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ABSTRACT

Exercise is important for those with type 1 diabetes (T1D), but T1D poses ex-
ercise barriers including blood glucose destabilization and fear of hypoglycemia.
To investigate these barriers, we measured the day-to-day variation of the barriers
and used them to predict the occurrence of days without exercise (i.e., “exercise
lapses”). The study participants were 17 adults with T1D without regular exercise
routines. They wore biosensors and completed real-time surveys to track exer-
cise, mood, and sleep during 10 weeks of a flexibly-timed, beginner-level home
exercise program. We leverage various machine learning techniques, consisting of
logistic regression, random forest, time series transformers, and Mamba, a state-
of-art state space model (SSM), for forecasting exercise lapses. We demonstrate
that we can achieve 75.55 ± 2.6% accuracy with SSM, an improvement over the
top baseline accuracy of 72.06 ± 2.9% achieved by classical ML techniques.

1 INTRODUCTION

Regular physical exercise is an important component of type 1 diabetes (T1D) management because
its cardiometabolic benefits offset the 8-fold increased cardiovascular disease risk posed by T1D
Schofield et al. (2019). The recommended exercise frequency is daily (or as close to daily as possi-
ble) to regularize its impact upon diurnal blood glucose patterns Association (2023). Unfortunately,
just 18%-33% of people with T1D meet these recommended exercise goals and this rate declines
with age McCarthy et al. (2016). Cross-sectional surveys Brazeau et al. (2008); Dubé et al. (2006)
indicate that a major barrier to exercise with T1D is the glucose management challenges. No stud-
ies have addressed the day-to-day time sequence between these barriers and exercise among people
with T1D, even though blood glucose, fear of hypoglycemia, and exercise engagement have been
observed to fluctuate daily Martyn-Nemeth et al. (2017).

The emergence of deep learning techniques has revolutionized many fields, including healthcare,
by providing powerful tools for behavioral prediction and personalized interventions. Among these
advancements, transformers Vaswani et al. (2023) have contributed significantly in time series fore-
casting task. However, despite their success, the computational demands of transformers limit their
applicability in real-time environments, a critical consideration for technologies designed to support
individuals with T1D in managing exercise-related glucose dynamics.

In response to these challenges, we explore Mamba Gu & Dao (2023), a novel deep learning ar-
chitecture based on state space models (SSMs) Gu et al. (2021). The architecture is designed to
filter inputs based on their relevance, significantly improving processing speeds - it allows SSM to
achieve inference times on average about 5 times faster than traditional transformer models, present-
ing a significant advancement in the development of real-time glucose management tools.

The main contributions of the paper are:

∗These authors contributed equally to this work.
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Figure 1: Forecasting Overview: We established a ML workflow for predicting exercise behav-
iors in T1D individuals. Firstly, data collection and preprocessing involve four main feature types:
covariates, survey data, continuous glucose readings, and their temporal interaction with exercise
and insulin dosing. Next, feature engineering includes utilizing comprehensive statistics to generate
1000 features for machine learning modeling or a 7-day lookback “rolling-window” technique for
sequential modeling. For modeling, we employed a state-space model, which adopts a dual-form of
recurrent neural network, and convolutional neural network. Finally, the objective is to predict the
exercise behavior on the next day.

• Evaluation of Mamba’s Predictive Performance: Mamba has predominantly been uti-
lized in the field of NLP. However, this study pioneers the exploration of Mamba’s potential
in predicting health-related time series data. Furthermore, this research compares Mamba’s
effectiveness with that of other widely adopted modeling frameworks, providing a bench-
mark for its performance in this novel application area.

• Use of ML for T1D Exercise Behavior Prediction: This study is among the first to utilize
deep learning techniques to predict exercise lapses in individuals with type 1 diabetes,
addressing the dynamic interplay between daily variations in blood glucose levels, mood,
sleep, and their influence on exercise adherence.

• Insights into Determinants of Exercise Engagement: Our analysis reveals how specific
glucose and survey measurements can potentially indicate an increased or decreased likeli-
hood of exercising on any given day.

2 METHODS

2.1 PRLIMINARY

Exercise Lapses Forecasting (ELF): Given a wearable biosensor time series with channel set D =
{1, 2, ..., d}, the historical data is represented by X = {X1

t , ..., X
d
t }Lt=1, where L is the look-back

window size and Xi
t is the value of the i-th channel at the t-th time step. Let e ∈ D denotes the

channel for exercise behavior, and Xe ∈ {0, 1}, where 0 indicates exercise lapses and 1 represents
active exercise. The goal of ELF is to find a model function f : X → Ŷ := {X̂e

t }L+T
t=L+1 for future

T steps.

State Space Models for Time Series Representation: State Space Models (SSMs), exemplified
by the Structured State Space Sequence models (S4) and Mamba, are predicated on mapping a time
series Xi

t ∈ R to an output Y i
t ∈ R, facilitated through an intermediary latent state Ht ∈ Rn. The

models operationalize A ∈ Rn×n as the state transition matrix, with B ∈ Rn×1 and C ∈ R1×n

serving as input and output projection matrices, respectively. The dynamics of the system are given
as:

H ′
t = AHt +BXi

t , Y i
t = CHt, (1)
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In adapting these principles to discrete settings, a scaling parameter ∆ is introduced to convert the
continuous-time matrices A and B into their discrete-time analogues Â and B̂ through a discretiza-
tion process which could be written as:

Â = exp(∆A), B̂ = A−1(exp(∆A)− I)B ·∆, (2)

where I denotes the identity matrix. The discrete system’s dynamics, alongside the mechanism for
output computation via global convolution, could be reformulated as:

Ht = ÂHt−1 + B̂Xi
t , Y i = Xi ∗K, (3)

where K = (CB̂,CÂB̂, . . . , CÂL−1B̂) with L indicating the length of the input sequence, ∗
is the convolution operator and K ∈ RL representing the structured convolutional kernel. The
convolutional formulation of SSMs allows for efficient training, while the recurrent formulation
enables fast inference. This is particularly beneficial for mobile applications, facilitating online
training and real-time inference.

2.2 DATA PREPROCESSING/FEATURE ENGINEERING

To preprocess the data for training, we first applied normalization to scale the biosensor and survey
data, ensuring uniformity in value ranges. Approximately 14.3% of data entries, which had miss-
ing journal entries or non-wear of CGM, were systematically omitted to maintain dataset integrity.
Given the observed class imbalance (41.3% exercise days and 58.7% non-exercise days (i.e., exer-
cise lapses), we applied the Synthetic Minority Over-sampling Technique (SMOTE) Chawla et al.
(2002) to up-sample the minority class. For train-test split, we stratified the dataset by participant.
We randomly assigned all the time series data of a participant to a fold and then used a 5-fold Cross
Validation strategy during training.

We designed four distinct feature sets for analytical purposes. The first set consisted exclusively
of individual-level covariates to establish a baseline. The second set expanded upon this by adding
both individual-level covariates and raw features, including the previous day’s survey data, glucose
measurements, exercise activities, and glucose-exercise interactions (Appendix Table 2; left part of
Figure 1). The third set leveraged TSFresh library Christ et al. (2018) to extract 5065 features from
the raw data based on their temporal and statistical patterns (Appendix Table 2; upper green area
in Figure 1). A univariate analysis, with a false discovery rate of 0.05, narrowed these down to
937 significant features. To mitigate the observed high collinearity among these features, Principal
Component Analysis (PCA) was employed, identifying approximately 110 principal components
representing 95% of the variance. These components, alongside demographic covariates, were in-
corporated into our models. The fourth feature set applied a rolling window method with a 7-day
interval to accurately assess exercise behavior Laeschke et al. (2018).

2.3 MODELING AND BASELINES

For the ELF task, we used a particular implementation of SSMs called Mamba Gu & Dao (2023).
Mamba incorporates time-varying parameters into the SSM and proposes a hardware-aware algo-
rithm for effective training and inference. Mamba’s impressive scaling performance shows its po-
tential as an alternative to the Transformer in real-time exercise lapses forecasting systems.

For baselines, we implemented a Time Series Transformer Zerveas et al. (2020) customized for time
series classification. This architecture commence with an input encoding layer that maps the time-
series feature vector to a high-dimensional space. It is then followed by a positional encoder (PE) to
account for temporal dynamics. Subsequently, a multi-head self-attention mechanism and a stacked
encoder layer are employed for hierarchical feature extraction. Lastly, a classification head is used
specifically for ELF.

In addition to the Time Series Transformer, we also utilized traditional machine learning models,
namely logistic regression (LR) and random forest (RF), as part of our comparative baseline. These
models, although less complex, offer a high degree of interpretability and play a crucial role in
clinical applications.
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3 RESULTS

3.1 MODEL PERFORMANCE

Several combinations of feature engineering and modeling were used to assess the effectiveness of
forecasting exercise behaviors based on individuals’ wearable data, demographics, and mood survey
data. Conventional models (LR, RF) were fed with covariates only, covariates plus raw features for
either 1 or 7 days back from the day being predicted, or covariates plus TSFresh features. Sequential
models (TST, SSM) were fed with the 7-day lookback rolling window. The findings are summarized
in Table 1.

Table 1: Performance metrics for different models and feature sets

Feature Set & Model Accuracy AUC Sensitivity Specificity
Covariates Only - LR 0.6009 ± 0.037 0.5501 ± 0.039 0.6422 ± 0.028 0.4278 ± 0.016
Covariates Only - RF 0.5899 ± 0.017 0.554 ± 0.029 0.4504 ± 0.022 0.6536 ± 0.046
Covariates + 1 Day Back - LR 0.7011 ± 0.029 0.6624 ± 0.032 0.5653 ± 0.043 0.7959 ± 0.014
Covariates + 1 Day Back - RF 0.7116 ± 0.048 0.6920 ± 0.030 0.5419 ± 0.033 0.8323 ± 0.045
Covariates + TSFresh - LR 0.7206 ± 0.029 0.7729 ± 0.045 0.5601 ± 0.029 0.8323 ± 0.049
Covariates + TSFresh - RF 0.7176 ± 0.022 0.7502 ± 0.041 0.5550 ± 0.016 0.8286 ± 0.042
Covariates + 7 Days Back - LR 0.6941 ± 0.042 0.7478 ± 0.020 0.5468 ± 0.027 0.7973 ± 0.028
Covariates + 7 Days Back - RF 0.6784 ± 0.044 0.7282 ± 0.049 0.5407 ± 0.044 0.7739 ± 0.040
Covariates + 7 Days Back - TST 0.7440 ± 0.033 0.7902 ± 0.027 0.7774 ± 0.012 0.6946 ± 0.013
Covariates + 7 Days Back - Mamba 0.7549 ± 0.026 0.7945 ± 0.032 0.7951 ± 0.023 0.6995 ± 0.026

Our analysis reveals that using an SSM was the most effective model for forecasting exercise lapses
based on AUC and accuracy. In comparison to the traditional machine learning methods, it had a
higher sensitivity. This suggests that SSM predicted a greater proportion of the exercise lapses (i.e.,
points of behavioral vulnerability) Nahum-Shani et al. (2018). For LR and RF, we saw between a
6% to 10% increase in RF and LR’s AUC after leveraging TSFresh’s feature extraction functions
and then running PCA on the outputs. This implies that, from a data-centric machine learning
viewpoint, incorporating features derived from wearable biosensors could effectively bolster the
model’s predictive performance.

3.2 FEATURE IMPORTANCE

To understand clinical implications of the models, we conducted an explainability analysis on RF
and LR leveraging the 1-day look-back window feature set. Through SHAP (SHapley Additive
exPlanations) analysis Lundberg & Lee (2017), we successfully identified both individual-level co-
variates and daily factors that predict the likelihood of engaging in exercise activities, as detailed
in Appendix Figure 2. Notably, lower Body Mass Index (BMI) and younger age were among the
individual-level predictors of increased exercise frequency throughout the study period. Further-
more, daily variables such as improved sleep quality, reduced evening fear of hypoglycemia, and
minimized daytime experiences of hyperglycemia were associated with a heightened probability of
exercise in the subsequent 1-7 days. Similarly, the LR model also highlighted the significance of
both individual-level covariates and daily factors in predicting exercise activities, with a particular
focus on the patterns of blood glucose levels in relation to exercise, as indicated in Appendix Table 2.

4 DISCUSSION

In conclusion, machine learning models that leverage biosensor, mood, and sleep data were used
to predict days of non-exercise among adults with T1D, based on information collected leading up
to the day. These time-series deep learning models (SSM, TST) could be the starting algorithm for
a just-in-time adaptive intervention mobile app, that could subsequently be trained upon individual
users to anticipate their personal days of vulnerability to missing exercise and send encouraging
messages on the mornings of those days. Given SSM success in this task and its higher efficiency in
memory usage over transformer models, we envision the future of edge computing Hanzelik et al.
(2022) to involve state-of-art state space models like Mamba.
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5 LIMITATION

A limitation of our study is the relatively small amount of available data, with just over 1,000 train-
ing instances, which may impact the generalizability and robustness of the machine learning mod-
els. Additionally, although there were missing data entries (approximately 14.3% of entries), we
assumed missingness at random which may not have been the case. Future studies can address the
limitations of our work by incorporating datasets with more datapoints, which would enhance the
generalizability and robustness of machine learning models and add power to address variance. It
could be similarly useful to address additional variables. For instance, hypoglycemia was assessed
both objectively and for psychological sequalae, while hyperglycemia was only assessed objectively.
Yet both were predictors of exercise lapses so psychological sequalae of hyperglycemia could be a
valuable additional variable even though it has only been minimally addressed in the literature Singh
et al. (2014); Polonsky et al. (2021); Lin et al. (2022).
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Figure 2: On the left, RF feature importance (fold 1) expressed as a Shapley Plot. On the right, LR
feature importance (average of 5 folds) expressed as absolute value of the coefficient.

APPENDIX

BIOMETRIC OBSERVATION DATA CAPTURE:

The trial intervention (NCT04204733)Ash et al. (2023) provided participants with exercise videos
and biometric-based coaching, both supplied by GlucoseZone.com (Fitscript LLC, New Haven, CT).
Recruitment (December 2019 – August 2020) used social media, clinic registry, advertisements, and
previous trial participants. The inclusion criteria were: 18-65 years old with ≥6mo diagnosis of T1D
or other absolute insulin deficiency diabetes, inadequate baseline exercise patterns (<3 exercise
sessions/wk) Tonstad et al. (2018), English literacy, current user of a smartphone and continuous
glucose monitor (CGM). Exclusion criteria were chronic disease or physical disability requiring
exercise adjustments outside the scope of the digital exercise guidance platform.

Observational data capture included: (1) Exercise. Apple Watch 3 (Cupertino, CA) heart rate ≥50%
age-predicted maximum while viewing exercise video (subdivided as moderate if heart rate 50%-
79% maximum or resistance exercise in beginner-intermediate difficulty category assigned by pro-
ducer [GlucoseZone.com, New Haven, CT], vigorous if heart rate ≥80% or resistance exercise in ad-
vanced category). Most (99%) of the bouts amounted to ≥30 metabolic equivalent (MET)-minutes,
meaning they required as much or more energy as 10 minutes of brisk walking. (2) Blood glucose.
Participants used their own CGM device which was the Dexcom (San Diego, CA) G6 (40%), G5
(10%), G4 (5%), Medtronic (Dublin, Ireland) 670G (35%), and Abbott (Chicago, IL) Freestyle Li-
bre (10%). Values were measured every 5min for the Dexcom and Medtronic devices, and every
15min for the Abbott. They were captured and processed by Dexcom Clarity, Medtronic CareLink,
or Abbott Libreview Pro respectively, and for each day 24hr summary metrics were recorded includ-
ing mean, variability (coefficient of variation), % of time hyperglycemic (¿180 mg/dL), % of time
in clinical target range (70-180 mg/dL), and % of time hypoglycemic (¡70 mg/dL) Battelino et al.
(2023). Completeness was 90% (SD 9%) bypca participant. (3) Ecological momentary (i.e., real-
time) surveys. Qualtrics (Provo, UT) smartphone survey each morning at self-expected waketime
(response delay ≤3hr allowed) prompted participant to report previous night sleep quality (1-10
scale) Monk et al. (1994) and overnight fear of hypoglycemia (1-5 scale) Martyn-Nemeth et al.
(2017), current fear of hypoglycemia for the coming day (1-5 scale) Martyn-Nemeth et al. (2017),
and illness (yes/no).
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Table 2: Descriptive statistics of variables used for features. Expressed as mean±standard deviaition
if normally distributed, median (25th, 75th %’ile) if skewed, frequency if binary.

Metric Definition Day-Level
Participant-
days (k=1,020)

Participant-Level
(i.e., weighted by
participant) Par-
ticipants (n=17)

Standard
Clinical Rec-
ommendation

Blood glucose pat-
terns, 24hr

Variability 24hr Coefficient of varia-
tion (%)

26.3 (21.5, 31.6) 26.9 (21.7, 32.9) ≤ 36%

Time in hyper-
glycemia

24hr time >180 mg/dL (%) 23.9 (10.7, 43.1) 26.6 (11.0, 49.5) ≤ 25%

Time in target
range

24hr time 70-180 mg/dL
(%)

72.2 (49.17, 85.9) 74.4 (50.2, 87.0) ≥ 70%

Time in hypo-
glycemia

24hr time <70 mg/dL (%) 0.0 (0,15.3) 0.0 (0, 2.2) ≤ 4%

Mean 24hr mean (mg/dL) 145 (126, 174) 148 (127, 183) ≤ 154

Blood glucose pat-
terns, around exer-
cise

Total occurrences
(% of the 421
exercise days)

Total participants
with at least one
occurrence (% of
the 17 participants)

#1: Inadequate Car-
bohydrate Supple-
mentation

Blood glucose <70 mg/dL
at the start of exercise
OR (blood glucose 70-100
mg/dL at the start of exer-
cise AND <70 mg/dL dur-
ing or within 1hr after exer-
cise)

22 (5.2%) 5 (29.4%) To avoid

#2: Nocturnal Hy-
poglycemia

Blood glucose <70 mg/dL
for 30min of consecutive
nocturnal readings after day
with exercise

17 (4.0%) 5 (29.4%) To avoid

#3: Inadequate In-
sulin Reduction

Insulin bolus (observed on
pump or Bluetooth pen)
<120min before start of
exercise AND blood glu-
cose <70 mg/dL during or
within 1hr after exercise

14 (3.3%) 6 (35.3%) To avoid

#4: Elevated Blood
Glucose at Exercise
Start

Momentary surveys (i.e.,
ecological momentary as-
sessment)

7 (1.7%) 3 (17.6%) To avoid

Survey Values

Sick Day Yes or No 71 (16.9%) N/A
Morning Fear of
Hypoglycemia

1 – 5 Likert scale 154 (36.6%) cases
with values > 1

1.0 (1.0, 2.1) N/A

Evening Fear of
Hypoglycemia

1 – 5 Likert scale 141 (33.5%) cases
with values > 1

1.0 (1.0, 2.1) N/A

Sleep Quality 1–10 Likert scale 7.0 ± 2.0 7.2 ± 1.7 N/A

Demographics

Gender 55% female N/A
Age (years) 42.3 ± 15.0 N/A
T1D duration
(years)

20.5 ± 15.3 N/A

T1D therapy
modality

85% continuous
subcutaneous
insulin infusion
pump

N/A

15% multiple daily
injections

N/A

BMI (kg/m2) 29.5 ± 5.1 18.5 to 24.9
HbA1c (%) 7.2 ± 1.1 <7.0
Systolic blood pres-
sure (mmHg)

123 ± 16 <120

Diastolic blood
pressure (mmHg)

77 ± 9 <80

Race/Ethnicity 95% non-Hispanic
white

N/A

Income annual 15% <$50,000 N/A
35% $50,000 -
$79,999

N/A

50% ≥$80,000 N/A

§Three participants (15%) were excluded (insulin pump download error, manual insulin logging with unreasonable timestamps).
§From remainder, 161 (14%) of person-days were excluded for missing survey or CGM data leaving 1,020 person-days for analysis.
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Covariance With TSFresh:

Figure 3: Heat map with clustering of TSFresh features. The presence of several distinct clusters
indicates some highly collinear features, supporting the decision to do feature reduction.

PCA

Figure 4: We used PCA to reduce collinearity among the initial 1000 features generated from
TSFresh and we found that 109, 108, 107, 106, and 108 components were needed to capture 95% of
the variance, respectively.
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Time Series Transformer: Confusion Matrix

Figure 5: Confusion matrix of time series transformer.
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Figure 6: Confusion matrix of mamba.

Figure 7: Random forest Shap Plots across each of the 5 folds
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Table 3: A comprehensive collection of automatically extracted time series features from TSFresh
that encompass statistical, energy-based, distributional, and structural characteristics.

Class Feature Description

Basic Statistics

mean(x) Mean of x
std(x) Standard deviation of x

max(x) Highest value in x
min(x) Lowest value in x

Distribution

variance(x) Variance of x
skewness(x) Skewness of x
kurtosis(x) Kurtosis of x
median(x) Median of x

absolute maximum(x) Highest absolute value in x
absolute sum of changes(x) Sum of absolute value of consecutive changes in x

Energy

abs energy(x) Absolute energy (sum of squared values)
sum values(x) Sum of values in x

root mean square(x) Root mean square (rms) of x
sum of reoccurring data points(x) Sum of data points present more than once

sum of reoccurring values(x) Sum of values present more than once
percentage of reoccurring values(x) Percentage of values occurring more than once

Time Series Characteristics

length(x) Length of x
has duplicate(x) Checks for duplicate values in x

has duplicate max(x) Checks if the maximum value is observed more than once
has duplicate min(x) Checks if the minimum value is observed more than once

variation coefficient(x) Variation coefficient (std. error / mean) of x
symmetry looking(x) Indicates if the distribution of x is symmetric

Peaks and Trends

number peaks(x, n) Number of peaks with support n
linear trend(x, param) Linear trend over the entire series

linear trend timewise(x, param) Linear trend over time
longest strike above mean(x) Length of consecutive subsequence above mean

Entropy and Complexity

permutation entropy(x, tau, dimension) Permutation entropy
binned entropy(x, max bins) Binned entropy

lempel ziv complexity(x, bins) Lempel-Ziv complexity
fourier entropy(x, bins) Fourier entropy

sample entropy(x) Sample entropy

Logistic Regression Feature Importance

Figure 8: Logistic regression feature importance across each of the 5 folds. Average of the 5 folds
shown Figure 2.
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