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Abstract

We present AMBISONIC-DML, a dataset of 120 musical excerpts rendered in
fifth-order Ambisonics (HOAS) with synchronized motion trajectories sampled
at 50,fps. Despite its compact size, the dataset offers high informational density
through 36-channel HOA encoding, 50,fps motion capture, and structured stem-
level annotations, providing the first open and reproducible resource for dynamic
Ambisonic music. The dataset was recorded under controlled studio conditions
with composer-defined motion aligned to phrasing and rhythm. Objective and
perceptual analyses confirm accurate HOAS encoding, balanced spatial energy, and
perceptual improvements in localization and immersion. AMBISONIC-DML en-
ables reproducible research on spatial signal processing and generative modeling

1 Introduction

Spatial audio is a key component of immersive media such as virtual and augmented reality. Am-
bisonics provides a scene-based, playback-independent representation of 3D sound fields, and higher
orders (HOA) enhance spatial resolution and localization accuracy over first-order Ambisonics (FOA)
(L} 2,130 4]. Despite rapid progress in Al-driven music generation [5,6}[7, 8} 9], most research remains
focused on symbolic scores, stereo audio, or text-conditioned models. These approaches overlook the
spatial dimension of music, where motion and perspective evolve dynamically, yet datasets coupling
musical structure with spatial trajectories are scarce. Existing corpora such as TAU-NIGENS and
STARSS23 [10} [11] focus on environmental FOA recordings, while available HOA datasets capture
static musical scenes without stem separation or motion tracking. This lack of structured HOA
data constrains reproducible research on dynamic spatial music, where motion and phrasing are
inherently linked. AMBISONIC-DML addresses this gap with music excerpts rendered in fifth-order
Ambisonics (HOAS) and synchronized motion trajectories sampled at 50 fps. The trajectories are
composer-defined, temporally aligned with phrasing and rhythm, and paired with instrument-role
annotations. This design facilitates research on motion-informed rendering, spatial signal processing,
and generative modeling of immersive music, extending beyond the stereo or symbolic domains of
prior work.
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2 Dataset

2.1 Overview

The AMBISONIC-DML dataset comprises 120 music excerpts rendered in fifth-order Ambisonics
(36 channels, ACN/SN3D) from the author’s spatial audio installations. Each entry provides three
synchronized modalities: (1) dry stems, (2) HOAS spatialized mixes, and (3) XYZ motion trajectories
sampled at 50fps. Excerpts range from short fragments to complete pieces and are organized
for multimodal access. The dataset prioritizes motion precision and musical alignment, offering
reproducible ground truth for dynamic spatial audio research.

2.2 Structure and Format

The dataset is organized into three top-level directories: RAW_DATA, REFINED_DATA, and CODE.
RAW_DATA contains the original multitrack recordings and motion control logs for two projects
(EXPEDITION and DIALOGUE), each with subfolders for OSC data, Ambisonic renders, and REAPER
sessions containing compressed dry stems and reference screenshots.

REFINED_DATA provides the synchronized research release, preserving the same projects but divided
into ORIGINAL and PRE_PROCESSED stages. ORIGINAL includes selected dry stems, HOA files,
and motion logs derived directly from RAW_DATA. PRE_PROCESSED contains normalized materials
(dry, full mix, HOA, motion, and synchronization logs), all mute-trimmed and frame-aligned. A
global annotation.x1s file lists instrument, role, and trajectory metadata.

CODE includes utilities for OSC capture, Ambisonic playback, preprocessing, and conversion between
Ambisonic orders (FOA, HOA3, HOAS, and binaural). Motion logs are stored as CSV files with
timestamps and XYZ coordinates at 50 fps. The structure corresponds exactly to the public release
and resolves prior inconsistencies between documentation and distribution.

2.3 Recording and Spatialization

All stems were recorded in acoustically treated studios using high-quality microphones and DI
paths. A 5x5m room (RT60 = 0.32 s) was used for vocals and winds, and a 6.5x7 m room (RT60 =
0.38s) for percussion. Signals were captured through Universal Audio Apollo X interfaces using
0OC818, TLM103, and SM57 microphones. Spatialization was performed in SPAT Revolution with
OSC-driven motion exported from a DAW. Each trajectory followed phrasing and rhythm, providing
a deterministic mapping between musical structure and motion.

2.4 Audio Statistics

Excerpts range from 3.2 s to 5.1 min in duration (mean = 119 s). Dry stems were loudness-normalized
to =35 LUFS following ITU-R BS.1770-4, preserving natural dynamics while ensuring perceptual
consistency. HOAS renderings maintain balanced spatial energy across channels, while motion
trajectories exhibit a mean displacement amplitude of 0.8 m (SD = 0.5 m), capturing both localized
gestures and wide spatial movements characteristic of dynamic musical motion.

2.5 Motion and Annotation

Each stem in AMBISONIC-DML is annotated with its instrument class and functional role (melody,
rhythm, chords, ambience, pad), enabling structured conditioning for generative and analytical
tasks. Role distribution is melody (44%), rthythm (33%), chords (11%), ambience (6%), and pad
(6%). Instrument classes include analog and digital synthesizers (43.3%), guitars (10.8%), vocals
(10.0%), brass and winds (12.5%), percussion (9.1%), traditional instruments (5.0%), and ambience
or effect-based sources (9.3%).

Motion trajectories are expressed as X YZ coordinates relative to the listener at the origin. Typical
patterns include circular sweeps for melodies, oscillations for pads, frontal stability for bass and
percussion, and transient bursts for percussive accents. Melodic stems trace smooth curves aligned
with phrasing, while rhythmic and background elements remain localized or static, reflecting musically
meaningful spatial organization.



2.6 Comparison with Existing Datasets

Compared with prior spatial datasets, AMBISONIC-DML emphasizes musical motion and multi-
modal precision. Datasets such as TAU-NIGENS [10]] and EigenScape [12]] capture acoustic scenes
in FOA or HOA formats but focus on ambient or environmental events rather than structured music.
STARSS23 [11] extends FOA recordings with synchronized video for sound event localization,
while existing HOA datasets capture static ensembles without motion information. Audiovisual
corpora such as FAIR-Play [13] and A2B [14] investigate cross-modal alignment or binaural render-
ing but lack continuous motion trajectories and compositional metadata. Recent music generation
datasets [[7, 9] remain confined to symbolic or stereo domains.

3 Baseline Evaluation

We conducted baseline evaluations to verify the technical validity of AMBISONIC-DML. The
analyses comprise (1) objective signal assessment and (2) perceptual evaluation across Ambisonic
orders, providing reproducible references for future research. As a dataset-oriented contribution,
the focus is on verifying signal quality, spatial accuracy, and perceptual reliability rather than
benchmarking specific models. Given the absence of established evaluation protocols for spatial
audio—particularly for fifth-order Ambisonics and musical material—we perform both objective and
perceptual analyses to assess the dataset itself.

3.1 Objective Evaluation

Objective analyses verified the signal integrity and spatial accuracy of AMBISONIC-DML. Loudness
and crest factor were computed following ITU-R BS.1770-4 with 400 ms gating using pyLoudnorm.
Dry stems exhibited stable loudness (mean —35 LUFS, SD 1.5) and balanced dynamics (mean crest
factor 13.7 dB), confirming a natural dynamic range without over-compression. HOAS renderings
preserved amplitude relationships across 36 channels (ACN/SN3D), validating correct encoding.
Spatial resolution, defined as N2 4+ 2N for order N [2]], confirmed full fifth-order representation.

Directional balance, analyzed via active intensity vectors [[15], showed even energy distribution across
azimuth and elevation (ratio ~0.33/0.34/0.33) with minor elevation variability consistent with known
perceptual thresholds. Diffuseness, measured using AmbiX, averaged 0.89 (SD 0.09), indicating a
controlled yet immersive sound field.

Spectral centroid and flatness, evaluated after binaural decoding with MagLS [4], showed a slight
centroid reduction (mean shift —0.34 kHz) and marginal flatness increase, consistent with expected
high-frequency diffusion in non-individualized HRTFs [16]. Motion precision, computed by compar-
ing rendered trajectories with OSC logs, yielded a mean deviation within +0.10 mm, confirming tight
audio—motion synchronization. Preliminary FOA and HOA3 downmixes followed similar trends,
exhibiting lower diffuseness and spatial resolution. All metrics were obtained using open-source
toolkits (pyLoudnorm, AmbiX, MagLS) to ensure reproducibility.

3.2 Perceptual Evaluation

A listening test assessed the perceptual quality of HOAS renderings relative to Stereo, HOA1, and
HOAZ3 versions. Twenty-five participants (10 experts, 15 non-experts) rated five excerpts on four
perceptual attributes: localization, immersion, clarity, and rhythm. All excerpts were loudness-
normalized and binaurally decoded using the IEM Renderer to ensure consistent playback conditions.

Results revealed consistent perceptual trends across Ambisonic orders. HOAS achieved the highest
mean opinion scores in localization (4.5) and immersion (4.7), confirming perceptual benefits of
higher-order reproduction. Stereo received the highest ratings in clarity (4.3) and rhythm (4.6),
reflecting sharper transients and reduced spatial diffusion. HOA3 provided a perceptually balanced
compromise, maintaining spatial definition without the mild smoothing observed in HOAS. A one-
way ANOVA with Tukey HSD indicated significant effects for localization and immersion (p < 0.01),
demonstrating that higher-order Ambisonics enhances spatial perception at a minor cost in transient
precision.



3.3 Discussion

These baseline results demonstrate that AMBISONIC-DML preserves signal integrity and perceptual
validity across spatial formats, maintaining stable loudness, correct HOA encoding, spatial unifor-
mity, and precise motion alignment. HOAS encoding provides clear improvements in localization
and immersion, while Stereo remains advantageous for transient clarity, reflecting the known spec-
tral-spatial trade-off in higher-order Ambisonics. Overall, the dataset offers a technically verified
and perceptually validated foundation for benchmarking trajectory-informed and generative spatial
audio models.

4 Applications and Future Work

AMBISONIC-DML provides a foundation for Al-driven research linking sound, space, and motion.
It supports three primary directions: (1) motion-informed generative modeling, learning to produce
HOAS audio or synchronized motion trajectories; (2) spatial parameter estimation, offering ground
truth for trajectory, energy distribution, and order balance; and (3) trajectory-conditioned processing,
including motion-aware separation, rendering, and decoding across Ambisonic orders.

The dataset includes fully mixed FOA, HOA3, and binaural versions. Ongoing models for HOA
generation and motion-parameter estimation using trajectory-conditioned diffusion and transformer
architectures reproduce realistic spatial motion and energy coherence, demonstrating the dataset’s
suitability for dynamic HOA modeling.

As a shared benchmark for the spatial audio community, AMBISONIC-DML enables consistent
comparison across Ambisonic orders, playback formats, and motion conditions. Researchers can
evaluate localization accuracy, motion smoothness, and perceptual coherence under identical condi-
tions, establishing reproducible benchmarking analogous to DCASE but oriented toward musical and
motion-based studies. By providing open stems and spatial renderings, it bridges artistic production
and computational modeling, fostering collaboration between creators, engineers, and Al researchers.

Beyond generative applications, the dataset supports research on motion—timbre correlation, spatial
salience prediction, and audio—motion synchronization, extending to cross-modal perception and
embodied interaction in immersive music. Scripts in the CODE directory integrate with PyTorch and
Max/MSP for reproducible experimentation.

Future extensions will broaden genre diversity, include longer compositions, and add multimodal
metadata (e.g., score and visual context) for cross-domain conditioning. Together, these developments
aim to establish AMBISONIC-DML as a standard benchmark for spatially aware music generation
and trajectory-informed modeling.

Although AMBISONIC-DML comprises 120 excerpts, each entry encodes a rich combination of
spatial, temporal, and musical information: 36 Ambisonic channels, 50 fps motion trajectories, and
detailed instrument-role annotations. This yields high information density comparable to large-
scale symbolic or stereo corpora while maintaining the precision required for spatial Al research.
By capturing fine-grained motion aligned with compositional intent, the dataset bridges artistic
expressivity and computational modeling, offering a compact yet comprehensive foundation for
studying spatial structure and generative audio behavior.

5 Conclusion

We introduced AMBISONIC-DML, a dataset of 120 music excerpts rendered in fifth-order Ambison-
ics with synchronized motion trajectories and stem-level annotations. It bridges environmental FOA
corpora and static HOA recordings by providing musically meaningful, dynamic motion aligned
with phrasing and rhythm. Baseline analyses confirmed consistent loudness, accurate encoding, and
sub-millimeter motion precision, while perceptual tests demonstrated perceptual gains in localization
and immersion. By offering reproducible, multimodal ground truth for dynamic Ambisonic music,
AMBISONIC-DML establishes a benchmark for trajectory-informed processing and generative
spatial modeling. Future extensions will expand genre diversity, incorporate multimodal metadata,
and further support research in Al-driven immersive music.
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