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DepthCloak: Projecting Optical Camouflage Patches for
Erroneous Monocular Depth Estimation of Vehicles

Anonymous Authors

ABSTRACT
Adhesive adversarial patches have been common used in attacks
against the computer vision task of monocular depth estimation
(MDE). Compared to physical patches permanently attached to
target objects, optical projection patches show great flexibility and
have gained wide research attention. However, applying digital
patches for direct projection may lead to partial blurring or omis-
sion of details in the captured patches, attributed to high informa-
tion density, surface depth discrepancies, and non-uniform pixel
distribution. To address these challenges, in this work we introduce
DepthCloak, an adversarial optical patch designed to interfere with
the MDE of vehicles. To this end, we first simplify the patch to
a gray pattern because the projected “black-and-white light” has
strong robustness to ambient light. We propose a generative adver-
sarial network (GAN) based approach to simulate projections and
deduce a projectable list. Then, we employ neighborhood averaging
to fill sparse depth values, compress all depth values into a reduced
dynamic range via nonlinear mapping, and use these values to
adjust the Gaussian blur radius as weight parameters, thereby simu-
lating depth variation effects. Finally, by integrating Moiré pattern
and applying style transfer techniques, we customize adversarial
patches featuring regularly arranged characteristics. We deploy
DepthCloak in real driving scenarios, and extensive experiments
demonstrate that DepthCloak can achieve depth errors of over nine
meters in both bright and night-time conditions while achieving
an attack success rate of over 80% in the physical world.

CCS CONCEPTS
• Security and privacy→ Systems security.

KEYWORDS
Monocular Depth Estimation, Optical Projection Attack, Physical
Attack

1 INTRODUCTION
In comparisonwith stereovision (employing ≥ two cameras) [30, 31]
and laser-based depth perception technologies (e.g., LiDAR) [13],
monocular depth estimation (MDE) [15] has quickly emerged as
an essential technology in autonomous driving or assisted driving
systems due to its cost-effectiveness, simplicity, and ease of inte-
gration. Numerous automotive manufacturers have incorporated
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MDE into their perception systems. For instance, Tesla has recently
introduced the utilization of self-supervised models in MDE [24].

MDE predominantly acquires relative depth information of a
scene indirectly through the analysis of color, vertical object ar-
rangement, shadows, and other visual cues. However, a solitary
two-dimensional (2D) image does not provide explicit information
regarding the three-dimensional (3D) spatial arrangement, and the
model dependence on the indirect visual hints is not inherently
associated with depth. This interdependence renders MDE particu-
larly vulnerable to adversarial attacks, wherein attackers can easily
manipulate image colors, create artificial shadows, or change the
positions of objects to disrupt and deceive the depth estimation
process.

Attack strategies targeting at depth estimation models can be
generally classified into two types: digital perturbation and physical
patch-pasting attacks. Zhang et al. [33] demonstrate that digital
perturbation attacks introduce perturbations in the digital domain
by specifying various attack scenarios for depth estimation includ-
ing non-targeted, targeted, and universal attacks. Cheng et al. [1]
present a physical patch pasting attack, where pre-trained adversar-
ial patches are affixed to targeted areas such as the rear of vehicles to
interfere with depth estimation. Despite their effectiveness, limita-
tions still exist. Digital perturbation attacks rely on the assumption
that attackers possess comprehensive scene information before the
image is processed by the depth estimation system, a condition
often unattainable in real-world scenarios. On the other hand, phys-
ical patch-pasting attacks suffer from inflexibility, necessitating
physical modification of targets, and are susceptible to exposing
the attacker’s identity through patch recognition.

A recently proposed physical attack technique that has attracted
considerable attention is the light projection attack. SLAP [18] pro-
poses a projectable color spectrum and employs a projection model
to create adversarial perturbations, which can effectively deceive
target recognition systems. OPAD [3] strategically updates adver-
sarial samples by estimating color mixing matrices in the presence
of constant illumination gradients. However, such light projection
attacks exhibit specific limitations: (1) They mainly focus on com-
promising target recognition systems (e.g., facial recognition sys-
tems, traffic sign recognition); (2) They are particularly susceptible
to significant environmental light disturbances; (3) They necessitate
precise alignment of projected disturbances with the targeted areas.

To overcome these limitations of light projection attacks, this
study introduces a novel MDE attack named DepthCloak, which
exhibits high robustness to variations in environmental lighting
conditions. Figure 1 depicts an example of the attack scenario. At-
tackers can remotely manipulate light patches that are projected
onto the front of targeted vehicles, leading to the generation of
anticipated errors in the victim vehicle’s depth estimation system.
Note that the direct application of pre-trained adhesive patches

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: An example of our attack scenario.

Figure 2: The attack performance evaluation of the state-of-
the-art approach [1] in simulated scenarios using both pasted
and projected patches.

to light projection can cause a decrease in the effectiveness of ad-
versarial attacks as illustrated in the simulated results (Figure 2).
Therefore, the creation of an MDE light projection patch withstand-
ing variations in the physical environment still poses a significant
challenge. This study undertakes a comprehensive analysis of the
causes of failure. The challenges are outlined as follows:

Challenge 1 (High Visual Information Density): The high
density of visual information within color patches may cause the
loss of essential patch details under conditions of intense environ-
mental illumination.

Challenge 2 (Effect of Non-Planar Surface): The inherent
non-planar surface of the designated target area, accompanied by
variations in depth, introduces a significant propensity for the visual
distortion of patches.

Challenge 3 (Disparity in Pixel Distribution): A heteroge-
neous distribution of pixels within patches can engender the erro-
neous transcription of critical information. This challenge is exac-
erbated by phenomena such as the dispersion of light, suboptimal
reflective properties, and the smoothing effect of camera processing
algorithms.

We conduct preliminary analysis on the robustness of various col-
ors in intense lighting environments and find that white and black
exhibit the lowest sensitivity to environmental light disruptions.
Notably, when projected, white and black create optical illusions
through contrast manipulation. White is perceived by elevating the
brightness of the background, while black is conventionally repre-
sented by using the background colors. Therefore, the adversarial
patches are first simplified into grayscale. Then, we analyze the
absolute alterations in background colors captured by the camera
under white light projection across various environmental light

conditions. We identify distinct distribution patterns of brightness
and saturation in mixed colors resulting from projecting white
light onto various background colors. Based on this discovery, we
design a GAN-based simulation of camera-projection processes.
The primary focus is to minimize the disparities in brightness and
saturation levels between the synthesized projection image and
the authentic projection image. Consequently, a projectable list is
established to compensate for the projection loss during light patch
training.

To mitigate the blurring problem resulting from non-planar pro-
jection surfaces, we introduce a strategy for modeling projection
depth. While conventional 3D modeling methods can yield precise
models, the process is time-consuming and lacks differentiability.
To this end, we adopt a technique to streamline the process of 3D
modeling into a differentiable 2D image processing procedure. Ini-
tially, a simple and effective neighborhood averaging technique is
employed to address the problem of missing depth values in the
depth map. Subsequently, these depth values are compressed into a
reduced dynamic range via nonlinear mapping. The adjusted depth
values are utilized as weight parameters to accurately modify the
radius of Gaussian blur. This process effectively replicates depth of
field effects.

To address the issue of non-uniform pixel distribution in ad-
versarial patches, we utilize deep photo style transfer [19] as the
solution. Specifically, opting for two sets of interleaved regular si-
nusoidal waves creates the foundational design. While maintaining
the overall equilibrium of patch content and style, we further en-
hance and modify the patches by integrating projection losses with
the anticipated depth losses in the specified area. This customiza-
tion effectively tailored adversarial patches with systematically
arranged features resembling Moiré patterns.

We evaluate the attack performance of DepthCloak in digital
and physical domains on three SOTA self-supervised MDE models
(Monodepth2[5], Depthhints[25], and Manydepth[26]). In digital-
world testing phase, which encompasses 100 evaluation scenarios,
DepthCloak effectively induces the depth estimation root mean
square error (RMSE) of more than 15 in 76 scenarios spanning all
three target models. During the assessment of physical-world, we
observe that in up to 70% of video frames, the RMSE of target area
depth estimation exceeds 15. Additional robustness testing reveals
that DepthCloak displays enhanced attack performance compared
to the other two attack methods, particularly under low-light con-
ditions, showcasing more pronounced performance advantages.

2 RELATEDWORK
2.1 Monocular Depth Estimation Attacks
Recently, numerous studies have investigated the impact of adver-
sarial perturbations on MDE tasks. Zhang et al. [33] refine existing
attack methodologies designed for image classification tasks, adapt-
ing them for depth estimation tasks. They successfully induced
depth estimation discrepancies of 3 to 4 times the real values for
specified targets. Wong et al. [28] utilize an iterative optimization
approach to find subtle additional perturbations capable of altering
predictions made by depth prediction networks (e.g. removing the
target while keeping other scene components intact). Mopuri et al.
[20] examine universal perturbations in a data-independent setting
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for segmentation and depth prediction to alter predictions in arbi-
trary directions. Dijk et al. [27] believe that most MDE networks
overlook the apparent size of known obstacles, the minor camera
pitch changes also disrupt estimated distances to obstacles. Hu et
al. [9] employ the iterative fast gradient sign method (IFGSM) to
disrupt depth estimation CNNs, and propose a defense mechanism
based on predicted saliency maps.

However, such a perturbation strategy relies on the assumption
that attackers can manipulate the entire scene before the image
input system, which is impractical in real-world scenarios. Conse-
quently, adversarial patch attacks have gained significant attention
due to their higher feasibility for deployment in physical-world.

Zheng et al. [10] propose a 3D texture adversarial attack against
MDE models. They conduct robustness simulation tests under ad-
verse weather conditions such as rainy and foggy. Guesmi et al. [6]
introduce a shape-sensitive adversarial patch (SSAP) to disrupt both
CNN-based and Transformer-based MDE models. Yun et al. [29]
strategically place and generate adversarial patches to deceive MDE
models, thereby distorting the depth estimation results of target
vehicles. SAAM utilizes data augmentation techniques and intro-
duces semantic constraints to ensure that the generated adversarial
patterns visually resemble natural images through a projection
function [7].

However, those works are limited to simulating attacks in digital-
world and not deploying in physical-world. Yamanaka et al. [32]
deploy the patches pre-trained in digital-world into physical-world
through printing. They analyze the behavior of MDE under at-
tacks by visualizing the activation levels of intermediate layers
and regions potentially affected by adversarial attacks. Cheng et
al. [1] balance the stealthiness and effectiveness of attacks through
object-oriented adversarial design, sensitive area localization, and
natural style camouflage. These works demonstrate effectiveness
in physical-world, while they may suffer from the following limita-
tions: 1) Attackers require physical contact with the target object;
2) Printed patches may leave permanent attack traces; 3) Attack
performance may decrease in low-light conditions.

2.2 Optical Projection Attacks
Optical projection attacks are favored by attackers for their flexi-
ble approach to deploying attacks. AdvCP employs particle swarm
optimization to search for the physical parameters of color projec-
tion, then projecting meticulously designed optical patterns onto
specified target objects[8]. Huang et al. [11] utilize PCNet to simu-
late real-world projection and capture processes with high fidelity.
Nguyen et al. [22] explore the feasibility of conducting real-time
physical attacks on facial recognition systems through the use of
adversarial light projection. OPAD employs structured illumination
to alter the appearance of target objects, constructing a form of ad-
versarial attack in physical-world that can effectively deceive image
classifiers [3]. Zhong et al. [4] craft physical perturbations based
on the natural phenomenon of light and shadow, which is more
natural and covert. Li et al. [17] propose a structured light attack
targeting 3D facial recognition systems. Zhou et al. [16] exploit vul-
nerabilities associated with lens flare effects in optical imaging to
inject false obstacle depths. SLAP establishes a triadic additive rela-
tionship model among surfaces, projections, and camera-perceived

images, utilizing light projectors to execute short-duration physi-
cal adversarial attacks[18]. Muller et al. [21] develop a systematic
process to identify effective attack regions in projector attacks and
propose a hijacking attack against Siamese trackers.

3 ATTACK MODEL
Attack Goal. DepthCloak is designed to deceive the depth estima-
tion system of the victim vehicle, leading to misperceptions of the
actual distance to the target vehicle (the vehicle with the adversarial
patch), especially misidentifying nearby targets as farther away.
Additionally, DepthCloak possesses the following characteristics:
1) No physical modification of the target object; 2) Allowing at-
tackers to adjust attack modes and intensity in real-time, providing
strong attack flexibility; 3) Maintaining strong attack performance
in nighttime environments.

Attack Scenarios. DepthCloak enables attackers to remotely
control a UAV equipped with a portable projector, which projects
pre-trained patches onto specific areas of the target vehicle. Alter-
natively, it can also be achieved by pre-deploying roadside devices
and remotely adjusting the projection direction based on the actual
position of the target vehicle. DepthCloak can be deployed in sce-
narios where the victim vehicle is waiting at traffic lights or leaving
toll booths, traveling in the same lane as the target vehicle, thereby
increasing the risk of collision between the victim vehicle and the
target vehicle.

Attacker Capabilities. Assuming the attacker possesses the
following capabilities: 1) Full prior knowledge of the depth estima-
tion model, including its architecture, weights, and training data,
enabling further analysis of the potential vulnerabilities through
reverse engineering techniques; 2) A certain level of physical access,
including the ability to deploy the attack at specific locations; 3)
The attacker can swiftly deploy and retract attacks within a brief
time window, indicating their extensive experience in operating
UAVs.

4 DESIGN OF DEPTHCLOAK
4.1 Overview
We develop an adversarial optical patch designed to withstand
ambient light and induce errors in the MDE of vehicles. Figure 3
illustrates the overall pipeline of DepthCloak. Initially, we identify
the target area within the selected attack scenario and segment it
into a 4×4 grid to accurately ascertain the blocks where the patch
will be positioned [1]. Subsequently, the projection modeling of the
patch area modulates pixel blurriness by utilizing depth values as
weights. The resulting patch is then seamlessly integrated into the
scene, with adjustments made to brightness and saturation based
on a predefined projectable list. Following this, we construct the
depth loss function, aligning it with the desired depth of the target
area to optimize the patch design for effective depth perception
deception. Finally, the style of the patch is transferred, guided by
the reference image.

4.2 Projection Modeling
According to the results from Monodepth2 presented in Figure 2,
it is evident that the use of the projected patch has mitigated its
adversarial effectiveness to a certain extent. This can be attributed
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Figure 3: Overview of DepthCloak.

to the target surfaces for projection being non-planar, leading to a
partial blurring of patch information. DepthCloak develops a depth
projection model tailored for projection attacks.

Given a scenario, the target object𝑂 and the original patch 𝑝 are
selected, yielding the target mask𝑚𝑂 and the patch mask𝑚𝑝 . The
sparsity of point clouds obtained by LiDAR leads to the converted
depth map having some invalid depth values. Let 𝑑𝑖, 𝑗 be the depth
value at pixel location (𝑖, 𝑗) in the patch depth map. If 𝑑𝑖, 𝑗 is missing
or invalid, we employ the average neighboring pixels to fill it. The
completed 𝑑′

𝑖, 𝑗
can be formalized as:

𝑑′𝑖, 𝑗 =

{
𝑑𝑖, 𝑗 , if 𝑑𝑖, 𝑗 is valid

1
|𝑀𝑖,𝑗 |

∑
(𝑥,𝑦) ∈𝑀𝑖,𝑗

𝑑𝑥,𝑦, if 𝑑𝑖, 𝑗 is missing or invalid
(1)

where
��𝑀𝑖, 𝑗

�� is the number of valid neighboring pixels, and 𝑑𝑥,𝑦 are
the depth values of those valid neighbors.

Then, we incorporate a smooth, nonlinear mapping approach,
specifically a Sigmoid function, to compress depth values within a
restricted dynamic range of [0, 1]. The computation of the weight
𝜔𝑖, 𝑗 is delineated as follows:

𝜔𝑖, 𝑗 =
1

1 + 𝑒
−(𝑎𝑑 ′

𝑖,𝑗
+𝑏 ) , (2)

where 𝑎 and 𝑏 are empirically set to -0.5 and 5, respectively.
Finally, we apply the weight 𝜔𝑖, 𝑗 to the patch 𝑝 , and perform

per-pixel processing using Gaussian blur:

𝑝′𝑖, 𝑗 = G𝜔𝑖 . 𝑗
∗ 𝑝𝑖, 𝑗 , (3)

where the size of G, which influences the level of blur, is directly
affected by the weight 𝜔𝑖 . 𝑗 . 𝑝′ represents the patch obtained after
depth modeling.

4.3 Projectable Loss
Typically, to enable the effectiveness of adversarial patches in
physical-world, attackers employ a non-printable score [23]. The
colors captured by the camera during projection are influenced by
various factors (e.g., ambient light, background color, and material
of the surface). The projection spectrum is much narrower than

that of printed patches under these conditions. We propose a GAN
framework to simulate the camera-projection process in the digital
domain. The goal is to learn background-projection image mapping
to create a projectable list. Figure 4 depicts the GAN framework,
comprising the generator and discriminator sub-networks. Our task
can be formalized as:

min
𝐺

max
𝐷

W(𝐷,𝐺) = E𝑜∼𝑝𝑝𝑟𝑜 𝑗 [log𝐷 (𝑜)]

+ E𝑏∼𝑝𝑏𝑔 [log(1 − 𝐷 (𝐺 (𝑏, 𝑧)))],
(4)

where 𝑜 represents the projected image of the Ground truth, and
𝑏 stands for the background image. 𝑧 is a random noise vector
sampled from the probability distribution 𝑝𝑏𝑔 .

Generator Network. We apply several convolutional layers to
extract shallow features of the background image and fuse them
with the intermediate features calculated based on the noise vector
𝑧. This process can be described as follows:

𝑜′ = 𝐺 (𝑏, 𝑧) = 𝐺 (𝑏, E(𝑜)), (5)

where 𝑜′ represents the generated projected image, and E denotes
the encoder. It transforms the projected image into features, i.e., the
mean and variance of 𝑧. The generation loss of L𝐺 is expressed as:

L𝐺 = L𝑔𝑒𝑛 + 𝛼1L𝑧 + 𝛼2 (L𝑣𝑎𝑙 + L𝑠𝑎𝑡 ) . (6)

L𝑔𝑒𝑛 aims to train the generator to output projected images that
can deceive the discriminator. can be calculated as:

L𝑔𝑒𝑛 = 𝑙𝑜𝑔(1 − 𝐷 (𝑜′)) . (7)

L𝑧 is used to constrain the latent variable 𝑧 of the encoder E
to follow an isotropic Gaussian distribution, and is calculated as
follows:

L𝑧 =

𝑛∑︁
𝑖=1

{
𝜇2
𝑖
+ 𝜎𝑖 − 𝑙𝑜𝑔𝜎𝑖 − 1

2

}
, (8)

where 𝜇 and 𝜎 are the mean and variance of 𝑧, and 𝑛 denotes the
dimensionality of 𝑧. Brightness loss L𝑣𝑎𝑙 and saturation loss L𝑠𝑎𝑡
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Figure 4: Camera-projection simulation process based on
GAN network.

can be calculated as 𝐿2 norm of V and S channels between the
generated and real projected images respectively:

L𝑣𝑎𝑙 =
1
𝑁

𝑁∑︁
𝑖=1

V𝑖
𝑔𝑒𝑛 −V𝑖

𝑝𝑟𝑜 𝑗


2
, (9)

L𝑠𝑎𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

S𝑖
𝑔𝑒𝑛 − S𝑖

𝑝𝑟𝑜 𝑗


2
, (10)

whereV𝑖
𝑔𝑒𝑛 and S𝑖

𝑔𝑒𝑛 represent the 𝑖𝑡ℎ pixel brightness and satura-
tion in the generated image, andV𝑖

𝑝𝑟𝑜 𝑗
and S𝑖

𝑝𝑟𝑜 𝑗
in the real image.

𝑁 is the total pixel count.
Discriminator Network. The discriminator 𝐷 attempts to iden-

tify whether the images come from projected images or generated
images, with its loss defined as:

L𝐷 = −𝑙𝑜𝑔(𝐷 (𝑜)) − 𝑙𝑜𝑔(1 − 𝐷 (𝑜′)) . (11)

To strike a balance between performance and efficiency in our
GAN network, we employ a single global discriminator, primarily
based on the structure of AlexNet [14]. We can effectively har-
ness its capacity for feature extraction and discrimination while
maintaining computational efficiency.

Figure 5 clearly illustrates that for different background colors,
there are distinguishable intervals of brightness and saturation.
Subsequently, according to the feature extraction rules of the GAN
network, we assess the ranges of projected brightness and satu-
ration values for different background colors, used to generate a
projectable list C = (C𝑣, C𝑠 ). The projection loss is expressed as:

L𝑝𝑟𝑜 𝑗 =

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑚𝑖𝑛
V𝑝𝑖,𝑗 − C𝑣


2 +

S𝑝𝑖,𝑗 − C𝑠

2, (12)

where V𝑝𝑖,𝑗 and S𝑝𝑖,𝑗 represent the brightness and saturation of
patch pixels, respectively.

4.4 Style Transfer
To mitigate the interference from strong ambient light on the pro-
jected patch, we simplify the patch’s color complexity and restrict
it to a gray pattern. This decision stems from projection technology
principles: perceived white light enhances background brightness,
while “black light” is a visual illusion caused by contrast, not actual

Figure 5: Brightness and saturation distributions of generated
images under different backgrounds.

light. Empirical testing has identified two main projection strate-
gies: white projection (adjusting background brightness) and black
projection (preserving the original background color).

Unfortunately, while gray patches mitigate strong ambient light,
their non-uniform pixel distribution causes camera-captured im-
ages to lack essential information. Consequently, we introduce
Moiré patterns (formed by the crossing of two waveforms, dis-
tributed uniformly) as the reference style, and employ deep photo
style transfer [19] for patch customization. Specifically, we define
two losses: style loss L𝑠𝑡𝑦𝑙𝑒 and content loss L𝑐𝑜𝑛𝑡 , represented as
follows:

L𝑠𝑡𝑦𝑙𝑒 =

𝐿∑︁
𝑙=1

G(F𝑙 (𝑝𝑠𝑡𝑦𝑙𝑒 ) − G(F𝑙 (𝑝0))

2 , (13)

L𝑐𝑜𝑛𝑡 =

𝐿∑︁
𝑙=1

F𝑙 (𝑝) − F𝑙 (𝑝0)

2 , (14)

where F𝑙 represents the features extracted at the 𝑙𝑡ℎ layer of the
feature extraction network F, and G is the Gram matrix of deep
features. 𝐿 denotes the count of convolutional layers in F. 𝑝𝑠𝑡𝑦𝑙𝑒 is
the style reference image, and 𝑝0 is the transferred patch image.

4.5 Adversarial Patch Updating
The depth loss is designed as the most critical loss to amplify the
estimation error, represented as follows:

L𝑑𝑒𝑝𝑡ℎ =

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

D𝑡𝑎𝑟𝑔𝑒𝑡 −M𝑝′
𝑖,𝑗


1
, (15)

D𝑡𝑎𝑟𝑔𝑒𝑡 represents the desired depth of the target area, while M
refers to the depth estimation obtained by applying 𝑝′ to the target
area. Our total loss is denoted as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑑𝑒𝑝𝑡ℎ + 𝛼L𝑝𝑟𝑜 𝑗 + 𝛽 (L𝑠𝑡𝑦𝑙𝑒 + L𝑐𝑜𝑛𝑡 ) . (16)

The image processing pipeline is architected to be entirely dif-
ferentiable, enabling efficient gradient backpropagation from depth
estimation to the input adversarial patch. Additionally, we use
Adam to optimize the total loss. The objective is to minimize the
total loss L𝑡𝑜𝑡𝑎𝑙 , freezing depth network weights and biases, and
updating the adversarial patch via backpropagation.
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Figure 6: Deployment of DepthCloak in physical-world.

5 EXPERIMENTS
5.1 Experimental Setup
Model Selection. In the experiments, three state-of-the-art (SOTA)
MDE models are employed: Monodepth21, Depthhints2, and Many-
depth3. There are three reasons for the selection of these models:
(1) Efficient collection of training data is possible through the use
of RGB cameras that capture monocular videos or stereo pairs,
allowing for cost-effective model training; (2) The three models,
among self-supervised MDE models, have demonstrated strong
representativeness by achieving good performance using different
frameworks; (3) The models are openly accessible in GitHub repos-
itories and have an impact on the field or technical community.

Training Settings. In the projectable modeling study, a dataset
comprising 1,200 paired samples is gathered under various environ-
mental lighting conditions (e.g., shadow occlusion, twilight, indoor
lighting, and low-light nighttime) and different backgrounds (e.g.,
gray, red, blue, and white), both with and without projection. This
dataset is utilized to create a projectable list. Subsequently, we em-
ploy real-world driving scene data from KITTI dataset [12] to train
and test adversarial patches. In Equation (6), the prior hyperparam-
eter 𝛼1 and 𝛼2 are both set to 100. The dataset comprises calibrated
stereo videos captured by LiDAR, encompassing various scenarios
like highway driving, urban roads, rural roads, and congested traffic
situations such as following vehicles and waiting at traffic lights. 𝛼
and 𝛽 are set as 1.5 and 1, respectively, acting as hyperparameters
to balance distinct loss components in Equation (16). All experi-
ments are conducted on a server that is equipped with an NVIDIA
GeForce RTX 3090-24G, Python 3.7, and PyTorch 1.5. We employ
Adam optimizer with a learning rate of 10−3, a batch size of 8, and
conduct training for 40 epochs.

Physical Deployment.We conduct physical attack experiments
on campus roads and parking lots. Figure 6 presents the deployment
of a physical attack in a parking lot, wherein the attacker utilizes a
portable projector (Lenovo T6X) to project pre-trained patches onto
specific target areas. Simultaneously, an iPhone 12 Pro functions as
the victim camera, capturing dynamic scenes in the foreground.

Evaluation Metrics. To evaluate the attack performance of
DepthCloak, the evaluation metrics include the attack success
rate (ASR), root mean square error (RMSE), absolute relative error
(AbsRel), root mean squared error in log-space (RMSE(log)), and

1Monodepth2, https://github.com/nianticlabs/monodepth2
2Depth Hints, https://github.com/nianticlabs/depth-hints
3Manydepth, https://github.com/nianticlabs/manydepth

Figure 7: Depth discrepancy under different attacks in digital-
world.

squared relative error (Sq Rel). The ASR is defined as the percent-
age of frames in which the average depth estimation error within
the target area, in comparison to the ground truth (depth estima-
tion without any attack), surpasses seven meters. This threshold
of seven meters is considered crucial as it represents the minimum
distance required for objects to be detected to prevent collisions in
typical driving situations [2]. RMSE, AbsRel, RMSE(log), and Sq Rel
represent the standardized metrics employed within KITTI dataset
to assess the depth estimation errors.

5.2 Attack effectiveness
This section evaluates DepthCloak from three aspects: digital-world,
physical-world, and the physical attack success rate.

Digital-world. Adopting the methodologies suggested by Ya-
manaka et al. [32] and Cheng et al. [1], adversarial patches are
developed for three SOTA MDE models. The pre-trained patches
are subsequently administered in a paste-like consistency onto the
designated target regions. To guarantee effective concealment and
practicality, the size of the patch is restricted to 20% of the total
area of the target region. Subsequently, the depth estimation is
performed by applying the target depth estimation models (utilized
during training) to the digital world attack scenes, and the depth
information generated by the models is gathered. The degree of
misdirection induced by the patches is assessed by comparing the
depth estimation results pre- and post-attack. DepthCloak simu-
lates the projection of pre-trained patches onto designated areas
within the digital world, with the resulting attack scenarios being
provided as feedback to the target depth estimation models. 100
scenes from KITTI dataset are chosen for evaluation. Figure 7 com-
pares the effects of patch pasting and digital simulation projection
attack implementation methods.

Figure 7 depicts the results of estimating the depth using three
models in clean scenes and following various adversarial attack
strategies. The first row specifically displays the depth estimation
results produced by these three MDE models in an uncontaminated,
clean environment. The second and third rows display the output re-
sults of each depth estimation model following the implementation
of adversarial attack strategies suggested by Yamanaka et al. [32]
and Cheng et al. [1], correspondingly. The fourth row illustrates
the results of depth estimation following the implementation of
our DepthCloak. The presence of DepthCloak attacks in the digital
domain can greatly distort the accuracy of depth estimation in the
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Figure 8: Depth discrepancy under different attacks in
physical-world.

Figure 9: Comparison of ASRs under different attacks.

target area, leading to diverse levels of error among different models.
In the case of the Monodepth2 model, DepthCloak has the poten-
tial to induce a depth estimation error of up to 26.409. Even when
using the Manydepth model, which demonstrates relatively good
performance, DepthCloak still causes a depth estimation RMSE of
20.742. Experiments conducted in 100 evaluation scenarios reveal
that DepthCloak induces depth estimation RMSE of more than 15
across 76 scenes in the three designated depth estimation models.
This phenomenon can be attributed to DepthCloak, which con-
sists of highly customized projection patches designed for various
scenarios, demonstrating effective interference capability.

Physical-world. In physical-world experimental, we utilize ad-
versarial patches pre-trained using three attack strategies to evalu-
ate their impact on three target depth estimation models. Through-
out the experiment, the adversarial patches are projected onto a
specified area located at the rear of a car. To document this proce-
dure comprehensively, an 8-second video is captured utilizing an
iPhone 12 Pro camera for each scenario, configured with a frame
rate of 30 frames per second. Simultaneously, for comparative pur-
poses, scenarios that are not affected by any attack are documented
as the ground truth. Figure 8 illustrates the errors in depth esti-
mation resulting from various attack strategies and target depth
estimation models.

In Figure 8, DepthCloak demonstrates exceptional attack perfor-
mance in real-world scenarios. When implementing the approach
suggested by Cheng et al. [1] in the real world, there is a decrease in
its attack effectiveness. While the approach suggested by Yamanaka
et al. [32] demonstrates only slight variations in depth error dur-
ing the shift from the digital domain to the real world, its overall

Figure 10: Comparison of attack robustness in both bright
and night lighting conditions.

efficacy is comparatively limited. The primary factor contributing
to this performance gap is rooted in the tailored and optimized
design of DepthCloak for physical-world projection effects, in con-
trast to the other two methods which do not adequately account
for the unique demands of transitioning attacks from the digital
realm to the physical domain during both the design and training
phases. Subsequent examination reveals that, when utilizing Depth-
Cloak, approximately 70% of frames in the video recordings aimed
at the three chosen target depth estimation models exhibit depth
estimation RMSE exceeding 15.

ASR. In subsequent experiments, we assess the success rates
of attacks using three strategies on three depth estimation models
in digital and physical environments. In Figure 9, the results of
experiments conducted in digital-world, which involve the anal-
ysis of 100 evaluation scenarios, indicate that the approach advo-
cated by Cheng et al. [1] attains an ASR exceeding 78%. However,
DepthCloak demonstrates superior performance in this particular
environment. Transitioning to the physical domain, the strategies
suggested by Yamanaka et al.[32] and Cheng et al. [1] demonstrate
a decline in effectiveness. In contrast, DepthCloak demonstrates
an ASR exceeding 80% even within physical environments. The
series of experimental results present in Figure 9 not only empha-
size the effectiveness of DepthCloak in navigating both digital and
physical worlds but also demonstrate its sophisticated optimization
considerations in design and implementation. These aspects en-
able the strategy to consistently achieve a high ASR across various
environments.

5.3 Attack Robustness
To comprehensively assess the effectiveness of various adversarial
patches in real-world application settings, we randomly select 10
cars with diverse background colors as subjects for experimentation.
While maintaining a stationary camera position and a consistent
distance to the target vehicle, the recording captures attack scenes
in which various adversarial patches are projected onto specific
areas of cars. This is conducted in both well-lit bright environments
and low-light nighttime conditions. Furthermore, to establish a
precise comparison baseline, scenes are also recorded without patch
projection to serve as ground truth.

Figure 10 illustrates a comparison of the depth estimation errors
caused by three attack strategies across different lighting conditions.
Regardless of the lighting conditions, DepthCloak exhibits superior
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Table 1: Exploring ablation studying across diverse constraints.

Projectable Loss Depth Model Style Transfer RMSE AbsRel RMSE(log) Sq Rel

w/o w/o w/o 5.356 0.132 0.229 0.877
w w/o w/o 8.024 0.118 0.275 1.574
w/o w w/o 9.452 0.105 0.293 1.615
w/o w/o w 5.981 0.128 0.220 0.953
w w w/o 18.325 0.226 0.361 3.524
w w/o w 9.859 0.157 0.242 1.867
w/o w w 12.537 0.262 0.314 2.916
w w w 20.699 0.334 0.455 5.311

attack performance in comparison to the other twomethods. In well-
illuminated settings, DepthCloak induces higher concentrations of
errors in depth estimation. In nocturnal settings, DepthCloak ex-
hibits a heightened advantage, whereas the efficacy of the other two
offensive tactics is diminished. The results suggest that DepthCloak
demonstrates significant adaptability and robustness to variations
in environmental lighting conditions.

5.4 Ablation Study
Determining Critical Parameter 𝛽 .We also assess the effect of
different values of 𝛽 in Equation (16). The weight 𝛽 plays a cru-
cial role in regulating the equilibrium between the content and
style of adversarial patches. By maximizing the interference with
the depth estimation model while simultaneously updating the vi-
sual appearance of patches, this weight aids in comprehending the
target depth estimation model’s sensitivity to variations in both
style and content. Figure 11 shows the example of style patches
across various parameters. It also showcases the depth estimation
achieved by Monodepth2 following the application of these patches
for attack. Additionally, it presents RMSE and structural similarity
index (SSIM) comparing the patch with the reference style struc-
ture. The utilization of larger style transfer parameters has been
noted to result in the creation of more inconspicuous adversarial
patches; however, this may lead to a decrease in their attack ef-
fectiveness. This phenomenon occurs because larger style transfer
parameters have a tendency to accentuate style characteristics, po-
tentially leading to the loss or dilution of the original patch content.
Additionally, the target model may exhibit reduced sensitivity to-
wards these style attributes in comparison to content features. To
strike a balance between attack performance and style, we set 𝛽 to
1 for all experiments.

Component Analysis. We conduct ablation experiments to
understand the contributions of individual component modules
in DepthCloak. This allows us to gain deeper insights into their
impact on attack performance. These experiments systematically
remove one or more modules from DepthCloak. For each modified
configuration, Monodepth2 model is trained as the target model and
validated using 20 scenes from KITTI dataset. Subsequently, we con-
duct a comprehensive evaluation of the effect of each configuration
on attacks using five error assessment metrics.

The summarized results from the ablation experiments are pre-
sented in Table 1. Specifically, incorporating the projectable loss
and depth modeling modules into the DepthCloak significantly

Figure 11: The RMSE and SSIM of an attack example under
different 𝛽 .

enhances attack performance. This discovery underscores the sig-
nificant contributions of these two modules in collectively enhanc-
ing attack efficiency. Furthermore, when DepthCloak integrates all
three modules, it attains the highest error across all five evaluation
metrics. In contrast, the exclusive dependence on a singular mod-
ule, such as projection loss, depth modeling, or style transfer, does
not substantially improve attack performance. This suggests that
the effect of an individual module in augmenting attack efficacy is
constrained when lacking reinforcement from other modules. The
coordination and synergy among modules play a crucial role in
enhancing the effectiveness of attacks.

6 CONCLUSION
In this paper, we propose DepthCloak, an innovative optical pro-
jection attack tailored for monocular depth estimation models. To
tackle the challenges arising from high-density color patch infor-
mation, variations in target surface depth, and non-uniform pixel
distribution in the physical world, we take several strategies. Firstly,
we analyze the principle of “black-and-white light” projection in
projectors and discover that this color distinction is formed by vi-
sual contrast differences. Subsequently, we transition the patch to
a gray pattern to mitigate information loss during camera capture,
attributed to the excessive complexity of patch colors. Finally, we in-
troduce projection loss, depth projection modeling, and style trans-
fer techniques into optical patch training. Extensive evaluation of
large-scale datasets and physical vehicles validates the effectiveness
and practicality of DepthCloak. In the future, wewill explore a patch
generation method based on diffusion models against multi-sensor
fusion systems and provide corresponding defense strategies.
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