locomotion tasks, D4RL Kitchen tasks and Kuka Block Stacking tasks (single
constraint) using only a conditional generative modeling objective. For performance metric, we use normalized
average returns (Fu et al., 2020) for D4RL tasks (Locomotion and Kitchen) and success rate for Block Stacking.

3.4 TRAINING THE DECISION DIFFUSER

The Decision Diffuser, our conditional generative model for decision-making, is trained in a
supervised manner. Given a dataset D of trajectories, each labeled with the return it achieves,
the constraint that it satisfies, or the skill that it demonstrates, we simultaneously train the reverse
diffusion process py, parameterized through the noise model €4, and the inverse dynamics model fg
with the following loss:

L(0,9) = Bk rep,prpem(p)[|le— €0z (7), (1= B)y(7) + 5D, k)||*|+ E(s,a,5nepllla—fo (s, 8)|[?)

For each trajectory 7, we first sample noise € ~ N (0, I') and a timestep k ~ U{1, ..., K}. Then, we
construct a noisy array of states (7) and finally predict the noise as ég := €g(x(7), y(7), k). Note
that with probability p we ignore the conditioning information and the inverse dynamics is trained
with individual transitions rather than trajectories.

Architecture = We parameterize ¢y with a temporal U-Net architecture, a neural network consisting
of repeated convolutional residual blocks (Janner et al., 2022). This effectively treats a sequence of
states ¢ (7) as an image where the height represents the dimension of a single state and the width
denotes the length of the trajectory. We encode the conditioning information y(7) as either a scalar
or a one-hot vector and project it into a latent variable z € R” with a multi-layer perceptron (MLP).
When y(7) = @, we zero out the entries of z. We also parameterize the inverse dynamics f, with an
MLP. For implementation details, please refer to the Appendix B.

Low-temperature Sampling In the denoising step of Algorithm 1, we compute pg_; and
Y—1 from a noisy sequence of states and a predicted noise. We find that sampling zp_1 ~
N (ptk—1,aXk_1) where the variance is scaled by o € [0,1) leads to better quality sequences
(corresponding to sampling lower temperature samples). For a proper ablation study, please refer to
Appendix C.

4 EXPERIMENTS

In this section, we explore the efficacy of the Decision Diffuser on a variety of decision-making tasks
(performance illustrated in Figure 4). In particular, we evaluate (1) the ability to recover effective RL
policies from offline data, (2) the ability to generate behavior that satisfies multiple sets of constraints,
(3) the ability compose multiple different skills together. In addition, we empirically justify use of
classifier-free guidance, low-temperature sampling (Appendix C), and inverse dynamics (Appendix F)
and test the robustness of Decision Diffuser to stochastic dynamics (Appendix G).

4.1 OFFLINE REINFORCEMENT LEARNING

Setup We first test whether the Decision Diffuser can generate return-maximizing trajectories.
To test this, we train a state diffusion process and inverse dynamics model on publicly available

DA4RL datasets (Fu et al., 2020). We compare with existing offline RL methods, including model-
free algorithms like CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2022), and model-based
algorithms such as trajectory transformer (TT, Janner et al. (2021)) and MoReL (Kidambi et al., 2020).
We also compare with sequence-models like the Decision Transformer (DT) (Chen et al. (2021) and
diffusion models like Diffuser (Janner et al., 2022).

Dataset Environment BC CQL IQL DT TT MOReL Diffuser DD

Med-Expert ~ HalfCheetah 55.2 91.6 86.7 86.8 95 53.3 79.8 90.6 £1.3
Med-Expert Hopper 52.5 1054 91.5 107.6 110.0 108.7 107.2 111.8 +1.8
Med-Expert ~ Walker2d 107.5 108.8 109.6 108.1 101.9 95.6 108.4 108.8 +1.7
Medium HalfCheetah 42.6 44.0 474 426 469 42.1 44.2 49.1 £1.0
Medium Hopper 52.9 585 66.3 67.6 61.1 954 58.5 79.3 £3.6
Medium Walker2d 753 725 783 740 79 778 79.7 82.5+1.4
Med-Replay HalfCheetah 36.6 455 442 366 419 40.2 42.2 39.3 +4.1
Med-Replay Hopper 181 95 94.7 827 91.5 93.6 96.8 100 +0.7
Med-Replay ~ Walker2d 26.0 772 739 66.6 82.6 4938 61.2 75 £4.3
Average 519 776 77 747 789 729 753 81.8
Mixed Kitchen 51.5 524 51 - - - - 65 +2.8
Partial Kitchen 38 50.1 46.3 - - - - 57 £2.5
Average 448 512 48.7 - - - - 61

Table 1: Offline Reinforcement Learning Performance. We show that Decision Diffuser (DD) either matches
or outperforms current offline RL approaches on D4RL tasks in terms of normalized average returns (Fu et al.,
2020). We report the mean and the standard error over 5 random seeds.

Results Across different offline RL tasks, we find that the Decision Diffuser is either competitive or
outperforms many offline RL baselines (Table 1). It also outperforms Diffuser and sequence modeling
approaches, such as Decision Transformer and Trajectory Transformer. The difference between
Decision Diffuser and other methods becomes even more significant on harder D4RL Kitchen tasks
which require long-term credit assignment.

To convey the importance of classifier-free guidance, we also compare with the baseline
CondDiffuser, which diffuses over both state and action sequences as in Diffuser without classifier-
guidance. In Table 2, we observe that CondDiffuser improves over Diffuser in 2 out of 3
environments. Decision Diffuser further improves over CondDiffuser, performing better across all
3 environments. We conclude that learning the inverse dynamics is a good alternative to diffusing
over actions. We further empirically analyze when to use inverse dynamics and when to diffuse
over actions in Appendix F. We also compare against CondMLPDiffuser, a policy where the current
action is denoised according to a diffusion process conditioned on both the state and return. We see
that CondMLPDiffuser performs the worst amongst diffusion models. Till now, we mainly tested on
offline RL tasks that have deterministic (or near deterministic) environment dynamics. Hence, we
test the robustness of Decision Diffuser to stochastic dynamics and compare it to Diffuser and CQL as
we vary the stochasticity in environment dynamics, in Appendix G. Finally, we analyze the runtime
characteristics of Decision Diffuser in Appendix E.

4.2 CONSTRAINT SATISFACTION

Setup We next evaluate how well we can generate trajectories that satisfy a set of constraints using
the Kuka Block Stacking environment (Janner et al., 2022) visualized in Figure 5. In this domain,
there are four blocks which can be stacked as a single tower or rearranged into several towers. A
constraint like BlockHeight (i) > BlockHeight(j) requires that block ¢ be placed above block
7. We train the Decision Diffuser from 10, 000 expert demonstrations each satisfying one of these
constraints. We randomize the positions of these blocks and consider two tasks at inference: sampling
trajectories that satisfy a single constraint seen before in the dataset or satisfy a group of constraints
for which demonstrations were never provided. In the latter, we ask the Decision Diffuser to generate
trajectories so BlockHeight (i) > BlockHeight(j) > BlockHeight (k) for three of the four
blocks i, 7, k. For more details, please refer to Appendix H.

Results In both the stacking and rearrangement settings, Decision Diffuser satisfies single
constraints with greater success rate than Diffuser (Table 3). We also compare with BCQ (Fujimoto
et al.,, 2019) and CQL (Kumar et al., 2020), but they consistently fail to stack or rearrange the blocks
leading to a 0.0 success rate. Unlike these baselines, our method can just as effectively satisfy several
constraints together according to Equation 9. For a visualization of these generated trajectories,
please see the website https://anuragajay.github.io/decision-diffuser/.

7

https://anuragajay.github.io/decision-diffuser/

Hopper—* Diffuser CondDiffuser CondMLPDiffuser Decision Diffuser

Med-Expert 107.6 111.3 105.6 111.8 £1.6
Medium 58.5 66.3 54.1 79.3 £3.6
Med-Replay 96.8 76.5 66.5 100 +0.7

Table 2: Ablations. Using classifier-free guidance with Diffuser, resulting in CondDiffuser, improves
performance in 2 (out of 3) environments. Additionally, using inverse dynamics for action prediction in Decision
Diffuser improves performance in all 3 environments. CondMLPDiffuser, that diffuses over current action
given the current state and the target return, doesn’t perform as well.

Environment Diffuser DD
Single Constraint - Stacking 45.6 £3.1 58,0 £3.1
Single Constraint - Rearrangement 58.9 £3.4 62.7 £3.1
Single Constraint Average 523 604
Multiple Constraints - Stacking - 603 +3.1
Multiple Constraints - Rearrangement - 67231
Multiple Constraints Average - 638

= é@ Table 3: Block Stacking through Constraint Minimization. Decision

E Diffuser (DD) improves over Diffuser in terms of the success rate of

generating trajectories satisfying a set of block-stacking constraints. It

Figure 5: Kuka Block can also flexibly combine multiple constraints during test time. We report
Stacking task. the mean success rate and the standard error over 5 random seeds.

4.3 SKILL COMPOSITION

Setup Finally, we look at how to compose different skills together. We consider the Unitree-go-
running environment (Margolis & Agrawal, 2022), where a quadruped robot can be found running
with various gaits, like bounding, pacing, and trotting. We explore if it is possible to generate
trajectories that transition between these gaits after only training on individual gaits. For each gait,
we collect a dataset of 2500 demonstrations on which we train Decision Diffuser.

Results During testing, we use the noise model of our reverse diffusion process according to
equation 9 to sample trajectories of the quadruped robot with entirely new running behavior. Figure 6
shows a trajectory that begins with bounding but ends with pacing. Appendix I provides additional
visualizations of running gaits being composed together. Although it visually appears that trajectories
generated with the Decision Diffuser contain more than one gait, we would like to quantify exactly
how well different gaits can be composed. To this end, we train a classifier to predict at every
time-step or frame in a trajectory the running gait of the quadruped (i.e. bound, pace, or trott). We
reuse the demonstrations collected for training the Decision Diffuser to also train this classifier, where
our inputs are defined as robot joint states over a fixed period of time (i.e. state sub-sequences of
length 10) and the label is the gait demonstrated in this sequence. The complete details of our gait
classification procedure can be found in Appendix I.

Only Bound Only Pace Bound + Pace
£ w0 Condition Trott Pace Bound
§ o Only Bound 0.8 1.0 982
= Only Pace 1.4 97.7 0.9
S O, A WALWAHenT L] Bound +Pace 14 385 60.1
Trott Pace Bound

Figure 7: Classifying Running Gaits. A classifier predicts the running gait of the quadruped at every timestep.
On trajectories generated by conditioning on a single skill, like only bounding or pacing, the classifier predicts
the respective gait with largest probability. When conditioned on both skills, some timesteps are classified as
bounding while others as pacing.

We use our running gait classifier in two ways: to evaluate how the behavior of the quadruped changes
over the course of a single, generated trajectory and to measure how often each gait emerges over
several generated trajectories. In the former, we first sample three trajectories from the Decision
Diffuser conditioned either on the bounding gait, the pacing gait, or both. For every trajectory, we
separately plot the classification probability of each gait over the length of the sequence. As shown in
the plots of Figure 7, the classifier predicts bound and pace respectively to be the most likely running
gait in trajectories sampled with this condition. When the trajectory is generated by conditioning
on both gaits, the classifier transitions between predicting one gait with largest probability to the

Bound Pace

22322222220 2% ")

= rard

Figure 6: Composing Movement SKills. Decision Diffuser can imitate individual running gaits using expert
demonstrations and compose multiple different skills together during test time. The results are best illustrated by
videos viewable at https://anuragajay.github.io/decision-diffuser/.

other. In fact, there are several instances where the behavior of the quadruped switches between
bounding and pacing according to the classifier. This is consistent with the visualizations reported in
Figure 6. In the table depicted in Figure 7, we consider 1000 trajectories generated with the Decision
Diffuser when conditioned on one or both of the gaits as listed. We record the fraction of time that the
quadruped’s running gait was classified as either trott, pace, or bound. It turns out that the classifier
identifies the behavior as bounding for 38.5% of the time and as pacing for the other 60.1% when
trajectories are sampled by composing both gaits. This corroborates the fact that the Decision Diffuser
can indeed compose running behaviors despite only being trained on individual gaits.

5 RELATED WORK

Diffusion Models Diffusion Models is proficient in learning generative models of image and text
data (Saharia et al., 2022; Nichol et al., 2021; Nichol & Dhariwal, 2021). It formulates the data
sampling process as an iterative denoising procedure (Sohl-Dickstein et al., 2015; Ho et al., 2020).
The denoising procedure can be alternatively interpreted as parameterizing the gradients of the data
distribution (Song et al., 202 1) optimizing the score matching objective (Hyvirinen, 2005) and thus
as a Energy-Based Model (Du & Mordatch, 2019; Nijkamp et al., 2019; Grathwohl et al., 2020).
To generate data samples (eg: images) conditioned on some additional information (eg:text), prior
works (Nichol & Dhariwal, 2021) have learned a classifier to facilitate the conditional sampling.
More recent works (Ho & Salimans, 2022) have argued to leverage gradients of an implicit classifier,
formed by the difference in score functions of a conditional and an unconditional model, to facilitate
conditional sampling. The resulting classifier-free guidance has been shown to generate better
conditional samples than classifier-based guidance. Recent works have also used diffusion models to
imitate human behavior (Pearce et al., 2023) and to parameterize policy in offline RL (Wang et al.,
2022). Janner et al. (2022) generate trajectories consisting of states and actions with an unconditional
diffusion model, therefore requiring a trained reward function on noisy state-action pairs. At inference,
the estimated reward function guides the reverse diffusion process towards samples of high-return
trajectories. In contrast, we do not train reward functions or diffusion processes separately, but rather
model the trajectories in our dataset with a single, conditional generative model. This ensures that the
sampling procedure of the learned diffusion process is the same at inference as it is during training.

Reward Conditioned Policies Prior works (Kumar et al., 2019; Schmidhuber, 2019; Emmons
et al., 2021; Chen et al., 2021) have studied learning of reward conditioned policies via reward
conditioned behavioral cloning. Chen et al. (2021) used a transformer (Vaswani et al., 2017) to model
the reward conditioned policies and obtained a performance competitive with offline RL approaches.
Emmons et al. (2021) obtained similar performance as Chen et al. (202 1) without using a transformer
policy but relied on careful capacity tuning of MLP policy. In contrast, Decision Diffuser can also
model constraints or skills and their resulting compositions.

6 DISCUSSION

We propose Decision Diffuser, a conditional generative model for sequential decision making. It
frames offline sequential decision making as conditional generative modeling and sidesteps the need
of reinforcement learning, thereby making the decision making pipeline simpler. By sampling for
high returns, it is able to capture the best behaviors in the dataset and outperforms existing offline
RL approaches on standard D4RL benchmarks. In addition to returns, it can also be conditioned
on constraints or skills and can generate novel behaviors by flexibly combining constraints or
composing skills during test time. In this work, we focused on offline sequential decision making,
thus circumventing the need for exploration. Using ideas from Zheng et al. (2022), future works
could look into online fine-tuning of Decision Diffuser by leveraging entropy of the state-sequence
model for exploration. While our work focused on state based environments, it can be extended
to image based environments by performing the diffusion in latent space, rather than observation
space, as done in Rombach et al. (2022). For a detailed discussion on limitations of Decision Diffuser,
please refer to Appendix L.

https://anuragajay.github.io/decision-diffuser/

ACKNOWLEDGEMENTS

The authors would like to thank Ofir Nachum, Anthony Simeonov and Richard Li for their helpful
feedback on an earlier draft of the work; Jay Whang and Ge Yang for discussions on classifier-
free guidance; Gabe Margolis for helping with unitree experiments; Micheal Janner for providing
visualization code for Kuka block stacking; and the members of Improbable AI Lab for discussions
and helpful feedback. We thank MIT Supercloud and the Lincoln Laboratory Supercomputing Center
for providing compute resources. This research was supported by an NSF graduate fellowship, a
DARPA Machine Common Sense grant, a MURI grant, an MIT-IBM grant, and ARO W911NF-21-1-
0097.

This research was also partly sponsored by the United States Air Force Research Laboratory and the
United States Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative
Agreement Number FA8750-19- 2-1000. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the United States Air Force or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes, notwithstanding any
copyright notation herein.

AUTHOR CONTRIBUTIONS

Anurag Ajay conceived the framework of viewing decision-making as conditional diffusion
generative modeling, implemented the Decision Diffuser algorithm, ran experiments on Offline
RL and Skill Composition, and helped in paper writing.

Yilun Du helped in conceiving the framework of viewing decision-making as conditional diffusion
generative modeling, ran experiments on Constraint Satisfaction, helped in paper writing and advised
Anurag.

Abhi Gupta helped in running experiments on Offline RL and Skill Composition, participated in
research discussions, and played the leading role in paper writing and making figures.

Joshua Tenenbaum participated in research discussions.

Tommi Jaakkola participated in research discussions and suggested the experiment of classifying
running gaits.

Pulkit Agrawal was involved in research discussions, suggested experiments related to dynamic
programming, provided feedback on writing, positioning of the work, and overall advising.

REFERENCES

Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke
by poking: Experiential learning of intuitive physics. Advances in neural information processing
systems, 29, 2016.

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline primitive
discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,

Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In Advances in Neural Information Processing Systems, 2021.

10

Robert Dadashi, Shideh Rezaeifar, Nino Vieillard, Léonard Hussenot, Olivier Pietquin, and Matthieu
Geist. Offline reinforcement learning with pseudometric learning. arXiv preprint arXiv:2103.01948,
2021.

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models. In
Advances in Neural Information Processing Systems, 2019.

Gabriel Dulac-Arnold, Nir Levine, Daniel] Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Machine Learning, 110(9):2419-2468, 2021.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be trained
to be adaptive. In International Conference on Machine Learning, pp. 7513-7530. PMLR, 2022.

Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, and Richard Zemel.
Learning the stein discrepancy for training and evaluating energy-based models without sampling.
In International Conference on Machine Learning, 2020.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. Advances in neural information
processing systems, 31, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

Aapo Hyvirinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 2005.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL: Model-
based offline reinforcement learning. In Advances in Neural Information Processing Systems,
2020.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696-21707, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

11

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
Q-learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for offline
model-free robotic reinforcement learning. arXiv preprint arXiv:2109.10813,2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving
quantitative reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. arXiv preprint arXiv:2206.01714, 2022.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970,
2022.

Gabriel Margolis and Pulkit Agrawal. Walk these ways: Gait-conditioned policies yield diversified
quadrupedal agility. In Conference on Robot Learning, 2022.

Diganta Misra. Mish: A self regularized non-monotonic neural activation function. In British
Machine Vision Conference, 2019.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, 2021.

Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent non-
persistent short-run MCMC toward energy-based model. In Advances in Neural Information
Processing Systems, 2019.

Pedro A Ortega, Markus Kunesch, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Joel Veness,
Jonas Buchli, Jonas Degrave, Bilal Piot, Julien Perolat, et al. Shaking the foundations: delusions
in sequence models for interaction and control. arXiv preprint arXiv:2110.10819, 2021.

Keiran Paster, Sheila Mcllraith, and Jimmy Ba. You can’t count on luck: Why decision transformers
fail in stochastic environments. arXiv preprint arXiv:2205.15967, 2022.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation. In

Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp.
2050-2053, 2018.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

12

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10684-10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards—just map them to
actions. arXiv preprint arXiv:1912.02875, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
Russ Tedrake. Underactuated Robotics. 2022. URL http://underactuated.mit.edu.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Adam R Villaflor, Zhe Huang, Swapnil Pande, John M Dolan, and Jeff Schneider. Addressing
optimism bias in sequence modeling for reinforcement learning. In International Conference on
Machine Learning, pp. 22270-22283. PMLR, 2022.

Homer Walke, Jonathan Yang, Albert Yu, Aviral Kumar, Jedrzej Orbik, Avi Singh, and Sergey Levine.
Don’t start from scratch: Leveraging prior data to automate robotic reinforcement learning. arXiv
preprint arXiv:2207.04703, 2022.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Yuxin Wu and Kaiming He. Group normalization. In European Conference on Computer Vision,
2018.

Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control:
Separating what you can control from what you cannot. arXiv preprint arXiv:2210.13435, 2022.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Qinging Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. arXiv preprint
arXiv:2202.05607, 2022.

13

http://underactuated.mit.edu

Appendix

In this appendix, we discuss details of the illustrative examples in Section A. Next, we discuss
hyperparameters and architectural details in Section B. We analyze the importance of low temperature
sampling in Section C, further explain composition of conditioning variable in Section D, discuss the
run-time characteristics of decision diffuser in Section E, discuss when to use inverse dynamics in
Section F and analyze robustness of Decision Diffuser to stochastic dynamics in Section G. Finally,
we provide details of the Kuka Block Stacking environment in Section H and the Unitree environment
in Section I.

A ILLUSTRATIVE EXAMPLES

A.1 IMPLICIT DYNAMIC PROGRAMMING

Training dataset Generation
PR pe— A=——=c
/,.
B B

Figure Al: Illustrative example. We demonstrate the ability of Decision Diffuser to stitch together sub-
optimal trajectories in training dataset to obtain (near) optimal trajectories, thereby implicitly performing
dynamic programming in Maze2D-open environment from Fu et al. (2020).

We empirically demonstrate the ability of Decision Diffuser to perform implicit dynamic programming
in Maze2D-open environment from Fu et al. (2020). The task in Maze2D-open environment is to
reach point C and the reward is negative distance from point C. The training dataset consists of 500
trajectories from point A to point B and 500 trajectories from point B to point C. The maximum
trajectory length is 50. During test time, the agent starts from point A and needs to reach point C
as quickly as possible. As shown in Figure A1, Decision Diffuser can stitch trajectories in training
dataset to form trajectories that goes from point A to point B in (near) straight lines.

A.2 CONSTRAINT COMBINATION

Setup In linear system robot navigation, Decision Diffuser is trained on 1000 expert trajectories
either satisfying the constraint ||sp|| < R (R = 1) or the constraint ||st|| > 7 (r = 0.7). Here,
st = [z, yr] represents the final robot state in a trajectory, specifying its final 2d position. The
maximum trajectory length is 50. During test time, Decision Diffuser is asked to generate trajectories
satisfying ||s7|| < R and ||sp|| > r to test its ability to satisfy single constraints. Furthermore,
Decision Diffuser is also asked to generate trajectories satisfying r < ||s7|| < R to test its ability to
satisfy combined constraints.

Results Figure 2 shows that Decision Diffuser learns to generate trajectories perfectly (i.e. with
100% success rate) satisfying single constraints in linear system robot navigation. Furthermore, it
learns to generate trajectories satisfying the composed constraint in linear system robot navigation
with 91.3%(£2.6%) accuracy where the standard error is calculated over 5 random seeds.

B HYPERPARAMETER AND ARCHITECTURAL DETAILS

In this section, we describe various architectural and hyperparameter details:

* We represent the noise model €g with a temporal U-Net (Janner et al., 2022), consisting of a U-Net
structure with 6 repeated residual blocks. Each block consisted of two temporal convolutions, each
followed by group norm (Wu & He, 2018), and a final Mish nonlinearity (Misra, 2019). Timestep
and condition embeddings, both 128-dimensional vectors, are produced by separate 2-layered MLP
(with 256 hidden units and Mish nonlinearity) and are concatenated together before getting added
to the activations of the first temporal convolution within each block. We borrow the code for
temporal U-Net from https://github.com/jannerm/diffuser.

14

https://github.com/jannerm/diffuser

* We represent the inverse dynamics f, with a 2-layered MLP with 512 hidden units and ReLU
activations.

* We represent the gait classifier with a 3-layered MLP with 1024 hidden units and ReL U activations.

* We train €g and fy4 using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 2e — 4
and batch size of 32 for 26 train steps.

* We train the gait classifier using the Adam optimizer with a learning rate of 2e — 4 and batch size
of 64 for 1e6 train steps.

* We choose the probability p of removing the conditioning information to be 0.25.
* We use K = 100 diffusion steps.

* We use a planning horizon H of 100 in all the D4RL locomotion tasks, 56 in D4RL kitchen tasks,
128 in Kuka block stacking, 56 in unitree-go-running tasks, 50 in the illustrative example and 60 in
Block push tasks.

» We use a guidance scale s € {1.2,1.4,1.6,1.8} but the exact choice varies by task.
* We choose o = 0.5 for low temperature sampling.

* We choose context length C' = 20.

C IMPORTANCE OF LOW TEMPERATURE SAMPLING

In Algorithm 1, we compute p;,—1 and ¥ from a noisy sequence of states and predicted noise. We
find that sampling z_1 ~ N (ug—1,aXk—1) (Where « € [0, 1)) with a reduced variance produces
high-likelihood state sequences. We refer to this as low-temperature sampling. To empirically show
its importance, we compare performances of Decision Diffuser with different values of o (Table A1).
We show that low temperature sampling (o = 0.5) gives the best average returns. However, reducing
the « to 0 eliminates the entropy in sampling and leads to lower returns. On the other hand, o = 1.0
leads to a higher variance in terms of returns of the trajectories.

Decision Diffuser = Hopper-Medium-Expert

a=0 104.3 £ 0.7
a=0.5 111.8 £1.6
a=10 107.1 £ 3.5

Table Al: Low-temperature sampling (o = 0.5) allows us to get high return trajectories consistently.
While @ = 1.0 leads to a higher variance in returns of the trajectories, & = 0.0 eliminates entropy in
the sampling and leads to lower returns.

D COMPOSING CONDITIONING VARIABLES

In this section, we detail how Decision Diffuser trained with different conditioning variables
{y*(7)}_; composes these conditioning variables together. It learns the denoising model
eo(xk(7),y' (), k) for a given conditioning variable y’(7). From the derivations outlined
in prior works (Luo, 2022; Song et al, 2021), we know that V, ;) logq(zx(7)|y' (1))
—eo(x(7),y*(7), k). Therefore, each conditional trajectory distribution {q(z(7)|y*(7))}*, can
be modelled with a single denoising model € that conditions on the respective variable y*(7).

In order to compose n different conditioning variables (i.e. skills or constraints), we would like
to model q(x(7)|{y*(7)}7~,). We assume that {y*(7)}?_, are conditionally independent given

15

@ (7). Thus, we can factorize as follows:

a(ek () {y'(1)}is1) o alan(r) []

=1 a(@e(r)) (Bayes Rule)
= log q(@x(T){y' (1) }i=1) o< log q(@k (7)) + Z ool logaten(o)

= Ve, (n logg(zi(r){y'(1)}oy) = me log q(wk(T))

+ Z(mG(r) log q((T)|y" (7)) = Va,(r) log g(z1(7)))

i=1

= eo(au(7), {y' (1) }io1 k) = co(@n(r), O, k) + Y (eo(@n(r), 4 (1), k) — co(@n(7), D, k))

=1

Using the above equations, we can sample from g(zo(7)|{y*(7)}?) with classifier free guidance
using the perturbed noise:

€= eg(@i(1),0, k) + wleg(@r(r), {y' (1) iy, k) — €o(xi(7), D, k))

= ep(xi(1),0,k) + wZ(ee(wk(T),yi(T), k) — eg(xi(1), D, k))

i=1

We use the perturbed noise to compose skills or combine constraints at test time. This derivation was
borrowed from Liu et al. (2022) and is presented here for completeness.

While the composition of conditioning variables {y?(7)}"_; requires them to be conditionally
independent given the state trajectory @ (7), we empirically observe that this condition doesn’t have
to be strictly satisfied. However, we require composition of conditioning variables to be feasible (i.e.
3 xo(7) that satisfies all the conditioning variables). When the composition is infeasible, Decision
Diffuser produces trajectories with incoherent behavior, as expected. This is best illustrated by videos
viewable at https://anuragajay.github.io/decision-diffuser/.

Requirements on the dataset First, the dataset should have a diverse set of demonstrations
that shows different ways of satisfying each conditioning variable y‘(7). This would allow
Decision Diffuser to learn diverse ways of satisfying each conditioning variable y*(7). Since
we use inverse dynamics to extract actions from the predicted state trajectory @o(7), we assume
that the state trajectory x((7) resulting from the composition of different conditioning variables
contains consecutive state pairs (s, s;+1) that come from the same distribution that generated the
demonstration dataset. Otherwise, inverse dynamics can give erroneous predictions.

E RUNTIME CHARACTERISTIC OF DECISION DIFFUSER

We analyze the runtime characteristics of Decision Diffuser in this section. After training the Decision
Diffuser on trajectories from the D4RL Hopper-Medium-Expert dataset, we plan in the corresponding
environment according to Algorithm 1. Every action taken in the environment requires running 100
reverse diffusion steps to generate a state sequence taking on average 1.26s in wall-clock time. We
can improve the run-time of planning by warm-starting the state diffusion as suggested in Janner et al.
(2022). Here, we start with a generated state sequence (from the previous environment step), run
forward diffusion for a fixed number of steps, and finally run the same number of reverse diffusion
steps from the partially noised state sequence to generate another state sequence. Warm-starting in
this way allows us to decrease the number of denoising steps to 40 (0.48s on average) without any
loss in performance, to 20 (0.21s on average) with minimal loss in performance, and to 5 with less
than 20% loss in performance (0.06s on average). We demonstrate the trade-off between performance,
measured by normalized average return achieved in the environment, and planning time, measured in
wall-clock time after warm-starting the reverse diffusion process, in Figure A2.

16

https://anuragajay.github.io/decision-diffuser/

Performance vs. Run-time

110 A

100 A

Normalized Return

90 1

10-1 100
Average Planning Time (seconds)
Figure A2: Performance vs planning time. We visualize the trade-off between performance, measured by

normalized average return achieved in the environment, and planning time, measured in wall-clock time after
warm-starting the reverse diffusion process.

Environment BC CondDiffuser Decision Diffuser
Position Control ~ 57.3 1.2 87.3 £3.1 87.8 £2.8
Torque Control 55.2 £1.5 71.8 £3.4 84.7 +2.2

Table A2: Block pushing with different controls. Decision Diffuser
and CondDiffuser perform similarly when the agent uses position control.
However, when the agent uses torque control, CondDiffuser performs
worse than Decision Diffuser given it’s harder to diffuse over non-smooth
action trajectories. We use the success rate of the red cube reaching the
Figure A3: Block push green circle as the performance metric. We report the mean success rate
environment. and the standard error over 5 random seeds.

F WHEN TO USE INVERSE DYNAMICS?

In this section, we try to analyze further when using inverse dynamics is better than diffusing over
actions. Table 2 showed that Decision Diffuser outperformed CondDiffuser on 3 hopper environment,
thereby suggesting that inverse dynamics is a better alternative to diffusing over actions. Our intuition
was that sequences over actions, represented as joint torques in our environments, tend to be more
high-frequency and less smooth, thus making it harder for the diffusion model to predict (Kingma
etal., 2021). We now try to verify this intuition empirically.

Setup We choose Block Push environment adapted from Gupta et al. (2018) where the goal is to
push the red cube to the green circle. When the red cube reaches the green circle, the agent gets a
reward of +1. The state space is 10-dimensional consisting of joint angles (3) and velocities (3) of
the gripper, COM of the gripper (2) and position of the red cube (2). The green circle’s position is
fixed and at an initial distance of 0.5 from COM of the gripper. The red cube (of size 0.03) is initially
at a distance of 0.1 from COM of the gripper and at an angle 6 sampled from U (—7 /4, 7/4) at the
start of every episode. The task horizon is 60 timesteps.

There are 2 control types: (i) torque control, where the agent needs to specify joint torques (3
dimensional) and (ii) position control where the agent needs to specify the position change of COM
of the gripper and the angular change in gripper’s orientation (Ax, Ay, A¢) (3 dimensional). While
action trajectories from position control are smooth, the action trajectories from torque control have
higher frequency components.

Offline dataset collection To collect the offline data, we use Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) first to train an expert policy for 1 million environment steps. We then use 1 million
environment transitions as our offline dataset, which contains expert trajectories collected towards
the end of the training and random action trajectories collected at the beginning of the training. We
collect 2 datasets, one for each control type.

17

Results Table A2 shows that Decision Diffuser and CondDiffuser perform similarly when the
agent uses position control. This is because action trajectories resulting from position control are
smoother and hence easier to model with diffusion. However, when the agent uses torque control,
CondDiffuser performs worse than Decision Diffuser, given the action trajectories have higher
frequency components and hence are harder to model with diffusion.

G ROBUSTNESS TO STOCHASTIC DYNAMICS

P BC Decision Diffuser Diffuser CQL
0.00 55.2+1.5 84.7+2.2 72.4+1.4 73.2+2.3
0.05 49.3+3.6 77.3+3.1 63.2+2.9 61.8+3.7
0.10 25.8+3.8 53.24+4.1 52.3+4.6 51.2+4.3
0.15 15.1+43 41.3+4.9 41.6+£5.1 422455

Table A3: Robustness to stochastic dynamics. Decision Diffuser’s performance suffers when stochasticity is
introduced in dynamics function. While it still outperforms Diffuser and CQL when p = 0.05, its performance
becomes similar to that of Diffuser and CQL for higher p values. We use the success rate of the red cube reaching
the green circle as the performance metric. We report the mean success rate and the standard error over 5 random
seeds.

We empirically analyze robustness of Decision Diffuser to stochasticity in dynamics function.

Setup We use Block Push environment, described in Appendix F, with torque control. However,
we inject stochasticity into the environment dynamics. For every environment step, we either sample
arandom action from ¢/ ([—1, —1, —1], [1, 1, 1]) with probability p or execute the action given by the
policy with probability (1 — p). We use p € {0,0.05,0.1,0.15} in our experiments.

Offline dataset collection = We collect separate offline datasets for different block push
environments, each characterized by a different value of p. Each offline dataset consists of 1
million environment transitions collected using the method described in Appendix F.

Results Table A3 characterizes how the performance of BC, Decision Diffuser, Diffuser, and CQL
changes with increasing stochasticity in the environment dynamics. We observe that the Decision
Diffuser outperforms Diffuser and CQL for p = 0.05, however all methods including the Decision
Diffuser settle to a similar performance for larger values of p.

Several works (Paster et al., 2022; Yang et al., 2022) have shown that the performance of return-
conditioned policies suffers as the stochasticity in environment dynamics increases. This is because
the return-conditioned policies aren’t able to distinguish between high returns from good actions
and high returns from environment stochasticity. Hence, these return-conditioned policies can learn
sub-optimal actions that got associated with high-return trajectories in the dataset due to environment
stochasticity. Given Decision diffuser uses return conditioning to generate actions in offline RL, its
performance also suffers when stochasticity in environment dynamics increases.

Some recent works (Yang et al., 2022; Villaflor et al., 2022) address the above issue by learning a
latent model for future states and then conditioning the policy on predicted latent future states rather
than returns. Conditioning Decision Diffuser on future state information, rather than returns, would
make it more robust to stochastic dynamics and could be an interesting avenue for future works.

H KUKA BLOCK STACKING

In the Kuka blocking stacking environment, the underlying goal is to stack a set of blocks on top
of each other. Models have trained on a set of demonstration data, where a set of 4 blocks are
sequentially stacked on top of each other to form a block tower.

We construct state-space plans of length 128. Following (Janner et al., 2022), we utilize a close-loop
controller to generate actions for each state in our state-space plan (controlling the 7 degrees of
freedom in joints). The total maximum trajectory length plan in Kuka block stacking is 384. We
detail differences between the two consider conditional stacking environments below:

18

 Stacking In the stacking environment, at test time we wish to again construct a tower of four
blocks.

* Rearrangement In the rearrangement environment, at test time wish to stack blocks in a
configuration where a set of blocks are above a second set. This set of stack-place relations
may not precisely correspond to a single block tower (can instead construct two block towers),
making this environment an out-of-distribution challenge.

In addition to Diffuser (Janner et al., 2022), we used goal-conditioned variants of CQL (Kumar et al.,
2020) and BCQ (Fujimoto et al., 2019) as baselines for the block stacking and rearrangement with
single constraint. However, they get a success rate of 0.0.

I UNITREE GO RUNNING

We consider Unitree-go-running environment (Margolis & Agrawal, 2022) where a quadruped robot
runs in 3 different gaits: bounding, pacing, and trotting. The state space is 56 dimensional, the action
space is 12 dimensional, and the maximum trajectory length is 250.

As described in Section 4.3, we train Decision Diffuser on expert trajectories demonstrating individual
gaits. During testing, we compose the noise model of our reverse diffusion process according to
equation 9. This allows us to sample trajectories of the quadruped robot with entirely new running
behavior. Figures A4,A5,A6 shows the ability of Decision Diffuser to imitate bounding, trotting and
pacing and their combinations.

1.1 QUANTITATIVE VERIFICATION OF COMPOSITION

We now try to quantitatively verify whether the trajectories resulting from composition of 2 gaits
does indeed contain only those 2 gaits.

Setup We learn a gait classifier that takes in a sub-sequence of states (of length 10) and predicts
the gait-ID. It is represented by a 3-layered MLP with 1024 hidden units and ReL.U activations that
concatenates the sub-sequence of states (of length 10) into a single vector of dimension 560 before
taking it in as an input. We train the gait classifier on the demonstration dataset. To ensure that
the learned classifier can predict gait-ID on trajectories generated by the composition of skills, we
use MixUp-style (Zhang et al., 2017) data augmentation during training. We create a synthetic sub-
sequence of length 10 by concatenating two sampled sub-sequence (from the demonstration dataset)

of length [; and [; (where [; +1; = 10) from gaits with ID 7 and j and give it a label l‘ij'l -one-hot(7) +

l»:{ -one-hot(j). During training, we sample a sub-sequence from the demonstration dataset with
70% probability and a sythenthic sub-sequence with 30% probability. We train the classifier for 2e6
train steps with a learning rate of 2e — 4 and a batch size of 64.

Results Figures A4,A5,A6 show that the classifier’s prediction is consistent with the visualized
composed trajectories. Furthermore, we use Decision diffuser to act in the environment and generate
1000 trott trajectories, 1000 pace trajectories, 1000 bound trajectories, and 1000 composed trajectories
for each possible pair of individual gaits. We then evaluate the learned gait classifier on these
trajectories and compute the percentage of timesteps a particular gait has the highest probability.
From Figures A4,A5,A6, we can see that if trajectories are generated by the composition of two
gaits, then those two gaits will have the two highest probabilities across different timesteps in those
trajectories.

1.2 A SIMPLE BASELINE FOR COMPOSITION

Let one-hot(7) and one-hot(j) represent two different gaits that can be generated using noise models
eg(xk (1), 0one-hot(7), k) and eg(xi(7), one-hot(j), k) respectively. To compose these gaits, we
compose the above-mentioned noise models using equation 9. As an alternative, we see if the noise
model ey (x(7), one-hot(i) + one-hot(j), k) can lead to composed gaits. However, we observe
that eg(xy(7), one-hot(¢) + one-hot(j), k) catastrophically fail to generate any gait (see videos
at https://anuragajay.github.io/decision-diffuser/). This happens because the condition variable
one-hot(z) + one-hot(j) was never seen by the noise model ¢y during training.

19

https://anuragajay.github.io/decision-diffuser/

Trott Pace

33[33(32]22)(32] o]

\

Trott + Pace
.1 - ? - o!» [v!][»02] rz’ ~a ﬂ7
Only Trott Only Pace Trott + Pace

z
Z .80
) Condition Trott Pace Bound
S OnlyTrott 972 17 1l
S NS WELYLtey: i SN Only Pace 0.8 98.1 1.1

50 100 150 200 50 100 150 200 50 100 150 200 Trott + Pace 55.6 43.6 0.8

Trott Pace Bound

Figure A4: Composing Trott and Pace. Decision Diffuser can imitate individual running gaits using expert
demonstrations and compose multiple different skills together during test time. The results are best illustrated by
videos viewable at https://anuragajay.github.io/decision-diffuser/.

Trott Bound

~

3243282 [p2 022227

Trott + Bound

(- | - -[-][-] ~ - —
322222322532 22)3=
Only Trott Only Bound Trott + Bound
B
Z .80
T 60 Condition Trott Pace Bound
S Only Trott 964 22 14
A SN Kool M A Only Bound 1.6 0.6 97.8
50 100 150 200 50 100 150 200 50 100 150 200 Trott + Bound 51.3 0~9 47.8

Trott Pace Bound

Figure AS: Composing Trott and Bound. Decision Diffuser can imitate individual running gaits using expert
demonstrations and compose multiple different skills together during test time. The results are best illustrated by
videos viewable at https://anuragajay.github.io/decision-diffuser/.

J NOT CcOMPOSITIONS WITH DECISION DIFFUSER

Decision diffuser can also support "NOT” composition. Suppose we wanted to sample from
q(zo(7)NOT 9y’ (7)). Let {y*(T)}™; be the set of all conditioning variables. Then, following
derivations from Liu et al. (2022) and using 3 = 1, we can sample from ¢(xo(7)|NOT y7 (7)) using
the perturbed noise:

€= eg(i(7), 0, k) + w(D_(co(@n(r),y' (7). k) — eo(@r(7), D, k)
i#]
- (69(w/€(7—)’ yj (T)’ k) - 69<wk(7—)’ Q, k)))

We demonstrate the ability of Decision Diffuser to support "NOT” composition by using it to satisfy
constraint of type BlockHeight(i) > BlockHeight(j) AND (NOT BlockHeight(j) >
BlockHeight(¢)) in Kuka block stacking task, as visualized in videos at
https://anuragajay.github.io/decision-diffuser/. =~ As the Decision Diffuser does not provide
an explicit density estimate for each skill, it can’t natively support OR composition.

20

https://anuragajay.github.io/decision-diffuser/
https://anuragajay.github.io/decision-diffuser/
https://anuragajay.github.io/decision-diffuser/

Bound Pace

233222322202

s s

Bound + Pace

J\ J \

Gait Probability

Only Bound Only Pace Bound + Pace
Condition Trott Pace Bound
Only Bound 0.8 1.0 98.2
e AN WAAREWS [Only Pace 14 97.7 0.9
50 100 150 200 50 100 150 200 50 100 150 200 Bound + Pace 1.4 38.5 60.1
Trott Pace Bound

Figure A6: Composing Bound and Pace. Decision Diffuser can imitate individual running gaits using expert
demonstrations and compose multiple different skills together during test time. The results are best illustrated by
videos viewable at https://anuragajay.github.io/decision-diffuser/.

K COMPARING Q-FUNCTION GUIDED DIFFUSION AND CLASSIFIER-FREE

GUIDED DIFFUSION

Classifier-free guided diffusion and Q-value guided diffusion are theoretically equivalent. However, as
noted in several works (Nichol et al., 2021; Ho & Salimans, 2022; Saharia et al., 2022), classifier-free
guidance performs better than classifier guidance (i.e. Q function guidance in our case) in practice.
This is due to following reasons:

* Classifier-guided diffusion models learns an unconditional diffusion model along with

a classifier (Q-function in our case) and uses gradients from the classifier to perform
conditional sampling. However, the unconditional diffusion model doesn’t need to focus on
conditional modeling during training and only cares about conditional generation during
testing after it has been trained. In contrast, classifier-free guidance relies on conditional
diffusion model to estimate gradients of the implicit classifier. Since the conditional diffusion
model, learned when using classifier-free guidance, focuses on conditional modeling during
train time, it performs better in conditional generation during test time.

* Q function trained on an offline dataset can erroneously predict high Q values for out-of-

distribution actions given any state. This problem has been extensively studied in offline
RL literature (Kumar et al., 2020; Fujimoto et al., 2019; Levine et al., 2020). In online RL,
this issue is automatically corrected when the policy acts in the environment, thinking an
action to be good but then receives a low reward for it. In offline RL, this issue can’t be
corrected easily; hence, the learned Q-function can often guide the diffusion model towards
out-of-distribution actions that might be sub-optimal. In contrast, classifier-free guidance
circumvents the issue of learning a Q-function and directly conditions the diffusion model on
returns. Hence, classifier-free guidance doesn’t suffer due to errors in learned Q-functions
and hence performs better than Q-function guided diffusion.

L LIMITATIONS OF DECISION DIFFUSER

We summarize the limitations of Decision Diffuser:

* No partial observability Decision Diffuser works with fully observable MDPs. Naive
extensions to partially observed MDPs (POMDPs) may cause self-delusions (Ortega et al.,
2021) in Decision Diffuser. Hence, extending Decision Diffuser to POMDPs could be an

exciting avenue for future work.

21

https://anuragajay.github.io/decision-diffuser/

Inability to explore the environment and update itself in online setting In this work, we
focused on offline sequential decision making, thus circumventing the need for exploration.
Using ideas from Zheng et al. (2022), future works could look into online fine-tuning of
Decision Diffuser by leveraging entropy of the state-sequence model for exploration.

Experiments on only state-based environments While our work focused on state based
environments, it can be extended to image based environments by performing the diffusion
in latent space, rather than observation space, as done in Rombach et al. (2022).

Only AND and NOT compositions are supported Since Decision Diffuser does not
provide an explicit density estimate for each condition variable, it can’t natively support OR
composition.

Performance degradation in environments with stochastic dynamics In environments
with highly stochastic dynamics, Decision Diffuser loses its advantage and performs similarly
to Diffuser and CQL. To tackle environments with stochastic dynamics, recent works (Yang
et al., 2022; Villaflor et al., 2022) propose learning a latent model for future states and then
conditioning the policy on predicted latent future states rather than returns. Conditioning
Decision Diffuser on future state information, rather than returns, would make it more robust
to stochastic dynamics and could be an interesting avenue for future works.

Performance in limited data regime Since diffusion models are prone to overfitting in case
of limited data, Decision Diffuser is also prone to overfitting in limited data regime.

22

	Introduction
	Background
	Reinforcement Learning
	Diffusion Probabilistic Models

	Generative Modeling with the Decision Diffuser
	Diffusing over States
	Planning with Classifier-Free Guidance
	Conditioning beyond Returns
	Training the Decision Diffuser

	Experiments
	Offline Reinforcement Learning
	Constraint Satisfaction
	Skill Composition

	Related Work
	Discussion
	Illustrative Examples
	Implicit Dynamic Programming
	Constraint Combination

	Hyperparameter and Architectural details
	Importance of low temperature sampling
	Composing conditioning variables
	Runtime characteristic of Decision Diffuser
	When to use Inverse dynamics?
	Robustness to stochastic dynamics
	Kuka Block Stacking
	Unitree Go Running
	Quantitative verification of composition
	A simple baseline for composition

	NOT compositions with Decision Diffuser
	Comparing Q-function guided diffusion and Classifier-free guided diffusion
	Limitations of Decision Diffuser

