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Abstract—The medical community has grappled with the 

challenge of analysis and early detection of severe and unknown 

adverse drug reactions (ADRs) from Spontaneous Reporting 

Systems (SRSs) like the FDA Adverse Event Reporting System 

(FAERS), which often lack professional verification and have 

inherent uncertainties. These limitations have exacerbated the 

difficulty of training a robust machine-learning model for detecting 

ADR signals from SRSs. A solution is to use some authoritative 

knowledge bases of ADRs, such as SIDER and BioSNAP, which 

contain limited confirmed ADR relationships (positive), resulting in 

a relatively small training set compared to the substantial amount 

of unknown data (unlabeled). This paper proposes a novel ADR 

signal detection method, ADR-DQPU, to alleviate the issues above 

by integrating deep reinforcement Q-learning and positive-

unlabeled learning. Upon validation using FAERS data, our model 

outperformed six traditional methods, exhibiting an overall 

accuracy improvement of 26.45%, an average accuracy 

improvement of 52.15%, a precision enhancement of 1.89%, a recall 

improvement of 18.57%, and an F1 score improvement of 10.95%. 

In comparison to two state-of-the-art machine learning methods, 

our approach demonstrated an overall accuracy improvement of 

64.1%, an average accuracy improvement of 28.23%, a slight 

decrease of 1.91% in precision, a recall improvement of 55.56%, and 

an F1 score improvement of 45.53%. 
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I.  INTRODUCTION 

Adverse drug reactions (ADRs) are a significant global 
public health issue [1]. ADR can result in patient hospitalization 
or prolonged hospital stays, permanent disabilities, permanent 
injuries, congenital malformations in fetuses and infants, life-
threatening situations, and even death. However, ADR can only 
be discovered through continuous clinical trials. Before a drug 
is launched, the manufacturer can only study ADRs based on 
data from a small group of trial participants. This results in 
some ADRs being undetected during the premarket clinical 
trials. Therefore, various countries have established their 
spontaneous reporting systems (SRSs) for adverse drug 
reaction events, such as the FDA Adverse Event Reporting 
System (FAERS) [36], collecting data on domestic adverse 
drug reaction events to promote research related to ADR 
[1][12][23]. The goal is to detect hidden ADRs as early as 
possible after a drug is launched and reduce drug risks [34]. 

In the past few decades, researchers have developed 
statistical methods such as reporting odds ratio (ROR) [24], 
proportional reporting ratio (PRR) [13], and Bayesian 
Confidence Propagation Neural Network (BCPNN) [5] to 
analyze ADRs provided by SRS. Although these statistical 
methods have achieved some effectiveness in ADR analysis, 
their results are not outstanding. They can only identify a small 
portion of ADRs in SRS’s vast data. On the other hand, 
machine learning has demonstrated excellent performance in 
data classification, and it can now assist doctors in making 
medical diagnoses. Research has also shown that deep learning 
and machine learning can be used for ADR signal detection 
with promising results [3][6][9], enabling the prompt 
identification of ADR signals after a drug is released on the 
market. 

A critical and highly overlooked characteristic of SRS is its 
inferior data quality; for example, the labeling of ADRs has 
high uncertainty. Even though researchers have endeavored to 
examine the adverse reaction events provided by the SRS 
through various methods to confirm the presence of adverse 
drug reactions associated with the drugs of interest, it remains 
unknown whether a drug can cause other unlisted ADRs in SRS 
data. This phenomenon aligns with Positive and Unlabeled 
learning (PU-Learning) [6]. The data consists of a small number 
of affirmative labeled cases and many unknown cases. This 
directly challenges applying supervised learning methods, such 
as deep learning, to SRS data. In this study, we utilized some 
ADR knowledge bases, such as SIDER [37] and Stanford 
Biomedical Network Dataset Collection (BioSNAP) [35] in 
ADR labeling, obtaining a small amount of positive labeled 
data, and employed deep reinforcement learning plus the 
concept of PU-learning to devise a novel ADR signal detection 
method in the way of self-learning to explore the certainty of 
unknown data. We performed experiments to evaluate the 
usability and accuracy of the proposed method using real-life 
data from the FAERS database. Our method outperforms other 
state-of-the-art (SOTA) methods, including six standard 
statistical methods and two machine learning methods. 

The remainder of this paper is organized as follows. Section 
II presents some background knowledge about this work, 
including ADR signal detection, deep reinforcement learning, 
PU-learning, and related work, focusing on machine learning or 
deep learning based methods for ADR signal detection. Our 
proposed ADR-DQPU method is described in Section III. 



                                                                           
 
Section IV presents the experiment we conducted on the 
FAERS data, showing the performance evaluation of our 
method against SOTAs. Finally, conclusions and some future 
avenues are provided in Section V. 

II.  BACKGROUND KNOWLEDGE AND RELATED WORK 

A. Traditional Methods for ADR Signal Detection 

Detecting adverse drug reactions involves evaluating the 
causal connection between drugs and adverse reactions to 
identify potential ADR signals for further assessment. The 
commonly used methods for ADR signal detection are based on 
disproportionality measures, which compare the observed 
events of interest in a database with the expected events or the 
imbalance compared to other events. These methods can be 
categorized into two main types: frequency-based methods and 
Bayesian methods, both of which were considered in this study. 
The standard ADR signal detection methods include ROR [24], 
PRR [13], BPCNN [4][5], Sequential Probability Ratio Test 
(SPRT) [14], MHRA [30], and Yule's Q [30]. These methods 
calculate the likelihood of a particular drug D causing some 
specific adverse reaction R based on the number of cases of 
adverse events, expressed in the form of a contingency table 
shown in Table I. 

TABLE I.         CONTINGENCY TABLE OF DRUG-ADVERSE REACTION EVENTS 

 

B. SIDER and BioSNAP 

SIDER is a drug adverse reaction database established by 
Kuhn et al. [16]. The latest version is SIDER 4.1 [40]. A total 
of 139,756 combinations of drug-adverse reaction relationships 
are provided, encompassing 1,430 distinct drugs and 5,868 
adverse reactions.  

BioSNAP is a subproject of the SNAP project [35]. This 
dataset primarily records data in the form of entity 
relationships, focusing on biomedical-related information and 
the relationships between the data. In this study, we utilized the 
“Drug side-effect association network” in BioSNAP, which 
represents the associations between drugs available in the US 
and adverse reactions.  

C. Deep Reinforcement Learning 

Reinforcement learning is a machine learning method in 
which we need an agent to learn from the environment by 
interacting with it [26]. Like we learn how to ride a bicycle, the 
agent learns by trial and error, interacting with the environment, 
receiving feedback, and then making a decision (action). 
Feedback includes the reward defined by the developer and the 
next state of the environment. In contrast to supervised 
learning, the agent of reinforcement learning learns through 
experimentation rather than imitation. No manual labeling of 
training data is required. Instead, positive and negative 
experiences are obtained by interacting and observing the 
results, which serve as training data. 

Q-Learning [32] is an algorithm used in value-based 
reinforcement learning. It operates based on the Q-value, 
denoted as Q(s, a), which represents the expected benefit of 
taking an action a (where a ∈ A = {a1, a2, …, an}) in state s 
(where s ∈ S = {s1, s2, …, sm}) at a specific moment. The 
environment provides feedback based on the agent’s action as 
a corresponding reward, denoted as r. The fundamental concept 
of the Q-learning algorithm involves constructing a Q-table that 
stores the Q-values for each state-action pair and the strategy to 
select the action that yields the maximum benefit based on the 
corresponding Q-value. 

Deep reinforcement learning is a machine learning method 
that combines techniques from deep learning and reinforcement 
learning [21][22][28][29]. The main distinguished feature of 
deep reinforcement learning is that, instead of a Q-function, a 
neural network is treated as an agent that interacts with the 
environment.  

D. Positive and Unlabeled Learning  

In practical scenarios, instances often arise where a small 
number of positive labels coexist with a substantial volume of 
unlabeled data [7]. Take ADR signal detection as an example, 
where experts can employ various methods to inspect adverse 
event data from the SRS dataset, confirming the existence of 
adverse reactions linked to specific drugs of interest. However, 
it remains uncertain whether a drug could potentially induce 
other unreported adverse drug reactions within the SRS dataset. 
Treating unlabeled data directly as negative cases during 
classifier training in such cases can lead to significant errors 
[18]. PU-Learning [6][10][15][25] offers a tailored solution for 
this data scenario. It leverages information from positive cases 
to analyze unlabeled cases, determining the probabilities of 
these cases belonging to positive or negative categories. This 
process aids in identifying new positive (or negative) cases with 
high probabilities, increasing the amount of training data and 
mitigating the risk of misclassifying positive instances in the 
unlabeled data as negatives. 

E. Related Work  

In recent years, several researchers have applied machine 
learning and deep learning techniques for ADR signal 
detection, achieving promising results [15][27][34].  

A scoping review of papers published from 2000 to 2021 by 
Kompa et al. [15] revealed that although traditional statistical-
based ADR signal detection methods remained popular, 
machine learning and deep learning methods have significantly 
increased since 2015. SVM, Logical Regression, eXtreme 
Gradient Boosting (XGBoost), and CNN are the most popular 
among these methods. Another review covering papers from 
1998 to 2020 conducted by Syrowatka et al. [27] exhibited 
similar results: Machine learning methods have been widely 
used in ADR detection since 2015. Below we highlight some of 
the notable research after 2021.   

Wang and Lin [31] proposed a deep learning-based ADR 
signal detection method using SIDER to filter FAERS data. A 
CNN model was used to identify whether drug combinations in 
ADR signal detection exhibit ADR signals. It leverages deep 
learning to learn more underlying features from FAERS data, 
resulting in excellent performance in ADR signal detection 

 Reaction R Other Reactions (𝑹) Total 

Drug (D) a b a+b 

Other Drugs (𝑫) c d c+d 

Total a+c b+d a+b+c+d 



                                                                           
 
tasks. However, this method is trained only for a single adverse 
reaction. If ADR signal detection is required for other adverse 
reactions, training a model for each adverse reaction is 
necessary, resulting in tremendous models and significant 
computation costs.  

Bae et al. [3] evaluated two well-known machine learning 
methods, Gradient Boosting Machine (GBM) and Random 
Forest against traditional methods for ADR signal detection, 
ROR and IC, specifically targeting raw FAERS data. Their 
findings showed that GBM achieved the best average predictive 
performance. However, this study only used two drugs, 
Nivolumab and Docetaxel, as examples. Whether GBM can 
yield similar performance with other drug data remains 
unknown. A similar but more comprehensive study considering 
six medicines was conducted by Imran et al. [20]. Four machine 
learning methods were compared: Random Forest, Linear 
Support Vector Classifier, Logistic Regression, and XGBoost. 
The results showed that XGBoost exhibited the best 
performance over the other methods. 

Lin and Tseng [18] first observed the PU characteristic of 
SRS data and proposed an ADR signal detection method based 
on stacking ensemble learning and PU-learning. The proposed 
method consists of two steps. Firstly, the stacking approach is 
employed to perform signal detection based on 
disproportionality analysis using traditional methods of 
calculating the statistical values of the data. The results are then 
organized into new training data for a meta-classifier. This 
approach combines the advantages of different traditional 
methods, training a solid classifier that becomes a valuable 
learning method. However, this method overlooks the potential 
features of the FAERS data, such as the inclusion of ATC 
codes, and only utilizes the statistical values of the data. 

Attayeb et al. [2] proposed a deep learning-based method 
for ADR signal detection. In addition to FAERS, their method 
also incorporates drug-induced gene expression profiles from 
Open TG–GATEs [39]. Consequently, their model can learn 
and identify ADR signals based on more features, enabling 
more in-depth detection of adverse drug reaction signals hidden 
within the data. 

Du et al. [11]considered the problem of extracting adverse 
events by deep learning from reports in the Vaccine Adverse 
Event Reporting System (VAERS) [41], another SRS system. 
Their findings conclude that deep learning models such as 
BioBERT and the proposed VAERS BERT outperform 
traditional machine learning methods. However, their work 
belongs to named entity recognition (NER) rather than 
detecting ADR signals.   

III.  THE PROPOSED METHOD 

A. Framework Overview 

Fig. 1 illustrates the framework of the proposed ADR-
DQPU method. Instead of utilizing raw data from FAERS, we 
leveraged ADR data cubes generated by the iADRs system 
[19][37]. Each record within these cubes contains statistical 
contingency values for drug-adverse reaction pairs, reducing 
noise and uncertainty in the original FAERS data. In the ADR-
DQPU process, we initially established a background 

knowledge of ADRs using SIDER and BioSNAP, capturing 
associations between drugs and adverse reactions. This 
background knowledge was then employed to filter the source 
data from ADR cubes, labeling positive and unknown data to 
create a PU dataset for subsequent model training and testing. 
The PU dataset was partitioned to generate distinct training and 
testing sets. To address the class imbalance, we adopted 
undersampling to balance the training set before training the 
DQN model for ADR signal detection. Finally, the model’s 
performance was evaluated on the testing set, completing the 
entire process. 

B. Data Preprocessing 

As mentioned previously, FAERS data contain false 
positives, repetitive reporting, and other uncertainty issues. 
Therefore, we utilized the ADR contingency cubes generated 
by the iADRs analysis system [19][37] as inputs for our 
framework. More precisely, we utilized subcubes 
encompassing drug ATC codes, symptom names, and four 
corresponding contingency values (a, b, c, d) representing the 
records in the contingency table for ADR signal detection. 
Since drug ATC code contains various features related to 
anatomical therapeutic chemical classification, we performed 
label encoding to convert the English alphabet to numbers. 
Then we applied one-hot encoding to separate the features 
within the ATC code. Table II illustrates an example of these 
subcubes represented in a tabular format. Furthermore, we 
observed inconsistencies in the reaction names within the 
dataset, such as differences in capitalization and the 
hierarchical structure. To address this issue, we encoded the 
reaction names to the Preferred Term (PT) level using 
MedDRA [37].  

 

 
Fig. 1. The framework of the proposed ADR-DQPU method.  

 



                                                                           
 

TABLE II.     TABULAR REPRESENTATION OF AN EXAMPLE ADR 

CONTINGENCY CUBE 

 

C. Design of the DQN Model 

The kernel of our proposed ADR-DQPU framework is a 
deep Q learning-based model (DQN) for ADR signal detection. 
An architectural flow diagram of the method is illustrated in 
Fig. 2. 

The proposed model follows the basic DQN structure 
through the interaction between a neural network-based agent 
and the environment to train the DQN-agent to make a good 
decision for the incoming event. A state 𝑠𝑡  corresponds to a 
record in the data  𝐷𝑇𝑟  (as depicted in Table II) and action  𝑎𝑡  
represents the decision label made by the agent (“1” 
representing positive, while “0” denoting unknown). 
Specifically, the DQN-agent’s primary role is to predict the 
maximum expected reward when taking different actions in the 
current state, that is, to calculate the Q-value for each (s, a) pair.  

In every epoch, we first reset the environment. Initially, the 
environment sends a random state  𝑠𝑡  from PU data 𝐷𝑇𝑟 to 
DQN-agent; the agent detects the state 𝑠𝑡 and provides an 
action 𝑎𝑡 and returns to the environment. This means the agent 
decides whether an ADR signal should be generated based on 
the state 𝑠𝑡. On all subsequent steps, the environment will send 
a new random state  𝑠𝑡+1  and a reward  𝑟𝑡  based on the 
received action.  

 

 

Fig. 2. The architectural flow diagram of the DQN model.  

We adopted the well-known double Q-network [29], which 
is composed of two networks, Q-network and target Q-network. 
When the DQN-agent receives a state 𝑠𝑡, the Q-network will 
predict the Q-value of each action in this state  𝑠𝑡 , and then 
invoke the ε-greedy policy to determine whether to output a 
random action 𝑎𝑡  or the action 𝑎𝑡  with the highest Q-value as 
predicted by the Q-network. The DQN-agent stores all this 
information in an experience replay buffer in the format of 
(𝑠𝑡 ,  𝑎𝑡 ,  𝑟𝑡 ,  𝑠𝑡+1) as transition data, and then randomly sample 
a transition data to train the target Q-network to calculate the 

target Q-value. We incorporate the target Q-value into the loss 
function to calculate the mean-square error, enabling the Q-
network to perform gradient descent-based backpropagation. 
Once we have trained for a sufficient number of mini-batches, 
we duplicate the weights of the Q-network to update the 
weights of the target Q-network. The agent will run until the 
environment signals the end of an episode with a ‘done’ state. 
The organization and workflow of the DQN-agent is shown in 
Fig. 3. 

 

 

Fig. 3. The organization and workflow of the DQN-agent. 

 

D. Environment Building 

The reinforcement learning environment consists of three 
main components: state transition function, label-resolving 
function, and reward function. The primary purpose of the 
reinforcement learning environment is to send a state 𝑠𝑡 (ADR 
combination data) from PU data DTr to DQN-agent and then 
receive action 𝑎𝑡  return from the DQN-agent to calculate the 
reward 𝑟𝑡 , and send it with the next state. Fig. 4 depicts an 
architectural diagram of the environment. 

When the environment receives an action 𝑎𝑡 , it will first call 
the label-resolving mechanism. If the corresponding state st 
belongs to unknown data, the function will determine whether 
it needs to be relabeled as ‘1’ using an ensemble ADR detection 
method [18], including ROR, PRR, MHRA, BCPNN, SPRT, 
and Yule's Q, each performing ADR signal detection on the 
drug-adverse reaction combination data. Then, a weighted 
voting approach is used to determine whether the data can be 
confirmed as a positive case, labeled as ‘1’, or retained in the 
label ‘0’ as an unknown case.  

The reward function is designed to calculate the reward (or 
penalty) based on the data label and the ADR signal detection 
result (action 𝑎𝑡) produced by the DQN-agent. The formula for 
computing reward r is as follows: 

𝑟 = {
1, if  𝑎𝑡 =   𝑠𝑡 . 𝐿𝑎𝑏𝑒𝑙,

−1, otherwise.
 

Drug ATC Symptom a b c d 

C03EA01 ASCITES 2 1361 28 19642 

R06AE09 MYALGIA 6 351 298 35532 

M03BX08 BRONCHITIS 4 451 312 35420 

N06AX23 ARTHROPATHY 2 233 22 15105 

G04CA02 
BLOOD COUNT 

ABNORMAL 
1 133 2 6069 



                                                                           
 

where a reward of 1 is given if the label is positive (‘1’) and 

the model correctly detects an ADR signal (‘1’), or the label is 

unknown (‘0’) and the model correctly detects no ADR signal 

(‘0’); otherwise, a penalty of −1 is given.  

 

 

Fig. 4. The architecture of the environment. 

IV.  EMPIRICAL EVALUATION 

A. Experimental Design 

a)  Data Source and Preprocessing: FAERS accepts 

reports from anyone without verification, so the collected data 

may contain incorrect information. For example, some fields 

like age and gender may be left blank by the reporters, or 

adverse reactions caused by other factors may be attributed to 

drug intake. To address this issue, we utilized the contingency 

ADR cubes available in iADRs [37], which reduces the 

significance of individual data points through statistical 

analysis. We used the contingency cubes from iADRs, covering 

the first quarter of 2004 to the first quarter of 2019. The datasets 

from 2004 to 2018 were used as the training data, and the first 

quarter of 2019 was used as the test data. This choice was made 

because FAERS has been widely utilized for adverse reaction 

event reporting, and the data collected within a quarter is 

sufficient for testing purposes. Labels that indicate whether a 

drug-adverse reaction combination produces a signal were 

determined by accessing information provided by the two 

knowledge systems, SIDER and BioSNAP. In total, we 

identified 301,644 drug-adverse reaction relationships. After 

filtering through the background knowledge constructed from 

SIDER and BioSNAP, we obtained 65,489,379 records of drug-

adverse reaction combinations, as shown in Table III. It is 

noteworthy that the data are highly imbalanced 

(potitive/unlabeled ratio = 0.076). We thus performed 

undersampling on the training set to balance the data, reducing 

the amount of unknown data (label = 0) to achieve an equal 

number of instances for label = 1 and label = 0, thereby creating 

a balanced training dataset. Except for the traditional statistics-

based methods, each experimental method was run on the same 

undersampled dataset, including our proposed method and two 

machine learning methods.  

TABLE III.     STATISTICS OF THE EXPERIMENTAL DATA 

 

b)  Experimental Environment: All experiments were 

conducted on a PC workstation with the following 

specifications: an Intel Core i7-8700 processor, 32GB RAM, a 

1TB hard disk, and an NVIDIA GeForce RTX 2060 6GB 

graphics card. The workstation was running on the Windows 10 

operating system. All programs were implemented using 

Python 3.7, and the following packages were utilized: 

TensorFlow-GPU 2.10.0, Keras 2.10.0, Keras-RL2 1.0.5, Gym 

0.18.0, mpmath 1.2.1, pandas 1.2.4, and NumPy 1.21.6. 

c)  Competitor Methods: Besides the six traditional ADR 

detection methods mentioned in Section II.A, we compared our 

method with two other machine learning-based methods for 

ADR signal detection. They are the ADR signal detection 

method using ensemble learning and PU-learning [18] and the 

XGBoost method based on gradient boosting [20]. The 

parameter setting for each method is shown in Table IV. The 

criterion for the six statistical detections to issue an ADR signal 

followed the literature [12][30]. We used the Adam optimizer 

to adjust the hyperparameters dynamically. After testing 

various initial learning rates, we found that an initial rate of 3e-

4 yielded the best results. We also experimented with different 

exploration policies during training our model, including the E-

Greedy Q Policy, Boltzmann Q Policy, and Max Boltzmann Q 

Policy. Our performance comparisons showed that the E-

Greedy policy outperformed the other two strategies in this task 

d)  Performance Metrics: We chose six metrics to evaluate 

our experiments, including accuracy, weighted accuracy, 

weighted precision, weighted recall, and weighted f-measure. 

We adopted the weighted average evaluation metric [8] rather 

than the commonly used micro average owing to the significant 

class imbalance in our PU data; over 90%  of testing data are 

unknown. 

TABLE IV.      PARAMETER SETTINGS FOR ADR METHODS IN THIS STUDY 

 Criterion  

ROR95 95% CI limit > 1 

PRR95 95% CI limit > 1, a ≥ 3 

MHRA PRR ≥ 2, 𝑥2≥ 4, a ≥ 3 

BCPNN E(IC) – 1.96 * SD(IC) > 0 

SPRT ln(2) × a – E(a) ≥ 2.94 

Yule'S Q LI95(Q) > 0 

 Parameters 

XGBoost # of trees: 100, max depth: 50, learning rate: 0.3 

PU-LR - 

ADR-DQPU # of runs: 200000, learning rate: 0.0003 

 

Training set (2004-2018) Testing set (2019 Q1) 

Positive Unknown Positive Unknown 

4,338,627 57,048,523 261,137 3,841,092 

Amount of Training set Amount of Testing set 

61,387,150 4,102,229 



                                                                           
 

B. Experimental Results 

a)  Comparison with SOTAs: Our method was compared 

with the two machine learning-based and six traditional 

methods. Table V displays the results, where values highlighted 

in bold represent the best result for each metric. From the results, 

we observe: 

• All of the traditional methods exhibit high overall 
accuracy, precision, recall, and F1-score, but with 
modest average accuracy, owing to the testing data 
consisting of a small amount of labeled data and many 
unlabeled data. Some indicators may appear high due to 
the use of weighted averaging, which amplifies the 
values of the scarce labeled data. Therefore, these 
methods are not particularly effective based on the 
average accuracy. 

• Among the two machine learning methods, XGBoost 
demonstrates high precision and modest average 
accuracy but significantly low performance on all other 
metrics. On the other hand, PU-LR, thanks to embracing 
PU-learning and ensemble learning, shows much better 
results in all metrics except average accuracy. 

• Our proposed ADR-DQPU method achieves excellent 
results with only a slightly decreasing precision. These 
results conclude that our proposed method outperforms 
other comparative methods in ADR signal detection. 

TABLE V. THE PERFORMANCE OF ADR SIGNAL DETECTION METHODS. 

DATA WAS SOURCED FROM IADRS CUBES (JANUARY - FEBRUARY 2019) AND 

GENERATED MONTHLY 

 Overall 

Accuracy 

Average 

Accuracy 

Precision 

 

Recall F1 

ROR 0.79 0.51 0.86 0.79 0.82 

PRR 0.79 0.51 0.86 0.79 0.82 

BCPNN 0.83 0.50 0.85 0.83 0.84 

MHRA 0.79 0.51 0.86 0.79 0.82 

SPRT 0.88 0.51 0.86 0.88 0.87 

Yule'S Q 0.63 0.48 0.85 0.63 0.71 

XGBoost 0.09 0.50 0.93 0.09 0.02 

PU-LR 0.79 0.51 0.86 0.79 0.82 

ADR-DQPU 0.97 0.87 0.89 0.91 0.89 

 

The iADRs data previously mentioned was derived from 
monthly records. Recognizing that utilizing data at a finer 
granularity might yield less prominent ADR signals, we 
conducted an additional experiment by aggregating the data 
into quarters. This aimed to enhance ADR signal strength by 
increasing the statistical value of individual adverse event data. 
Table VI presents the model evaluation results on quarterly 
data, revealing similar phenomena.  

Surprisingly, the performance of XGBoost trained on 
quarterly data exhibited significant improvement, with an 
average accuracy reaching 0.87 and a precision of 0.96. 
However, the overall accuracy stood at 0.76, along with a 
moderate recall of 0.7. We suspect that XGBoost struggles to 
learn ADR signals from monthly data because the differences 
in the contingency values (a, b, c, and d) between label = 1 and 
label = 0 are not pronounced enough. This, coupled with a small 
feature set—drug and the four contingency values—limits 

XGBoost's ability to generate diverse decision trees. This 
results in the fact that while XGBoost excels in precision, as 
evidenced by its cautious approach, its overly conservative 
nature misses a significant number of ADR signals, as indicated 
by the recall metric. When the data is aggregated quarterly, 
though the positive/unlabeled ratio is similar to that of monthly 
data, the differences in the contingency values become more 
pronounced; positive cases within label = 1 increase, while 
contingency values within label = 0 remain relatively stable. 
This suggests that XGBoost might perform better with coarser 
granularity, such as yearly aggregation. Nevertheless, since our 
objective is to detect ADR signals as early as possible, our 
primary focus remains on learning from monthly data.  

TABLE VI.      THE PERFORMANCE OF ADR SIGNAL DETECTION METHODS. 
DATA WAS SOURCED FROM IADRS CUBES (JANUARY - FEBRUARY 2019) AND 

GENERATED QUARTERLY 

 Overall 

Accuracy 

Average 

Accuracy 

Precision 

 

Recall F1 

ROR 0.70 0.62 0.92 0.70 0.79 

PRR 0.70 0.62 0.92 0.70 0.79 

BCPNN 0.86 0.51 0.91 0.86 0.88 

MHRA 0.76 0.46 0.90 0.76 0.82 

SPRT 0.85 0.49 0.90 0.95 0.87 

Yule'S Q 0.53 0.55 0.91 0.53 0.65 

XGBoost 0.76 0.87 0.96 0.76 0.83 

PU-LR 0.70 0.60 0.92 0.70 0.79 

ADR-DQPU 0.95 0.72 0.91 0.91 0.90 

 

Tables VII and VIII provide an overview of the 
performance improvement achieved by our method compared 
to each comparator. Columns indicating negative growth are 
underscored for clarity. Relative to the average performance of 
six traditional methods, our approach demonstrates a 
remarkable overall accuracy increase of 26.45%, an average 
accuracy boost of 52.15%, a slight gain of precision by 1.89%, 
a recall improvement of 18.57%, and an enhanced F1 score by 
10.95%. In comparison to the average performance of the two 
machine learning methods, our approach yields notable 
advancements, including a 64.1% increase in overall accuracy, 
a 28.23% boost in average accuracy, a marginal 1.91% decrease 
in precision, a substantial 55.56% improvement in recall, and 
an impressive 45.53% rise in the F1 score. 

b) Ablation Study: In this experiment, we analyzed the 

effect of different mechanisms on our proposed ADR-DQPU, 

including the ensemble label-resolving function based on PU-

learning and class balancing using undersampling. Table XI 

presents the performance results of variants of ADR-DQPU, 

where ADR-DQN denotes the version without PU-inspired 

label-resolving mechanism, and ADR-DQPUimb represents that 

without performing class balancing function. All models were 

trained on monthly generated data with 20000 runs. The results 

show that the ensemble label-resolving mechanism 

significantly increased the identification of positive cases from 

unknown data and enhanced overall model performance. The 

class balancing mechanism, which reduces the number of 

unknown cases in the training set to hinder the model from 

focusing more on the majority class, also plays an important 

role in boosting performance.  



                                                                           
 

TABLE VII.      IMPROVEMENT OF OUR METHOD OVER OTHER METHODS ON 

MONTHLY DATA 

 Overall 

Accuracy 

Average 

Accuracy 

Precision Recall F1 

ROR 22.8% 70.6% 3.5% 15.2% 8.5% 

PRR 22.8% 70.6% 3.5% 15.2% 8.5% 

BCPNN 16.9% 74.0% 4.7% 9.6% 6.0% 

MHRA 22.8% 70.6% 3.5% 15.2% 8.5% 

SPRT 10.2% 70.6% 3.5% 3.4% 2.3% 

Yule'S Q 54.0% 81.3% 4.7% 44.4% 25.4% 

XGBoost 977.8% 74.0% -4.3% 911.1% 4350.0

% 

PU-LR 22.8% 70.6% 3.5% 15.2% 8.5% 

 

TABLE VIII.      IMPROVEMENT OF OUR METHOD OVER OTHER METHODS ON 

QUARTERLY DATA 

 Overall 

Accuracy 

Average 

Accuracy 

Precision Recall F1 

ROR 35.7% 16.1% -1.1% 30.0% 13.9% 

PRR 35.7% 16.1% -1.1% 30.0% 13.9% 

BCPNN 10.5% 41.2% 0.0% 5.8% 2.3% 

MHRA 25.0% 56.5% 1.1% 19.7% 9.8% 

SPRT 11.8% 46.9% 1.1% -4.2% 3.5% 

Yule'S Q 79.3% 30.9% 0.0% 71.7% 38.5% 

XGBoost 25.0% -17.2% -5.2% 19.7% 8.4% 

PU-LR 35.7% 20.0% -1.1% 30.0% 13.9% 

 

TABLE XI.      PERFORMANCE RESULTS OF THE PROPOSED METHOD WITH 

DIFFERENT MECHANISM ABLATION 

 Overall 

Accuracy 

Average 

Accuracy 

Precision Recall F1 

ADR-DQN 0.62 0.55 0.89 0.62 0.72 

ADR-DQPUimb 0.41 0.58 0.78 0.41 0.35 

ADR-DQPU 0.86 0.84 0.93 0.85 0.88 

V.  CONCLUSIONS 

Spontaneous reporting systems, like FAERS, have been 
globally established for drug safety monitoring and early 
detection of unknown serious adverse drug reactions. Previous 
efforts have introduced disproportionality-based ADR signal 
detection methods using FAERS data. However, these 
traditional approaches may lack effectiveness and overlook 
hidden features within reported adverse events. This paper 
presents a novel ADR signal detection method employing deep 
reinforcement and PU-learning. A preliminary experiment on 
the FAERS dataset was conducted to assess our framework’s 
performance. As a case study, we predicted ADR signals 
between drugs and adverse reactions using FAERS reports from 
the first quarter of 2019. Our proposed ADR-DQPU1 method 
demonstrated superior ADR signal detection. Leveraging 
various mechanisms, we achieved outstanding performance 
compared with SOTAs. In the future, we will conduct more 
experiments to evaluate the effectiveness of the proposed ADR-
DQPU method on early ADR signal detection of newly 
marketed drugs. We also like to investigate this approach using 
other SRS data, such as VAERS. 

This study has several limitations. First, we relied solely on 
SIDER and BioSNAP to determine the certainty of ADR labels. 

 
1 Code available at GitHub: https://github.com/NUKCILAB/ADR-DQPU  

Including additional authoritative databases could enhance both 
the certainty and quantity of positive cases, potentially 
influencing our results. Second, we only used contingency 
values and drug ATC codes, neglecting demographic features 
like age, gender, and weight. Incorporating these features could 
facilitate stratified detection of ADR signals across different 
patient groups, though it would encounter the challenge of 
handling many missing values (for example, over 70% of 
weight in FAERS are missing in the demographic features). 
Lastly, we focused only on adverse reactions from single drugs, 
whereas interactions between multiple drugs can also cause 
adverse reactions. An interesting research question is how to 
adapt our method to detect drug-drug interactions.   
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