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Abstract

Long-term memory plays a critical role in per-
sonal interaction, considering long-term mem-
ory can better leverage world knowledge, his-
torical information, and preferences in dia-
logues. Our research introduces PerLTQA 1 an
innovative QA dataset that combines semantic
and episodic memories, including world knowl-
edge, profiles, social relationships, events, and
dialogues. This dataset is collected to investi-
gate the use of personalized memories, focus-
ing on social interactions and events in the QA
task. PerLTQA features two types of memory
and a comprehensive benchmark of 8,593 ques-
tions for 30 characters, facilitating the explo-
ration and application of personalized memo-
ries in Large Language Models (LLMs). Based
on PerLTQA, we propose a novel framework
for memory integration and generation, consist-
ing of three main components: Memory Clas-
sification, Memory Retrieval, and Memory
Synthesis. We evaluate this framework using
five LLMs and three retrievers. Experimental
results demonstrate that BERT-based classifi-
cation models significantly outperform LLMs
such as ChatGLM3 and ChatGPT in the mem-
ory classification task. Furthermore, our study
highlights the importance of effective memory
integration in the QA task.

1 Introduction

Long-term memory is an essential component of
the human memory system, characterized by the
ability to store extensive information and retrieve
it when necessary. Spanning durations from mere
minutes to an entire lifetime, this type of memory
is fundamental to cognitive functions, as noted by
(Tulving and Craik, 2000). Within the conversa-
tional domain, as explored by (Xu et al., 2021b;
Zhong et al., 2023), integrating personal long-term
memories can yield more personalized responses.

'Our code and dataset will be publicly released once ac-
cepted.

Consequently, simulating the mechanisms of long-
term memory is important for improving current
dialogue systems.

Cognitive science classifies long-term memory
into episodic and semantic types (Atkinson and
Shiffrin, 1968). Semantic memory (Eysenck and
Keane, 2020) is a mental representation that in-
volves personal facts and world knowledge, such
as profiles and relationships. It does not depend
on the specific experience of the individual. While
episodic memory (Eysenck and Keane, 2020) is
about personal histories, specifically in events and
dialogues. Previous research indirectly employs
data aligning with episodic and semantic mem-
ory categories of cognitive psychology, despite
not explicitly adopting its memory frameworks
(Eysenck and Keane, 2020). Traditional QA sys-
tems (Kwiatkowski et al., 2019; Reddy et al., 2019;
Chen et al., 2020b) and dialogue systems (Naka-
mura et al., 2022; Gopalakrishnan et al., 2023;
Hu et al., 2023) initialize semantic memory as
world knowledge from an external database. Ex-
isting dialogue systems consider dialogue history
(Budzianowski et al., 2018; Zhang et al., 2018; Li
et al., 2017; Zheng et al., 2019; Xu et al., 2021a) or
dialogue summaries (Xu et al., 2021a; Chen et al.,
2021) as episodic memory. Research on personal-
ization within dialogue systems (Zhang et al., 2018;
Zheng et al., 2019; Xu et al., 2022) has increas-
ingly concentrated on the preferences in dialogues,
uncovering their substantial influence on personal
memory. We consolidate these findings into Table
1 and identify a notable research gap in integrating
personal semantic memory concerning profiles, so-
cial relationships and episodic memory concerning
events into the QA system.

To explore personal long-term memory in ques-
tion answering (Nakamura et al., 2022), we pro-
pose the PerLTQA dataset, as depicted in Figure
1. The PerLTQA dataset is designed to capture the
essence of semantic and episodic memories. It is
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Natural-QA (Kwiatkowski et al., 2019)
CoQA (Reddy et al., 2019)

HybridQA (Chen et al., 2020b)
OTT-QA (Chen et al., 2020a)

X QA on Wikipedia

Dialogue QA on world knowledge
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Topical-Chat (Gopalakrishnan et al., 2023)
ChatDB (Hu et al., 2023)

MemoryBank (Zhong et al., 2023)

Task-oriented Dialogue

Consistent personality dialogue

Multi-turn dialogues on daily life

Multi-turn personalized dialogues
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Dialogue summarization
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Dialogue QA on tables and text
Knowledge-grounded open-domain conversations
Question answering with structured memory
Personal long-term memory dialogue
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Question answering on personal long-term memory
including semantic and episodic memory
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Table 1: Typology of memories in QA/Dialogue datasets: Analysis of World Knowledge (WK), Profiles (PRO),
Social Relationships (SR), Dialogues (DLG), and Events (EVT).

constructed using an in-context approach (Brown
et al., 2020) that merges personal memory inte-
gration with contextual generation. This process
produces an extensive representation of character-
specific long-term memory, encompassing profiles
(semantic memory), social relationships (semantic
memory), events (episodic memory), and dialogues
(episodic memory) as shown in Figure 1. PerLTQA
features various QA items, including questions, an-
swers, reference memories, and memory anchors
(the key memory fragments in the answer are tar-
geted to the question). The memory anchors and
reference memory are used for aligning answers
with their corresponding memories during eval-
uations. Our methodology involves three steps:
memory classification, memory retrieval, and
memory synthesis. Initially, we classify the given
question to determine its memory type, ensuring
an accurate categorization of memory. Next, we
proceed to memory retrieval, where we utilize the
probabilities derived from the classification stage
to re-rank and prioritize the retrieved memories
related to the question. Finally, in the memory syn-
thesis stage, we generate the answers in LLMs by
integrating the re-ranked memory information.

In summary, our research makes three main con-
tributions:

* Our research contributes to introducing the
PerLTQA dataset, encompassing a memory
database with 141 profiles, 1,339 semantic social
relationships, 4,501 events and 3,409 dialogues,
and 8,593 memory-related evaluation questions.

* We propose three subtasks memory classification,

memory retrieval, and memory synthesis to eval-
uate the memory utilization capabilities of LLMs.
We carry out experiments using five LLMs and
three retrieval models.

* Our experiment results indicate that the BERT
(Devlin et al., 2018) model excels in memory
classification tasks, surpassing LLMs like Chat-
GLM3 (Zhang et al., 2023a) and ChatGPT 2,
and LLMs show varied proficiency in generating
memory-based responses when provided with
accurately retrieved memories.

2 Related Work

In cognitive psychology, semantic memory re-
lates to world knowledge and social relationships,
whereas episodic memory involves events. This
differentiation is mirrored in the datasets like
(Kwiatkowski et al., 2019; Chen et al., 2021; Zhong
et al., 2023). In the realm of question answering
(Kwiatkowski et al., 2019; Reddy et al., 2019; Chen
et al., 2020b,a), Natural-QA (Kwiatkowski et al.,
2019) and CoQA (Reddy et al., 2019) both target
Wikipedia-based knowledge, exemplifying the use
of world knowledge as semantic memory. Within
dialogue tasks (Wang et al., 2023), MSC (Xu et al.,
2021a) and Dulemon (Xu et al., 2022) consider dia-
logues as episodic memory. MemoryBank (Zhong
et al., 2023) introduces a bilingual dataset using
GPT-4 to summarize dialogues and personal data,
effectively simulating episodic memory in multi-
turn dialogues. However, existing datasets (Hu

Zhttps://chat.openai.com.



Name: Wang Xiaoming

Sex: Male

Nickname: Mingming

Age: 28

Occupation: Software Engineer
Hobby: photography, basketball
Appearance: short hair, wearing glasses
Education Background: Undergraduate

Supporting Charac

Wang Xiaohong

Description: Wang Xiaoming’s
sister, 36 years old, is a doctor
Relationship: Sister

Summary: Explore the Grand Canyon
Topic: Family Trip

Characters: Wang Xiaohong, Wang
Xiaoming

Time: May 12, 2022

Content: Wang Xiaoming and his
sister Wang Xiaohong decided to

explore the Grand Canyon in Arizona,

Date: 2022-05-18,
Dialogues:

#b : How did you and Wang Xiaohong go to the
Grand Canyon in Arizona last time?

© :verynice!

@ : Did you take any good photos?

: 1 took photos of North Canino Canyon with

my camera, and my sister also recorded many
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Figure 1: The process of PerLT Memory generation. A six-step process: Step 1. Seed data collection. Step 2. PRO
generation. Step 3. SR generation. Step 4. EVT generation. StepS. DLG generation and Step 6. Validation.

et al., 2023; Zhang et al., 2023b) lack comprehen-
sive coverage of both memory types with detailed
annotations on social relationships and events, high-
lighting a research gap for LLMs in personal long-
term memory synthesis.

Memory retrieval is a crucial component for
QA and dialogue system to successfully generate
memory-based response. The existing retrieval
methods fall into three main categories: BM25
(Robertson et al., 1995), employing a statistical ap-
proach for document ranking based on query terms;
DPR (Karpukhin et al., 2020), demonstrating super-
vised retrieval capabilities; and Contriever (Izacard
et al., 2021), showcasing unsupervised retrieval
techniques. With the rise of LLMs (Wang et al.,
2023), an increasing number of works (Zhang et al.,
2023b; Zhong et al., 2023) are utilizing the RAG
(Retrieval-Augmented Generation) (Lewis et al.,
2020) for retrieval-enhanced tasks. Within this
framework, fine-tuned embeddings are employed
for text similarity searches, such as REPLUG (Shi
et al., 2023), OpenAl Embeddings 3. This concept
has been implemented in frameworks such as Lla-
malndex #, LangChain 3. This approach leverages
the refined embeddings to efficiently identify and
retrieve content that is most relevant to the given
query.

Aiming to integrate retrieved memories into re-
sponses, LLMs provide a prompt-based genera-
tion method facilitating the generation of memory-

3https://platform.openai.com/docs/api-
reference/embeddings

“https://docs.llamaindex.ai/en/latest/index.html

Shttps://www.langchain.com/

informed responses (Zhang et al., 2023a; Yang
et al., 2023; Bai et al., 2023; Zhang et al., 2023c;
Touvron et al., 2023). In the dialogue system (Zhao
et al., 2023; Lee et al., 2023; Zhong et al., 2023),
they incorporate memory into the prompt and gen-
erate the memory-related response. In this way,
we can improve the relevance and specificity of
the response, leading to context-aware responses
of personal memory.

3 Dataset Collection

We detail the creation of the PerLTQA dataset,
which involves collecting PerLT memories and gen-
erating and annotating PerLT QA pairs. Using in-
context technique, we build a memory database
and semi-automatic annotate memory-based Q&A
pairs.

3.1 PerLT Memory Generation

As shown in Figure 1, the generation of PerLT
memories is decomposed into six steps:

Step 1. Diverse Seed Data Collection. We se-
lect ChatGPT and Wikipedia as initial sources for
our seed dataset due to their comprehensive cov-
erage of a wide range of occupations, educational
backgrounds, hobbies, and event topics, essential
for foundational knowledge. It comprises profes-
sional backgrounds that span across 10 categories
and 299 specialties, hobbies that are categorized
into 7 groups with 140 items, and a comprehensive
range of topics structured into 49 categories with
2442 subtopics. Complementing this approach,
gpt-3.5-turbo is employed to generate 141
virtual names. We implement a manual review pro-



cess, allowing us to avoid the unrealistic use for
data generation.

Step 2. Profile (Semantic Memory) Genera-
tion. To study personalized memories, generat-
ing character profiles is essential. We leverage
seed data, particularly occupations, educational
backgrounds, hobbies inputs, within prompt tem-
plates that include descriptions of other attributes
(gender, nickname, age, nationality, appearance,
achievements, education, profession, employer,
awards, and role models). By utilizing ChatGPT
(gpt-3.5-turbo), we generate random charac-
ter profiles. The detailed prompts for this process
is available in Appendix.A.1.

Step 3. Social Relationship (Semantic Memory)
Generation. For the development of diverse social
connections, we utilize structured prompts shown
in Appendix.A.1 to craft 50 distinct categories of
relationships. These categories span a wide ar-
ray, including but not limited to family, friends,
romantic partners, acquaintances, colleagues, men-
tor/student dynamics, and neighbors, aiming to
comprehensively cover social interactions.

Step 4. Event (Episodic Memory) Generation.
Each character includes a series of narrative events,
deeply embedded in their episodic memory and
linked to interactions with others. The event gen-
eration starts by generating descriptions of back-
ground events chosen at random from the seed top-
ics highlighted in Step 1. Following this step, we
use prompts to help create detailed accounts of
events that are deeply tied to these initial occur-
rences and the web of social connections. To en-
sure coherence between the dynamics of character
interactions and the backdrop of events, few-shot
learning techniques, as outlined by (Brown et al.,
2020), are employed. This strategy aids ChatGPT
(gpt—-3.5-turbo) in achieving narrative consis-
tency, weaving together individual events and rela-
tionships into a cohesive story for each character.

Step 5. Dialogues (Episodic Memory) Genera-
tion. Building on the events generated in Step 4, we
craft historical dialogues between the Al assistant
and the character. This process, anchored in his-
torical events, ensures that conversations maintain
relevance to past occurrences. We utilize prompt
templates that merge character profiles and event
details to help dialogue generation, as detailed in
Appendix.A.1. Furthermore, embedding the di-
alogues maintains a profound connection to the
shared histories and relationships.

Step 6. Validation. We start with small batches
for quality checks and scale up after ensuring error-
free outputs. We conduct random sampling of the
generated memory data, identifying types of issues
as detailed in Appendix A.3, and then manually
refine the memories. This refinement includes re-
moving anomalies in profiles, discriminatory con-
tent, inconsistencies in character memories, and
brief event narratives, enhancing the accuracy and
consistency of the memory.

3.2 PerLT Question Answering

To thoroughly assess each memory type for a char-
acter, we gather four QA-related metrics (ques-
tion, answer, reference memory, and memory an-
chor) for evaluating the memory-based QA. The
process of collecting PerLT QA items unfolds in
three phases:

Question and answer generating. Utilizing Chat-
GPT, we generate questions and answers prompted
by the memory sentences stored in PerLT Memory
database. The answers are designed to align with
the reference memories provided, adhering to the
prompts we created, as shown in the Appendix.A.2.
Memory Anchor Annotation. The memory an-
chor, a key text segment in the answer that aligns
with the referenced memory and question, is essen-
tial for memory evaluation in response generation.
We employ exact match techniques and human ver-
ification to annotate the start and end positions of
memory anchors, guided by the reference memory.
Given the intensive labor involved in manual ad-
justments, we have annotated memory anchors for
a limited set of 30 characters.

Validation on QA pairs and Memory Anchor. To
ensure the integrity of PerLT QA pairs, we initi-
ate our quality control with an unbiased random
sampling. This is followed by a detailed catego-
rization of errors in QA, references, and memory
anchors, supplemented by thorough pronominal
reference checks for accuracy. All error types are
meticulously cataloged in the Appendix.A. We use
LLMs as a scoring mechanism, evaluating on a
scale from O to 10, directly accepting QA pairs
with a score of 10, reviewing those scored between
7 and 9, and eliminating those below 6. Automated
validation is conducted to ensure the accuracy of
reference memories and to remove irrelevant stop
words. This is followed by meticulous manual cor-
rections and alignment checks between memory
anchors and references, ensuring the highest qual-



Dataset Statistics

# Character profiles 141
Profiles 4 Tobs 08
. # Relationship Descriptions 1,339
Semantic . . .
# Relationship Categories 50
Memory . . .
# Average Social Relationships 9.5
per Character
# Topics 49
# Events 4,501
Episodic # Average Words Per ljivents. 313
Memory # Event-related Historical Dialogs 3,409
# Utterances 25,256
# Average Words per Utterance 43.7
# Question Answer Pairs 8,593
Memory  # Average Words per Question 16.7
QA # Average Words per Answer 274
# Memory Anchors 23,697
# Average Anchors 2.8

Table 2: PerLTQA dataset statistics.
ity of QA items.

3.3 Dataset Statistics

The PerLTQA dataset, presented in Table 2, in-
cludes 141 character profiles with detailed occu-
pations and relationships. With 50 relationship
categories, an average of 9.5 social relationships
per character, the dataset provides a vavid social
relationship for semantic memory. Furthermore,
PerL'T Memory features 4,501 events, averaging
313 words each, which fuel 3,409 event-related
historical dialogues, totaling 25,256 utterances. In
the QA section, 8,593 question-answer pairs and
23,697 memory anchors average 16.7 and 27.4
words, respectively. This rich compilation of data
supports the development of dialogue QA system
with a profound understanding of human-like mem-
ory recall and synthesis within a concise frame-
work.

3.4 Task Definition

The PerLT memory database is formulated as
M = {(Sl(ll), Ez(lg)) | 1= 1, 2, ce ,p}, where
each tuple consists of semantic memories including
profiles and social relationship and episodic mem-
ories including events and dialogs. Each S;(l;)
and E;(l2) are defined to have [, [ elements, re-
spectively, which are specific to the i-th character
memory representation.

The PerLT QA dataset comprises a set of items
T ={t; }é\le, where each item ¢; is a tuple consist-
ing of four elements: t; = (g;,7;,mj,a;). Here,
qj denotes the question, r; the reference memory,

m; the memory anchor, and a; the answer. The
dataset spans various data types including semantic
memory, and episodic memory, which are implic-
itly reflected in the construction of each ¢;. The
variable N represents the total number of QA items
in the dataset.

As shown in Figure 2, to explore the integration
of memory information in QA, we propose three
subtasks: memory classification, memory retrieval
and memory synthesis for response generation. In
particular, memory synthesis is our ultimate goal.

Memory Classification. We introduce a clas-
sification model designed to assist queries in find-
ing semantic memory or episodic memory. This
model can operate through an instruction-based
LLM, few-shot-based LLM, or BERT-based classi-
fier. The classification model conforms to a unified
formula as Eq.(1)

m=MC(q) ey

where 7 represents the classification result, M C
denotes the classification model and ¢ is the in-
put query. The outputs from our classification
model enhance memory retrieval by facilitating
post-ranking of the retrieved memories, thereby re-
ducing the excessive dependence on memory clas-
sification within the framework. Further details are
elaborated in Appendix.A.4.

Memory Retrieval. We aim to perform memory
retrieval by extracting relevant character memories
for a given evaluation question from the PerLT
memory database M, formalized as Eq.(2).

m, s = R(q, M, k) )

where m is the retrieved memory with size £, s is
the corresponding scores, R is the retrieval model.

Our method distinguishes itself by initially re-
trieving k memories from each category within the
memory database, amassing 2k potential memory
candidates. These candidates undergo a re-ranking
process influenced by their classification scores,
culminating in a composite score for each memory
m;, which is computed as follows:

sy = a- P(m|my;) + B - sigmoid(s;)  (3)

where P(m|m;) is the probability given by the clas-
sification model that the memory item m; belongs
to 7. The top k memories are then selected based
on these final scores. « and /3 represent the weight
of each term, and we set both to 0.5 to balance their
contributions.
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Figure 2: The framework of memory classification, memory retrieval and memory synthesis in QA.

Memory Synthesis. Memory synthesis lever-
ages LL M for response generation. This task uses
a prompt template z (as illustrated in Appendix.6),
an evaluation question ¢, and retrieved memories
m as Eq.(4).

v = LLM(z,q,m) (G))

3.5 Evaluation Metrics

For the memory classification task, we use preci-
sion (P), recall (R), F1, and Accuracy to serve as
metrics. For the memory retrieval task, we utilize
Recall@K (Manning et al., 2008) as our metric. To
evaluate memory synthesis for the response gener-
ation task, we measure the correctness and coher-
ence of responses with gpt-3.5-turbo-based
evaluation method (Zhong et al., 2023) and use
MAP (mean average precision) of memory anchors
as shown in Eq.(5) to evaluate memory synthesis
ability (Nakamura et al., 2022).

N
MAP — 1 EM(q;, mar;)

N ~ NUM (mar;) ®)

where N represents the total number of ques-
tions in the evaluation dataset. mar denotes mem-
ory anchors, EM represents the tally of exact
matches between queries and memory anchors, and
NUM (mar;) is the count of memory anchors per
question.

4 [Experiments

4.1 Implementation details

In our work, we divide the data from the PerLT QA
dataset into training (5155), validation (1719), and

test sets (1719) for model training and evaluation.
In the memory classification task, we fine-tune
BERT-base model and compare the sentence classi-
fication results on the test dataset with ChatGLM?2,
ChatGLM3 (Zhang et al., 2023a), Baichuan2-7B-
Chat (Yang et al., 2023), Qwen-7B-Chat (Bai et al.,
2023), and ChatGPT under instructional and few-
shot settings. For the memory retrieval task, we
employ three retrieval models - DPR (Karpukhin
et al., 2020), BM25 (Robertson et al., 1995), and
Contriever (Izacard et al., 2021) - to collect char-
acter memories. In the memory synthesis task, we
use the above five LLMs to generate responses of
no more than 50 words, given re-ranked retrieved
memories, employing in-context learning methods.
The memory synthesis task is evaluated across
three scenarios: with memory classification and re-
trieval (W-MC+R), without memory classification
but with retrieval (W/o-MC+W+R), and without
both classification and retrieval (W/o-MC+R). Ex-
periment details are shown in the appendix.A.5

4.2 Memory Classification

BERT-based model provides better perfor-
mance than LLMs for memory classification.
As shown in Table 4, BERT demonstrates supe-
rior performance compared to other LLMs un-
der instruction and few-shot settings. Specif-
ically, in few-shot scenarios where an evalua-
tion question is paired with corresponding ex-
amples for each type of memory, the perfor-
mance of gpt—3.5-turbo declines in compar-
ison to methods that rely solely on instruction-
based classification. In summary, the BERT-base
model achieves the highest weighted precision



W-MC+R W/o-MC+W-R W/o-MC+R
MAP Corr. Coh. | MAP Corr. Coh. | MAP Corr. Coh.
ChatGLM2 0.688 0.483 0.963 | 0.688 0.481 0.962 | 0.128 0.054 0.960
ChatGLM3 0.704 0.517 0971 | 0.695 0.517 0.969 | 0.130 0.060 0.962
Qwen-7B 0.729 0.535 0960 | 0.720 0.532 0.959 | 0.131 0.057 0.957
Baichuan2-7B | 0.736 0.535 0.966 | 0.728 0.522 0.968 | 0.132 0.051 0.953
gpt-3.5-turbo | 0.756 0.573 0.969 | 0.745 0.562 0.969 | 0.156 0.088 0.961

Table 3: Comparison of MAP, Correctness (Corr.), Coherency (Coh.) across three settings: With memory classifi-
cation and retrieval (W-MC+R), without memory classification but with retrieval (W/o-MC+W-R), and without

memory classification and without retrieval (W/o-MC+R).

Metrics P R F1 Acc
ChatGLM2-6B 0.749 0.712 0.729 0.712
ChatGLM3-6B 0.864 0.485 0.538 0.485
Qwen-7B 0.730 0.631 0.673 0.631
Baichuan2-7B 0.848 0.602 0.657 0.602
gpt-3.5-turbo 0.868 0.668 0.715 0.668
F+ChatGLM2-6B 0.770 0.806 0.785 0.806
F+ChatGLM3-6B 0.778 0.445 0.508 0.445
F+Qwen-7B 0.804 0.402 0.452 0.402
F+Baichuan2-7B  0.860 0.324 0.337 0.324
F+gpt-3.5-turbo 0.864 0.511 0.566 0.511
I+BERT-base 0.720 0.849 0.779 0.849
BERT-base 0.960 0.956 0.957 0.956

Table 4: Comparative performance of five LLMs and
BERT in memory classification tasks under few-shot
settings (F) and instruction-based training (I).

RM | R@1 R@2 R@3 R@5 | T(s)
Contriever | 0.486 0.674 0.737 0.792 | 0.070
DPR 0.602 0.803 0.862 0.919 | 2.960
BM25 0.705 0.847 0.871 0.895 | 0.030

Table 5: Performance of Recall@K (R @K) and average
retrieval time (T) in memory retrieval using Contriever,
BM25, and DPR models.

(95.96%), weighted recall (95.64%), weighted F1
score (95.74%), and accuracy (95.64%). Moreover,
the high performance in memory classification re-
inforces confidence in the rescoring mechanism, as
illustrated in Figure 2.

4.3 Memory Retrieval

Different retrieval models show variable Re-
call@K and time performance. In the memory
retrieval task, Table 5 reveals that the unsupervised
retrieval model Contriever significantly lags behind
the statistic-based BM25 and the supervised DPR
model. Moreover, as the top k values increase, DPR
notably improves Recall @K performance, surpass-
ing BM2S5 after k equals 3. However, the retrieval

time cost of DPR is substantially higher than BM25
retrieval. This suggests that we need to balance the
retrieval performance and time cost when deploy-
ment in dialogue QA tasks.

4.4 Memory Synthesis

Memory classification and retrieval significantly
improve LLMs to integrate memory into re-
sponses. The results shown in Table 3 indicate that
LLMs augmented with memory classification and
retrieval model show a marked improvement in gen-
erating memory-informed responses over those re-
lying solely on LLMs itself, with notable increases
in precision (MAP peaking at 0.756) and correct-
ness (correctness reaching up to 0.573). The ab-
sence of memory classification (W/o-MC+W-R)
has a minimal impact on improving MAP and Cor-
rectness, maintaining robust scores (0.688-0.745
for MAP), which emphasizes the importance of
retrieval mechanisms in sustaining performance.
Moreover, coherency levels are impressively sta-
ble across all configurations, never falling below
0.953, reflecting the strength of LLMs in producing
coherent text. These results highlight the crucial
importance of the retrieval model and maintaining
coherence throughout the process. Additionally,
models with fewer than 10 billion parameters have
shown memory synthesis capabilities similar to
those of ChatGPT, indicating that smaller models
can also be optimized to produce outputs of com-
parable quality.

5 Analysis and Case Study
5.1 Ablation Study

Correct memory retrieval significantly enhances
the accuracy of responses across various LLMs.
The experimental results, as shown in Table 6,
demonstrate the consistent ability of different
LLMs to generate responses that are both relevant
and accurate. This consistency underscores that



NR IR CR

Models MAP Corr. MAP Corr MAP Corr.
Baichuan2-7B  0.132 0.051 0.396 0.225 0.782 0.581
Qwen-7B 0.131 0.057 0.390 0.221 0.786 0.574
ChatGLM?2 0.128 0.054 0.396 0.248 0.738 0.523
ChatGLM3 0.130 0.060 0.365 0.216 0.754 0.561
ChatGPT 0.156  0.088 0.375 0.252 0.842 0.609

Table 6: Performance of LLMs on MAP and Correct-
ness (Corr.) under No Retrieval (NR), Incorrect Re-
trieval (IR) and correct retrieval (CR) settings.

Semantic Memory Episodic Memory
MAP Corr. Coh. MAP Corr. Coh.
0.242 0.150 0.834 0.721 0.543 0.966

gpt-3.5-turbo

Table 7: The results of gpt-3.5-turbo performance solely
on episodic or semantic memory on the metric of MAP,
Correctness, and Coherency

LLMs experience a substantial improvement when
they have access to accurate external memory. The
findings further indicate that LLMs possess a de-
gree of tolerance towards misinformation and are
capable of leveraging accurate memory informa-
tion to some extent. Despite incorrect memory
retrieval, all models manage to sustain a reasonable
degree of precision, with MAP scores from 0.365
to 0.396, underlining their robustness in less-than-
ideal information conditions.

Semantic and episodic memory contribute to
improving memory synthesis. As shown in Table
7, the results illustrate the comparative performance
of gpt-3.5-turbo when integrating only with seman-
tic or episodic memory. The provision of only one
type of memory—either episodic or semantic, leads
to varying levels of performance degradation. This
variation can be attributed to the different propor-
tions of episodic and semantic memory data within
the test set, which in turn affects the response accu-
racy of the Large Language Models (LLMs). How-
ever, integrating any form of personal long-term
memory, whether episodic or semantic, into LLMs
proves beneficial for generating responses that are
informed by past personal history. This suggests
that the presence of personal long-term memory, re-
gardless of its type, help LLMs to produce relevant
and accurate responses.

5.2 Case Study

We present specific cases in Figure 3 to evaluate the
question ‘What is Wang Wei’s occupation?’” with
the verifiable answer ’cameraman’. Without mem-
ory retrieval, gpt-3.5-turbo generates a speculative
response *Wang Wei is a teacher’, a common hal-

Question: What is Wang Wei's occupation?
Ground Truth Answer: Wang Wei is a cameramai

Memory Anchor : cameraman

L NR(Wio-MC+R) T #casel]
R-1: Wang Wei is a teacher.
Memory Anchor Score: 0/1

""""""""""" IR(W/o-MC+WR) 77" #case 2

Retrieved Memory:

Al Assistant: | heard that your cooperation with Wang Wei in the movie
was very successful and received high praise. (episodic memory)

R-2 : Wang Wei is an actor.

b CRMW-MCHR) #ease 3 |
Retrieved Memory: Wang Wei is a colleague of Xu Jia's film
production company. He is 30 years old and a cameraman. They often

work together on movies and TV series and have a very good rapport.
Xu Jia and Wang Wei are colleagues. (semantic memory)

R-3 : Wang Wei is a cameraman.

Memory Anchor Score: 1/1

Figure 3: Comparative analysis of response perfor-
mance without retrieval (NR), incorrect retrieval (IR),
and Correct Retrieval (CR).

lucination in most LLMs, or provides context-less
responses. Introducing memory retrieval, we ob-
serve two cases. In case 2, the model response
‘Wang Wei is an actor’ based on the dialogues re-
trieved. Despite higher accuracy due to analogous
character experiences, case 2 still provides an in-
correct answer. The key difference between cases
2 and 3 is the memory classification mechanism.
While case 2 retrieves relevant dialogues, it fails
to retrieve essential semantic memory as in case 3.
With memory classification, our models retrieve ac-
curate social relationship memory, yielding correct
responses. In this evaluation, with ’cameraman’ as
the memory anchor, only case 3 correctly incorpo-
rates the pertinent memory.

6 Conclusion

Our study introduces the PerLTQA dataset, which
features a memory database and memory-based QA
pairs. This dataset encompasses personal long-term
memory, including profiles, social relationships,
events, and dialogues, divided into semantic and
episodic memory categories. We also outline three
subtasks: memory classification, retrieval, and syn-
thesis, and report on baseline experiments with five
LLMs and three retrievers. Our findings reveal that
Bert-based memory classification surpasses other
LLMs in categorizing memory types. We also note
considerable differences among LLMs in generat-
ing accurate memory-based answers. This research
significantly deepens the understanding and evalu-
ation of LLMs in the context of personal long-term
memory.



Limitations

In this work, we utilize gpt-3.5-turbo to gen-
erate a memory-based dataset and evaluate its abil-
ity to generate responses based on memory in three
distinct subtasks. However, we acknowledge the
following limitations: 1. The process of generating
memory data in the PerLTQA memory database
could be varied. We have only implemented a step-
by-step generation method based on memory types.
Furthermore, the prompts used during the genera-
tion process still have room for optimization. 2. All
the content is fictional. Despite our thorough man-
ual screening, there may still be instances where
the common knowledge presented does not align
with reality. 3. Our evaluations are limited to four
open-source LLMs that are less than 10B in size
and ChatGPT. We do not evaluate other LLMs of
varying scales and types. 4. For the evaluation of
the correctness and coherence of response genera-
tion, we adopted the evaluation methods of LLMs.
However, this metric may still have uncertainties
in accurately measuring the quality of responses.

Ethics Statement

The work presented in this paper introduces the
PerLTQA dataset, which is generated from Chat-
GPT (gpt-3.5-turbo). This dataset does not
violate any licenses or policies, nor does it infringe
on privacy. The dataset can be utilized for aca-
demic exploration in memory-based QA, dialogue,
and other related fields. To ensure the quality of
the data, we have employed three researchers in the
field of natural language who are proficient in both
Chinese and English and possess excellent com-
munication skills. Each researcher is paid $20 per
hour (above the average local payment of similar
jobs). The design, annotation, and review of the
entire dataset took four months, costing approxi-
mately an average of about 200 hours per annotator.
The annotators have no affiliation with any of the
companies that are used as targets in the dataset,
eliminating any potential bias due to conflict of
interest.
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A Appendix

A.1 Memory Database Generation Prompts

The design of the PerLT memory dataset prompts
are illustrated in Figure 5. The "Profile Generation"
prompt creates character profiles using specified
seed data and a prompt template. Following this,
the "SR (Social Relationship) Generator" prompt
produces social relationships based on ten provided
seed relationships. Additionally, the "EVT (Event)
Generator" prompt is employed to create events
that align with the established social relationships
between characters. Lastly, the "DLG (Dialogue)
Generator" prompt facilitates the generation of
event-based dialogues between a character and an
Al assistant. Collectively, these prompts enable our
model to generate raw memory data effectively.

Profile Generation Prompt

Please help me create a random profile for the above user? Include the
following details: [name], gender, nickname, title, age, [occupation],
nationality, physical features, [hobbies], achievements, ethnic background,
[educational background], occupation, employer, awards and role models?

Relationships between individuals include family, friends, romantic
partners, acquaintances, colleagues, mentors/mentees, neighbors,
community members, and strangers. Based on [profile description], can
you help me randomly create relationships for [name] and provide their
names? The answer should be in the JSON format like {relationship:
{name:, description}})

Given [profile description], please integrate [relationship description],
and the relationship between [name] and [s_name] is [relationship].
Generate episodic memories related to the events with [name] and
[s_name] , as much as possible while retaining the entity names. [topic
cases]) The generated response should conform to the following JSON
format: {date | topic | supporting character name | relationship | event |
detailed description}

Please integrate [episodic memory] to generate a multi-turn, temporally
related dialogue between [name] and the Al assistant. Requirements:
Please note that the speakers are the Al assistant and [name] . Please use
the appropriate titles. The dialogue should include entities such as time,
characters, locations, and specific plot details. Please generate the JSON
response in the following format:\n[{\"date\": \"dialogue\":[[name] :, Al
Assistant:, ...]}]

Figure 4: Prompts for PRO, SR, EVT, and DLG memory
generator.

A.2 Memory QA items Generation Prompts

The design of the PerL’T QA generation prompts are
illustrated in Figure 4. The "Question and Answer
Generation" prompt is designed to create questions
and answers based on a provided reference memory
and character name. Additionally, the "Memory
Anchor Candidates Searching" prompt is utilized
to identify key fragments that are crucial for craft-
ing questions. These fragments are specifically
chosen because they are present both in the gener-
ated answer and in the reference answer, ensuring
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relevance and coherence.

Question and Answering Generation Prompt

Based on the provided memory information, construct question-answer
pairs and return them as a JSON array [{Q, A}], where Q and A are the
keys that represent question and answering respectively.

Memory Anchor Candidates Searching Prompt

Based on the provided question-and-answer pair, identify the correct
key answer word(s) from the response. Here is the given example:
Question: When Zhou Ting's family was planning their summer
vacation, who took the initiative to help arrange the itinerary?
Answer: Zhang Tao took the initiative to help with the planning.
Memory Anchor Candidates: ["Zhang Tao"]

Question: [question]
Answer: [answer]
Memory Anchor Candidates:

Figure 5: Prompts for question answering generation,
and memory anchor candidate searching.

A.3 Dataset Generation Error Types

In the dataset generation process for PerL.T Mem-
ory and PerLT QA, several categories of errors
are identified and corrected as shown in Table 8.
Anomalies, such as missing information in profiles,
are rectified by removing or emptying the faulty
fields. Incorrect character relationships that do not
provide sufficient event data are excluded from the
dataset. Instances of brief event narratives with-
out detailed information are eliminated. Referent
errors, which include incorrect or ambiguous ref-
erences, are replaced with accurate information to
ensure clarity. Redundant answers are streamlined
to avoid unnecessary repetition, ensuring concise
and relevant data. Finally, blurred memory anchor
boundaries are corrected to precisely reflect the
intended memory cues. These steps are taken to
enhance the accuracy and reliability of the dataset.

A4 Optimizing Memory Retrieval with
Memory Classification Re-Ranking

We devise a method in which the output probabili-
ties of the classification model are utilized to fur-
nish the retrieval model with classification insights,
allowing for the re-ranking of candidate memo-
ries. This strategy minimizes the risks associated
with memory retrieval based on specific memory
bank classification results. Such risks primarily
stem from potential classification inaccuracies that
could lead to memory retrieval from an incorrect
memory type, thereby unduly influencing the re-
liance on classification model precision within the
framework. The introduction of a re-ranking strat-
egy ensures the retrieval of a predefined number



Error Type Source Error Example Operation Revision
A lies
. nomaies PerLT Memory | {hobbies: “Not Provided”} Remove {hobbies: “’}
in profiles
Invalid ‘ ' PerT Memory Zheng Yong has a w1fe. and Remove Retpove the rel'atlonshlp wife or girlfriend
character relationship girlfriend at the same time. which not provide enough events data.
Brief . PerLT Memory Xla?mlng S father useq t © Remove | -
event narratives participate in the activities.
W W — o romine and W -
Referent error PerLT QA hén will Wang X{domlng dnd -the‘ Al Replace When Wllll‘deg Xl.d(?l?m(g and Wang Xiaohong
assistant plan to visit the exhibition? plan to visit the exhibition?
R Who is th f W i ing?
edundant PerLT QA 0 19.1 e rflen}or o aﬁgxnaommg Reduce Zhangwen.
answer Wangxiaoming’s mentor is Zhangwen.
Blurred Answer: They met at Bali Answer: They met at Bali
PerLT QA
Memory anchor boundaries erlT Q Memory Anchor:[“At Bali”] Correct Memory Anchor:[“Bali”’]

Table 8: The error types observed in PerLT Memory and QA items generation and revision by human.

of memories across all memory types, regardless
of the initial confidence levels of classification re-
sults. This is achieved through a weighted score
re-ranking mechanism that effectively reduces the
influence of classification inaccuracies on the ulti-
mate ranking. For those instances with high clas-
sification confidence, revising their scores and re-
ordering them accentuates their relevance, thereby
optimizing the retrieval process.

Answer Generation Prompt: |
Please answer the following question based on the provided
memory information, ignoring any irrelevant memories. Keep the

response under fifty words.

Memory Information: [memories]
Question: [question]
Answer:

Figure 6: Prompts for answering generation.

A.5 Experiment Settings

Memory Classification settings. We conduct
binary-class classification experiments on seman-
tic memory, and episodic memory using BERT,
Baichuan, ChatGLM2, ChatGLM3, and ChatGPT.
For BERT, we employ fine-tuning with the evalu-
ation questions to predict the memory type. For
LLMs, we use instructions to guide LLMs in pre-
dicting the memory type. We also conduct instruc-
tion augmentation BERT experiments. Specifi-
cally, we train BERT-base classification models
with 7,516 QA pairs. We finally evaluate the per-
formance of memory type classification on a test
set of 1,719 evaluation questions.

Memory Retrieval settings. We create unique
memory banks for each character. In the case of
DPR, we train the DPR model using 7516 evalua-
tion questions. Contriever uses the text2vec model
(Xu, 2023) from Hugging Face to calculate the sim-
ilarity between memory sentences and questions.

Memory Synthesis settings. In the W-MC+R
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setting, responses are generated using retrieved
memories that are post-ranked based on memory
classification outcomes. Conversely, in the W/o-
MC+W+R scenario, responses are produced solely
through memory retrieval, without the aid of mem-
ory classification for re-ranking. Meanwhile, in the
W/o-MC+R framework, responses are generated
directly without utilizing any external memory, re-
lying solely on the inherent knowledge in LLMs.
These configurations not only validate the effec-
tiveness of each component but also underscore the
importance of external memory. Due to limited re-
sources, we only evaluated LLMs with fewer than
10 billion parameters. These models are prompted
by retrieved memories. To ensure smooth operation
on an Nvidia-3090 GPU with 24GB of memory,
we have implemented a semi-precision inference
setting.



