LETS-C: Leveraging Text Embedding for Time Series
Classification

Rachneet Kaur Zhen Zeng Tucker Balch Manuela Veloso
J.P. Morgan AI Research
{rachneet.kaur, zhen.zeng, tucker.balch, manuela.veloso}@jpmorgan.com

Abstract

Recent advancements in language modeling have shown promising results in time
series data analysis, with fine-tuning pre-trained large language models (LLMs)
achieving state-of-the-art (SOTA) performance on standard benchmarks. However,
LLMs-based methods require millions of trainable parameters, presenting a sig-
nificant drawback due to their large size. We propose an alternative approach to
leveraging the success of language modeling in the time series domain. Instead of
fine-tuning LLMs, we utilize a text embedding model to embed time series and then
pair the embeddings with a simple classification head composed of convolutional
neural networks and multilayer perceptron. We conducted extensive experiments on
a well-established time series classification benchmark. We demonstrated LETS-C
not only outperforms the current SOTA in classification accuracy but also offers a
lightweight solution, using only 14.5% of the trainable parameters compared to
the SOTA model. Our findings suggest that leveraging text embedding models
to encode time series data, combined with a simple yet effective classification
head, offers a promising direction for achieving high-performance time series
classification while maintaining a relatively lightweight model architecture.

1 Introduction

Time series classification |Bagnall et al.| (2017);|Abanda et al.|(2019); [smail Fawaz et al.| (2019) has
gained significant attention due to its applications across domains, such as finance [Passalis et al.
(2017), healthcare |[Lipton et al.|(2016)), and activity recognition|Yang et al.[(2015). The increasing
availability of time series data has driven the need for efficient and accurate classification methods.
Advances in natural language processing (NLP) and large language models (LLMs) have shown
promises in language modeling /Achiam et al.|(2023)), particularly in capturing temporal dependencies
within sequential data. Inspired by this success, researchers have extended these techniques to time
series analysis by prompting|Gruver et al.|(2023)) and fine-tuning pre-trained LLMs|Zhou et al.| (2024));
Jin et al.|(2023), achieving state-of-the-art (SOTA) performance on established benchmarks.

However, using LLMs for time series classification has drawbacks due to their large size, making them
computationally expensive and unsuitable for resource-limited settings [Bommasani et al.|(2021). At
training time, fine-tuning partially frozen pre-trained LLMs also often involves millions of trainable
parameters [Zhou et al| (2024). To address this, we propose an alternative approach to leverage
the success of language modeling in the time series domain. In particular, we propose LETS-C
(Leveraging Text Embeddings for Time Series Classification), which utilizes off-the-shelf text
embedding models instead of fine-tuning LLMs for time series classification. To the best of our
knowledge, this work is the first to explore the potential of text embeddings in time series analysis,
specifically classification, and demonstrate SOTA performance. LETS-C combines text embeddings
with a simple yet effective classification head composed of convolutional neural networks (CNNs)
and a multilayer perceptron (MLP). By projecting time series data using text embedding models, we
capture the intricate patterns and dependencies present in the temporal data. The embeddings and
time series are then fed into the classification head, which learns to discriminate between different

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.

classes. Through extensive testing on a comprehensive benchmark with various time series datasets,
we showed that LETS-C outperforms 20 baselines, including the previous SOTA, and is significantly
more efficient, using far fewer trainable parameters.

Our main contributions are: 1) Text Embeddings for Time Series: We introduce LETS-C, the first
work to leverage text embeddings for time series analysis, specifically for classification; 2) State-
of-the-Art Performance: LETS-C achieves SOTA classification accuracy on a well-established
benchmark with diverse time series datasets, surpassing 20 baselines; 3) Lightweight: LETS-C is
significantly more efficient, achieving higher accuracy with much fewer trainable parameters (14.5%)
compared to the existing SOTA. Additionally, we conducted comprehensive analyses to showcase
LETS-C’s effectiveness: 1) Text Embeddings Models: LETS-C, using various text embedding
models, consistently outperforms previous SOTA with fewer trainable parameters, validating our
approach’s generalizability; 2) Time Series Embeddings: We showed that text embeddings enhance
time series classification by demonstrating that embeddings from the same class are more similar
than those from different classes, thereby boosting accuracy; 3) Trade-off between Accuracy and
Model Size: LETS-C maintains high accuracy with considerably smaller model sizes, enhancing
computational efficiency without significantly compromising accuracy. See Appendix Section [A]for
related work on time series classification, language model applications, and text embeddings.

2 Methodology

Given a time series classification dataset D = (x;, yi)ﬁl, where x; is a multivariate time series and
y; € 1,2,...,C is the class label, the objective is to train a classifier that accurately predicts the class
label ;. As shown in Figure|l] we introduce the LETS-C framework that leverages text embeddings
for classifying time series.

Time Series

Specifically, we: 1) min-max nor- A, J

. . — v J o Frozen
malize X; into X;, 2) generate text o735, 70,50
embgddmg§ of_xi, 3) fuse these em- . e S
beddings with X;, and finally 4) feed ext ' Class
the fused representation to a classi- Sunhghmancedorthegennewaves Sl7.673,69?|..,876.8‘0 _'TE:NN}T&L:; F z::z:;
fication head comprising CNNs and Text Embedding Text Embedding -

. . . . Model Model Embedding

MLP. This simple classifier aims to
test the hypothesis that text embed- % 4911, « o 9 n g ore
dlngs pr0v1de StI'Ol’lg representatlons Text Embedding Text Embedding for Time Series Classification

for effective classification. Figure 1: Left: Conventional text embedding. Right: LETS-C

Preprocessing Each dimension of time series x; is min-max normalized to [0, 1] using training data.

Text Embedding of Time Series It is crucial to carefully format the preprocessed time series into
strings before using text embeddings, as the tokenization of numerical strings can significantly affect
the embeddings. [Liu & Low|(2023)) has shown that tokenization impacts a model’s arithmetic abilities,
with commonly used subword tokenization methods like Byte Pair Encoding (BPE) arbitrarily
subdividing numbers, causing similar numbers to appear very differently. To mitigate this, we
adopted a digit-space tokenization strategy, spacing each digit and omitting decimal points for
precision |Gruver et al.[(2024)). For example, the series 0.645, 6.45, 64.5, 645.0 would be tokenized as
"64,645,6450,64500" with two-decimal precision. This method ensures separate tokenization
of each digit, preserving numerical integrity and enhancing pattern recognition in language models.
Next, we used the text-embedding-3-large model OpenAll(2024) to embed the formatted time
series. We transformed each dimension of x; € R%*!= into text embeddings e; € R4*le where d
represents the multivariate dimension, and [, and [are the lengths of the time series and embeddings,
respectively. Note that embedding computation happens only once; the embeddings can be stored
and reused, in contrast to ongoing costs associated with fine-tuning LLMs |Zhou et al.|(2024)).

Fusing Embedding and Time Series The embeddings are fused with the time series data through
addition, using zero padding to align lengths and combine the strengths of both modalities for
enhanced model performance. Fusing embeddings from different modalities is well-supported in
the literature Manzoor et al.|(2023); |Guo et al.| (2019); |Poria et al.|(2018]), with various approaches,
including element-wise addition, successfully integrating embeddings from multiple modalities.

Lightweight Classification Head Lastly, we pair the fused time series representation with a simple
classification head composed of 1D CNNs and an MLP for time series classification. With a simple
classification head, our model is lightweight and requires much less trainable parameters (Section[3.2)).

3 Experiments
3.1 Experimental Setup

Datasets and Evaluation Metrics We evaluated LETS-C against a well-established benchmark from
the UEA Archive (Bagnall et al.| 2018)), including 10 datasets curated for challenging and diverse
domains. These datasets feature multivariate dimensions ranging from 3 to 963, lengths up to 1751,
and up to 26 classes. Further details are provided in Appendix Section[B] To assess the classifiers, we
used metrics such as classification accuracy and AvgWins. AvgWins is defined as the average number
of times a method outperforms others across datasets, counting ties. We also assessed the models’
computational efficiency by examining trainable parameters and training/inference times.

Baselines We included 20 baselines for a thorough comparison: Classical methods: 1) Dynamic Time
Warping (DTW), 2) eXtreme Gradient Boosting (XGBoost), and 3) RandOm Convolutional KErnel
Transform (ROCKET); MLP-based methods: 4) LightTS, and 5) DLinear; RNN-based models: 6)
Long Short-Term Memory (LSTM), 7) Long- and Short-term Time-series Network (LSTNet), and 8)
Linear State Space Layer (LSSL); CNN-based models: 9) Temporal Convolutional Network (TCN),
and 10) TimesNet; Transformer-based models: 11) Transformer, 12) Reformer, 13) Informer, 14)
Pyraformer, 15) Autoformer, 16) Stationformer, 17) FEDformer, 18) ETSformer, 19) Flowformer;
and LLM-based model: 20) OneFitsAll. For details on these methods, see Appendix Section|C]

Implementation Details Experiments were run on a Linux machine with an NVIDIA T4 GPU and
16GB RAM, using PyTorch v2.4.0 on Python 3.11, with reproducibility ensured by a fixed random
seed and default RAdam optimizer settings (51, 82) = (0.9,0.999). We tested LETS-C with four text
embedding models, including text-embedding-3-large, as detailed in Section[3.2] Exploratory
hyperparameter optimization identified 1-3 1D convolutional and 1-2 linear layers as optimal for
LETS-C across all datasets (see Appendix Section [D|for hyperparameter details). For tokenization,
maintaining a one decimal precision optimized performance, as detailed in Appendix Section[J}

3.2 Results

Comparison to State-of-the-art Table 1| shows a comparative analysis of our LETS-C approach
versus 20 baselinesﬂ LETS-C consistently demonstrates robust performance across all datasets,
with the highest average accuracy (76.16%) and AvgWins (40%). This surpasses the recent SOTA,
OneFitsAll (accuracy: 73.97%, AvgWins: 20%), and TimesNet (accuracy: 73.57%, AvgWins:
0%). Notably, LETS-C significantly outperforms OneFitsAll on 6 out of 10 datasets and excels on
challenging datasets like PEMS-SF, with 963 features, and EthanolConcentration, with a time series
length of 1751. These results establish LETS-C as a new benchmark for time series classification.

Table 1: Comparison of classification accuracy (%) and AvgWins (%). Red: Best, Blue: Second best.

Model/Dataset ‘ EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD UW Average ‘ AvgWins %
Classical DTW 323 529 286 717 949 71.1 717 539 963 903 66.97 0%
methods XGBoost 437 633 158 732 865 98.3 846 489 696 759 65.98 10%

” ROCKET 452 647 588 756 962 75.1 90.8 533 712 944 72.53 20%
MLP LightTS 297 675 261 751 962 88.4 89.8 51.1 100 803 70.42 10%

DLinear 326 68 27 751 962 75.1 873 505 814 821 67.53 0%
LSTM 323 577 152 722 797 39.9 68.9 46.6 319 412 48.56 0%
RNN LSTNet 399 657 258 77.1 98.1 86.7 84 528 100 87.8 71.79 10%
LSSL 31.1 667 246 727 984 86.1 90.8 52.2 100 85.9 70.85 10%
CNN TCN 289 528 533 756 989 68.8 84.6 556 956 884 70.25 0%
TimesNet 357 686 321 78 984 89.6 91.8 572 99 853 73.57 0%
Transformer | 327 673 32 76.1 987 82.1 922 539 984 856 71.9 0%
Reformer 319 686 274 771 9718 82.7 90.4 56.7 97 856 71.52 0%
Informer 316 67 328 805 989 81.5 90.1 533 100 85.6 72.13 20%
Pyraformer | 308 657 294 756 984 832 88.1 533 996 834 70.75 0%
Transformers Autoformer | 31.6 684 36.7 746 96.2 82.7 84 50.6 100 859 71.07 10%
Stationformer | 32.7 68 31.6 73.7 99.2 87.3 89.4 572 100 875 72.66 20%
FEDformer | 312 66 28 737 984 80.9 887 544 100 853 70.66 10%
ETSformer 28.1 663 325 712 959 86 89.6 55 100 85 70.96 10%
Flowformer | 33.8 67.6 338 77.6 989 83.8 925 56.1 988 86.6 72.95 0%
LLM OncFitsAll | 342 692 327 772 986 87.9 932 594 992 881 1397 | 20%
LETS-C ‘ 529 689 238 78 992 93.1 93.2 628 992 90.6 76.17 ‘ 40%

Computational Cost Analysis Table [2] provides a detailed analysis of the trainable parameters
associated with LETS-C compared to the previous SOTA model, OneFitsAll. LETS-C achieved
higher performance with only 14.48% of the trainable parameters on average, compared to OneFitsAlL
Further, LETS-C is more computationally efficient in training and inference than OneFitsAll, with
detailed time comparisons in Appendix Section [F}

'To maintain consistency with prior works, we use the same settings as in TimesNet and OneFitsAll, where
the UEA benchmark includes only training and testing sets (with no validation set). Consequently, the reported
performance reflects the model’s upper bound measurement.

Table 2: Comparison of trainable parameters (millions) for LETS-C vs. OneFitsAll, with the Ratio

(%) = 100 x Fom-mmeapmnecs illustrating LETS-C’s efficiency relative to OneFitsAll.

Model/Dataset | EC FD HW HB A% PEMS-SF SCP1 SCP2 SAD UW | Average |

LETS-C (Ours) | 028 0.003 0.15 004 0.14 0.56 0.30 033 0.14 026 0.22
OneFitsAll 1.42 237 173 203 1.32 10.23 0.98 1.04 1.82 1.0 2.39
Ratio (%) | 1989 0.16 889 228 1119 5.51 30.83 3206 777 2621 | 14.48

Ablation Study To assess the benefits of fusing text embeddings with time series data versus using
them separately, we conducted an ablation study. Results in Appendix Section[G]and Table 6] show
that combining both embeddings and time series data achieves the highest average accuracy (76.17%)
and the most AvgWins, with accuracy dropping to 72.94% without the time series and 73.47% without
the embeddings, highlighting the significant gains from fusion for optimal accuracy.

Alternative Methods for Fusing Time Series with Embeddings We explored two additional fusion
methods for time series and embeddings: a Fusion network processing data through separate layers
before merging, and Concatenation, where data are concatenated and processed through a lightweight
head. Appendix Section[H]and Table[7]detail the performance of these methods. The simple addition
method in LETS-C yielded the highest accuracy (76.11%, compared to 73.40% for Fusion and 74.22%
for Concatenation), with both alternative methods increasing parameter count and complexity.

Power of Text Embeddings on Time Series To assess text embeddings’ effectiveness for time series,
we analyzed average cosine similarities within and between classes, and averaged these similarities
across channels for multivariate series. This evaluated closeness in the embedding space, both
intra-class and inter-class. Figure [2] (Ieft) shows these similarities in heatmaps, scaled from 0 to 1 via
min-max normalization, with warmer colors indicating higher similarities. The heatmaps confirm
that intra-class similarities consistently surpass inter-class ones, proving text embeddings effectively
retain and convey significant information from the underlying time series data.

1.0 1.0
1 os | g |
093 2 o3[X0
2 0.8 0.8
3 3 0.59 0.69 (KT}

(X3 o.50

100.0 4
97.51 - e

i -
95.01 »

4 0.46 0,60 0.53 0.71
4 034 051 035 (X " L 9251 /»
8 5 058 061 0.54 0.48 -

lasses

5 042 036 028
6 (%] 0.03 010 BEH] 100

7 069 0,61 0.50 0.32 0.36 1075 8751), °

Percentage of Accuracy Retention (%)
°
8
S

0.2 0.2 /
9 039 045 039 035 052 027 033 0.64 063 l 10 [$8032 036 039 052 m“souaea ¢
0.0 0.0 80.0

0 20 40 60 80 100
Percentage of Retained Parameters (%)

12 3 4 5 6 7 8 9 12 3 456 7 8 910

1
1
1
1
1
1
1
1
1
2 1
6029 0.44 039 A 0.44 063 1
o]
1
1
1
1
1
1
1
1
Classes Classes :

Figure 2: Left: Heatmaps show within- and between-class cosine similarities from Japanese Vowels
(far left), with 9 classes, and SpokenArabicDigits (middle), with 10 classes. Right: Trade-off
between accuracy and parameter retention percentages relative to LETS-C’s optimal values.

Text Embedding Models To test LETS-C’s generalization across different text embeddings,
we evaluated it using 3 additional models: e5-mistral-7b-instruct |Wang et al,| (2023),
gte-large-en-v1.5|Li et al.|(2023)), and nomic-embed-text-v1|Nussbaum et al.|(2024). These
models differ in embedding dimensions, token lengths, and sizes (Appendix K| and Table[I0). LETS-
C consistently surpasses SOTA in accuracy, using far fewer trainable parameters across various
embedding models. Specifically, text-embedding-3-large achieves 76.17% accuracy, while
eb-mistral-7b-instruct, gte-large-en-v1.5, and nomic-embed-text-v1 achieve 74.89%,
76.02%, and 75.12% resp. These results exceed the SOTA accuracy of 73.97% and require signifi-
cantly fewer parameters—14.48%, 15.62%, 9.24%, and 5.31% of OneFitsAll’s parameter count.

Trade-offs: Model Accuracy vs. Parameter Complexity Next, we aim to explore the trade-offs
between model accuracy and size. Figure 2] (right) shows the trade-off between accuracy retention
and parameter retention across all datasets, compared to the optimal metrics of our LETS-C model
(see Tables [T]and [2). The figure demonstrates LETS-C’s ability to maintain high accuracy with fewer
parameters across datasets (see Appendix Table [IT|for details). We analyzed this trade-off in specific
datasets-Heartbeat, PEMS-SF, and SpokenArabicDigits (Appendix Section|[), showing that LETS-C,
with fewer parameters, maintains sufficient accuracy for resource-limited applications.

4 Conclusion

We introduced LETS-C, a novel approach that utilizes text embeddings for time series classification,
marking its first use in this field. By mapping time series data through text embedding models and
employing a simple classification head, LETS-C achieves SOTA performance on a comprehensive
benchmark, using fewer trainable parameters. Our analysis highlights LETS-C’s effectiveness with
various text embedding models, and the trade-offs between model accuracy and size.

References

Amaia Abanda, Usue Mori, and Jose A Lozano. A review on distance based time series classification.
Data Mining and Knowledge Discovery, 33(2):378—412, 2019.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. The great time
series classification bake off: a review and experimental evaluation of recent algorithmic advances.
Data mining and knowledge discovery, 31:606-660, 2017.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Claus Bahlmann, Bernard Haasdonk, and Hans Burkhardt. Online handwriting recognition with
support vector machines-a kernel approach. In Proceedings eighth international workshop on
frontiers in handwriting recognition, pp. 49-54. IEEE, 2002.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Mouldi Bedda and Nacereddine Hammami. Spoken Arabic Digit. UCI Machine Learning Repository,
2010. DOI: https://doi.org/10.24432/C52C9Q.

Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time series.

In Proceedings of the 3rd international conference on knowledge discovery and data mining, pp.
359-370, 1994.

Niels Birbaumer, Nimr Ghanayim, Thilo Hinterberger, Iver Iversen, Boris Kotchoubey, Andrea
Kiibler, Juri Perelmouter, Edward Taub, and Herta Flor. A spelling device for the paralysed.
Nature, 398(6725):297-298, 1999.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. Tempo:
Prompt-based generative pre-trained transformer for time series forecasting. arXiv preprint
arXiv:2310.04948, 2023.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

Marco Cuturi. Fast global alignment kernels. In Proceedings of the 28th international conference on
machine learning (ICML-11), pp. 929-936, 2011.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344-16359, 2022.

Angus Dempster, Frangois Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Mining and Knowledge
Discovery, 34(5):1454-1495, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. Advances in neural information processing systems, 32, 2019.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in one day.
In International Conference on Machine Learning, pp. 11117-11143. PMLR, 2023.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
Backpropagation without storing activations. Advances in neural information processing systems,
30, 2017.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
zero-shot time series forecasters, 2023.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36, 2024.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:

1474-1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Wenzhong Guo, Jianwen Wang, and Shiping Wang. Deep multimodal representation learning: A
survey. leee Access, 7:63373-63394, 2019.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data mining and knowledge
discovery, 33(4):917-963, 2019.

Young-Seon Jeong, Myong K Jeong, and Olufemi A Omitaomu. Weighted dynamic time warping for
time series classification. Pattern recognition, 44(9):2231-2240, 2011.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Yushan Jiang, Zijie Pan, Xikun Zhang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and
Dongjin Song. Empowering time series analysis with large language models: A survey. ArXiv,
abs/2402.03182, 2024. URL https://api.semanticscholar.org/CorpusID:267412144,

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-1lm: Time series forecasting by reprogramming
large language models. arXiv preprint arXiv:2310.01728, 2023.

Argyro Kampouraki, George Manis, and Christophoros Nikou. Heartbeat time series classification
with support vector machines. IEEE transactions on information technology in biomedicine, 13(4):
512-518, 2008.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Mineichi Kudo, Jun Toyama, and Masaru Shimbo. Japanese Vowels. UCI Machine Learning
Repository, 1999. DOI: https://doi.org/10.24432/C5NS47.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pp. 95-104, 2018.

https://api.semanticscholar.org/CorpusID:267412144

James Large, E Kate Kemsley, Nikolaus Wellner, Ian Goodall, and Anthony Bagnall. Detecting forged
alcohol non-invasively through vibrational spectroscopy and machine learning. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pp. 298-309. Springer, 2018.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length on
the reasoning performance of large language models. arXiv preprint arXiv:2402.14848, 2024.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Zachary C Lipton, David Kale, and Randall Wetzel. Directly modeling missing data in sequences
with rnns: Improved classification of clinical time series. In Machine learning for healthcare
conference, pp. 253-270. PMLR, 2016.

Chengyu Liu, David Springer, Qiao Li, Benjamin Moody, Ricardo Abad Juan, Francisco J Chorro,
Francisco Castells, José Millet Roig, Tkaro Silva, Alistair EW Johnson, et al. An open access
database for the evaluation of heart sound algorithms. Physiological measurement, 37(12):2181,
2016.

Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave: Accelerometer-based
personalized gesture recognition and its applications. Pervasive and Mobile Computing, 5(6):
657-675, 20009.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019a.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International conference on learning representations, 2021.

Tiedong Liu and Bryan Kian Hsiang Low. Goat: Fine-tuned llama outperforms gpt-4 on arithmetic
tasks. arXiv preprint arXiv:2305.14201, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems, 35:

9881-9893, 2022.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2421-2425, 2024.

Muhammad Arslan Manzoor, Sarah Albarri, Ziting Xian, Zaiqiao Meng, Preslav Nakov, and Shang-
song Liang. Multimodality representation learning: A survey on evolution, pretraining and its
applications. ACM Transactions on Multimedia Computing, Communications and Applications, 20
(3):1-34, 2023.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing
systems, 26, 2013.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic embed: Training
a reproducible long context text embedder, 2024.

OpenAl. OpenAl Embedding Models. https://platform.openai.com/docs/guides/
embeddings, https://openai.com/index/new-embedding-models-and-api-updates/,
2024. Accessed: 2024-05-13.

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://openai.com/index/new-embedding-models-and-api-updates/

Victor Pan. Fast approximate computations with cauchy matrices and polynomials. Mathematics of
Computation, 86(308):2799-2826, 2017.

Victor Y Pan. Structured matrices and polynomials: unified superfast algorithms. Springer Science
& Business Media, 2012.

Nikolaos Passalis, Avraam Tsantekidis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, and
Alexandros losifidis. Time-series classification using neural bag-of-features. In 2017 25th European
Signal Processing Conference (EUSIPCO), pp. 301-305. 1IEEE, 2017.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532-1543, 2014.

Soujanya Poria, Navonil Majumder, Devamanyu Hazarika, Erik Cambria, Alexander Gelbukh, and
Amir Hussain. Multimodal sentiment analysis: Addressing key issues and setting up the baselines.
IEEE Intelligent Systems, 33(6):17-25, 2018.

Jacob Portes, Alexander Trott, Sam Havens, Daniel King, Abhinav Venigalla, Moin Nadeem, Nikhil
Sardana, Daya Khudia, and Jonathan Frankle. Mosaicbert: a bidirectional encoder optimized for
fast pretraining. Advances in Neural Information Processing Systems, 36, 2024.

Ofir Press, Noah A Smith, and Mike Lewis. Shortformer: Better language modeling using shorter
inputs. arXiv preprint arXiv:2012.15832, 2020.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

UEA Rik Henson. DecMeg2014 - Decoding the Human Brain. https://www.kaggle.com/c/
decoding-the-human-brain/data, 2023. Accessed: 2024-04-15.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Hiroshi Shimodaira, Ken-ichi Noma, Mitsuru Nakai, and Shigeki Sagayama. Dynamic time-alignment
kernel in support vector machine. Advances in neural information processing systems, 14, 2001.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Mohammad Shokoohi-Yekta, Bing Hu, Hongxia Jin, Jun Wang, and Eamonn Keogh. Generalizing
dtw to the multi-dimensional case requires an adaptive approach. Data mining and knowledge
discovery, 31:1-31, 2017.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Chenxi Sun, Yaliang Li, Hongyan Li, and Shenda Hong. Test: Text prototype aligned embedding to
activate llm’s ability for time series. arXiv preprint arXiv:2308.08241, 2023.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9, 2015.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

https://www.kaggle.com/c/decoding-the-human-brain/data
https://www.kaggle.com/c/decoding-the-human-brain/data

Aaron Voelker, Ivana Kaji¢, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,

2019.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models. arXiv preprint arXiv:2401.00368, 2023.

Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn
Keogh. Experimental comparison of representation methods and distance measures for time series
data. Data Mining and Knowledge Discovery, 26:275-309, 2013.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in neural information processing
systems, 34:22419-22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The eleventh international
conference on learning representations, 2022a.

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing
transformers with conservation flows. arXiv preprint arXiv:2202.06258, 2022b.

Hao Xue and Flora D. Salim. Promptcast: A new prompt-based learning paradigm for time series
forecasting. IEEE Transactions on Knowledge and Data Engineering, pp. 1-14, 2023. doi:
10.1109/TKDE.2023.3342137.

Chao-Han Huck Yang, Yun-Yun Tsai, and Pin-Yu Chen. Voice2series: Reprogramming acoustic
models for time series classification. In International conference on machine learning, pp. 11808—
11819. PMLR, 2021.

Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiaoli Li, and Shonali Krishnaswamy. Deep
convolutional neural networks on multichannel time series for human activity recognition. In [jcai,
volume 15, pp. 3995-4001. Buenos Aires, Argentina, 2015.

Xinli Yu, Zheng Chen, Yuan Ling, Shujing Dong, Zongyi Liu, and Yanbin Lu. Temporal data meets
llm—explainable financial time series forecasting. arXiv preprint arXiv:2306.11025, 2023.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8980-8987, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121-11128, 2023.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
preprint arXiv:2207.01186, 2022.

Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K. Gupta, and Jingbo Shang. Large language models
for time series: A survey. ArXiv, abs/2402.01801, 2024. URL https://api.semanticscholar,
org/CorpusID:267411923.

Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. Convolutional
neural networks for time series classification. Journal of Systems Engineering and Electronics, 28
(1):162-169, 2017.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 1110611115, 2021.

https://api.semanticscholar.org/CorpusID:267411923
https://api.semanticscholar.org/CorpusID:267411923

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference on
machine learning, pp. 27268-27286. PMLR, 2022.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
by pretrained lm. Advances in neural information processing systems, 36, 2024.

10

A Appendix

Table of Contents
[A_Related Works| 11
[B_Datasets! 12
|C Comparison Baselines| 15
[D Hyperparameter Setfings| 21
[E_Model Performancel 22
[Computational Cost Analysis| 23
|G _Ablation Study| 23
[H Alternative Methods for Fusing Time Series with Embeddings| 23
[I Assessing Text Embeddings with Cosine Similarity| 23
(J_Numerical Precision for Tokenization| 24
mbedding Typ 25
[C Trade-offs: Model Accuracy vs. Parameter Complexity| 27
[M Figures and Tables at Higher Resolution from the Main Paper] 29

A Related Works

In this Section, we review the related works in three key areas: time series classification, the
application of language models to time series data, and text embeddings.

A.1 Time Series Classification

Time series classification has been an active research area for decades. Early approaches investigated
distance-based approaches [Abanda et al.| (2019) for time series classification. Some built nearest
neighbor classifiers based on explicit time series distance measures such as Dynamic Time Warping
(DTW)[Wang et al.| (2013); Jeong et al | (2011); Berndt & Clifford| (1994). Others have used distance
kernels instead and learned Support Vector Machines (SVMs) Kampouraki et al.| (2008); Bahlmann
et al| (2002)); [Shimodaira et al| (2001)), or extracted features and learned linear Dempster et al.| (2020)
or tree-based classifiers such as eXtreme Gradient Boosting (XGBoost) Chen & Guestrin| (20

Later, deep learning-based approaches are widely adopted because of their ability to learn complex
patterns. Convolutional Neural Networks (CNNs) have proven to be successful in learning local
patterns in time series dataWu et al.| (2022a); [Franceschi et al.|(2019);|Zhao et al.[(2017). Similarly,
Multilayer Perceptron (MLP) can provide simple but effective time series classifiers
. Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM) effectively

handle long sequence modeling |[Gu et al.| (2021)); [Lai et al| (2018)); [Hochreiter & Schmidhuber| (1997).

11

More recently, transformer-based models [Vaswani et al.|(2017) have revolutionized the NLP domain,
and these models have been adapted to the time series domain Zhou et al.|(2022); |Wu et al.|(2021);
Zhou et al.|(2021)). The self-attention mechanism in transformers is known for modeling long-range
dependencies in sequence data. However, the increasing complexity of these models often comes
with larger model sizes and higher computational costs, especially for training.

A.2 Language Models for Time Series

The success of language modeling in NLP and LLMs has inspired researchers to harness LLMs in
the time series domain. Comprehensive surveys|Zhang et al.| (2024)); Jiang et al.|(2024) have offered
valuable insights into the integration of LLMs in time series analysis, highlighting key methodologies,
challenges, and future directions. |Gruver et al.| (2023); [Xue & Salim| (2023)); |Cao et al.| (2023)
enabled pre-trained LLMs to generate time series forecasts through prompting. Further, [Yu et al.
(2023)) delved into the potential of LLMs for generating explainable forecasts of financial time series.
Jin et al.| (2023)) introduced Time-LLM, which focuses on learning to project time series into the
language embedding space and directly using pre-trained LLM for time series forecasting tasks [Yang
et al.[(2021). More importantly, recent work, OneFitsAll by |Zhou et al.[(2024), has shown promising
results by fine-tuning models like GPT Radford et al.|(2019) on time series tasks. OneFitsAll achieved
SOTA performance across various time series tasks, including classification. In contrast, we propose
using text embeddings instead of LLMs for time series analysis. We found that this approach leads
to new SOTA performance on time series classification tasks, with the advantage of using far fewer
trainable parameters than OneFitsAll.

A.3 Text Embeddings

Text embeddings have played a crucial role in NLP. These embeddings map words or sentences
into a dense vector space, capturing semantic and syntactic information. Various text embedding
techniques have been proposed, ranging from word-level embeddings like Word2Vec|Mikolov et al.
(2013) and GloVe |Pennington et al.| (2014) to contextualized embeddings obtained from pre-trained
language models such as BERT |Devlin et al.|(2018)) and RoBERTa Liu et al.| (2019b)). In the time
series domain, some works have proposed unsupervised methods for learning time series embeddings
Sun et al.| (2023); [Yue et al.| (2022)); [Franceschi et al.|(2019); Tonekaboni et al.| (2021). However, the
availability of large-scale datasets in the time series domain is generally more limited compared to
those in the NLP domain, making learning time series embedding from scratch more challenging
compared to text embeddings. To our best knowledge, we are the first to leverage the well-trained
text embeddings from the NLP domain for time series classification.

B Datasets

We benchmark our model using the following 10 multivariate datasets from the UEA Time Series
Classification Archive Bagnall et al.|(2018)). See Table for their data characteristics.

Table 3: Dataset Characteristics. Abbreviations: EC: EthanolConcentration, FD: FaceDetection, HW:
Handwriting, HB: Heartbeat, JV: JapaneseVowels, PEMS: PEMS-SF, SCP1: SelfRegulationSCP1,
SCP2: SelfRegulationSCP2, SAD: SpokenArabicDigits, UW: UWaveGestureLibrary

Characteristic EC FD HW HB v PEMS-SF SCP1 SCP2 SAD UW
Train Size 261 5890 150 204 270 267 268 200 6599 120
Test Size 263 3524 850 205 370 173 293 180 2199 320
Number of Dimensions 3 144 3 61 12 963 6 7 13 3

Series Length 1751 62 152 405 29 144 896 1152 93 315
Number of Classes 4 2 26 2 9 7 2 2 10 8

Type Spectro EEG Motion/Human Audio Audio Occupancy rate EEG EEG Speech EEG

Activity Recognition

B.1 EthanolConcentration

EthanolConcentration (Large et al.| 2018) comprises raw spectra from water-and-ethanol solutions
contained within 44 unique, real whisky bottles, featuring ethanol concentrations of 35%, 38%, 40%,

12

and 45%. Scotch Whisky regulations require a minimum alcohol content of 40%, a standard that pro-
ducers adhere to in order to comply with labeling specifications. The dataset presents a classification
task to identify the ethanol concentration from spectral readings of any given bottle. Each record
includes three spectral readings from the same bottle and batch, obtained by positioning the bottle
between a light source and a spectroscope. These spectral readings, which cover wavelengths from
226nm to 1101.5nm at a 0.5nm resolution, were recorded over a one-second integration time using
a StellarNet BLACKComet-SR spectrometer. The methodology deliberately avoids optimizing for
clarity or consistency in the spectral path, aiming to simulate the varied conditions typical of rapid
screening tests that may be performed on batches of spirits for quality assurance.

B.2 FaceDetection

The FaceDetection dataset originates from a 2014 Kaggle competition (Rik Henson|, 2023). The
challenge involves identifying whether a subject is viewing a picture of a face or a scrambled image
using magnetoencephalography (MEG) data, independent of the individual subject. This dataset
specifically includes only the training portion from the competition, organized by patient. It comprises
data from 10 training subjects (subjectO1 to subject10) and 6 testing subjects (subject11 to subject16).
Each subject has approximately 580 to 590 trials, resulting in a total of 5,890 training trials and 3,524
test trials. Each trial features 1.5 seconds of MEG data, initiated 0.5 seconds before the stimulus is
presented, and is associated with a class label—Face (class 1) or Scramble (class 0). The data were
down-sampled to 250Hz and subjected to a high-pass filter at 1Hz, producing 62 observations per
channel.

B.3 Handwriting

The Handwriting dataset (Shokoohi-Yekta et al., 2017) consists of motion data captured from a
smartwatch while subjects wrote the 26 letters of the alphabet. Developed at the University of
California, Riverside (UCR), this dataset includes 150 training cases and 850 test cases. It features
six dimensions, comprising three accelerometer readings and three gyroscope readings.

B.4 Heartbeat

The Heartbeat dataset originates from the PhysioNet/CinC Challenge 2016 |Liu et al.|(2016)) and
consists of cardiac sound recordings from a diverse pool of participants, both healthy individuals and
patients with cardiac conditions. Recordings were made in various settings, clinical and non-clinical,
and captured from multiple body locations including the aortic, pulmonic, tricuspid, and mitral areas,
among up to nine potential sites. The dataset categorizes these sounds into two primary classes:
normal and abnormal. Normal heart sounds were obtained from healthy subjects, while abnormal
sounds were recorded from patients diagnosed with cardiac ailments, predominantly heart valve
defects such as mitral valve prolapse, mitral regurgitation, aortic stenosis, and post-valvular surgery
conditions, as well as coronary artery disease.

The audio recordings, inclusive of contributions from both children and adults, were uniformly
truncated to five seconds. Spectrograms of each truncated audio were generated using a window size
of 0.061 seconds with a 70% overlap. This multivariate dataset is structured with each dimension
representing a frequency band derived from the spectrogram. There are 113 instances in the normal
class and 296 in the abnormal class.

B.5 JapaneseVowels

The Japanese Vowels dataset|Kudo et al.|(1999), sourced from the UCI Machine Learning Repository,
comprises recordings from nine male speakers who pronounced the Japanese vowels ‘a’ and ‘e’. Each
utterance was analyzed using a 12-degree linear prediction to extract a 12-dimensional time-series
representation, with lengths varying originally from 7 to 29. For consistency, all instances in the
dataset have been padded to the maximum length of 29. The objective of the classification task is
to identify the speaker; hence each 12-by-29 instance matrix is associated with a single class label,
ranging from 1 to 9. This dataset serves as a benchmark for assessing the efficacy of time-series
classification models in distinguishing speakers based on LPC cepstrum coefficients obtained from
their speech patterns.

13

The dataset includes a total of 640 time-series instances. A training set consists of 30 utterances
per speaker, totaling 270 instances. The test set, however, comprises 370 instances and varies in
distribution—ranging from 24 to 88 instances per speaker—owing to external factors such as timing
and availability during the experimental setup.

B.6 PEMS-SF

The PEMS-SF dataset |Cuturi| (201 1) contains 15 months of daily data sourced from the California
Department of Transportation. This dataset details the occupancy rates, ranging from 0 to 1, across
various car lanes on the freeways of the San Francisco Bay Area. The data spans from January
1, 2008, to March 30, 2009, with measurements taken every 10 minutes. Each day is treated as
an individual time series with a dimension of 963, corresponding to the number of sensors that
consistently functioned throughout the observation period. The length of each time series is 144 data
points (6 per hour x 24 hours). The dataset excludes public holidays and two anomalous days (March
8, 2009, and March 9, 2008) when sensors recorded no data between 2:00 and 3:00 AM, resulting
in a total of 440 valid time series. The classification task involves identifying the day of the week
for each series, labeling them with integers from 1 (Monday) to 7 (Sunday). Each attribute within a
record reflects the occupancy rate recorded by a sensor at a specific timestamp throughout the day.

B.7 SelfRegulationSCP1

The SelfRegulationSCP1 dataset, sourced from Birbaumer et al.|(1999), involves recordings from
a healthy subject who was instructed to control a cursor on a screen using cortical potentials. This
process was facilitated by tracking the subject’s slow cortical potentials (Cz-Mastoids), where cortical
positivity resulted in downward cursor movements and cortical negativity caused it to move upward.
Each trial, lasting six seconds, was designed to capture these dynamics, with visual feedback provided
between the second 2 and 5.5 of the trial. During each trial, a goal was visually indicated at either
the top or bottom of the screen starting from 0.5 seconds to the end of the trial, guiding the subject
to generate negative or positive potentials correspondingly. The usable data for each trial, however,
spans only 3.5 seconds—from the second 2 to 5.5—corresponding to 896 samples per channel given
the sampling rate of 256 Hz.

Data capture involved a PsyLab EEG8 amplifier and a PCIM-DAS1602/16 A/D converter, recording
over channels positioned according to the 10/20 system. The dataset includes a training set of 268
trials—168 from the first day and 100 from the second, mixed randomly—and 293 test instances,
with class labels indicating positivity or negativity.

B.8 SelfRegulationSCP2

The SelfRegulationSCP2 dataset |Birbaumer et al.|(1999)) includes data from an artificially respirated
ALS patient who was tasked with controlling a cursor on a computer screen using cortical potentials.
Auditory and visual cues were used to guide the patient, with slow cortical potentials measured at
the Cz-Mastoids. A positive potential moved the cursor downward, whereas a negative potential
moved it upward. Each trial lasted 8 seconds, with the cursor movement direction (up for negativity,
down for positivity) indicated both visually and auditorily from the 0.5 to 7.5 second marks. Auditory
instructions were given precisely at the 0.5-second mark, and visual feedback was available from
seconds 2 to 6.5. Only the data from this 4.5-second feedback period, translating to 1152 samples per
channel at a 256 Hz sampling rate, are used for training and testing.

EEG data were collected from several sites according to the 10/20 system and included channels for
detecting vertical eye movements (VEOG). The EEG signals were not corrected for EOG artifacts,
providing a raw view of the cortical activity. The dataset comprises 200 trials for training, evenly
split between two classes, and an additional 180 trials for testing, recorded on the same day but after
the training session data. Each trial spans 7 dimensions and a series length of 1152.

B.9 Spoken Arabic Digits
The Spoken Arabic Digits dataset [Bedda & Hammami| (2010) consists of 8,800 time series data

entries derived from the vocal utterances of 88 native Arabic speakers (44 males and 44 females,
aged between 18 and 40). Each dataset entry represents one of ten Arabic digits, spoken ten times by

14

each speaker. The dataset captures 13 Mel Frequency Cepstral Coefficients (MFCCs) for each sound
snippet, which are extracted under the following audio processing conditions:

e Sampling rate: 11025 Hz

* Bit depth: 16 bits

* Window function: Hamming

e Pre-emphasis filter: 1 —0.977!

Each line in the database corresponds to one frame of analysis, listing the 13 MFCCs separated by
spaces. These coefficients effectively capture the spectral properties essential for recognizing spoken
digits. This structured approach facilitates robust time-series analysis for speech recognition tasks
involving Arabic numerals.

B.10 UWaveGestureLibrary

The UWaveGestureLibrary |[Liu et al.|(2009) comprises a set of eight simple gestures, each generated
from accelerometer data. The dataset records the X, Y, and Z coordinates corresponding to each
gesture’s motion. Every time series within this dataset consists of 315 data points.

C Comparison Baselines

To provide a thorough comparison, we evaluate our approach against 20 baseline models for time
series classification. These baselines can be categorized into Classical methods, models based on
MLPs, RNNs, CNNss, transformers, and LLMs. The details of which are provided below.

C.1 Classical methods

1) Dynamic Time Warping (DTW) [Berndt & Clifford| (1994) is a method for measuring
similarity between two time series, X = (x1,x2,...,2p) and Y = (y1,¥2,...,Yn),
which may differ in length and are sampled at equidistant points in time. DTW identifies the
best alignment between these series by minimizing the effects of distortion and shifting in
time, allowing for the comparison of similar shapes across different phases.

The core of DTW is the construction of a local cost matrix, C € RM*N with entries
¢ij = ||z — y;|| fori € [1,M] and j € [1, N], which represents the pairwise distances
between points in the two series. The objective is to find a warping path p = (p1, p2, ..., prL)
where each p; = (p;, p;) lies within [1, M| x [1, N|]. This path aligns the series by following
the route that minimizes cumulative distance, adhering to several constraints: it must start and
end at p; = (1,1) and p;, = (M, N) (boundary condition), maintain the temporal ordering
of points m; < mg < ... <mpandn; < ny < ... < np (monotonicity condition), and
prevent large temporal jumps (step size condition). The optimal warping path is identified
through a recursive process aimed at minimizing the total cost associated with p, calculated
as ¢p(X,Y) = ZlL:l ¢(Tm, , Yn,). This path, P*, where cp+ = minyep ¢,(X,Y), defines
the DTW distance, quantifying the similarity between the series. However, the computational
cost of this process is O(M N), where M and N are the lengths of the two series, rendering
it computationally demanding for large datasets.

For classifying time series, the DTW distance is integrated with the k-nearest neighbors
(k-NN) algorithm. This approach computes the DTW distance of a target series to all other
series in a training dataset and assigns a classification based on the most common class
among the k-nearest neighbors. Thus, DTW effectively accommodates series with time
shifts, providing a robust, distance-based method for classifying time series.

2) eXtreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016)) is a state-of-the-art
machine learning algorithm that primarily uses decision trees as base learners to construct a
robust ensemble model. XGBoost sequentially builds a series of weak learners—typically
decision trees—and enhances each successive tree by correcting errors made by its prede-
cessors, a technique known as boosting. This process involves an additive model where
each new decision tree is improved by leveraging the cumulative knowledge of the trees
that came before it, optimizing for maximum information gain at each split using a greedy

15

3)

algorithm. To prevent overfitting, XGBoost incorporates regularization directly into its loss
function and employs shrinkage to moderate the learning rate. Additionally, the optimization
method, which is gradient-based, minimizes a cost function by iteratively adjusting the
model’s parameters in response to the gradients of the errors. XGBoost also refines the
decision tree construction process by using a Similarity Score and Gain to determine the
most effective node splits, further improving the model’s accuracy and efficiency.

RandOm Convolutional KErnel Transform (ROCKET) (Dempster et al.| [2020) is a
method for time series classification that employs random convolutional kernels to transform
series data, which is then used to train a linear classifier. Unlike traditional convolutional
neural networks (CNNs) that rely on learned kernels, ROCKET utilizes a broad array of
random kernels. Each kernel is uniquely characterized by random properties such as length,
weights, biases, dilation, and padding. This configuration forms a single-layer convolutional
neural network, where the randomized kernel weights contribute to generating input for
a softmax layer, thus optimizing the feature extraction process. ROCKET also efficiently
scales for large datasets due to its linear complexity relative to the length of the time series
and the number of training samples. The key advantages of ROCKET include:

— Number of Kernels: ROCKET utilizes a substantial number of kernels in a single layer.
The non-learned nature of these kernels reduces computational costs significantly,
enabling the use of numerous kernels without substantial overhead.

— Variety of Kernels: Unlike typical CNNs, where kernels might share characteristics,
each ROCKET kernel is distinct in its attributes, enhancing the diversity and the ability
to detect various patterns.

— Kernel Dilation: Dilation in ROCKET is randomly assigned to each kernel, differing
from the exponential increase with depth seen in traditional CNNs. This randomness is
vital for identifying patterns across different scales and frequencies.

— Feature Extraction: Beyond employing global max pooling techniques through the
maximum value of feature maps, ROCKET utilizes a novel metric—the proportion of
positive values. This metric allows classifiers to assess the prevalence of patterns more
accurately within the time series.

C.2 MLP-based methods

4)

5)

LightTS (Zhang et al[2022) is an MLP-based time series forecasting model that employs
simple MLP structures to manage both short-term and long-term temporal dependencies.
This model includes two downsampling strategies: interval sampling, which targets long-
term dependencies, and continuous sampling, which focuses on short-term local patterns.
These strategies are based on the principle that downsampling typically preserves the
majority of a time series’ crucial information, thus maintaining model efficiency. LightTS
utilizes an MLP-based framework on top of these downsampling techniques, enabling
effective information exchange among different down-sampled subsequences and time steps.
This configuration allows LightTS to adaptively select relevant information for forecasting
and to efficiently handle very long input sequences by processing only a fraction of the data
after downsampling.

DLinear (Zeng et al.| 2023) is a recent non-transformer model developed in response to
the difficulty transformer-based models face in capturing ordering information within time
series. DLinear integrates a decomposition scheme similar to those used in Autoformer and
FEDformer but relies on linear layers for processing. Initially, it decomposes a raw data
input into a trend component using a moving average kernel and a remainder (seasonal)
component. Subsequently, two single-layer linear layers are applied independently to each
component. The outputs from these layers are then summed to produce the final prediction.
This approach allows DLinear to enhance performance over a standard linear model by
explicitly handling trends within the data.

C.3 RNN-based models

6)

Long Short-Term Memory (LSTM) Hochreiter & Schmidhuber| (1997)) addresses the
vanishing gradient problem that plagues vanilla RNNs in processing longer sequences.
This issue arises as the network propagates forward, and the small weight values in the

16

hidden layers are multiplied repeatedly, causing the gradients to diminish rapidly. As a
result, the weights in the initial layers become increasingly difficult to train, which impacts
the training of subsequent weights, making RNNs challenging to train overall. LSTM
mitigates this problem by incorporating a memory cell equipped with various gates that
regulate the flow of information into and out of the cell, enabling it to handle long-short
term dependencies effectively. An LSTM unit utilizes a cell state and three gates—input,
forget, and output—to manage information. Each gate includes a sigmoid layer o that
outputs values between 0 and 1, representing the proportion of information allowed through
the gate, and a point-wise multiplication operation. Specifically, the forget gate f; =
o(Wy-[ht—1, z¢]+by) determines which information to discard from the previous cell state
¢¢—1 by analyzing the current input x; and the previous hidden state ~;_1. The input gate
iy = o(W; - [he—1, @] + b;) decides which new information to update, and the update to
the cell state ¢; = tanh(W. - [ht—1, x¢] + b.) is computed. The cell state is then updated to
¢t = ft-ct—1 + it - ¢ Finally, the output gate o; = o(W, - [ht—1, @] +b,) determines what
portion of the cell state to output, with the output hidden state given by h; = o; - tanh(c;).

7) Long- and Short-term Time-series Network (LSTNet) (Lai et al., |2018)) incorporates
both CNN and RNN components to perform comprehensive time series analysis. The CNN
extracts short-term local dependency patterns from multi-dimensional input variables, while
the RNN is tasked with capturing complex long-term dependencies in time series trends. To
address the issue of scale insensitivity commonly found in neural network models, LSTNet
integrates a traditional autoregressive model. Additionally, LSTNet features a Recurrent-
skip structure designed to effectively capture very long-term dependence patterns and to
facilitate easier optimization, leveraging the periodic properties of the input time series
signals. Further enhancing its robustness, LSTNet also employs a traditional autoregressive
linear model in parallel with its nonlinear neural network components. This dual approach
makes the network particularly adept at managing time series that exhibit significant scale
variations.

8) Linear State Space Layer (LSSL) (Gu et al. 2021), which is part of the structured
state space sequence model, introduces a parameterization for state space models (SSM)
designed to enhance computational efficiency. LSSL modifies the structured state matrices
by decomposing them into a low-rank and a normal term |Gu et al.| (2020); [Voelker et al.
(2019). This modification facilitates the computation of the truncated generating function in
frequency space, rather than expanding the standard SSM in coefficient space. Furthermore,
LSSL employs the Woodbury identity to adjust the low-rank term, and the normal term
is stably diagonalized. This approach simplifies the computations by involving processes
associated with a Cauchy kernel Pan| (2012} |2017), known for its stability in theoretical
contexts. These modifications allow LSSL to efficiently manage both computational and
Memory resources.

C.4 CNN-based models

9) Temporal Convolutional Network (TCN) (Bai et al., 2018}, |[Franceschi et al.,[2019) is a
CNN-based architecture designed to capture extended historical data with long memory
capabilities and requires minimal tuning in practice. TCNs utilize dilated causal convolu-
tions to ensure that predictions do not prematurely incorporate future data. The dilations
significantly expand the network’s receptive field, enabling it to cover a broader range
of historical context. Furthermore, TCNs integrate residual connections to facilitate the
effective training of deeper models.

A TCN model comprises a series of n TCN residual blocks, where n is a hyperparameter.
Each block contains two dilated causal convolutional layers, which are fully convolutional
to ensure that the output size is consistent with the input size. These causal convolutions
guarantee that the output at any given time ¢ depends only on inputs from time ¢ and earlier.
The convolutional layers are applied with a stride of 1, and padding adjustments maintain
the convolutional nature of the network. Each convolutional layer applies a dilation factor d,
typically set as d = 2 for the i-th block, to exponentially increase the receptive field as the
network deepens. Mathematically, a convolution with dilation factor d on an element = of a

1D input g with a filter f of length k is computed as (g *4 f)(x) = Z;:Ol f(G)-gla—d-j).

17

10)

Following the convolutional layers, the sequence of operations includes weight normalization
Salimans & Kingma|(2016), ReLU activation, and a dropout layer. Weight normalization im-
proves gradient conditioning and accelerates convergence by reparameterizing each weight
vector w as w = ﬁv, where v has a fixed norm and g is a scalar. This process decouples

the magnitude of the weight vector from its direction, enhancing network optimizability.
Each block concludes with an element-wise addition of the block’s input and the estimated
residual mapping, followed by a ReLU activation. Dimension alignment for this addition is
achieved with a 1 x 1 convolution.

TimesNet (Wu et al.| [2022a) is a method that overcomes the limitations of traditional 1D
time series representation by transforming these series into 2D tensors organized across
multiple periods. It captures short-term intraperiod variations and long-term interperiod
trends by embedding them into the columns and rows of the 2D tensors, respectively.
This transformation allows for more efficient modeling of temporal variations using 2D
convolutional kernels, thereby extending the analysis into a more comprehensive 2D space.
TimesNet ensures simultaneous representation of both intraperiod and interperiod variations,
with modules specifically tailored to emphasize the unique temporal patterns of each period.

The central component of TimesNet, the TimesBlock, is a versatile and adaptive structure
designed to detect multiperiodicity and extract complex temporal patterns from these 2D
tensors. Its parameter-efficient Inception-block (Szegedy et al., 2015) based architecture
boosts the model’s analytical capabilities, facilitating a detailed examination of distinct
temporal variations associated with different periods. This approach allows TimesNet to
transcend the constraints of 1D representations, enabling a unified and thorough analysis of
temporal variations.

C.5 Transformer-based models

1)

12)

Transformer (Vaswani et al., 2017) comprises a dual-component architecture with both
an encoder and a decoder, each containing stacked self-attention and point-wise, fully
connected layers. Each component consists of six identical layers. In the encoder, each
layer includes a multi-head self-attention mechanism and a position-wise fully connected
feed-forward network, complemented by a residual connection and layer normalization. The
decoder replicates this configuration but adds a third sub-layer for multi-head attention on the
encoder’s output. It also modifies its self-attention mechanism to prevent forward-looking
attention, thus preserving the model’s auto-regressive properties for sequential generation.

The Transformer utilizes multi-head attention to enable nuanced interactions between its
encoder and decoder and to facilitate detailed processing across different positions in the
sequence. This attention mechanism projects queries, keys, and values through multiple
linear transformations, enabling diverse representation and integration of information across
subspaces. It is applied in three distinct forms: encoder-decoder attention allows decoder
queries to attend to all positions in the encoder output; self-attention within the encoder lets
each position process information from all preceding positions; and self-attention within
the decoder restricts attention to prevent future positions from influencing the sequence,
maintaining sequential integrity. This structured approach helps the Transformer effectively
manage and process long sequence dependencies, making it adaptable for a broad range of
sequence-based applications.

Reformer (Kitaev et al.l2020) enhances the efficiency of the transformer model with two
significant modifications, making it more suitable for processing long sequences. Firstly, it
replaces the traditional dot-product attention with a locality-sensitive hashing mechanism.
This change reduces the computational complexity from O(L?) to O(Llog L), where L
is the sequence length. Secondly, Reformer employs reversible residual layers, which
regenerate the activations of any layer from the subsequent layer’s activations using only
the model parameters. This approach eliminates the need for storing multiple copies of
activations for each layer, substantially reducing memory usage. The reversible layers,
introduced in |Gomez et al.| (2017), require only a single set of activations to be stored
for the entire model, significantly reducing the memory cost usually multiplied by the
number of layers (/V). Moreover, the Reformer processes activations in chunks within
feed-forward layers, further decreasing memory demands. These adjustments, along with
the use of locality-sensitive hashing for attention computation, not only minimize memory

18

13)

14)

15)

and computational overhead but also maintain the model’s performance on par with the
traditional transformer model for long sequences.

Informer (Zhou et al.,[2021) is a transformer-based model designed specifically to tackle
challenges in long sequence time-series forecasting, such as quadratic time complexity, high
memory usage, and constraints of the traditional encoder-decoder architecture. The Informer
introduces several modifications to enhance efficiency and effectiveness in processing long
sequences:

— ProbSparse Self-Attention Mechanism: This mechanism replaces the conventional
self-attention in Transformers. It is engineered to achieve O(Llog L) in both time
complexity and memory usage, efficiently managing dependency alignments without
compromising performance.

— Self-Attention Distilling: This process improves attention management by concentrat-
ing on dominant attention scores and halving the input size for each cascading layer.
This method effectively manages extremely long input sequences and significantly
lowers the space complexity to O((2 — €)L log L).

— Generative Style Decoder: Diverging from the typical step-by-step decoding process,
the generative style decoder in Informer predicts long time-series sequences in a single
forward operation. This approach accelerates inference for long-sequence predictions
and reduces the propagation of cumulative errors during the inference phase.

The Informer leverages these enhancements—ProbSparse self-attention for efficient pro-
cessing, self-attention distilling to focus on important attention scores, and a generative
style decoder for rapid sequence generation—to improve its performance in forecasting long
sequences and capturing long-range dependencies between extensive time-series inputs and
outputs.

Pyraformer (Liu et al., [2021) is a transformer-based model that employs a pyramidal
attention module (PAM) for efficient management of time series data. This module uses
inter-scale and intra-scale connections to summarize features at different resolutions and
capture temporal dependencies across various ranges. The design integrates a tree structure
for inter-scale connections and neighboring intra-scale connections to achieve a multi-
resolution representation of time series. This architecture ensures that Pyraformer scales
linearly with the input series length, optimizing computational efficiency while maintaining
a constant signal path length relative to the sequence length L, and keeping both time and
space complexity linear with L.

Pyraformer operates by first embedding observed data, covariates, and positions in a manner
similar to the Informer (Zhou et al.| [2021). It then constructs a multi-resolution C-ary
tree through a coarser-scale construction module (CSCM), where each coarser scale node
aggregates information from C' finer scale nodes. This structure allows Pyraformer to
model temporal dependencies efficiently across different scales through sparse intra-scale
connections, thus reducing computational overhead. Depending on the specific needs of
different downstream tasks, Pyraformer adapts its output structure to effectively meet the
requirements of diverse time series analyses.

Autoformer (Wu et al., [2021)) is a transformer-based model that incorporates time series
decomposition, drawing inspiration from classical time series analysis methods. Unlike
traditional transformers that rely on self-attention mechanisms to capture long-range de-
pendencies, Autoformer introduces an auto-correlation mechanism as an alternative. This
change addresses the issues that traditional models face with intricate temporal patterns
and long-term forecasting, where identifying reliable dependencies can be challenging. To
enhance efficiency in handling long series, traditional transformers sometimes use sparse
versions of self-attention, which can limit the effective use of information.

Autoformer integrates decomposition blocks directly into its structure, moving away from
the typical preprocessing approach of series decomposition. These blocks are specifically
designed to progressively isolate long-term trends from the data during the forecasting
process, allowing the model to refine and decompose the data iteratively. This setup
improves the handling of complex time series. The auto-correlation mechanism, inspired by
stochastic process theory and based on the periodicity of the series, focuses on identifying
dependencies and aggregating representation at the sub-series level, effectively capturing
and utilizing similarities derived from underlying periodic patterns.

19

16)

17)

18)

The architecture of Autoformer adheres to a residual and encoder-decoder framework. The
encoder eliminates long-term trend-cyclical components through the series decomposition
blocks and focuses on modeling seasonal patterns. In contrast, the decoder accumulates
the trend component extracted from the hidden variables, using past seasonal information
to enhance forecasting accuracy. Additionally, Autoformer incorporates a moving average
within its decomposition blocks to smooth out periodic fluctuations and highlight long-term
trends, thereby facilitating a more targeted analysis of stable trend components within the
time series.

Stationformer (Liu et al., 2022) addresses the challenges posed by non-stationary real-world
data, where the joint distribution changes over time, often leading to the degradation of
transformer performance. Stationformer consists of two interdependent modules: series
stationarization and de-stationary attention. Series stationarization normalizes the input
data to unify its statistical properties, enhancing predictability, and adjusts the output to
restore the original statistics. This module utilizes a straightforward normalization approach
without additional parameters. De-stationary attention, on the other hand, aims to counteract
the potential over-normalization by reintroducing the intrinsic non-stationary characteristics
of the data into the model’s temporal dependencies. The de-stationary attention module
approximates how attention mechanisms would function on unnormalized data and integrates
these insights back into the model to maintain crucial temporal dynamics. This setup allows
stationformer to balance the predictability benefits gained from normalized data with the
rich, detailed patterns inherent in the raw non-stationary series.

Structurally, Stationformer adapts the traditional encoder-decoder setup. The encoder
extracts information from past observations, while the decoder aggregates this information
to refine predictions. The framework modifies the standard transformer by applying series
stationarization to both the input and output of the model, and replaces the conventional
self-attention mechanism with de-stationary attention. This adaptation aims to enhance
the model’s ability to predict non-stationary series by effectively managing the challenges
associated with data variability over time.

Frequency Enhanced Decomposed Transformer (FEDformer) (Zhou et al., 2022)) is a
transformer-based method that incorporates a time series decomposition scheme to address
the limitations of traditional transformers, particularly their high computational demands
and challenges in capturing global time series trends. By combining transformers with the
seasonal-trend decomposition method, FEDformer aims to separate the broad trends from
more detailed fluctuations in time series data. This allows the transformer component to
focus on more granular details while the decomposition handles the overall profile of the
series.

The architecture of FEDformer includes specialized blocks such as Fourier-enhanced and
Wavelet-enhanced blocks within the transformer framework. These blocks serve as substi-
tutes for the conventional self-attention and cross-attention mechanisms, and they enable
the model to analyze important structures through frequency domain mapping. FEDformer
employs a selective approach to incorporating Fourier components, which helps keep the
computational complexity and memory usage linear in relation to the length of the time
series. Specifically, FEDformer is structured as a deep decomposition architecture that inte-
grates Frequency Enhanced Block (FEB), Frequency Enhanced Attention (FEA) connecting
the encoder and decoder, and the Mixture Of Experts Decomposition block (MOEDecomp).
This setup leverages both seasonal-trend decomposition and distribution analysis to facilitate
the processing of time series data.

ETSformer (Woo et al., [2022)) is a transformer-based architecture tailored for time series
forecasting, integrating exponential smoothing techniques. ETSformer uses two novel
mechanisms, Exponential Smoothing Attention (ESA) and Frequency Attention (FA), which
are designed to replace the traditional self-attention mechanism in standard transformers.
ESA utilizes attention scores based on relative time lags, enabling efficient handling of
growth components with a computational complexity of O(L log L) for a length-L lookback
window. Similarly, FA employs Fourier transformations to identify dominant seasonal
patterns, selecting bases with the highest amplitudes in the frequency domain to achieve the
same level of complexity.

ETSformer is structured with modular decomposition blocks that allow it to dissect time-
series data into distinct, interpretable components such as level, growth, and seasonality.

20

This design facilitates layer-wise decomposition of the time series into these components,
enhancing the model’s ability to capture and represent complex temporal dynamics. The
architecture systematically extracts latent growth and seasonal patterns through a deep,
multi-layered approach, where each layer progressively refines the extraction of these
temporal features. The final forecast generated by ETSformer integrates these decomposed
elements—Ilevel, trend, and seasonality—into a cohesive output that is both practical and
interpretable for human analysts. By emphasizing recent observations, the model aligns
with the principles of exponential smoothing, ensuring that more recent trends carry greater
weight in the forecast.

19) Flowformer (Wu et al., 2022b) modifies the traditional transformer architecture by integrat-

ing flow network theory to tackle the scalability issues typical of standard transformers. The
conventional attention mechanism in transformers is known for its quadratic complexity,
which limits their ability to process a large number of tokens and scale to larger models ef-
fectively. To address this, Flowformer introduces the Flow-Attention mechanism, grounded
in the principles of flow conservation. This mechanism reimagines attention as information
flowing from sources (values) to sinks (results) via learned flow capacities (attentions),
aiming to achieve linear complexity.
The Flow-Attention mechanism manages the flow of information by regulating incoming
flow at sinks to initiate source competition and outgoing flow at sources for sink allocation.
This management of flow helps in aggregating relevant information without relying on
specific inductive biases and aims to prevent the common issue of degenerated attentions
found in typical attention mechanisms. Flowformer embeds flow conservation within its
attention mechanism to streamline the process of information aggregation and refinement.
By integrating these elements, Flowformer seeks to provide an alternative approach that
could potentially handle large datasets and complex time series data more efficiently than
traditional transformers, without the computational complexity typically associated with
these models.

C.6 LLM-based models

20) OneFitsAll (Zhou et al., | 2024) employs pre-trained language and computer vision models,
developed from billions of tokens, for time series analysis. This approach, termed the Frozen
Pretrained Transformer (FPT), retains the original self-attention and feedforward (FFN)
layers of the pre-trained models, which hold the majority of the learned knowledge. The
model is fine-tuned for various time series classification tasks, with adjustments made only
to the positional embeddings and layer normalization layers to adapt to specific downstream
tasks. Additionally, to more effectively manage local semantic information, OneFitsAll
incorporates a patching technique as described by |Nie et al.[(2022). This method aggregates
adjacent time steps into a single patch-based token, thereby increasing the historical time
horizon that can be processed by the model without increasing the token length, reducing
information redundancy within transformer models.

D Hyperparameter Settings

D.1 Hyperparameter Search Space

Our hyperparameter search for the lightweight classification head included determining the optimal
number of convolutional layers, whether to use dropout or pooling within the convolutional blocks,
the number of dense layers, the type of activation function for each layer, and whether to employ
batch normalization. We explored 1 to 5 convolutional layers and 1 to 4 linear layers. We also
tested various learning rates, ranging from 0.001 to 0.05, different activation functions such as ReLU,
GELU, and tanh, and truncation lengths for the text-embedding-large from 64 to 1024.

D.2 Optimal Hyperparameters

Table [] presents the optimal configurations for our experiments across various datasets. All
configurations employed tokenization with a precision of one decimal place and utilized the
text-embedding-3-large embeddings. It is crucial to note that the count of linear layers in-
cludes the output layer; therefore, a configuration with one linear layer means that this single layer

21

functions as the output layer within the model architecture. Furthermore, all convolutional layers
utilized a kernel size of 3. Additionally, each configuration used the RAdam optimizer [Liu et al|
(2019a)) with its default hyperparameter settings (31, 82) = (0.9,0.999).

Table 4: Optimal hyperparameter configuration.

LETS-C
\ Model Hyperparameter | Training Process

Dataset/Configuration Embedding Conv layers Linear Activation | Learning Batch

dimension layers rate size
EthanolConcentration 64 2 1 tanh 0.007 64
FaceDetection 64 1 1 tanh 0.007 128
Handwriting 16 1 2 tanh 0.007 64
Heartbeat 512 1 1 tanh 0.007 64
Japanese Vowels 512 1 2 GELU 0.007 64
PEMS-SF 1024 3 1 tanh 0.007 64
Self-Regulation SCP1 64 1 1 tanh 0.007 64
Self-Regulation SCP2 1024 2 1 GELU 0.007 64
Spoken Arabic Digits 512 1 1 tanh 0.001 64
UWave Gesture Library 1024 1 1 tanh 0.001 64

E Model Performance

Figure [3] displays a comparison of models based on the average classification accuracy across all
datasets, as summarized in Table [3}

ours — 76.17

OneFitsAll 4 73.97
TimesNet - 73.57
Flowformer - 72.95
Stationformer 72.66
ROCKET A 72.53
Informer 72.13
Transformer 71.90
LSTNet 71.79
Reformer 71.52
Autoformer 71.07
ETSformer 70.96
LSSL 70.85
Pyraformer 70.75
FEDformer 70.66
LightTS 70.42
TCN 70.25

DLinear
DTW
XGBoost
LSTM

Average Accuracy (%)

Figure 3: Model comparison based on classification accuracy, averaged across all datasets listed in
TableEl For detailed results, refer to Table 1 in the main paper.

22

F Computational Cost Analysis

Table[5|discusses the training and inference times for our model as compared to the SOTA OneFitsAll
(Zhou et al.,|2024) across the 10 benchmark datasets. We observe that our approach significantly

Table 5: Comparison of training and inference times (in seconds) per batch for OneFitsAll (Zhou
et al.| 2024) versus our model across the 10 benchmark datasets. The Ratio (%) is calculated using

the formula 100 x m%, quantifying the computational efficiency of our model relative to

OneFitsAll.
Model/Dataset ‘ EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD uw ‘ Average |
Time
Training l(,)ETS-C (Ours) 0.01 0.01 0.009 0.01 0.01 0.11 0.004 0.01 0.01 0.01 ‘ 0.02
time (s) neFitsAll 0.35 0.23 0.14 0.07 0.02 0.28 0.11 0.13 0.97 0.07 0.24
Ratio (%) \ 3.17 8.02 6.71 16.18 42.85 40.49 4.30 8.40 1.21 15.30 \ 14.66
Inference LETS-C (Ours) 0.01 0.05 0.01 0.01 0.01 0.10 0.004 0.01 0.02 0.01 ‘ 0.02
time (s) OneFitsAll 0.16 0.10 0.06 0.04 0.02 0.15 0.06 0.08 0.15 0.04 0.09
Ratio (%) \ 10.58 50.50 14.75 31.15 68.41 66.10 7.02 19.59 18.00 30.55 \ 31.67

reduces the total training time to just 14.66% and the inference time to 31.67% of those required by
OneFitsAll.

G Ablation Study

To empirically assess the advantages of fusing both text embeddings and time series data, as opposed
to variants that only leverage either the text embedding or time series itself, we conducted an ablation
study. Table[6]presents the results of this study, comparing the performance of our default approach,
which adds embeddings to time series, to variants that exclude either embeddings or the time series.

Table 6: Comparison of classification accuracy (%) for different configurations: ours (both embed-
dings and time series), embeddings only, and time series only. Red: Best.
Method/Dataset | EC FD HW HB JV PEMS-SF SCPl SCP2 SAD UW | Averaget | AvgWins % 1

LETS-C (Ours) | 529 689 238 78 992 93.1 932 628 992 906 | 7617 | 60 %
embedding only | 38 594 20.1 80 992 92.5 887 639 992 884 72.94 40%
time seriesonly | 42.6 69.6 25.1 76.1 98.1 89 932 583 989 838 73.47 30%

H Alternative Methods for Fusing Time Series with Embeddings

We explored two additional methods for fusing time series and embeddings beyond simple addition.
The first method involves a Fusion network that first processes embeddings and time series data
through convolutional and dense layers in two separate branches, then merges the features from
both branches into a final dense network. The second method employs Concatenation, where the
time series and embeddings are concatenated and processed through a lightweight classification
head. Despite cross-attention being another alternative for fusing different modalities, we didn’t
include it in this study due to the computational complexity it adds to the model. Table[7]presents the
classification accuracy and trainable model parameters for these variations.

I Assessing Text Embeddings with Cosine Similarity

Figure] visualizes the within-class and between-class cosine similarities of text embeddings derived
from the testing time series. Each matrix entry is scaled using min-max normalization to range from
0 to 1, where warmer colors in the heatmap represent higher similarities and darker shades indicate
lower similarities. Diagonal entries show within-class similarities, highlighting intra-class cohesion,
while off-diagonal entries reveal between-class relationships

23

Table 7: Comparison of classification accuracy (%) and trainable model parameters (millions) for
alternative methods for fusing time series with embeddings. Higher AvgWins and averages signify
superior performance, while lower averages suggest greater computational efficiency. Red: Best
performance.

Accuracy T

Method/Dataset | EC FD HW HB JV PEMS-SF SCPl SCP2 SAD UW | Average? | AvgWins % 1
LETS-C (Addition) | 52.9 689 238 78 99.2 93.1 932 628 992 906 | 7617 | 70%
Fusion network ‘ 44.1 665 236 76.6 98.1 86.1 928 561 99.2 909 ‘ 73.40 ‘ 20%
Concatenation 43 65.1 225 79 989 93.1 939 589 99 8838 74.22 30%

Trainable Parameters (M) |
Method/Dataset | EC FD HW HB JV PEMS-SF SCPl1 SCP2 SAD UW | Average |
LETS-C (Addition) | 0.28 0.003 0.15 0.04 0.14 0.56 030 033 0.14 026 | 0.22

Fusion Network 0.19 035 033 028 0.16 5.54 037 027 023 0.04 0.78
Concatenation 0.42 0.009 0.26 0.17 0.11 0.28 023 039 0.09 046 0.24

|1‘O

-0.8

1.0
1 0.69 '
2 0.31]
B
-0~

0.45 0.59 0.56 0.73

© 0 N O U B W N =

4 034 048 025 071 0.6 " 0.6
0 0 5 0.54 062 060 o.szﬁ
A5 042 036 0.29 LELHEL] 0
o © 0.32 0.51 0.45 0.26 0.53 0.76
C6 030 0.25 [IZECETY 0.28 [EE] -0.4 o -0.4
0.73 0.63 0.51 0.36 0.42 0.33 0.76
7 °'28m°‘4° 025 026 PRy 0.73 0.74 0.55 0.37 0.48 0.58 o.sz
8 047 072 055 045 063 030 038 0-2 0.63 0.69 0.56 0.39 0.57 0.52 0.53 0.50 0.65 0-2
9 0.47 0.49 0.47 0.28 0.52 029 0.38 0.65 0.74 10 0‘29 0.36 0.37 0.56 o,zem 0.25 0.70
0.0 0.0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10
Classes Classes

Figure 4: Heatmaps illustrating within-class and between-class cosine similarities of text embeddings
derived from the testing time series data in Japanese Vowels (left) with 9 classes and Spoken
Arabic Digits (right) with 10 classes. On both axes, x and y represent different classes. Diagonal
entries indicate within-class similarities, and off-diagonal entries represent between-class similarities.
Warmer colors signify higher cosine similarities, while cooler colors suggest lower similarities.

Similar to the training set, we observe that within-class similarity consistently exceeds across-class
similarity, thereby validating the hypothesis that text embeddings effectively retain and convey
significant information from the underlying time series data.

J Numerical Precision for Tokenization

To explore the impact of numerical precision on the computation of embeddings, we analyzed classifi-
cation accuracy across precisions 1 to 6 using four datasets: Handwriting, Heartbeat, Japanese Vowels,
and UWaveGestureLibrary. We selected these datasets because they were the smaller ones among
the 10 available, making the computation of embeddings more computationally affordable. Figure 3]
illustrates the average classification accuracy (%) across these numerical precisions. Detailed results
can be found in Table[8]

Studies in the NLP domain have shown that longer inputs do not perform well with language models
Press et al.[(2020);|Levy et al.| (2024). Our empirical analysis supports this claim, revealing a decrease
in classification accuracy with increased numerical precision when computing text embeddings. The
average accuracy starts at 72.8% with precision 1 and declines to 69% at precision 6. Additionally,
the percentage of AvgWins is highest at precision 1. As numerical precision increases, so does the
length of the time series and the input to the text embedding model. Note that the maximum token
length for text-embedding-3-large embeddings is 8191, and thus keeping precision of 1 ensures
that context length doesn’t exceed the maximum permissible token length. This issue is especially
problematic for datasets with longer time series, such as the EthanolConcentration dataset, which
includes 1751 time steps per sample. This finding led us to opt for precision 1 in our study.

24

72.5

72.0

Average accuracy (%)
~ ~ ~ ~
©c o = =
o wv o w

o)
©0
]

69.0 1 69.0

Precision

Figure 5: Average classification accuracy (%) across numerical precisions 1 to 6. Results are averaged
from four datasets: Handwriting, Heartbeat, Japanese Vowels, and UWaveGestureLibrary. See Table
@ in the Appendix for detailed results.

Table 8: Numerical Precision for Tokenization: This table reports classification accuracy (%). Red:
Best performance.

Dataset / Precision |1 2 3 4 5 6
Handwriting 23.2 15.9 11.6 11.1 12.0 11.2
Heartbeat 78.0 78.5 79.0 78.5 79.5 78.0
Japanese Vowels 99.2 98.4 97.6 96.8 95.9 95.1
UWaveGestureLibrary | 90.6 90.6 92.5 89.1 90.3 91.9
Average 1 | 7275 70.85 70.175 68.875 69.425 69.05
AvgWins % 1 | 50% 0% 25% 0% 25% 0%

Note that these precision results also depend on the type of tokenization selected, and defining an
appropriate tokenization for time series is one of the potential future directions for this work.

K Embedding Type

To evaluate the generalization capabilities of our approach across different text embedding models
beyond text-embedding-3-large, the performance of LETS-C was tested using three alternative
embedding models: e5-mistral-7b-instruct |Wang et al|(2023), gte-large-en-v1.5|Liet al.
(2023)), and nomic-embed-text-v1|Nussbaum et al.|(2024). A summary of the embedding models
utilized in this study is provided in Table[9)}

Table 9: Summary of selected embedding models used in the study.

MTEB Rank | Model | Embedding Dimensions | Max Token Length
15 | text-embedding-3-large|OpenAl|(2024) | 3072 | 8191
6 | e5-mistral-7b-instruct|Wang et al.[(2023) | 4096 | 32768
9 | gte-large-en-v1.5|Li et al.|(2023) | 1024 | 8192
35 | nomic-embed-text-v1Nussbaum et al.|(2024) | 768 | 8192

25

K.1 e5-mistral-7b-instruct

The e5-mistral-7b-instruct model Wang et al.| (2023)) is based on the pretrained Mistral-7b
checkpoint Jiang et al.|(2023) and was fine-tuned using the RankLLLaMA training methodology Ma
et al.| (2024). It employed LoRA |Hu et al.| (2021) with a rank of 16 on a mixture of multilingual
datasets, which included both synthetic data and a collection of 13 public datasets, yielding approx-
imately 1.8 million examples after sampling. Proprietary LLMs, such as GPT-4, were prompted
to generate diverse synthetic data with instructions in multiple languages. Leveraging the strong
language understanding capabilities of the Mistral model, e5-mistral-7b-instruct achieved
state-of-the-art results across nearly all task categories on the competitive MTEB benchmark. Tech-
niques such as gradient checkpointing, mixed precision training, and DeepSpeed ZeRO-3 were
applied to further reduce GPU memory requirements.

K.2 gte-large-en-v1.5

The gte-large-en-v1.5 model |Li et al.|(2023) is a general text embedding (GTE) model that
utilizes contrastive learning on an open-source large-scale dataset comprising unsupervised text pairs
extracted from various sources. To enhance the quality of the learned text representations, high-quality
text pairs with human labels from multiple sources were employed for contrastive fine-tuning. The
model utilizes a multi-stage contrastive learning approach and benefits from a diverse training data
mixture, enabling it to achieve strong generalization performance for single-vector embeddings.

K.3 nomic-embed-text-vi

The nomic-embed-text-v1l model Nussbaum et al| (2024)) is a fully reproducible, open-source
English text embedding model with an 8192 context length that outperforms both OpenAl Ada-002
and OpenAl text-embedding-3-small on short and long-context tasks. To accommodate long sequence
lengths, the model adapts the BERT architecture Devlin et al.| (2018)) with several optimizations:
replacing absolute positional embeddings with rotary positional embeddings |Su et al.| (2024)), using
SwiGLU activation instead of GeLU Shazeer|(2020), implementing Flash Attention |Dao et al.|(2022),
setting Dropout to 0|Geiping & Goldstein|(2023), and ensuring the vocabulary size is a multiple of 64
Portes et al.|(2024); [Shoeybi et al.[(2019). These modifications result in a 137M parameter encoder.

Table [I0] presents detailed accuracy metrics and trainable parameters for these various embed-
ding models in the LETS-C framework. Note that among these, e5-mistral-7b-instruct

Table 10: Comparison of LETS-C with various embedding models against OneFitsAll. Performances
surpassing OneFitsAll are in bold, with the best in Red. AvgWins scores above 50% indicate
consistent superiority, calculated as 1 for outperforming OneFitsAll and O otherwise. Ratio (%)

_ # of trainable parameters in LETS-C
=100 X 7 orramabic parameters in OncFiAll N€ASUTes computational efficiency relative to OneFitsAll.

Accuracy T
Method/Dataset | EC FD HW HB v PEMS-SF SCP1 SCP2 SAD UW | Average! | AvgWins %
OneFitsAll ‘ 34.2 69.2 327 772 98.6 87.9 93.2 59.4 99.2 88.1 ‘ 73.97 ‘ =
text-embedding-3-large | 52.9 68.9 23.8 78 99.2 93.1 93.2 62.8 99.2 90.6 | 76.17 | 80%
LETS-C e5-mistral-7b-instruct ‘ 55.5 68.7 233 776 992 84.4 93.9 59.4 98.5 88.4 ‘ 74.89 ‘ 60%
gte-large-en-v1.5 ‘ 57.8 68.8 24.7 776 984 91.3 94.2 60 99 88.4 ‘ 76.02 ‘ 60%
nomic-embed-text-vi ‘ 529 68 24.8 76.6 99.2 88.4 93.9 59.4 98.6 89.4 ‘ 75.12 ‘ 60%

Trainable Parameters (M) |

Method/Dataset | EC FD HW HB v PEMS-SF SCP1 SCP2 SAD uw | Average |
OneFitsAll 1.42 2.37 173 2.03 1.32 10.23 0.98 1.04 1.82 1.0 | 2.39
text-embedding-3-large | 0.28 0.003 0.15 0.04 0.14 0.56 0.30 0.33 0.14 0.26 0.22
Ratio% | 19.89 0.16 889 228 11.19 551 30.83 32,06 777 2621 14.48
eb-mistral-7b-instruct | 0.13 0.40 039 0.17 0.16 0.30 0.24 0.24 0.33 0.16 0.25
LETS-C Ratio % 9.48 16.93 22778 8.54 1255 2.97 25.06 2359 1839 15.93 15.62
gte-large-en-v1.5 0.18 0.31 0.31 012 0.04 0.56 0.03 0.07 0.22 0.09 0.19
Ratio % | 1291 1344 1827 6.11 3.36 5.51 3.77 7.65 1234 9.00 9.24
nomic-embed-text-vi 0.03 0.03 036 0.07 0.05 0.19 0.02 0.10 0.06 0.02 0.09
Ratio % 2.21 1.31 2099 358 3.99 1.85 3.02 10.03 3.34 2.78 SN

has the highest parameter count (0.25M) due to its largest dimensionality of 4096, followed by
text-embedding-3-large (3072 dimensions, 0.22M), gte-large-en-v1.5 (1024 dimensions,
0.19M), and nomic-embed-text-v1 (768 dimensions, 0.09M). Consequently, our approach gener-

26

alizes across diverse text embedding models, demonstrates superior performance, with the benefit of
being lightweight.

L. Trade-offs: Model Accuracy vs. Parameter Complexity

Table[TT]illustrates the trade-off between model accuracy and the complexity of training parameters in
our model, which utilizes both embeddings and time series data as inputs to a lightweight framework.

This trade-off between model accuracy and parameter complexity is data-dependent. However, we
generally observe a trend where a reduction in parameters leads to only a slight decrease in accuracy.
Next, let’s take a closer look at three datasets: Heartbeat, PEMS-SF, and Spoken Arabic Digits, to
understand how these trade-offs manifest in different contexts.

Heartbeat: In the Heartbeat dataset, we retain 99.48% of the optimal model’s accuracy using
only 75% of its trainable parameters. Specifically, the optimal model achieves an accuracy of
78% with 46,426 trainable parameters, while the second-best model achieves 77.6% accuracy with
34,820 parameters. Moreover, we retain 96.28% accuracy with a further reduction to 57.95% of the
parameters.

PEMS-SF: In the PEMS-SF dataset, the optimal model starts with an accuracy of 93.1% and 564,231
trainable parameters. Reducing the parameters to 173,866 (30.81% of the original), the model
maintains 98.06% of its optimal accuracy at 91.3%. Further parameter reductions to 85,210 (15.10%),
69,077 (12.24%), and 62,901 (11.14%) result in accuracies of 90.8%, 87.9%, and 87.3%, respectively.
These reductions illustrate that even significant reductions in parameters only lead to a slight decrease
in performance.

SpokenArabicDigits: For the Spoken Arabic Digits dataset, reducing the number of trainable
parameters generally correlates with a minor decline in accuracy, though the trade-off is modest. The
optimal model, achieving an accuracy of 99.2% with 141,790 trainable parameters, shows that even
with substantial reductions to 70,066 parameters (49.41% of the original), the accuracy remains high
at 99%, retaining 99.79% of the original model’s accuracy. Further reductions to 46,658 (32.90%),
30,964 (21.83%), 20,646 (14.56%), 15,487 (10.92%), 10,328 (7.28%), and 5,308 (3.74%) yield
accuracies of 98.4%, 98.1%, 98%, 97.8%, 97.6%, and 96.6% respectively.

These examples highlight that efficiency in terms of trainable parameters does not linearly correspond
to a loss in model accuracy across various datasets. While fewer parameters generally lead to a lower
accuracy, the decrement is often proportional and manageable, making these models highly suitable
for deployment in resource-constrained environments or for applications requiring rapid processing
with minimal computational overhead.

27

Table 11: Trade-off between model accuracy and the complexity of training parameters. The accuracy
and parameters of the best model are highlighted in bold. The accuracy difference is calculated

as the raw difference between the accuracies of the reduced model and the best model. The %
Accuracy of the reduced model d

Accuracy of the optimal model

Delta in accuracy and parameters is defined separately for each as 100 x
100 x Parameters of the reduced model

Parameters of the optimal model *

model relative to our best model.

quantifying the accuracy and computational efficiency of the reduced

Dataset Accuracy (%) 1 Trainable Difference | % % Delta in
Parameters | Delta in Accuracy T Parameters |
. 52.9 283950 - -
EthanolConcentration 46 105344 6.9 | 86.95 37.09
68.9 3842 - -
FaceDetection 68.6 2402 -0.3]99.56 62.51
67.9 962 -1.0 | 98.54 25.03
66.4 482 -2.5196.37 12.54
23.8 154526 - -
23.2 107226 -0.6 | 97.47 69.39
Handwriting 22.7 53626 -1.1]95.37 34.70
20.2 20394 -3.6 | 84.87 13.19
19.4 13426 -4.481.51 8.68
78 46426 - -
Heartbeat 77.6 34820 -0.4199.48 75.00
75.1 26908 -2.9196.28 57.95
99.2 148233 - -
Japanese Vowels 98.9 123401 -0.3]99.69 83.24
P 98.6 105353 -0.6 1 99.39 71.07
98.4 100857 -0.8199.19 68.03
93.1 564231 - -
91.3 173866 -1.8 | 98.06 30.81
PEMS-SF 90.8 85210 -2.3197.52 15.10
87.9 69077 -5.2194.41 12.24
87.3 62901 -5.8193.77 11.14
. 93.2 302626 - -
Self-Regulation SCP1 925 99657 -0.7199.24 32.93
62.8 334402 - -
58.9 166306 -3.9193.78 49.73
Self-Regulation SCP2 57.8 111106 -5.0192.03 33.22
57.2 83330 -5.691.08 2491
56.1 76386 -6.7 | 89.33 22.84
99.2 141790 - -
99 70066 -0.299.79 49.41
98.4 46658 -0.8199.19 32.90
e 98.1 30964 -1.1]98.89 21.83
Spoken Arabic Digits 98 20646 -1.2]98.79 14.56
97.8 15487 -1.41]98.58 10.92
97.6 10328 -1.6 1 98.38 7.28
96.6 5308 -2.6197.37 3.74
90.6 263338 - -
UWave Gesture Library 88.4 211556 -2.2197.57 80.33
87.5 176298 -3.1]96.57 66.94

28

M Figures and Tables at Higher Resolution from the Main Paper

Time Series o
J™M L & Training
\ ‘ :
V /\”V” W Frozen
617,673, 698, ..., 876, 890
'
Formatﬁng Time Series
Text
Class
"Sunlight danced on the gentle waves" "6M7,673,6980...,876,800" MLP class 1
¢ i Head class 2
Text Embedding " TextEmbedding .
Model Model Embedding
-0.021 0.006 -0.594 ... 0.109 -0.056 0.106 0.983 ... -0.719
Text as Vector Time Series as Vector
Text Embedding Text Embedding for Time Series Classification

Figure 6: Left: Conventional text embedding. Right: Our proposed LETS-C framework normalizes
time series, formats them for digit-specific tokenization, embeds them into an embedding space, and
fuses the embeddings with the time series using element-wise addition. It uses a simple classification
head with a CNN and an MLP. Only the CNN model and MLP head are trained in this framework.

Table 12: Comparison of classification accuracy (%) and AvgWins (%). Red: Best, Blue: Second best.
Abbreviations: EC: Ethanol Concentration, FD: Face Detection, HW: Handwriting, HB: Heartbeat,
JV: Japanese Vowels, PEMS: PEMS-SF, SCP1: Self-Regulation SCP1, SCP2: Self-Regulation SCP2,
SAD: Spoken Arabic Digits, UW: UWave Gesture Library.

Model/Dataset | EC FD HW HB JV PEMS-SF SCPI SCP2 SAD UW | Average? | AvgWins % 1
Classical DTW 323 529 286 717 949 71.1 717 539 963 903 66.97 0%
methods XGBoost 437 633 158 732 86.5 98.3 84.6 489 69.6 759 65.98 10%

ROCKET 452 647 588 756 96.2 75.1 90.8 533 712 944 72.53 20%
MLP LightTS 297 675 261 751 96.2 88.4 89.8 Sl.1 100 80.3 70.42 10%
DLinear 326 68 27 751 962 75.1 873 505 814 821 67.53 0%
LSTM 323 577 152 722 797 39.9 689 466 319 412 48.56 0%
RNN LSTNet 399 657 258 77.1 98.1 86.7 84 52.8 100 878 71.79 10%
LSSL 31.1 667 246 727 984 86.1 90.8 522 100 859 70.85 10%
CNN TCN 289 528 533 756 989 68.8 84.6 556 956 884 70.25 0%
TimesNet 357 68.6 321 78 984 89.6 91.8 572 99 853 73.57 0%
Transformer | 32.7 67.3 32 76.1 98.7 82.1 922 539 984 856 71.9 0%
Reformer 319 68.6 274 77.1 978 82.7 904 56.7 97 85.6 71.52 0%
Informer 31,6 67 328 805 989 81.5 90.1 53.3 100 85.6 72.13 20%
Pyraformer | 30.8 65.7 294 756 984 83.2 88.1 533 99.6 834 70.75 0%
Transformers Autoformer | 31.6 684 36.7 74.6 96.2 82.7 84 50.6 100 859 71.07 10%
Stationformer | 32.7 68 31.6 73.7 99.2 87.3 894 572 100 875 72.66 20%
FEDformer | 31.2 66 28 737 984 80.9 88.7 544 100 853 70.66 10%
ETSformer 28.1 663 325 712 959 86 89.6 55 100 85 70.96 10%
Flowformer | 33.8 67.6 33.8 77.6 989 83.8 925 56.1 98.8 86.6 72.95 0%
LLM OneFitsAll | 342 692 327 772 98.6 87.9 932 594 992 88.1 | 7397 | 20%
LETS-C | 529 689 238 78 992 93.1 932 628 992 906 | 7617 | 40%

Table 13: Comparison of trainable parameters (millions) for LETS-C vs. OneFitsAll, with the Ratio

of LETS-C parameters _ - : , - - :
(%) = 100 X Foro s Al{’;ﬁgﬁzzs illustrating LETS-C’s efficiency relative to OneFitsAll.

Model/Dataset | EC FD HW HB v PEMS-SF SCP1 SCP2 SAD UW | Average|

LETS-C (Ours) | 0.28 0.003 0.15 0.04 0.14 0.56 0.30 033 014 0.26 0.22
OneFitsAll 1.42 237 173 2.03 1.32 10.23 0.98 1.04 182 1.0 2.39
Ratio (%) | 1989 0.16 889 228 1119 5.51 30.83 3206 7.77 2621 | 14.48

29

1.0
1 060 I
pJ 018 093

0.8
g 0.09 u.su

4 034 051 035 [0 0.6
Q
75 028
o
Y6 0.4
7 o
8 0.2
9 039 045 039 035 0.52 027 0.33 064 0.63
1 2 3 4 5 6 7 8 9 0.0
Classes

Classes

1.0
j§ 0.88
2 0.73 (3

0.8
3 059 0.69 (K2}
4 046 060 053 0.71
5 0.58 0.61 0.54 0.45@
6 029 0.44 o.zsmo.u 0.63
7 0.69 0.61 0.50 0.32 0.36

-0.6

-0.4

IO.Z
0.0

0.75
0.53
9 0.63 0.67 0.55 0.36 0.53 0.45 0.50 0.51 0.63
10 [2:E]0.32 0.36 0.39 u.szo.zs 0.24 0.68

1 2 3 4 5 6 7 8 9 10
Classes

8 10.76 0.64 0.39 0.49 0.64

Percentage of Accuracy Retention (%)

-
o
o
o

97.5

2_—0 gon—®
= i
i le .o
o+ .y &
i o

o‘ /’_,o

A Dataset [Accuracy (%), Parameters (M)]
[4 @ EthanolConcentration [52.9, 0.28]
P4 FaceDetection [68.9, 0.003]
Handwriting [23.8, 0.15]
Heartbeat (78, 0.04]
JapaneseVowels [99.2, 0.14]
PEMS-SF [93.1, 0.56]
SelfRegulationSCP1 (93.2, 0.3]
SelfRegulationSCP2 [62.8, 0.33]
SpokenArabicDigits (99.2, 0.14]
© UWaveGestureLibrary [90.6, 0.26]

o
L]
Vi °
L]
°

20 40 60 80
Percentage of Retained Parameters (%)

100

Figure 7: Left: Heatmaps illustrating within-class and between-class cosine similarities of text
embeddings derived from the training time series data in JapaneseVowels (far left) with 9 classes and
SpokenArabicDigits (middle) with 10 classes. Right: Trade-off between the percentage of accuracy
retention and model parameter retention relative to LETS-C’s optimal values across all datasets. The
optimal LETS-C accuracy (%) and parameters (millions) for each dataset are detailed in the legend.

30

	Introduction
	Methodology
	Experiments
	Experimental Setup
	Results

	Conclusion
	Appendix
	Related Works
	Datasets
	Comparison Baselines
	Hyperparameter Settings
	Model Performance
	Computational Cost Analysis
	Ablation Study
	Alternative Methods for Fusing Time Series with Embeddings
	Assessing Text Embeddings with Cosine Similarity
	Numerical Precision for Tokenization
	Embedding Type
	Trade-offs: Model Accuracy vs. Parameter Complexity
	Figures and Tables at Higher Resolution from the Main Paper

