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Abstract

Generalization error bounds from learning theory provide statistical guarantees on how well
an algorithm will perform on previously unseen data. In this paper, we characterize the
impacts of data non-IIDness due to censored feedback (a.k.a. selective labeling bias) on
such bounds. We first derive an extension of the well-known Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality, which characterizes the gap between empirical and theoretical CDFs
given IID data, to problems with non-IID data due to censored feedback. We then use this
CDF error bound to provide a bound on the generalization error guarantees of a classifier
trained on such non-IID data. We show that existing generalization error bounds (which
do not account for censored feedback) fail to correctly capture the model’s generalization
guarantees, verifying the need for our bounds. We further analyze the e!ectiveness of (pure
and bounded) exploration techniques, proposed by recent literature as a way to alleviate
censored feedback, on improving our error bounds. Together, our findings illustrate how
a decision maker should account for the trade-o! between strengthening the generaliza-
tion guarantees of an algorithm and the costs incurred in data collection when future data
availability is limited by censored feedback.

1 Introduction

Generalization error bounds are a fundamental concept in machine learning, which provide (statistical)
guarantees on how a machine learning algorithm trained on some given dataset will perform on new, unseen
data. However, many implicit or explicit assumptions about training data are often made when training
ML models and deriving theoretical guarantees for their performance. These assumptions include access
to independent and identically distributed (IID) training data, the availability of correct labels, and static
underlying data distributions (Bartlett & Mendelson, 2002; Bousquet & Elissee!, 2002; Cortes et al., 2019;
2020). Some studies in this area, e.g. Mohri & Rostamizadeh (2007; 2008); Kuznetsov & Mohri (2017);
Cheng et al. (2018), have provided bounds when these assumptions are removed. In this paper, we are
similarly interested in the impact of non-IID training data, specifically due to censored feedback, on the
learned algorithm’s generalization error guarantees.

Censored feedback, also known as selective labeling bias, arises in many applications wherein human or
algorithmic decision-makers set certain thresholds or criteria for favorably classifying individuals, and sub-
sequently only observe the true label of individuals who pass these requirements. For example, schools may
require a minimum GPA or standardized exam score for admission; yet, graduation rates are only observed
for admitted students. Financial institutions may set limits on the minimum credit score required for loan
approval; yet, loan return rates are only observed for approved applicants. In these types of classification
tasks, the algorithm’s training dataset grows over time (as students are admitted, loans are granted); how-
ever, the new data is selected in a non-IID manner from the underlying domain, due to the unobservability of
the true label of rejected data. This type of bias also arises when determining recidivism in courts, evaluat-
ing the e!ectiveness of medical treatments, flagging fraudulent online credit card transactions, etc. Despite
this ubiquity, to the best of our knowledge, generalization error bounds given non-IID training data due to
censored feedback remain unexplored. We close this gap by providing such bounds in this work, show the
need for them, and formally establish the extent to which censored feedback hinders generalization.
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One of the commonly proposed methods to alleviate the impacts of censored feedback is to explore the data
domain, and admit (some of) the data points that would otherwise be rejected, with the goal of expanding
the training data. Existing approaches to exploration can be categorized into pure exploration (Nie et al.,
2018; Bechavod et al., 2019; Kazerouni et al., 2020; Kilbertus et al., 2020), where any individual in the
exploration range may be admitted (with some probability ω), and bounded exploration (Balcan et al., 2007;
Wei, 2021; Yang et al., 2022; Lee et al., 2023), in which the exploration range is further limited based on cost
or informativeness of the new samples. The additional data samples collected through (pure or bounded)
exploration may not only help improve the accuracy of the learned model when evaluated on a given test
data (as shown by these prior works), but may also help tighten the generalization error guarantees of the
learned model; we formalize the latter improvement, and show how the frequency and range of exploration
can be adjusted accordingly.

We note that censored feedback may or may not be avoidable depending on the application (given, e.g.,
the costs or legal implications of exploration). We therefore present generalization error bounds both with
and without exploration, establishing the extent to which the decision maker should be concerned about
censored feedback’s impact on the learned model’s guarantees, and how well they might be able to alleviate
it if exploration is feasible.

Our approach. We characterize the generalization error bounds as a function of the gap between the
empirically estimated cumulative distribution function (CDF) obtained from the training data, and the
ground truth underlying distribution of data. At the core of our approach is noting that although censored
feedback leads to training data being sampled in a non-IID fashion from the true underlying distribution,
this non-IID data can be split into IID “subdomains”. Existing error bounds for IID data, notably the
Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Dvoretzky et al., 1956; Massart, 1990), can provide bounds
on the deviation of the empirical and theoretical subdomain CDFs, as a function of the number of available
data samples in each subdomain. The challenge, however, lies in reassembling such subdomain bounds into
an error bound on the full domain CDFs. Specifically, this will require us to shift and/or scale the subdomain
CDFs, with shifting and scaling factors that are themselves empirically estimated from the underlying data,
and can be potentially re-estimated as more data is collected. Our analysis identifies these factors, and
highlights the impacts of each on the error bounds.

Summary of findings and contributions:

1. We generalize the well-known Dvoretzky-Kiefer-Wolfowitz (DKW) inequality, which characterizes
the gap between empirical and theoretical CDFs given IID data, to problems with non-IID data
due to censored feedback without exploration (Theorem 2) and with exploration (Theorem 3), and
formally show the extent to which censored feedback hinders generalization.

2. We characterize the change in these error bounds as a function of the severity of censored feedback
(Proposition 1) and the exploration frequency (Proposition 2). We further show (Section 3.3) that
a minimum level of exploration is needed to tighten the error bound.

3. We derive a generalization error bound (Theorem 4) for a classification model learned in the presence
of censored feedback using the CDF error bounds in Theorems 2 and 3.

4. We numerically illustrate our findings (Section 5). We show that existing generalization error bounds
(which do not account for censored feedback) fail to correctly capture the generalization error guar-
antees of the learned models. We also illustrate how a decision maker should account for the trade-o!
between strengthening the generalization guarantees of an algorithm and the costs incurred in data
collection for reaching enhanced learning guarantees.

Related works. Although existing literature has studied generalization error bounds for learning from
non-IID data, non-IIDness raised by censored feedback has been overlooked. Here, we discuss works most
closely related to ours. We also provide a more detailed review of other related work in Appendix A.

First, our work is closely related to generalization theory in the PAC learning framework in non-IID settings,
including (Mohri & Rostamizadeh, 2007; 2008; Yu, 1994) and (Kuznetsov & Mohri, 2017); these works con-
sider dependent samples generated through a stationary, and non-stationary ε-mixing sequence, respectively,
where the dependence between samples weakens over time. To address the vanishing dependence issue, these
works consider building blocks within which the data can be viewed as IID. The study of Yu (1994) is based
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on the VC-dimension, while Mohri & Rostamizadeh (2008) and Mohri & Rostamizadeh (2007) focus on the
Rademacher complexity and algorithm stability, respectively. Our work is similar in that we also consider
identifying IID blocks within the data to circumvent data non-IIDness. However, we di!er in our reassembly
method, in the source of data non-IIDness, and in our study of the impacts of exploration. Furthermore,
our bounds di!er conceptually. While their bounds, based on the mixing parameter ε, converge to zero by
treating random samples across identified blocks as IID, our bounds are derived from threshold-based data
collection. They are constructed by reassembling multiple IID blocks while explicitly accounting for the
e!ects of censored feedback.

Our work is also closely related to partitioned active learning, including Cortes et al. (2019; 2020); Lee et al.
(2023); Zheng et al. (2019). Cortes et al. (2019) partition the entire domain to find the best hypothesis for
each subdomain, and a PAC-style generalization bound is derived compared to the best hypothesis over the
entire domain. This idea is further extended to adaptive partitioning in Cortes et al. (2020). In Lee et al.
(2023), the domain is partitioned into a fixed number of subdomains, and the most uncertain subdomain is
explored to improve the mean-squared error. The work of Zheng et al. (2019) considers a special data non-
IIDness where the data-generating process depends on the task property, partitions the domain according
to the task types, and analyzes each subdomain separately. Our work is similar to these studies in that we
also consider (active) exploration techniques, and partition the data domain to build IID blocks. However,
we di!er in problem setup and analysis approach, and in accounting for the cost of exploration when we
consider bounded exploration techniques. More specifically, their bounds are derived from the aggregation
of multiple subdomains with requested labels (we refer to as exploration). The key distinction lies in data
availability: while they can request labels from any subdomain without considering the cost of doing so, we
are constrained to explore samples from certain subdomains due to the presence of censored feedback.

The technique of identifying IID-blocks within non-IID datasets has also been used in other (application)
contexts to address the challenge of generalization guarantees given non-IID data. For instance, Wang et al.
(2023) investigate generalization performance with covariate shift and spatial autocorrelation in geostatistical
learning. They address the non-IIDness issue by removing samples from the bu!er zone to construct spatially
independent folds. Similarly, Tang et al. (2021) study generalization performance within the Federated
Learning paradigm with non-IID data. They employ clustering techniques to partition clients into distinct
clusters based on statistical characteristics, thus treating samples from clients within each cluster as IID
and analyzing each cluster separately. We similarly explore generalization performance with non-IID data
samples and employ the technique of identifying IID subdomains/blocks. However, we di!er in the reason
for the occurrence of non-IIDness, the setup of the problem, and our analytical approaches.

Lastly, our work is related to the broader literature on multi-armed bandit learning (Bubeck et al., 2012;
Lattimore & Szepesvári, 2020), which deals primarily with the exploration and exploitation dilemma. This
same trade-o! emerges the context of online/machine learning, where a decision maker can obtain additional
data to improve the generalization performance of its models, while at the same time risking incurring costs
due to this data collection. In the general bandit problem, the decision maker explores “arms” (the available
actions) in various ways, such as randomly using the ω-greedy algorithm, by some form of highest uncertainty
as in UCB algorithm, or by importance sampling approaches as in EXP3, etc. The key di!erence in our
approach is that we consider bounded exploration (motivated by works such as (Balcan et al., 2007; Lee
et al., 2023; Wei, 2021; Yang et al., 2022)), where a bound is set to limit the “arms” that are considered for
exploration (here, ranges of data samples that may be admitted). This is because the cost of wrong decisions
increases as samples further away from the current decision threshold are admitted, making some arms too
costly for exploration. Furthermore, in the bandit literature, regret analysis is conducted to analyze the model
performance compared to the best actions in hindsight. In contrast, we analyze the model performance from
a di!erent angle: our goal is to improve the generalization error guarantees (upper bound on the di!erence
between the model’s performance on training data and unseen testing data) by utilizing the newly collected
samples through exploration.

2 Problem Setting
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We consider a supervised learning setup where a learner (equivalently, the learning algorithm) selects a classi-
fier based on an initial training dataset and subsequently uses it to make binary decisions (e.g., accept/reject)
for new data samples arriving sequentially. We use a bank granting loans as a running example.

Data representation. Each data sample is represented as a pair (x, y), where x → X ↑ R is the feature
used for decision-making (e.g., credit score), and y → Y = {0, 1} is the true label indicating qualification
status, with y = 1 denoting that the sample is qualified to receive a favorable decision (e.g., the applicant
will repay the loan if granted). We denote the corresponding random variables as X and Y , and we use
F

y(x) = P(X ↓ x|Y = y) to denote the cumulative distribution function (CDF) of X conditional on Y = y,
and py = P(Y = y) to denote the label portions in the population.

The learning algorithm. The learner begins with an initial (historical) realized training dataset consisting
of ny IID samples1 {x

y
i }ny

i=1 for each label y → {0, 1}. This initial training dataset can be likened to a financial
institution with an existing loan repayment history dataset consisting of a set number of defaults and on-time
payo!s. Based on the initial dataset, the learner selects a threshold-based binary classifier fω(x) : X ↔ {0, 1}
(i.e., fω(x) = (x ↗ ϑ)) to decide whether to accept or reject (equivalently, assign labels 1 or 0) incoming
loan applications, where ϑ denotes the decision threshold (e.g., ϑ could be the minimum credit score to be
approved for a loan)
Assumption 1. The data samples x are one-dimensional, and the classifier is threshold-based, fω(x).2
Extensions to high-dimensional samples are discussed in Appendix J.

Censored vs. disclosed regions. The decision threshold ϑ divides the data domain into two regions: the
upper, disclosed region, where the true label of future admitted samples will become known to the learner,
and the lower, censored region, where true labels are no longer observed. As new samples arrive, due to
this censored feedback, additional data is only collected from the disclosed region of the data domain (e.g.,
we only find out if an individual repays the loan if it is granted the loan in the first place). This is what
causes the non-IIDness of the (expanded) dataset: after new samples arrive, the training dataset consists of
ny historical IID samples from both censored and disclosed regions on each label y, and an additional ky

samples collected afterward from each label y, but only from the disclosed region, making the entire ny + ky

samples a non-IID subset of the respective label y’s data domain.
Remark 1. Note that we assume the learner starts with one fixed realization of {ny}y→{0,1} data points,
and therefore the decision threshold ϑ and the number of initial samples in the censored region {my}y→{0,1}
are (non-random) realized values 3. For instance, the realized training dataset and decision threshold can be
likened to a financial institution with an existing loan repayment history dataset consisting of a set number
of defaults and on-time payo!s, and its initial decision threshold selected for approving future applications.

Assumption 2. The non-IID nature of the data arises solely from censored feedback, which biases the data
collection process by restricting observed labels to samples in the disclosed region.

Remark 2. We note that there are two possible ways to interpret the additional samples {ky}y→{0,1}: a
posteriori (i.e., outcomes after collecting exactly ky new samples in the disclosed region), or a priori (i.e.,
possible values once a total of T new samples arrive, only some of which will fall in the disclosed region).
The former is a reasonable assumption if a learner has already collected samples under censored feedback, or
alternatively, is willing to wait to collect the exact required number of samples until it can achieve a desired
error bound. The latter is from the viewpoint of a learner contemplating potential outcomes if it waits for a
total of T new samples to arrive. We will present our new error bound under both interpretations.

Formally, let F
y(x) denote the theoretical (ground truth) CDF for label y samples. Let ϖ

y := F
y(ϑ) be

the theoretical fraction of samples in the censored region, and my be the random number of the initial ny

training samples from label y samples located in the censored region. It is worth noting that my

ny
can provide

1We assume that any non-IIDness is introduced due to censored feedback impacting subsequent data collection. Extension
to initially biased training data is also possible but at the expense of additional notation.

2The single-dimensional features and threshold classifier assumptions are not too restrictive: Corbett-Davies et al. (2017,
Thm 3.2) and Raab & Liu (2021) have shown that threshold classifiers can be optimal if multi-dimensional features can be
appropriately converted into a one-dimensional scalar (e.g., with a neural network).

3We consider a random variable {my}y→{0,1} in Appendix K.
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Table 1: Notation Summary

Symbol Explanation

(x, y) Paired (feature, label) information of samples
ϑ Decision threshold
LB Exploration lower bound
n (ny) Number of initial samples (from label y)
l, m Number of initial samples that fall below the LB, ϑ

ϖ, ε Theoretical fraction of samples that fall below the ϑ, LB

k Additional samples collected under no-exploration case
ke, kd Additional samples collected under exploration case, where ke and kd represent

samples collected in the exploration and disclosed regions
T Total number of sequential arriving samples
py Label portions in the populations P(Y = y)
F

y
, F

y
n Theoretical and empirical CDF P(X ↓ x|Y = y) on the full data domain

G
y
, G

y
m Theoretical and empirical CDF P(X ↓ x|Y = y) on the censored region

E
y
, E

y
m↑l+k1

Theoretical and empirical CDF P(X ↓ x|Y = y) on the exploration region
K

y
, K

y
n↑m+k Theoretical and empirical CDF P(X ↓ x|Y = y) on the disclosed region

R(ϑ), Remp(ϑ) Expected and empirical risk incurred by an algorithm with a decision threshold ϑ.

an empirical estimate of ϖ
y, but the two are in general not equal. After new samples are collected, the

learner has access to ny + ky total samples from label y samples, which are not identically distributed: my

are in the censored region, and ny ↘ my + ky are in the disclosed region. Let F
y
ny+ky

(x) denote the empirical
CDF of the feature distribution for label y samples based on these ny + ky training data points. Our first
goal is to provide an error bound, similar to the DKW inequality, of the discrepancy between F

y
ny+ky

(x) and
the ground truth CDF F

y(x), for each label y. We will then use these to bound the generalization error
guarantees of the learned model from the (non-IID) {ny + ky}y→{0,1} data points.

We summarize our problem setting’s dynamics, main notation below:

• Stage I: Initial Data. The learner starts with ny initial data points, {x
y
i }ny

i=1, from each label y → {0, 1},
drawn IID from the corresponding true underlying distributions with CDF F

y(x). Accordingly, the learner
selects a fixed decision threshold ϑ. Given ϑ, the ny samples for label y are be divided into my samples below
ϑ (my = |{i : x

y
i < ϑ}|, referred to as the censored region) and ny ↘ my samples above ϑ (referred to as the

disclosed region).

• Stage II: Arrival of New Samples. At each time t, a new sample arrives. Its true label is ŷ = y

with probability py, and its feature x̂ is drawn uniformly at random from the corresponding conditional
distribution with CDF F

ŷ(x). The sample’s feature x̂ is observed, and it is admitted if and only if x̂ ↗ ϑ.
Due to censored feedback, ŷ will only be observed if the sample is admitted. When a sample is admitted, its
data is used to expand the corresponding dataset of y = ŷ samples to {x

y
1, . . . , x

y
ny

, x
y
ny+1, . . . , x

y
ny+kt

y↑1, x̂}.

• Stage III: Updating Empirical Distribution Estimates. After T time steps (which can be fixed in
advance, or denote the time at which a certain number of samples have been collected), the learner has access
to ky new samples for each label y. These samples expand the training dataset for label y into the non-IID
collection {x

y
1, . . . , x

y
ny

, x
y
ny+1, . . . , x

y
ny+ky↑1, x

y
ny+ky

}. The learner then find F
y
ny+ky

(x), the empirical CDF
of the feature distribution for label y based on the combined ny + ky data points.

For a clearer understanding of the notations we used, we summarize all notations in the following Table 1.

3 Error Bounds on Cumulative Distribution Function Estimates

Recall that our first goal is to provide an error bound, similar to the DKW inequality, of the discrepancy
between the empirical CDF of feature distribution F

y
ny+ky

(x) and the ground truth CDF F
y(x), for each

label y. Note that the empirical CDF is found for each label y separately based on its own data samples.
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Therefore, we drop the label y from our notation throughout this section for simplicity. Further, we first
derive the a posteriori bounds for given realizations of ky, and develop the a priori version of the bound
accordingly in Corollary 1 (c.f. Remark 2 for the distinction between a priori and a posteriori cases).

We first state the Dvoretzky-Kiefer-Wolfowitz inequality (an extension of the Vapnik–Chervonenkis (VC)
inequality for real-valued data) which provides a CDF error bound given IID data.

Theorem 1 (The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Dvoretzky et al., 1956; Massart, 1990)).
Let Z1, . . . , Zn be IID real-valued random variables with cumulative distribution function F (z) = P(Z1 ↓ z).
Let the empirical distribution function be Fn(z) = 1

n

∑n
i=1 (Zi ↓ z). Then, for every n and ϱ> 0,

P
(

sup
z→R

∣∣∣F (z) ↘ Fn(z)
∣∣∣ ↗ ϱ

)
↓ 2 exp (↘2nϱ

2) .

In words, the DKW inequality shows how the likelihood that the maximum discrepancy between the empirical
and true CDFs exceeds a tolerance level ϱ decreases in the number of (IID) samples n.

Figure 1: Behavior of bounds using DKW in-
equality.

Bounds behavior. To better understand the behavior
of the bounds, we conduct a numerical experiment to il-
lustrate why the bounds derived using DKW inequality
fails to address the problem in the presence of censored
feedback. We proceed as follows: we start with n = 100
initial random samples drawn from a Gaussian distribu-
tion with mean µ = 7 and standard deviation ς = 3,
with an additional T = 10000 samples arriving subse-
quently, randomly sampled from across the entire data
domain. For significance level φ = 0.01, we observe that
the bounds decrease as more samples are collected over
the entire data domain. Furthermore, in accordance with the strong law of large numbers, the bounds
eventually converge to zero as T becomes su"ciently large.

However, when a decision threshold is set (e.g., ϑ = 8)—indicating that only samples above the threshold
are collected to improve the bounds—the situation changes. In this case, the collected samples are no longer
representative of the entire data domain, as they are limited to the disclosed region. Consequently, the
bounds associated with the censored region cannot be improved. This results in a persistent gap between
the theoretical and empirical CDFs, preventing convergence to zero. In contrast, the bounds derived from the
DKW inequality, which assume random sampling across the entire data domain, continue to decrease to zero.
As a result, the bounds (represented by the black curve) eventually underestimate the true generalization
error, crossing below it and failing to account for the censored feedback.

We now extend the DKW inequality to the case of non-IID data due to censored feedback. We do so by
first splitting the data domain into blocks containing IID data, to which the DKW inequality is applicable.
Specifically, although the expanded training dataset is non-IID, the decision maker has access to m IID
samples in the censored region, and n ↘ m + k IID samples in the disclosed region. Let Gm and Kn↑m+k

denote the corresponding empirical feature distribution CDFs. The DKW inequality can be applied to bound
the di!erence between these empirical CDFs and the corresponding ground truth CDFs G and K.

It remains to identify a connection between the full CDF F , and G (the censored CDF) and K (the disclosed
CDF), to reach a DKW-type error bound on the full CDF estimate (see Figure 2 for an illustration). This
reassembly from the bounds on the IID blocks into the full data domain is however more involved, as it
requires us to consider a set of scaling and shifting factors, which are themselves empirically estimated and
di!erent from the ground truth values. We will account for these di!erences when deriving our generalization
of the DKW inequality, as detailed in the remainder of this section. All proofs are given in the Appendix.
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Figure 2: The empirical CDFs Fn+k (Full domain), Gm (Censored region), and Kn↑m+k (Disclosed region),
and the theoretical CDFs of F , G, and K. Experiments based on randomly drawn samples from Gaussian
data N(7, 1), ϑ = 7, n = 50, m = 24, and k = 0.

3.1 CDF bounds under censored feedback

We first present two lemmas that establish how the deviation of Gm and Kn↑m+k from their corresponding
theoretical values, for a given realization of m data points in the censored region, relate to the deviation of
the full empirical CDF Fn+k from its theoretical value F .
Lemma 1 (Censored Region). Let Z = {xi|xi ↓ ϑ} denote the (realized) m out of n + k samples that are
in the censored region. Let G and Gm be the theoretical and empirical CDFs of Z, respectively. Then,

sup
x→(↑↓,ω)

|F (x) ↘ Fn+k(x)| ↓ sup
x→(↑↓,ω)

∣∣∣ min
(

ϖ,
m

n

)
(G(x) ↘ Gm(x))

∣∣∣
︸ ︷︷ ︸

(scaled) censored subdomain error

+
∣∣∣ϖ ↘ m

n

∣∣∣
︸ ︷︷ ︸

scaling error

.

The (partial) error bound in this lemma shows the maximum di!erence between the true F and the empirical
Fn+k in the censored region (i.e., for x → (↘≃, ϑ)) can be bounded by the maximum di!erence between G

and Gm, modulated by the scaling (min(ϖ,
m
n )) that is required to map from partial CDFs to full CDFs.

Specifically, to match the partial and full CDFs, we need to consider the di!erent endpoints of the censored
region’s CDF and the full CDF at ϑ, which are Gm(ϑ) = G(ϑ) = 1, F (ϑ) = ϖ, and Fn+k(ϑ) = m

n , respectively.
The first term in the bound above accounts for this by scaling the deviation between the true and empirical
partial CDF accordingly. The second term accounts for the error in this scaling since the empirical estimate
m
n is generally not equal to the true endpoint ϖ.

The following is a similar result in the disclosed region.
Lemma 2 (Disclosed Region). Let Z = {xi|xi ↓ ϑ} denote the (realized) n ↘ m + k out of the n + k samples
in the disclosed region. Let K and Kn↑m+k be the theoretical and empirical CDFs of Z, respectively. Then,

sup
x→(ω,↓)

|F (x) ↘ Fn+k(x)| ↓ sup
x→(ω,↓)

∣∣∣ min(1 ↘ ϖ, 1 ↘ m

n
)(K(x) ↘ Kn↑m+k(x))

∣∣∣
︸ ︷︷ ︸

(scaled) disclosed subdomain error

+ 2
∣∣∣ϖ ↘ m

n

∣∣∣
︸ ︷︷ ︸

shifting and scaling errors

Similar to Lemma 1, we observe the need for a scaling factor. However, in contrast to Lemma 1, this lemma
introduces an additional shifting error, resulting in a factor of two in the last term |ϖ ↘ m

n |. In particular,
we need to consider the di!erent starting points of the disclosed region’s CDF and full CDF at ϑ, which are
Km(ϑ) = K(ϑ) = 0, F (ϑ) = ϖ, and Fn+k(ϑ) = m

n , respectively, when mapping between the CDFs; one of the
|ϖ ↘ m

n | captures the error of shifting the starting point of the partial CDF to match that of the full CDF.

We can now state our main theorem, which generalizes the well-known DKW inequality to problems with
censored feedback.
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Theorem 2. Let x1, x2, . . . , xn be realized initial data samples, drawn IID from a distribution with CDF
F (x). Let ϑ partition the data domain into two regions, such that ϖ = F (ϑ), and m of the initial n samples
are located to the left of ϑ. Assume we have collected k additional samples above the threshold ϑ, and let
Fn+k(x) denote the empirical CDF estimated from these n + k (non-IID) data. Then, for every ϱ > 0,

P
[

sup
x→R

∣∣∣F (x) ↘ Fn+k(x)
∣∣∣ ↗ ϱ

]
↓ 2 exp

(
↑2m(ε↑|ϑ↑ m

n |)2

min
(

ϑ, m
n

)2

)

︸ ︷︷ ︸
censored region error (constant)

+ 2 exp
(

↑2(n↑m+k)(ε↑2|ϑ↑ m
n |)2

min
(

1↑ϑ, n→m
n

)2

)

︸ ︷︷ ︸
disclosed region error (decreasing with additional data)

The proof proceeds by applying the DKW inequality to each subdomain, and combining the results using a
union bound on the results of Lemmas 1 and 2.

From the above expression, we observe that as n (the number of initial samples across the entire data domain)
becomes large, the maximum discrepancy between the theoretical and empirical CDFs decreases, following
the strong law of large numbers. In such cases, the e!ect of censored feedback on the bounds becomes
minimal, as the data distribution can already be well estimated. More interestingly, when the initial training
dataset is small, censored feedback can have a substantial impact on the bounds as shown in Fig. 3(a). As
the number of samples collected under censored feedback increases (k ↔ ≃), the error term associated with
the censored region remains constant, as it does not depend on k. However, the error term for the disclosed
region decreases asymptotically, behaving as 2exp(↘2kϱ

2), as shown in Fig. 3(b). Together, this results in
an overall decreasing trend, which is also reflected in the numerical illustration in Fig. 5, where the orange
line falls below the blue line. However, unlike the DKW bound, this error bound does not go to zero due to
a constant error term from the censored region of the data domain (the first term in the error bound). This
means that unless exploration strategies are adopted, we can not guarantee arbitrarily good generalization
in censored feedback tasks. Finally, we note that the DKW inequality can be recovered as the special case
of our Theorem 2 by letting ϑ ↔ ↘≃ (which makes ϖ ⇐ 0, m ⇐ 0).

Numerical Illustration of Bound Behavior for Each Term in Theorem 2. We conduct a numerical
experiment to illustrate the behavior of the bounds for each term. We proceed as follows: we start with
n → {50, 200, 500, 1000} initial random samples drawn from a Gaussian distribution with mean µ = 7 and
standard deviation ς = 3. For significance levels φ → {0.01, 0.05, 0.1}, Fig. 3(a) shows that, for any fixed
initial training sample size n, the CDF bounds for the censored region remain constant. Since this term does
not depend on newly collected samples, the bounds can only be improved by increasing n. For the disclosed
region, we fix n = 50 and examine how the bounds behave as the number of newly collected samples varies
(k → {0, 50, 200, 500}). As shown in Fig. 3(b), for significance levels φ → {0.01, 0.05, 0.1}, the CDF bounds
for the disclosed region vanish as more samples are collected.

Figure 3: Behavior of the censored and disclosed region error terms.

Finally, recall from Remark 2 that instead of considering an exact realization of k new samples in the
disclosed region, a decision maker may want to know the error bound after waiting for T agents to arrive
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(only some of which will fall in the disclosed region). The following corollary provides an error bound that
can be leveraged under this viewpoint.
Corollary 1. Let x1, x2, . . . , xn be realized initial data samples, drawn IID from a distribution with CDF
F (x). Let ϑ partition the data domain into two regions, such that ϖ = F (ϑ), and m of the initial n samples
are located to the left of ϑ. Assume we have waited for T additional samples to arrive, and let Fn+T (x)
denote the empirical CDF estimated accordingly. Then, for every ϱ > 0,

P
[

sup
x→R

∣∣∣F (x) ↘ Fn+T (x)
∣∣∣ ↗ ϱ

]
↓ 2 exp

(
↑2m(ε↑|ϑ↑ m

n |)2

min
(

ϑ, m
n

)2

)

︸ ︷︷ ︸
censored region error (constant)

+
T∑

k=0
2
(

T

k

)
(1 ↘ ϖ)k

ϖ
T ↑k exp

(
↑2(n↑m+k)(ε↑2|ϑ↑ m

n |)2

min
(

1↑ϑ, n→m
n

)2

)

︸ ︷︷ ︸
disclosed region error (decreasing with wait time T )

The proof is straightforward, and follows from writing the law of total probability for the left-hand side
of the inequality by conditioning on the realization k of the samples in the disclosed region. We first note
that the censored region error term, as expected, is una!ected by the wait time T . The second term is the
disclosed region error from Theorem 2; it is decreasing with T as the exponential error terms decrease with
k, and higher k’s are more likely at higher T .

3.2 Censored feedback and exploration

A commonly proposed method to alleviate censored feedback, as noted in Section 1, is to introduce explo-
ration in the data domain. From the perspective of the generalization error bound, exploration has the
advantage of reducing the constant error term in Theorem 2, by collecting more data samples from the cen-
sored region. Formally, we consider (bounded) exploration in the range x → (LB, ϑ), where samples in this
range are admitted with an exploration frequency ω. When LB ↔ ↘≃, this is a pure exploration strategy.

Now, the lowerbound LB and the decision threshold ϑ partition the data domain into three IID subdomains
(see Figure 4 for an illustration). However, the introduction of the additional exploration region (LB, ϑ)
will enlarge the CDF bounds, as it introduces new scaling and shifting errors when reassembling subdomain
bounds into full domain bounds.

Figure 4: The empirical CDFs Fn+ke+kd (Full domain), Gl (Censored region), Em↑l+ke (Explored region),
and Kn↑m+kd (Disclosed region), and the theoretical CDFs of F, G, E, and K. Experiments based on
randomly drawn samples from Gaussian data N(7, 1), ϑ = 7 LB = 6, n = 50, l = 7, m = 27, and ke = kd = 0.

Specifically, of the n initial data, let l, m ↘ l, and n ↘ m of them be in the censored (below LB), exploration
(between LB and ϑ), and disclosed (above ϑ) regions, respectively. Let ε = F (LB) and ϖ = F (ϑ), with
initial empirical estimates l

n and m
n , respectively. We will view both l and m as random variables.

9
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As new agents arrive, let ke and kd denote the additional samples collected in the exploration range and
disclosed range, respectively. One main di!erence of this setting with that of Section 3.1 is that as additional
samples are collected, the empirical estimate of ϖ can be re-estimated. Accordingly, we present a lemma
similar to Lemmas 1 and 2 for the exploration region.
Lemma 3 (Exploration Region). Let Z = {xi|LB ↓ xi ↓ ϑ} denote the (realized) m ↘ l + ke samples out of
the n+ke +kd samples that are in the exploration range. Let E and Em↑l+ke be the theoretical and empirical
CDFs of Z, respectively. Then,

sup
x→(LB,ω)

|F (x) ↘ Fn+ke+kd(x)| ↓
∣∣∣ε ↘ l

n

∣∣∣
︸ ︷︷ ︸

shifting error

+
∣∣∣ϖ ↘ ε ↘ n ↘ l

n

m ↘ l + ke

n ↘ l + ke + ωkd

∣∣∣
︸ ︷︷ ︸

re-estimated scaling error

+ sup
x→(LB,ω)

∣∣∣ min
(
ϖ ↘ ε,

n↑l
n

m↑l+ke
n↑l+ke+ϖkd

)
(E(x) ↘ Em↑l+ke(x))

∣∣∣
︸ ︷︷ ︸

scaled exploration subdomain error

Observe that here, we need both scaling and shifting factors to relate the partial and full CDF bounds, as
in Lemma 2, but with an evolving scaling error as more data is collected. In particular, the initial empirical
estimate m

n is updated to l
n + n↑l

n
m↑l+ke

n↑l+ke+ϖkd
after the observation of the additional ke and kd samples.

We now extend the DKW inequality when data is collected under censored feedback and with exploration.
Theorem 3. Let x1, x2, . . . , xn be realized initial data samples, drawn IID from a distribution with CDF
F (x). Let LB and ϑ partition the domain into three regions, such that ε = F (LB) and ϖ = F (ϑ), with l

and m of the initial n samples located to the left of LB and ϑ, respectively. Assume we have collected an
additional ke samples between LB and ϑ, under an exploration probability ω, and an additional number of
kd samples above ϑ. Let Fn+ke+k2(x) denote the empirical CDF estimated from these n + ke + kd non-IID
samples. Then, for every ϱ > 0,

P
[

sup
x→R

∣∣∣F (x) → Fn+ke+kd (x)
∣∣∣ ↑ ω

]
↓ 2 exp

(
↑2l(ω↑|ε↑ l

n |)2

min
(

ε, l
n

)2

)

︸ ︷︷ ︸
(still) censored region error (constant)

+ 2 exp
( ↑2(m↑l+ke)

(
ω↑|ε↑ l

n |↑
∣∣ϑ↑ε↑ n→l

n
m→l+ke

n→l+ke+ωkd

∣∣)2

min
(

ϑ↑ε, n→l
n

m→l+ke
n→l+ke+ωkd

)2

)

︸ ︷︷ ︸
exploration region error (decrease with ke)

+ 2 exp
( ↑2(n↑m+kd)

(
ω↑2

∣∣ϑ↑ l
n ↑ n→l

n
m→l+ke

n→l+ke+ωkd

∣∣)2

min
(

1↑ϑ, n→l
n

n→m+ωkd
n→l+ke+ωkd

)2

)

︸ ︷︷ ︸
disclosed region error (decrease with kd)

.

Comparing this expression with Theorem 2, we first note that the last term corresponding to the error
bound in the disclosed region are similar when setting k = kd, with the di!erence being in the impact of
re-estimating ϖ.

Theorem 3 provides an extension of the DKW inequality to account for censored feedback and exploration,
introducing three distinct regions: the (still) censored region (↘≃, LB), the exploration region (LB, ϑ), and
the disclosed region (ϑ, ≃). The (still) censored region contributes a constant error term dependent on l, the
number of initial samples in this region, due to the absence of exploration. The exploration region introduces
ke, the number of samples collected under an exploration probability ω, which reduces the error in this region
as ke ↔ ≃, ultimately approaching zero. In contrast, the disclosed region contributes an error based on
n ↘ m, the number of initial samples above ϑ, and kd, the number of additional samples collected in this
region. As kd increases, the error in the disclosed region also diminishes.

A key insight from Theorem 3 is that although there can still be a non-vanishing error term in the (still)
censored region, additional samples collected in the exploration and disclosed regions can reduce their re-
spective error terms. Similar to Theorem 2, due to the newly collected samples ke and kd, the error term for
the exploration and disclosed region decreases asymptotically, behaving as 2exp(↘2keϱ

2) and 2exp(↘2kdϱ
2),

respectively, similar to the findings in Fig. 3. However, as also noted in Fig. 5, the union bounds can be
problematic when ke, kd is small, where the red line initially is above the orange line with a small exploration
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probability. Further, if we adopt pure exploration (LB ↔ ↘≃, which makes ε ⇐ 0, l ⇐ 0), the first term
will vanish as well (however, note that pure exploration may not be a feasible option if exploration is highly
costly). Lastly, we note that an a priori version of this bound can be derived using similar techniques to
that of Corollary 1.

3.3 When will exploration improve generalization guarantees?

It might seem at first sight that the new vanishing error term in the exploration range of Theorem 3 necessarily
translates into a tighter error bound than that of Theorem 2 when exploration is introduced. Nonetheless, the
shifting and scaling factors, as well as the introduction of an additional union bound, enlarge the CDF error
bound. Therefore, in this section, we elaborate on the trade-o! between these factors, and evaluate when
the benefits of exploration outweigh its drawbacks in providing error bounds on the data CDF estimates.

We begin by presenting two propositions that assess the change in the bounds of Theorems 2 and 3 as a
function of the severity of censored feedback (as measured by ϑ) and the exploration frequency ω.
Proposition 1. Let B(ϑ) denote the error bound in Theorem 2, and assume the conditions of that theorem
hold. Assume also that we can collect an additional k = O(n) samples above the threshold. Then, B(ϑ) is
increasing in ϑ.
Proposition 2. Let B

e(LB, ϑ, ω) denote the error bound in Theorem 3, and assume the conditions of that
theorem hold. Then, B

e(LB, ϑ, ω) is decreasing in ω.

In words, as intuitively expected, these propositions state that the generalization bounds worsen (i.e., are
less tight) when the censored feedback region is larger, and that they can be improved (i.e., made more tight)
as the frequency of exploration increases.

Figure 5: A minimum exploration frequency is
needed to tighten the CDF error bound.

Numerical illustration. We also conduct a numerical
experiment to illustrate the bounds derived in Theorems 2
and 3. We proceed as follows: n = 8000 random samples
are drawn from a Gaussian distribution with mean µ = 7
and standard deviation ς = 3, with an additional T =
40000 samples arriving subsequently, randomly sampled
from across the entire data domain. We set φ = 0.01, the
threshold ϑ = 8, and the lower bound LB = 6. We run
the experiment 5 times and report the error bounds from
Theorems 2 and 3 accordingly.4

In Figure 5, the “original” (blue) line represents the DKW
CDF bound of the initial samples without additional data.
The “B(ϑ)” (orange) line and “B(LB)” (green) line represent the CDF bound in Theorem 2 without explo-
ration, where the decision threshold is at ϑ and LB, respectively. The “B

e(LB, ϑ, ω)” (red) line represents
the bound in Theorem 3 with exploration probability ω.

From Figure 5, we first observe that the green line (B(LB), which observes new samples with x ↗ LB = 6)
provides a tighter bound than the orange line (B(ϑ), which observes new samples with x ↗ ϑ = 8), with both
providing tighter bounds than the blue line (original DKW bound, before any new samples are observed).
This is shown by that the green line is below the orange line, which is also below the blue line. This
improvement is due to collecting more samples from the disclosed region results in a decrease in the CDF
error bound, as noted by Proposition 1. Additionally, we can observe from the trajectory of the red line
(Be(LB, ϑ, ω), which observes a fraction ω of new samples from (LB, ϑ), and all new samples above ϑ) that
introducing exploration enlarges the CDF error bound due to the additional union bound, but it also enables
the collection of more samples, leading to a decrease in the CDF error bound as ω increases (evidenced by the
red line is decreasing when ω increases along the x-axis); note that this observation aligns with Proposition 2.

4While we evaluate the a posteriori bounds under the realizations of the new samples falling in the disclosed and exploration
regions (k, , k1, and k2), we show the averages of the bounds over multiple runs, which can be viewed as an approximation of
the a priori version of the bounds. See Appendix L for a comparison of the bounds from Corollary 1 and Theorem 2.
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Notably, we see that a minimum level of exploration probability ω (accepting around 10% of the samples in
the exploration range) is needed to improve the CDF bounds over no exploration. Note that this may or may
not be feasible for a decision maker depending on the costs of exploration (see also Section 3.4). However, if
exploration is feasible, we also see that accepting around 20% of the samples in the exploration range (when
the red line is close to the green line) can be su"cient to provide bounds nearly as tight as observing all
samples in the exploration range. In other words, we can see from Fig. 5 that the ω is around 10% when the
red line crosses the orange line, and it is around 20% when the red line is close to the green line.

3.4 How to choose an exploration strategy?

We close this section by discussing potential considerations in the choice of an exploration strategy in light
of our findings. Specifically, a decision maker can account for a tradeo! between the costs of exploration and
the improvement in the generalization error bound when choosing its exploration strategy. Recall that the
exploration strategy consists of selecting an exploration lowerbound/range LB and an exploration probability
ω. Formally, the decision maker can solve the following optimization problem to choose these parameters:

max
ϖ→[0,1],LB→[0,ω]

(
B(ϑ) ↘ B

e(LB, ϑ, ω)
)

↘ C(LB, ϑ, ω) , (1)

where B(ϑ) and B
e(LB, ϑ, ω) denote the error bounds in Theorems 2 and 3, respectively, and C(LB, ϑ, ω) is

an exploration cost which is non-increasing in (ϑ ↘ LB) (reducing the exploration range will weakly decrease
the costs) and non-decreasing in ω (exploring more samples will weakly increase the cost). As an example,
the cost function C(LB, ϑ, ω) can be given by

C(LB, ϑ, ω) = ω

 ω

LB
e

ε→x
c f

0(x)dx. (2)

In words, unqualified (costly) samples at x have a density f
0(x), and when selected (as captured by the ω

multiplier), they incur a cost e
ε→x

c , where c > 0 is a constant. Notably, observe that the cost is increasing
as the sample x gets further away from the threshold ϑ. For instance, in the bank loan example, this could
capture the assumption that individuals with lower credit scores default on a larger portion of their loans.

As noted in Proposition 2, B
e(LB, ϑ, ω) is decreasing in ω; coupled with any cost function C(LB, ϑ, ω) that

is (weakly) increasing in ω, this means that the decision maker’s objective function in equation 1 captures a
tradeo! between reducing generalization errors and modulating exploration costs.

The optimization problem in equation 1 can be solved (numerically) by plugging in for the error bounds
from Theorems 2 and 3 and an appropriate cost function (e.g., equation 2). For instance, in the case of
the numerical example of Fig. 5, under the cost function of equation 2 with c = 5, and fixing LB = 6, the
decision maker should select ω = 11.75%.

Another potential solution for modulating exploration costs is to use multiple exploration subdomains, each
characterized by an exploration range [LBi, LBi↑1), and with a higher exploration probability ωi assigned
to the subdomains closer to the decision boundary (which are less likely to contain high cost samples). For
instance, with the choice of b subdomains, the cost function of equation 2 would change to (the lower) cost:

C({LBi}b
i=1, ϑ, {ωi}b

i=1) =
b∑

i=1
ωi

 LBi→1

LBi

e
ε→x

c f
0(x)dx. (3)

It is worth noting that while this approach can reduce the costs of exploration, it will also weaken general-
ization guarantees when we reassemble the b exploration subdomains’ bounds back into an error bound of
the full domain (similar to what was observed in Fig. 5 for b = 1). This again highlights a tradeo! between
improving learning error bounds and restricting the costs of data collection.

4 Generalization Error Bounds under Censored Feedback

In this section, we use the CDF error bounds from Section 3 to characterize the generalization error of a
classification model that has been learned from data collected under censored feedback. Specifically, we will

12



Under review as submission to TMLR

first establish a connection between the generalization error of a classifier (the quality of its learning) and
the CDF error bounds on its training dataset (the quality of its data). With this relation in hand, we can
then use any of the CDF error bounds from Theorems 1-3 to bound how well algorithms learned on data
su!ering from censored feedback (and without or with exploration) can generalize to future unseen data.

Formally, we consider a 0-1 learning loss function L : Y ⇒ Y ↔ {0, 1}. Denote R(ϑ) = EXY L(fω(X), Y ) as
the expected risk incurred by an algorithm with a decision threshold ϑ. Similarly, we define the empirical
risk as Remp(ϑ). The generalization error bound is an upper bound to the error |R(ϑ̂) ↘ Remp(ϑ̂)|, where ϑ̂ is
the minimizer of the empirical loss, i.e., ϑ̂ := arg minω Remp(ϑ). In words, the bound provides a (statistical)
guarantee on the performance R(ϑ̂), when using the learned ϑ̂ on unseen data, relative to the performance
Remp(ϑ̂) assessed on the training data. Our objective is to characterize this bound under censored feedback,
and to evaluate how utilizing (pure or bounded) exploration can improve the bound.

Recall that the decision maker starts with a training data containing ny IID samples from each label y,
drawn from an underlying distribution with CDF F

y(x). Let n = n0 + n1 denote the size of the initial
training data. Then, the expected loss of a binary classifier with decision threshold ϑ is given by,

R(ϑ) = EXY L(f(X), Y ) = p1F
1(ϑ) + p0(1 ↘ F

0(ϑ)) ,

while the empirical loss Remp(ϑ) is given by,

Remp(ϑ) = n1
n

1
n1

∑

(xi,yi)
{xi ↓ ϑ, yi = 1} + n0

n

(
1 ↘ 1

n0

∑

(xi,yi)
{xi ↓ ϑ, yi = 0}

)
.

Similarly, if the decision maker can collect an additional ky samples of agents with features above the
threshold ϑ, the above empirical risk expression can be updated accordingly, by considering the ny + ky

samples available from each label y.

We detail the derivations of these expressions in Appendix I. Using these expressions of the expected and
empirical risks, the following theorem provides an upper bound on the generalization error |R(ϑ̂) ↘ Remp(ϑ̂)|
as a function of the CDF error bound, where ϑ̂ denotes the minimizer of the empirical loss, i.e., ϑ̂ :=
arg minω Remp(ϑ).

Theorem 4. Consider a threshold-based classifier fω̂(x) : X ↔ {0, 1} under a 0-1 loss function. Suppose we
start with ny initial IID training samples from each label y, with n = n0 +n1. Let ϑ be a fixed/realized initial
decision threshold calculated through one realization of the initial training dataset such that fω(x) = (x ↗ ϑ).
Let py denote the proportion of agents from label y. Subsequently, due to the censored feedback, the algorithm
collects ky additional samples from each label y. Let F

y and F
y
m denote the CDFs and empirical CDFs,

respectively, given m samples from label y agents. Then, with probability at least 1 ↘ 2φ,
∣∣∣R(ϑ̂) ↘ Remp(ϑ̂)

∣∣∣ ↓ 3
∣∣∣p0 ↘ n0

n

∣∣∣ +
∑

y→{0,1}

min
(

py,
ny

n

)
sup

ω

∣∣∣F y(ϑ) ↘ F
y
ny+ky

(ϑ)
∣∣∣ .

The proof is given in Appendix H. First, we note that tightening the CDF error bounds leads to tightening
the generalization error guarantees. More specifically, using this theorem together with Theorems 1, 2,
and 3, we can provide a generalization error guarantee for an algorithm in terms of the number of available
data samples in its training data from each label and in di!erent parts of the data domain, particularly when
future data availability is non-IID due to censored feedback.

For instance, the DKW inequality can be alternatively expressed as follows: given ny IID samples from a
label y, with probability at least 1 ↘ φ, the following inequality holds:

sup
z

∣∣∣F (z) ↘ F
y
ny

(z)
∣∣∣ ↓


log 2

ϱ

2ny
.
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Using this expression in Theorem 4, we conclude that (without censored feedback, or with pure exploration
with ω = 1) with probability at least 1 ↘ 2φ,

∣∣∣R(ϑ̂) ↘ Remp(ϑ̂)
∣∣∣ ↓ 3

∣∣∣p0 ↘ n0
n

∣∣∣ +
∑

y→{0,1}

min
(

py,
ny

n

)


log 2
ϱ

2ny
.

We can similarly specialize Theorem 4 to tasks with censored feedback by linking it with Theorems 2 and
3. Given the complexity of the CDF error bounds under censored feedback, while we cannot derive a closed-
form expression for the bound as done for the DKW inequality, we can compute the bounds numerically, as
shown in the next section.

5 Numerical Experiments

5.1 CDF error bounds

We first illustrate our derived bounds (with φ = 0.015) on the empirical CDF. We start with 50 random
samples from a Gaussian distribution N(7,1). Next, 200 new samples are drawn from the same distribution,
with all samples with features x ↗ ϑ = 7 accepted, and samples with features LB = 6 ↓ x ↓ ϑ accepted with
a probability ω → {0, 0.5, 1}; higher values of ω represent less censored feedback (ω = 1 means no censored
feedback).

Figure 6: CDF error bounds when di!erent levels of exploration (ω) are used to alleviate censored feedback.
As ω increases: (a) the empirical CDF estimates become more accurate, and (b) our CDF error bounds
improve (i.e., more tightly enclose the true CDF).

From Figure 6, we first note that our bounds (the dotted lines) e!ectively enclose the true distribution,
evidenced by that the true distribution is upper and lower bounded by the dotted lines. We also note the
distinction between empirical CDFs in the disclosed region (x ↗ 7) and the censored region (x ↓ 7): as
intuitively expected, empirical CDFs (solid lines) in the disclosed region are “smoother” compared to those
in the censored region. Furthermore, as ω (exploration) increases, we overcome censored feedback in the
exploration region, resulting in more accurate empirical estimates. Additionally, as ω increases, our error
bounds improve (i.e., more tightly enclose the true CDF). In other words, we can see from Figure 6 that the
empirical CDF in both explored and disclosed regions is getting smoother and closer to the true distribution
with more samples collected. In addition, with a higher ω, the gap between the upper and lower bounds is
smaller and can still enclose the true distribution.
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5.2 Model generalization error bounds: real-world data and adaptively updated algorithm

We now illustrate the ability of our generalization error bounds (derived in Theorem 4) in providing guar-
antees on the error of the learned models from data a!ected by censored feedback, using experiments on a
real-world dataset: FICO(Hardt et al., 2016), Retiring Adult(Ding et al., 2021), Adult(Dua & Gra!, 2017).

Experiments on FICO dataset. The FICO dataset is used to predict whether an individual will default.
It includes one-dimensional features (e.g., credit scores) with a specific focus on the distribution information
of the credit scores. We employ a logistic regression algorithm and 0-1 loss for the classification task, and
compare the generalization error across di!erent exploration probabilities (ω = {0.5, 1}). We start with a
1000 training data samples. A total of 175000 new samples arrive throughout the experiment; in addition
to accepting all samples with feature x ↗ ϑ̂, the algorithm also accepts some samples that fall below ϑ̂. The
decision threshold is updated periodically based on new data (after each 20000 batch of new samples arrives).
The decision threshold is retrained using (most recent) training data. We report our experiment results for
an average of 5 runs, where the randomness comes from the order of samples arrived and the exploration.

Figure 7: Generalization error and bounds using FICO dataset.

Number of Samples Arrived
0 20k 40k 80k 120k 160k 175k

ω = 1 |R(ϑ̂) ↘ Remp(ϑ̂)| 0.0257 0.0094 0.0052 0.0024 0.0013 0.0008 0.0003
Generalization Error Bounds 0.106 0.031 0.021 0.014 0.010 0.010 0.010

ω = 0.5 |R(ϑ̂) ↘ Remp(ϑ̂)| 0.0257 0.0144 0.0104 0.0067 0.0051 0.0038 0.0035
Generalization Error Bounds 0.122 0.042 0.031 0.021 0.0177 0.0170 0.0170

Table 2: Numerical summary table for the generalization error and bounds across the number of arrived
samples using FICO dataset.

Experiments on Retiring Adult dataset. The Retiring Adult census dataset is used to predict whether
an individual can earn more than $50k/year, based on a multi-dimensional feature set. Similar to the
experiments on FICO dataset, we employ a logistic regression algorithm and 0-1 loss for the classification
task, and compare the generalization error across di!erent exploration probabilities (ω = {0.5, 1}). A total
of 1600000 new samples arrive throughout the experiment and the decision threshold is updated periodically
based on new data (after each 200000 batch of new samples arrives). We report our experiment results for
an average of 5 runs, where the randomness comes from the order of samples arrived and the exploration.

In Fig. 7 and 8, the y-axis represents the generalization error and its bounds, where a lower value is preferable.
A smaller value of the bounds indicates tighter bounds enclosing the generalization error curve. From the
experiment results from both FICO and Retiring Adult datasets in Fig. 7 and 8, we can see that our
bounds (shown in gray and blue) can e!ectively contain the true generalization errors of the model (for both
ω = {0.5, 1}). Furthermore, we can see that when the exploration probability ω is increased, the bounds get
tighter (the blue line is below the gray line) due to the additional samples explored during data collection.
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Figure 8: Generalization error and bounds using Retiring Adult dataset.

Number of Samples Arrived
0 0.2M 0.4M 0.8M 1.2M 1.6M

ω = 1 |R(ϑ̂) ↘ Remp(ϑ̂)| 0.0220 0.0050 0.0009 0.0003 0.002 0.0002
Generalization Error Bounds 0.111 0.019 0.017 0.013 0.010 0.009

ω = 0.5 |R(ϑ̂) ↘ Remp(ϑ̂)| 0.0220 0.0136 0.0098 0.0063 0.0040 0.0037
Generalization Error Bounds 0.131 0.028 0.025 0.020 0.0176 0.0159

Table 3: Numerical summary table for the generalization error and bounds across the number of arrived
samples using Retiring Adult dataset.

Experiments on Adult dataset. The Adult census dataset is similar to the Retiring Adult dataset, but
it has smaller amount of samples. It is also used to predict whether an individual can earn more than
$50k/year, based on a multi-dimensional feature set. A total of 45000 new samples arrive throughout the
experiment; We report our experiment results for an average of 5 runs, where the randomness comes from
the order of samples arrived and the exploration. In addition, we further consider the model is updated
as new samples are collected. Therefore, in the following experiments using Adult dataset, we also assess
the performance of our bounds based on whether we adaptively update the decision threshold ϑ̂ with new
samples.

Figure 9: Generalization error with(out) an adaptively updated model (ϑ̂) and varying exploration (ω).
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Number of Samples Arrived
0 5k 15k 25k 35k 45k

ω = 1
|R(ϑ̂) ↘ Remp(ϑ̂)| 0.0114 0.0069 0.0013 0.0009 0.0007 0.0001

|R(ϑ̂) ↘ Remp(ϑ̂)| (Adaptive) 0.0114 0.0033 0.0005 0.0002 0.0002 0.0001
Generalization Error Bounds 0.067 0.027 0.017 0.013 0.011 0.010

ω = 0.5

|R(ϑ̂) ↘ Remp(ϑ̂)| 0.0014 0.0104 0.0052 0.0039 0.0035 0.0033
|R(ϑ̂) ↘ Remp(ϑ̂)| (Adaptive) 0.0114 0.0072 0.0033 0.0028 0.0019 0.0016
Generalization Error Bounds 0.082 0.046 0.034 0.028 0.026 0.026

Generalization Error Bounds (Adaptive) 0.082 0.046 0.032 0.027 0.026 0.026

Table 4: Numerical summary table for the generalization error and bounds across the number of arrived
samples using Adult dataset.

From Figure 9, the y-axis represents the generalization error and its bounds, where a lower value is preferable.
A smaller value of the bounds indicates tighter bounds enclosing the generalization error curve. We observe
that as the decision threshold ϑ̂ is adaptively updated when more samples are collected, it has even better
generalization performance compared to a non-adaptive decision threshold (evidenced by the red curve being
lower than the green curve) This is expected as a refined decision threshold yields better performance on
unseen data. Further, for the generalization error bounds (dotted lines in the right panel), we see that our
bounds e!ectively contain the true generalization errors of the model for both the fixed model and adaptively
updated model cases (all dotted lines are above the red/green curves). Notably, in the presence of censored
feedback, we observe that the generalization error bound with adaptive updating is tighter than the non-
adaptive one (the black curve is below the gray curve), pointing to a potential future research direction for
further improving our bounds.

5.3 Comparison with existing generalization error bounds

Figure 10: Existing bounds fail to capture generalization when there is censored feedback.

We now compare the performance of our bounds with a number of existing generalization error bounds, and
show that by failing to account for censored feedback, prior works fail to correctly capture how well a model
learned on data su!ering from censored feedback generalizes to unseen data. We consider the following
four benchmarks: The ‘Hoe!ding + Azuma’ bounds represent those derived from Hoe!ding and Azuma
inequalities (Hoe!ding, 1994; Azuma, 1967). The ‘VC + binomial’ bounds are VC generalization bounds
(Vapnik & Chervonenkis, 2015; Abu-Mostafa et al., 2012, Thm 2.5) where the shatter coe"cient is bounded
through the binomial theorem. The ‘VC + poly’ bounds represent VC generalization bounds (Vapnik &
Chervonenkis, 2015; Devroye et al., 2013, Thm 13.11) applicable to any linear classifier whose empirical
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Number of Samples Arrived
Existing Generalization Bounds and Errors 0 10k 20k 30k 40k 50k

|R(ϑ̂) ↘ Remp(ϑ̂)| 0.122 0.076 0.061 0.058 0.057 0.057
Hoe!ding + Azuma Bounds 0.156 0.016 0.011 0.009 0.007 0.007

VC + binomial Bounds 1.128 0.562 0.409 0.339 0.296 0.267
VC + poly Bounds 4.453 0.133 0.093 0.076 0.065 0.058

GC Bounds 1.827 0.183 0.121 0.093 0.076 0.065
Our Bounds 0.296 0.191 0.174 0.162 0.161 0.161

Table 5: Numerical summary table for comparisons with existing bounds across the number of arrived
samples.

error is minimal, where the shatter coe"cient is bounded by a polynomial function. Lastly, the ‘GC’ bounds
(Glivenko, 1933; Cantelli, 1933) are derived based on the Glivenko-Cantelli Theorem for a threshold classifier
and 0-1 loss.

We conduct this experiment on synthetic data. We start with 50 initial training samples for each label
y → {0, 1} randomly drawn from Gaussian distributions N(9,1) and N(10,1), respectively. The decision
threshold ϑ̂ is selected to be the one minimizing the misclassification error on the training data. Then, a total
of 50000 new samples arrive throughout the experiment. They will be accepted if the feature x ↗ ϑ̂, otherwise,
they are rejected. We run the experiments 5 times and report the average results with corresponding error
bars. From Figure 10, we can clearly see that the ‘Hoe!ding-Azuma’ (red), ‘VC+binomial’ (blue), and ‘GC’
(purple) bounds are inadequate for accurately estimating the true generalization error guarantees of the
model. This inadequacy is demonstrated by the fact that all three bounds cross the true error (black) line as
new samples are collected under the presence of censored feedback. For the ‘VC+poly’ (gray) bound, although
it provides a very loose estimate compared to our bounds for the given number of new samples—evidenced
by the gray bounds being above our green bounds—it ultimately exhibits similar behavior to the other three
benchmarks, in that it will go lower than the true generalization error.

6 Conclusion and Future Work

We studied generalization error bounds for classification models learned from non-IID data collected under
censored feedback. We presented two generalizations of the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality,
which characterizes the gap between empirical and theoretical CDFs given IID data, to problems with non-
IID data due to censored feedback without exploration (Theorem 2) and with exploration (Theorem 3), and
connected these bounds to generalization error guarantees of the learned model (Theorem 4). Our findings
establish the extent to which a decision maker should be concerned about censored feedback’s impact on
the learned model’s performance guarantees, and show that a minimum level of exploration is needed to
alleviate it.

For future work, we are interested in strengthening our bounds by allowing the model (ϑ) to be adaptively
updated as new samples are collected; as noted in Section 5, this could help further strengthen our error
bounds. Generalization error bounds under a combination of censored feedback and domain adaptation are
also worth exploring, wherein the initial training data distribution di!ers from the target domain distribution.
Finally, we have provided extensions of the DKW inequality, which strengthens the VC inequality when
data is real-valued, under censored feedback; providing similar extensions of the VC inequality for multi-
dimensional data could be an interesting direction of future work. We discuss some initial findings and
potential challenges of this extension below.

Bounds for higher dimensional data. When assessing generalization error under censored feedback
in higher dimensional data, one approach could be to first reduce the dimensionality, enabling direct ap-
plication of our findings. For instance, we have performed a mapping of multi-dimensional features to a
single-dimensional representation in our experiments on the real-world Adult census dataset. However, this
reduction may lead to some loss of information, potentially impacting algorithm performance. An alternative
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would be to follow our approach of identifying IID subspaces in the higher-dimensional data space, apply a
multivariate DKW inequality (e.g., (Naaman, 2021)) in these subspaces, and then identify the appropriate
error coe"cients to re-assemble the subdomain bounds and find a CDF error bound for the entire data
domain. We provide an analysis for 2D spaces based on this approach in Appendix J. A main challenge
when doing so is that while the decision boundary can be any arbitrary line (determining the two subspaces
in which data can be viewed as IID), the standard joint CDF calculates the probability that X ↓ x and
Y ↓ y, where x and y are vertical and horizontal cuto! values. To circumvent this mismatch, we start with
an adjusted CDF which measures data density and counts existing vs. newly collected samples in a “rotated”
data space, and subsequently map the CDF error bound of the adjusted CDF to a CDF error bound for the
standard CDF (as detailed in Appendix J). Alternative error bounds that build on the VC inequality for
multi-dimensional data (instead of multi-dimensional DKW inequalities), remain as a potential direction for
future work.

19



Under review as submission to TMLR

References

Jacob D Abernethy, Kareem Amin, and Ruihao Zhu. Threshold bandits, with and without censored feedback.
Advances In Neural Information Processing Systems, 29, 2016.

Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning From Data. AMLBook, 2012.

Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical Journal,
Second Series, 19(3):357–367, 1967.

Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning. In Learning Theory:
20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007.
Proceedings 20, pp. 35–50. Springer, 2007.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Yahav Bechavod, Katrina Ligett, Aaron Roth, Bo Waggoner, and Steven Z Wu. Equal opportunity in online
classification with partial feedback. Advances in Neural Information Processing Systems, 32, 2019.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from di!erent domains. Machine learning, 79:151–175, 2010.

D Bitouzé, B Laurent, and Pascal Massart. A dvoretzky–kiefer–wolfowitz type inequality for the kaplan–
meier estimator. In Annales de l’Institut Henri Poincare (B) Probability and Statistics, volume 35, pp.
735–763. Elsevier, 1999.

Olivier Bousquet and André Elissee!. Stability and generalization. The Journal of Machine Learning
Research, 2:499–526, 2002.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

Francesco Paolo Cantelli. Sulla determinazione empirica delle leggi di probabilita. Giorn. Ist. Ital. Attuari,
4(421-424), 1933.

Bowen Cheng, Yunchao Wei, Jiahui Yu, Shiyu Chang, Jinjun Xiong, Wen-Mei Hwu, Thomas S Huang, and
Humphrey Shi. A simple non-iid sampling approach for e"cient training and better generalization. arXiv
preprint arXiv:1811.09347, 2018.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic decision making
and the cost of fairness. In Proceedings of the 23rd acm sigkdd international conference on knowledge
discovery and data mining, pp. 797–806, 2017.

Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, and Ningshan Zhang. Region-based active
learning. In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2801–2809.
PMLR, 2019.

Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, and Ningshan Zhang. Adaptive region-
based active learning. In International Conference on Machine Learning, pp. 2144–2153. PMLR, 2020.

Yash Deshpande, Lester Mackey, Vasilis Syrgkanis, and Matt Taddy. Accurate inference for adaptive linear
models. In International Conference on Machine Learning, pp. 1194–1203. PMLR, 2018.

Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition, volume 31.
Springer Science & Business Media, 2013.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair machine
learning. Advances in neural information processing systems, 34:6478–6490, 2021.

20



Under review as submission to TMLR

Dheeru Dua and Casey Gra!. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
ml.

Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the sample distri-
bution function and of the classical multinomial estimator. The Annals of Mathematical Statistics, pp.
642–669, 1956.

Danielle Ensign, Sorelle A Friedler, Scott Neville, Carlos Scheidegger, and Suresh Venkatasubramanian.
Runaway feedback loops in predictive policing. In Conference on fairness, accountability and transparency,
pp. 160–171. PMLR, 2018.

Valery Glivenko. Sulla determinazione empirica delle leggi di probabilita. Gion. Ist. Ital. Attauri., 4:92–99,
1933.

Yair Goldberg. Hoe!ding-type and bernstein-type inequalities for right censored data. arXiv preprint
arXiv:1903.01991, 2019.

Yair Goldberg and Michael R Kosorok. Support vector regression for right censored data. 2017.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In Advances in
neural information processing systems, pp. 3315–3323, 2016.

Wassily Hoe!ding. Probability inequalities for sums of bounded random variables. The collected works of
Wassily Hoe!ding, pp. 409–426, 1994.

Abbas Kazerouni, Qi Zhao, Jing Xie, Sandeep Tata, and Marc Najork. Active learning for skewed data sets.
arXiv preprint arXiv:2005.11442, 2020.

Niki Kilbertus, Manuel Gomez Rodriguez, Bernhard Schölkopf, Krikamol Muandet, and Isabel Valera. Fair
decisions despite imperfect predictions. In International Conference on Artificial Intelligence and Statistics,
pp. 277–287. PMLR, 2020.

Aryeh Kontorovich and Roi Weiss. Uniform cherno! and dvoretzky-kiefer-wolfowitz-type inequalities for
markov chains and related processes. Journal of Applied Probability, 51(4):1100–1113, 2014.

Vitaly Kuznetsov and Mehryar Mohri. Generalization bounds for non-stationary mixing processes. Machine
Learning, 106(1):93–117, 2017.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Cheolhei Lee, Kaiwen Wang, Jianguo Wu, Wenjun Cai, and Xiaowei Yue. Partitioned active learning for
heterogeneous systems. Journal of Computing and Information Science in Engineering, 23(4):041009,
2023.

Pascal Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The annals of Probability,
pp. 1269–1283, 1990.

Dharmendra S Modha and Elias Masry. Minimum complexity regression estimation with weakly dependent
observations. IEEE Transactions on Information Theory, 42(6):2133–2145, 1996.

Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for non-iid processes. Advances in Neural
Information Processing Systems, 20, 2007.

Mehryar Mohri and Afshin Rostamizadeh. Rademacher complexity bounds for non-iid processes. Advances
in Neural Information Processing Systems, 21, 2008.

Michael Naaman. On the tight constant in the multivariate dvoretzky–kiefer–wolfowitz inequality. Statistics
& Probability Letters, 173:109088, 2021.

21

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Under review as submission to TMLR

Xinkun Nie, Xiaoying Tian, Jonathan Taylor, and James Zou. Why adaptively collected data have negative
bias and how to correct for it. In International Conference on Artificial Intelligence and Statistics, pp.
1261–1269. PMLR, 2018.

David Pollard. Convergence of stochastic processes. Springer Science & Business Media, 2012.

Reilly Raab and Yang Liu. Unintended selection: Persistent qualification rate disparities and interventions.
Advances in Neural Information Processing Systems, 34:26053–26065, 2021.

Steve Smale and Ding-Xuan Zhou. Online learning with markov sampling. Analysis and Applications, 7(01):
87–113, 2009.

Ingo Steinwart and Andreas Christmann. Fast learning from non-iid observations. Advances in neural
information processing systems, 22, 2009.

Ingo Steinwart, Don Hush, and Clint Scovel. Learning from dependent observations. Journal of Multivariate
Analysis, 100(1):175–194, 2009.

Xueyang Tang, Song Guo, and Jingcai Guo. Personalized federated learning with clustered generalization.
2021.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Measures of complexity: festschrift for alexey chervonenkis, pp. 11–30, 2015.

Jing Wang, Laurel Hopkins, Tyler Hallman, W Douglas Robinson, and Rebecca Hutchinson. Cross-validation
for geospatial data: Estimating generalization performance in geostatistical problems. Transactions on
Machine Learning Research, 2023.

Dennis Wei. Decision-making under selective labels: Optimal finite-domain policies and beyond. In Inter-
national Conference on Machine Learning, pp. 11035–11046. PMLR, 2021.

Yifan Yang, Yang Liu, and Parinaz Naghizadeh. Adaptive data debiasing through bounded exploration.
Advances in Neural Information Processing Systems, 35:1516–1528, 2022.

Bin Yu. Rates of convergence for empirical processes of stationary mixing sequences. The Annals of Proba-
bility, pp. 94–116, 1994.

Zhilin Zhao, Longbing Cao, and Chang-Dong Wang. Gray learning from non-iid data with out-of-distribution
samples. arXiv preprint arXiv:2206.09375, 2022.

Guanhua Zheng, Jitao Sang, Houqiang Li, Jian Yu, and Changsheng Xu. A generalization theory based on
independent and task-identically distributed assumption. arXiv preprint arXiv:1911.12603, 2019.

Bin Zou, Luoqing Li, and Zongben Xu. The generalization performance of erm algorithm with strongly
mixing observations. Machine learning, 75(3):275–295, 2009.

22


	Introduction
	Problem Setting
	Error Bounds on Cumulative Distribution Function Estimates
	CDF bounds under censored feedback
	Censored feedback and exploration
	When will exploration improve generalization guarantees?
	How to choose an exploration strategy?

	Generalization Error Bounds under Censored Feedback
	Numerical Experiments
	CDF error bounds
	Model generalization error bounds: real-world data and adaptively updated algorithm
	Comparison with existing generalization error bounds

	Conclusion and Future Work
	Additional and detailed related work
	Proof of Lemma  1
	Proof of Lemma  2
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 4
	Expected and empirical loss derivation
	Analysis with higher dimensional samples
	Randomness in my
	Numerical illustration

	Additional experiments

