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ABSTRACT

The Lipschitz constant of a neural network is connected to several important prop-
erties of the network such as its robustness and generalization. It is thus useful in
many settings to estimate the Lipschitz constant of a model. Prior work has fo-
cused mainly on estimating the Lipschitz constant of multi-layer perceptrons and
convolutional neural networks. Here we focus on data modeled as sets or multi-
sets of vectors and on neural networks that can handle such data. These models
typically apply some permutation invariant aggregation function, such as the sum,
mean or max operator, to the input multisets to produce a single vector for each
input sample. In this paper, we investigate whether these aggregation functions,
along with an attention-based aggregation function, are Lipschitz continuous with
respect to three distance functions for unordered multisets, and we compute their
Lipschitz constants. In the general case, we find that each aggregation function
is Lipschitz continuous with respect to only one of the three distance functions,
while the attention-based function is not Lipschitz continuous with respect to any
of them. Then, we build on these results to derive upper bounds on the Lipschitz
constant of neural networks that can process multisets of vectors, while we also
study their stability to perturbations and generalization under distribution shifts.
To empirically verify our theoretical analysis, we conduct a series of experiments
on datasets from different domains.

1 INTRODUCTION

In the past decade, deep neural networks have been applied with great success to several problems
in different machine learning domains ranging from computer vision (Krizhevsky et al., 2012; He
et al., 2016) to natural language processing (Vaswani et al., 2017; Peters et al., 2018). Owing to their
recent success, these models are now ubiquitous in machine learning applications. However, deep
neural networks can be very sensitive to their input. Indeed, it is well-known that if some specially
designed small perturbation is applied to an image, it can cause a neural network model to make a
false prediction even though the perturbed image looks “normal” to humans (Szegedy et al., 2014;
Goodfellow et al., 2015).

A key metric for quantifying the robustness of neural networks to small perturbations is the Lip-
schitz constant. Training neural networks with bounded Lipschitz constant has been considered a
promising direction for producing models robust to adversarial examples (Tsuzuku et al., 2018; Anil
et al., 2019; Trockman & Kolter, 2021). However, if Lipschitz constraints are imposed, neural net-
works might lose a significant portion of their expressive power (Zhang et al., 2022a). Therefore,
typically no constraints are imposed, and the neural network’s Lipschitz constant is determined once
the model is trained. Unfortunately, even for two-layer neural networks, exact computation of this
quantity is NP-hard (Virmaux & Scaman, 2018). A recent line of work has thus focused on esti-
mating the Lipschitz constant of neural networks, mainly by deriving upper bounds (Virmaux &
Scaman, 2018; Fazlyab et al., 2019; Latorre et al., 2020; Combettes & Pesquet, 2020; Kim et al.,
2021; Pabbaraju et al., 2021; Chuang & Jegelka, 2022). Efficiency is often sacrificed for the sake
of tighter bounds (e. g., use of semidefinite programming) which underlines the need for accurate
estimation of the Lipschitz constant.

Prior work estimates mainly the Lipschitz constant of architectures composed of fully-connected
and convolutional layers. However, in several domains, input data might correspond to complex
objects which consist of other simpler objects. We typically model these complex objects as sets
or multisets (i. e., a generalization of a set). For instance, in computer vision, a point cloud is a
set of data points in the 3-dimensional space. Likewise, in natural language processing, documents
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Table 1: Summary of main results. Lipschitz constants of the different aggregation functions with
respect to the three considered distance functions. d denotes the dimension of the vectors. The “–”
symbol denotes that the function is not Lipschitz continuous with respect to a given metric. †: all
multisets have equal cardinalities (= M ).

SUM MEAN MAX

EMD †L = M L = 1 †L = M

HAUSDORFF DIST. – – L =
√
d

MATCHING DIST. L = 1 †L = 1/M †L = 1

may be represented by multisets of word embeddings. Neural networks for sets typically consist of
a series of fully-connected layers followed by an aggregation function which produces a represen-
tation for the entire multiset (Zaheer et al., 2017; Qi et al., 2017a). For the model to be invariant
to permutations of the multiset’s elements, a permutation invariant aggregation function needs to
be employed. Common functions include the sum, mean and max operators. While previous work
has studied the expressive power of neural networks that employ the aforementioned aggregation
functions (Wagstaff et al., 2019; 2022), their Lipschitz continuity and stability to perturbations re-
mains underexplored. Besides those standard aggregation functions, other methods for embedding
multisets have been proposed recently such as the Fourier Sliced-Wasserstein embedding which is
bi-Lipschitz with respect to the Wasserstein distance (Amir & Dym, 2025).

In this paper, we consider three distance functions between multisets of vectors and investigate
whether the three commonly-employed aggregation functions (i. e., sum, mean, max), along with
an attention-based function, are Lipschitz continuous with respect those functions. We show that
for multisets of arbitrary size, each aggregation function is Lipschitz continuous with respect to
only a single distance function, while the attention-based function is not Lipschitz continuous with
respect to any of them. On the other hand, if all multisets have equal cardinalities, each aggregation
function is Lipschitz continuous with respect to other distance functions as well. Our results are
summarized in Table 1. We also study the Lipschitz constant of neural networks for sets which
employ the aforementioned aggregation functions. We find that for multisets of arbitrary size, the
models that employ the mean and max operators are Lipschitz continuous with respect to a single
metric and we provide upper bounds on their Lipschitz constants. Strikingly, we also find that there
exist models that employ the sum operator which are not Lipschitz continuous. We also relate the
Lipschitz constant of those networks to their generalization performance under distribution shifts.
We verify our theoretical results empirically on real-world datasets from different domains.

2 PRELIMINARIES

2.1 NOTATION

Let N denote the set of natural numbers. Then, [n] = {1, . . . , n} ⊂ N for n ≥ 1. Let also {{}}
denote a multiset, i. e., a generalized concept of a set that allows multiple instances for its elements.
Since a set is also a multiset, in what follow we use the term “multiset” to refer to both sets and
multisets. Here we focus on finite multisets whose elements are d-dimensional real vectors. Let
M ∈ N \ {1}. We denote by S≤M (Rd) and by SM (Rd) the set of all those multisets that consist
of at most M and of exactly M elements, respectively. We drop the subscript when it is clear from
context. The elements of a multiset do not have an inherent ordering. Therefore, the two multisets
X = {{v1,v2,v2}} and Y = {{v2,v1,v2}} are equal to each other, i. e., X = Y . The cardinality
|X| of a multiset X is equal to the number of elements of X . Vectors are denoted by boldface
lowercase letters (e. g., v and u) and matrices by boldface uppercase letters (e. g., A and M). Given
some vector v, we denote by [v]i the i-th element of the vector. Likewise, given some matrix M,
we denote by [M]ij the element in the i-th row and j-th column of the matrix.

2.2 LIPSCHITZ CONTINUOUS FUNCTIONS

Definition 2.1. Given two metric spaces (X , dX ) and (Y, dY), a function f : X → Y is called
Lipschitz continuous if there exists a real constant L ≥ 0 such that, for all x1, x2 ∈ X , we have that

dY
(
f(x1), f(x2)

)
≤ LdX (x1, x2)

The smallest such L is called the Lipschitz constant of f .

In this paper, we focus on functions f : S(Rd) → Rd′
that map multisets of d-dimensional vectors

to d′-dimensional vectors. Therefore, X = S(Rd), while Y = Rd′
. For dX , we consider three

distance functions for multisets of vectors (presented in subsection 2.4 below), while dY is induced
by the ℓ2-norm, i. e., dY

(
f(x1), f(x2)

)
= ∥f(x1)− f(x2)∥2.
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2.3 AGGREGATION FUNCTIONS

As already discussed, we consider three permutation invariant aggregation functions which are com-
monly employed in deep learning architectures, namely the SUM, MEAN and MAX operators.

SUM MEAN MAX

fSUM(X) =
∑
v∈X

v fMEAN(X) =
1

|X|
∑
v∈X

v
[
fMAX(X)

]
i
= max

({
[v]i : v ∈ X

})
, ∀i ∈ [d]

The sum aggregator can represent a strictly larger class of functions over sets than the mean and
max aggregators. If the elements of the input sets come from a countable set X , then for an ap-
propriate f : X → R, the function defined as g({x1, . . . , xn}) =

∑n
i=1 f(xi) maps the input sets

injectively to R (Zaheer et al., 2017). Notably, it is also shown that injectivity is sufficient for ap-
proximation. On the other hand, the mean and max functions are not injective set functions. These
results have been also generalized to multisets (Xu et al., 2019). Note, however, that it has been
empirically observed that mean and max aggregators can outperform the sum aggregator in certain
applications (Zaheer et al., 2017; Cappart et al., 2023).

2.4 DISTANCE FUNCTIONS FOR UNORDERED MULTISETS

We next present the three considered functions for comparing multisets to each other. Let X =
{{v1, . . . ,vm}} and Y = {{u1, . . . ,un}} denote two multisets of vectors, i. e., X,Y ∈ S(Rd).
The three functions require to compute the distance between each element of the first multiset and
every element of the second multiset. We use the distance induced by the ℓ2-norm (i. e., Euclidean
distance) to that end. Note also that all three functions can be computed in polynomial time in the
number of elements of the input multisets.

Earth Mover’s Distance. The earth mover’s distance (EMD) is a measure of dissimilarity be-
tween two distributions (Rubner et al., 2000). Roughly speaking, given two distributions, the output
of EMD is proportional to the minimum amount of work required to change one distribution into
the other. Over probability distributions, EMD is also known as the Wasserstein metric with p = 1
(W1). We use the formulation of the EMD where the total weights of the signatures are equal to
each other which is known to be a metric on the space of sets of vectors (Rubner et al., 2000) and a
pseudometric on S(Rd):

dEMD(X,Y ) = min
F

m∑
i=1

n∑
j=1

[F]ij ∥vi − uj∥2

subject to [F]ij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n
n∑

j=1

[F]ij =
1

m
, 1 ≤ i ≤ m

m∑
i=1

[F]ij =
1

n
, 1 ≤ j ≤ n

Hausdorff distance. The Hausdorff distance is another measure of dissimilarity between two mul-
tisets of vectors (Rockafellar & Wets, 1998). It represents the maximum distance of a multiset to the
nearest point in the other multiset, and is defined as follows:

h(X,Y ) = max
i∈[m]

min
j∈[n]

∥vi − uj∥2

The above distance function is not symmetric and thus it is not a metric. The bidirectional Hausdorff
distance between X and Y is then defined as:

dH(X,Y ) = max
(
h(X,Y ), h(Y,X)

)
The bidirectional Hausdorff distance is a metric on the space of sets of vectors and a pseudometric
on S(Rd). Roughly speaking, its value is small if every point of either set is close to some point of
the other set.

Matching Distance. We also define a distance function for multisets of vectors, so-called match-
ing distance, where elements of one multiset are assigned to elements of the other. If one of the
multisets is larger than the other, some elements of the former are left unassigned. The assignments
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are determined by a permutation of the elements of the larger multiset. Let Sn denote the set of all
permutations of a multiset with n elements. The matching distance between X and Y is defined as:

dM (X,Y ) =

{
M(X,Y ) if m ≥ n

M(Y,X) otherwise.

where M(X,Y ) = min
π∈Sm

[ n∑
i=1

∥vπ(i) − ui∥2 +
m∑

i=n+1

∥vπ(i)∥2
]

and M(Y,X) is defined analogously. Variants of this distance function have been introduced in prior
work (Chuang & Jegelka, 2022; Davidson & Dym, 2024). If the elements of the input multisets do
not contain the zero vector, the matching distance is a metric.
Proposition 2.2 (Proof in Appendix B.1). The matching distance is a metric on S(Rd \ {0}) where
d ∈ N and 0 is the zero vector. It is a pseudometric on S(Rd).
For multisets of the same size, the matching distance is related to EMD.
Proposition 2.3 (Proof in Appendix B.2). Let X,Y ∈ S(Rd) denote two multisets of the same size,
i. e., |X| = |Y | = M . Then, we have that dM (X,Y ) = MdEMD(X,Y ).

3 LIPSCHITZ CONTINUITY OF SET AGGREGATION FUNCTIONS AND
NEURAL NETWORKS

3.1 LIPSCHITZ CONTINUITY OF AGGREGATION FUNCTIONS

We first investigate whether the three aggregation functions which are key components in several
neural network architectures are Lipschitz continuous with respect to the three considered distance
functions for unordered multisets.
Theorem 3.1 (Proof in Appendix B.3).

1. The MEAN function defined on S≤M (Rd) is Lipschitz continuous with respect to EMD and
its Lipschitz constant is L = 1, but is not Lipschitz continuous with respect to the Hausdorff
distance and with respect to the matching distance.

2. The SUM function defined on S≤M (Rd) is Lipschitz continuous with respect to the matching
distance and its Lipschitz constant is L = 1, but is not Lipschitz continuous with respect to
EMD and with respect to the Hausdorff distance.

3. The MAX function defined on S≤M (Rd) is Lipschitz continuous with respect to the Hausdorff
distance and its Lipschitz constant is L =

√
d, but is not Lipschitz continuous with respect to

EMD and with respect to the matching distance.
The above theoretical result suggests that there is some correspondence between the three aggre-
gation functions and the three metrics for unordered multisets. In fact, each aggregation function
seems to be closely related to a single metric. We also observe that while the Lipschitz constants
of the SUM and MEAN functions with respect to the matching distance and to EMD, respectively,
is constant (equal to 1), the Lipschitz constant of the MAX function with respect to the Hausdorff
distance depends on the dimension d of the vectors. A direct consequence of the above Theorem is
that no two of the considered distance functions are bi-Lipschitz equivalent.

As discussed above, the SUM function is theoretically more expressive than the rest of the func-
tions. However, in practice it has been observed that in certain tasks MEAN and MAX aggregators
lead to higher levels of performance (Zaheer et al., 2017; Cappart et al., 2023). While this dis-
crepancy between theory and empirical evidence may be attributed to the training procedure rather
than to expressivity, it suggests that there is no single aggregation function that provides a superior
performance under all possible circumstances and motivates the study of all three of them.

Our previous result showed that each aggregation function is Lipschitz continuous only with respect
to a single metric for multisets. It turns out that if the multisets have fixed size, then the aggregation
functions are Lipschitz continuous also with respect to other functions. This is not surprising given
Proposition B.2.
Lemma 3.2 (Proof in Appendix B.4).

1. The MEAN function defined on SM (Rd) is Lipschitz continuous with respect to the matching
distance and its Lipschitz constant is L = 1

M , but is not Lipschitz continuous with respect to
the Hausdorff distance.

4
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2. The SUM function defined on SM (Rd) is Lipschitz continuous with respect to EMD and its
Lipschitz constant is L = M , but is not Lipschitz continuous with respect to the Hausdorff
distance.

3. The MAX function defined on SM (Rd) is Lipschitz continuous with respect to EMD and its
Lipschitz constant is L = M , and it is also Lipschitz continuous with respect to the matching
distance and its Lipschitz constant is L = 1.

According to the above Lemma, the MAX function is Lipschitz continuous with respect to all three
distance functions when all multisets have the same cardinality. This suggests that in such a setting,
if any of the three distance functions is insensitive to some perturbation applied to the input data,
this perturbation will not result in a large variation in the output of the MAX function.

In addition to the standard aggregation functions described above, recent work has also explored
neural-based approaches for aggregating multisets of vectors. Here, we consider an attention mech-
anism, which is commonly employed to produce a vector from a multiset of vectors, and has
achieved significant success in the fields of natural language processing (Yang et al., 2016; Niko-
lentzos et al., 2020) and graph learning (Veličković et al., 2018; Brody et al., 2022). Given a multiset
X = {{v1, . . . ,vm}} ∈ S(Rd), the attention mechanism is defined as follows:

fATT(X) =

m∑
i=1

αivi where αi =
exp

(
q⊤g(Wvi)

)∑m
j=1 exp

(
q⊤g(Wvj)

)
where W ∈ Rd′×d and q ∈ Rd′

denote a trainable matrix and a trainable vector, respectively, while
g denotes some activation function. The output of the mechanism is a convex combination of the
multiset’s elements.

We next investigate whether the attention mechanism fATT(X) is Lipschitz continuous with respect
to the three considered distance functions for multisets of vectors.
Proposition 3.3 (Proof in Appendix B.5). There exist instances of fATT(X) defined on SM (Rd)
which are not Lipschitz continuous with respect to any of the three considered distance functions.
Our result aligns with the finding of Kim et al. (2021) who showed that the standard self-attention
mechanism is not Lipschitz. Note, however, that the definition of the considered attention mech-
anism differs from that of self-attention. Kim et al. (2021) also proposed an alternative ℓ2 self-
attention that is Lipschitz. Incorporating ℓ2 attention into the definition of fATT(X), unfortunately,
does not make it Lipschitz (more details in Appendix B.6).

3.2 UPPER BOUNDS OF LIPSCHITZ CONSTANTS OF NEURAL NETWORKS FOR SETS

Neural networks that are designed for multisets typically consist of a series of fully-connected layers
(i. e., a multi-layer perceptron (MLP)) followed by an aggregation function which is then potentially
followed by further fully-connected layers. Exact computation of the Lipschitz constant of MLPs
is NP-hard (Virmaux & Scaman, 2018). However, as already discussed, there exist several approx-
imation algorithms which can compute tight upper bounds for MLPs (Virmaux & Scaman, 2018;
Fazlyab et al., 2019; Combettes & Pesquet, 2020). An MLP that consists of K layers is actu-
ally a function fMLP : Rd → Rd′

defined as: fMLP(v) = TK ◦ ρK−1 ◦ . . . ◦ ρ1 ◦ T1(v) where
Ti : v 7→ Wiv + bi is an affine function and ρi is a non-linear activation function for all i ∈ [K].
Let Lip(fMLP) denote the Lipschitz constant of the MLP. Note that the Lipschitz constant depends
on the choice of norm, and here we assume ℓ2-norms for the domain and codomain of fMLP.

Given a multiset of vectors X = {{v1, . . . ,vm}}, let NNg denote a neural network model which

computes its output as NNg(X) = fMLP2

(
g
({{

fMLP1
(v1), . . . , fMLP1

(vm)
}}))

where g denotes
the employed aggregation function (i. e., MEAN, SUM or MAX).

Here we investigate whether NNg is Lipschitz continuous with respect to the three considered met-
rics for multisets of vectors. In fact, the next Theorem utilizes the Lipschitz constants for MEAN and
MAX from Theorem 3.1 to upper bound the Lipschitz constants of those neural networks.
Theorem 3.4 (Proof in Appendix B.7).

1. NNMEAN defined on S≤M (Rd) is Lipschitz continuous with respect to EMD and its Lipschitz
constant is upper bounded by Lip(fMLP2

) · Lip(fMLP1
).

2. There exist instances of NNSUM defined on S≤M (Rd) which are not Lipschitz continuous with
respect to the matching distance.
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3. NNMAX defined on S≤M (Rd) is Lipschitz continuous with respect to the Hausdorff distance
and its Lipschitz constant is upper bounded by

√
d · Lip(fMLP2) · Lip(fMLP1).

The above result suggests that if the Lipschitz constants of the MLPs are small, then the Lipschitz
constant of the NNMEAN and NNMAX models with respect to EMD and Hausdorff distance, respec-
tively, will also be small. Therefore, if proper weights are learned (or a method is employed that
restricts the Lipschitz constant of the MLPs), we can obtain models stable under perturbations of the
input multisets with respect to EMD or Hausdorff distance. On the other hand, NNSUM is not neces-
sarily Lipschitz continuous with respect to the matching distance. This is due to the bias parameters
of fMLP1 . Interestingly, if we omit the bias terms of that layer, NNSUM also becomes Lipschitz
continuous with respect to the matching distance.

If the input multisets have fixed size, then we can derive upper bounds for the Lipschitz constant of
NNSUM, but also of NNMEAN and NNMAX with respect to other metrics.

Lemma 3.5 (Proof in Appendix B.8).

1. NNMEAN defined on SM (Rd) is Lipschitz continuous with respect to the matching distance and
its Lipschitz constant is upper bounded by 1

M · Lip(fMLP2
) · Lip(fMLP1

).

2. NNSUM defined on SM (Rd) is Lipschitz continuous with respect to the matching distance
and its Lipschitz constant is upper bounded by Lip(fMLP2

) · Lip(fMLP1
), and is also Lip-

schitz continuous with respect to EMD and its Lipschitz constant is upper bounded by
M · Lip(fMLP2) · Lip(fMLP1).

3. NNMAX defined on SM (Rd) is Lipschitz continuous with respect to EMD and its Lipschitz
constant is upper bounded by M · Lip(fMLP2

) · Lip(fMLP1
), and it is also Lipschitz contin-

uous with respect to the matching distance and its Lipschitz constant is upper bounded by
Lip(fMLP2

) · Lip(fMLP1
).

3.3 STABILITY OF NEURAL NETWORKS FOR SETS UNDER PERTURBATIONS

The Lipschitz constant is a well-established tool for assessing the stability of neural networks to
small perturbations. Due to space limitations, we only present a single perturbation, namely ele-
ment addition. Other types of perturbations (e. g., element disruption) are provided in Appendix C.
Theorem 3.4 implies that the output variation of NNMEAN and NNMAX under perturbations of the el-
ements of an input multiset can be bounded via the EMD and Hausdorff distance between the input
and perturbed multisets, respectively. It can be combined with the following result to determine the
robustness of NNMEAN and NNMAX to the addition of a single element to a multiset.

Proposition 3.6 (Proof in Appendix B.9). Given a multiset of vectors X = {{v1, . . . ,vn}} ∈
S≤M (Rd), let X ′ = {{v1, . . . ,vn,vn+1}} ∈ S≤M (Rd) be the multiset where element vn+1 has
been added to X , where n+ 1 ≤ M . Then,

1. The EMD between X and X ′ is bounded as dEMD(X,X ′) ≤ 1
n(n+1)

∑n
i=1 ∥vi − vn+1∥

2. The Hausdorff distance between X and X ′ is equal to dH(X,X ′) = mini∈[n] ∥vi − vn+1∥

3.4 GENERALIZATION OF NEURAL NETWORKS FOR SETS UNDER DISTRIBUTION SHIFTS

Finally, we capitalize on a prior result (Shen et al., 2018), and bound the generalization error of
neural networks for sets under distribution shifts. Let X denote the set of input data and Y the
output space. Here we focus on binary classification tasks, i. e., Y = {0, 1}. Let µS and µT

denote the distribution of source and target instances, respectively. In domain adaptation, a single
labeling function f : X → [0, 1] is associated with both the source and target domains. A hypothesis
class H is a set of predictor functions, i. e., ∀h ∈ H, h : X → Y . To estimate the adaptability
of a hypothesis h, i. e., its generalization to the target distribution, the objective is to bound the
target error (a.k.a. risk) ϵT (h) = Ex∼µT

[|h(x) − f(x)|] with respect to the source error ϵS(h) =
Ex∼µS

[|h(x) − f(x)|] (Ben-David et al., 2010). Shen et al. show that if the hypothesis class is
Lipschitz continuous, then the target error can be bounded by the Wasserstein distance with p = 1
for empirical measures on the source and target domain samples.

Theorem 3.7 ((Shen et al., 2018)). For all hypotheses h ∈ H, the target error is bounded as:
ϵT (h) ≤ ϵS(h) + 2LW1(µS , µT ) + λ

where L is the Lipschitz constant of h and λ is the combined error of the ideal hypothesis h∗ that
minimizes the combined error ϵS(h) + ϵT (h).
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Figure 1: Each dot corresponds to a point cloud from the test set of ModelNet40. Each subfigure
compares the distance of the latent representations of the point clouds computed by a distance
function for multisets (i. e., EMD, Hausdorff distance or matching distance) against the Euclidean
distance of the representations of the point clouds that emerge after the application of an aggregation
function (i. e., MEAN, SUM or MAX). The correlation between the two distances is also computed
and visualized. The Lipschitz bounds are illustrated with dashed lines.

This bound can be applied to neural networks for sets that are Lipschitz continuous with respect
to a given metric. Since NNMEAN and NNMAX are Lipschitz continuous for arbitrary multisets,
EMD and Hausdorff distance can serve as ground metrics for these models. Specifically, for the
two aforementioned models, the domain discrepancy W1(µS , µT ) is defined as W1(µS , µT ) =
infπ∈Π(µS ,µT )

∫
d(X,Y )dπ(X,Y ) where d(X,Y ) is EMD or the Hausdorff distance, respectively.

4 NUMERICAL EXPERIMENTS
We experiment with two datasets from different domains: (i) ModelNet40: it contains 12, 311 3D
CAD models that belong to 40 object categories (Wu et al., 2015); and (ii) Polarity: it contains
10, 662 positive and negative labeled movie review snippets from Rotten Tomatoes (Pang & Lee,
2004). Note that the samples of both datasets can be thought of as multisets of vectors. Each sample
of ModelNet40 is a multiset of 3-dimensional vectors. Polarity consists of textual documents, and
each document is represented as a multiset of word vectors. The word vectors are obtained from a
publicly available pre-trained model (Mikolov et al., 2013).

4.1 LIPSCHITZ CONSTANT OF AGGREGATION FUNCTIONS

In the first set of experiments, we empirically validate the results of Theorem 3.1 and Lemma 3.2.
To obtain a collection of multisets of vectors, we train three different neural network models on the
ModelNet40 and Polarity datasets. The difference between the three models lies in the employed
aggregation function: MEAN, SUM or MAX. More details about the different layers of those models
are given in Appendix D. Note that the multisets used to verify the Lipschitz constants of the ag-
gregation functions could, in principle, be generated by any means. We use those models to create
multisets since the objective is to investigate how these functions behave in comparison to the de-
rived bounds when the inputs are sampled from real distributions.Once the models are trained, we
feed the test samples to them. For each test sample, we store the multiset of vectors produced by
the layer of the model that precedes the aggregation function, and we also store the output of the
aggregation function (a vector for each multiset). We then randomly choose 100 test samples, and
for each pair of those samples, we compute the EMD, Hausdorff distance and matching distance of
their multisets of vectors, and also the Euclidean distance of their vector representations produced
by the aggregation function. This gives rise to 9 combinations of distance functions and aggregation
functions in total. Due to limited available space, we only show results for ModelNet40 in Figure 1.
The results for Polarity can be found in Appendix E.1. Note that there are

(
100
2

)
= 4, 950 distinct

pairs in total. Therefore, 4, 950 dots are visualized in each subfigure. To quantify the relationship
between the output of the distance functions for multisets and the Euclidean distances of their vec-
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Figure 2: Each dot corresponds to a point cloud from the test set of ModelNet40. Each subfigure
compares the distance of input point clouds computed by EMD, Hausdorff distance or matching
distance against the Euclidean distance of the representations of the point clouds that emerge at the
second-to-last layer of NNMEAN, NNSUM or NNMAX.

tor representations, we compute and report the Pearson correlation coefficient. We observe from
Figure 1 that the Lipschitz bounds (dash lines) successfully upper bound the Euclidean distance of
the outputs of the aggregation functions. Note that all point clouds contained in the ModelNet40
dataset have equal cardinalities. Therefore, the conclusions of both Theorem 3.1 and Lemma 3.2
apply to this case, and thus we can derive Lipschitz constants for 7 out of the 9 combinations of
distance functions for multisets and aggregation functions. We can see that the bounds that are as-
sociated with the MEAN and SUM functions are tight, while those associated with the MAX function
are relatively loose. We also observe that the distances of the representations produced by the MEAN
and SUM functions are very correlated with the distances produced by all three considered distance
functions for multisets. On the other hand, the MAX function gives rise to representations that are
less correlated with the produced distances.

4.2 UPPER BOUNDS OF LIPSCHITZ CONSTANTS OF NEURAL NETWORKS FOR SETS

In the second set of experiments, we empirically validate the results of Theorem 3.4 and Lemma 3.5
on the ModelNet40 and Polarity datasets. We build neural networks that consist of three layers:
(i) a fully-connected layer; (ii) an aggregation function; and (iii) a second fully-connected layer.
Therefore, those models first transform the elements of the input multisets using an affine function,
then aggregate the representations of the elements of each multiset and finally they transform the
aggregated representations using a another affine function. Note that the Lipschitz constant of an
affine function is equal to the largest singular value of the associated weight matrix, and can be
exactly computed in polynomial time. We thus denote by Lip(FC1) and Lip(FC2) the Lipschitz
constants of the two fully-connected layers, respectively. Note also that the Lipschitz constant of
most activation functions (e. g., ReLU, LeakyReLU, Tanh) is equal to 1. Therefore, we can compute
an upper bound of the Lipschitz constant of some models using Theorem 3.4 and Lemma 3.5. To
train the models, we add a final layer to the models which transforms the vector representations of the
multisets into class probabilities. We use the same experimental protocol as in subsection 4.1 above
(i. e., we randomly choose 100 test samples). We only provide results for ModelNet40 in Figure 2,
while the results for Polarity can be found in Appendix E.2. Since all point clouds contained in the
ModelNet40 dataset have equal cardinalities, the conclusions of both Theorem 3.4 and Lemma 3.5
apply to this setting, and thus, once again, we can derive upper bounds on the Lipschitz constants
for 7 out of the 9 combinations of distance functions for multisets and aggregation functions. We
observe that the dash lines (Lipschitz upper bounds from Theorem 3.4 and Lemma 3.5) indeed
upper bound the Euclidean distance of the outputs of the aggregation functions. We can also see
that the bounds that are associated with the MEAN function are tight, while those associated with
the SUM and MAX functions are relatively loose and very loose, respectively. We also observe that
the distances of the representations produced by the MEAN and SUM functions are very correlated
with the distances produced by EMD and matching distance. On the other hand, the MAX function
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Figure 3: Size Generalization of NNMEAN and NNMAX models. For illustration purposes, the Wasser-
stein distances W1 are normalized to make the maximal distance equal to the greatest performance
drops. The models of the left plots are trained on the first bucket, while those of the right plots on
the last bucket.

gives rise to representations whose distances are less correlated with the distances produced by the
distance functions for multisets.

4.3 STABILITY UNDER PERTURBATIONS OF INPUT MULTISETS

We now empirically study the stability of the two Lipschitz continuous models (NNMEAN

and NNMAX) under perturbations of the input multisets. Our objective is to apply small
perturbations to test samples such that the models misclassify the perturbed samples.

Table 2: Average drop in
accuracy of NNMEAN and
NNMAX after perturbations
Pert. #1 and Pert. #2 are ap-
plied to the multisets of the
test set.

Model ModelNet40 Polarity
Pert. #1 Pert. #2

NNMEAN 2.0 (± 1.3) 13.6 (± 7.1)

NNMAX 20.1 (± 1.8) 4.8 (± 3.7)

We consider two different perturbations, Pert. #1 and Pert. #2. Both
perturbations are applied to test samples once each model has been
trained. We then examine whether the perturbation leads to a de-
crease in the accuracy achieved on the test set. Pert. #1 is the pertur-
bation described in Proposition 3.6 and is applied to the multisets of
ModelNet40. Specifically, we add to each test sample a single ele-
ment. We choose to add the element that has the highest norm across
the elements of all samples. Pert. #2 is applied to the multisets of
Polarity. It adds random noise to each element of each multiset of
the test set. Specifically, a random vector is sampled from U(0, 0.2)d
and is added to each element of each test sample. We selected this
distribution because its mean and standard deviation closely match
the empirical mean and standard deviation of the dataset’s word vectors. The results are provided in
Table 2. NNMEAN appears to be insensitive to Pert. #1, while NNMAX is insensitive to Pert. #2. The
results indicate that NNMEAN is more robust than NNMAX to a larger perturbation that is associated
with a single or a few elements of the multiset. On the other hand, NNMAX is more robust to smaller
perturbations applied to all elements of the multiset.

4.4 GENERALIZATION UNDER DISTRIBUTION SHIFTS

Finally, we investigate whether neural networks for multisets can generalize to multisets of differ-
ent cardinalities. We randomly sample 2, 000 documents from the Polarity dataset, and we repre-
sent them as multisets of word vectors. We then sort the multisets of word vectors based on their
cardinality, and construct 10 bins, each containing 200 multisets. The i-th bin contains multisets
X(200i)+1, X(200i)+2, . . . , X(200i)+200 from the sorted list of multisets. We then train NNMEAN and
NNMAX (which are Lipschitz continuous) on the first and the last bin and once the models are trained,
we compute their accuracy on all 10 bins. We also compute the Wasserstein distance with p = 1
between domain distributions (i. e., between the first bin and the rest of the bins, and also between
the last bin and the rest of the bins). We then aim to validate Theorem 3.7 which states that the error
on different domains can be bounded by the Wasserstein distance between the data distributions. We
thus compute the correlation between the accuracy drop and the Wasserstein distance between the
two distributions. The results for NNMEAN and NNMAX are illustrated in Figure 3. The results are av-
eraged over 10 runs. We observe that the Wasserstein distance between the data distributions using
EMD (for NNMEAN) and Hausdorff distance (for NNMAX) as ground metrics highly correlates with
the accuracy drop both in the case where the NNMEAN and NNMAX models are trained on small mul-
tisets and tested on larger multisets (r = 0.92 and r = 0.90, respectively) and also in the case where
the models are trained on large multisets and tested on smaller multisets (r = 0.94 and r = 0.90, re-
spectively). The correlation is slightly weaker in the case of the NNMAX model. Our results suggest
that the drop in accuracy is indeed related to the Wasserstein distance between the data distributions,
and that it can provide insights into the generalization performance of the models.

5 CONCLUSION
In this paper, we studied the Lipschitz continuity of multiset aggregation functions with respect to
three distance functions. We also explored the Lipschitz constants of neural networks that process
multisets of vectors. Our theoretical results were confirmed by numerical experiments.
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A RELATED WORK

In recent years, there has been an increasing interest in applying machine learning algorithms to set-
structured data. Since sets and multisets are inherently unordered, these models need to be invariant
to permutations of the elements in the input set. It has been shown that, otherwise, the ordering of
inputs strongly affects performance (Vinyals et al., 2016).

The seminal work of Zaheer et al. (2017) introduced DeepSets, a model that uses the sum aggregator
to produce permutation-invariant set representations. They showed that when the elements of the
input sets come from a countable set X , then for an appropriate f : X → R, the function defined as
g({x1, . . . , xn}) =

∑n
i=1 f(xi) maps the input sets injectively to R. This result was later extended

to multisets (Xu et al., 2019). In the countable case, an embedding dimension of 1 already suffices
for injectivity. When X = R, multiset cardinalities are bounded by m and f is continuous, an em-
bedding dimension of at least m is both necessary and sufficient for injectivity (Wagstaff et al., 2019;
2022). For X = Rd, an embedding dimension of at least md is necessary (Joshi et al., 2023). Most
of these results rely on polynomial constructions to build injective multiset functions, after which the
universal approximation theorem is invoked to argue that MLPs can approximate such polynomials.
Amir et al. (2023) investigate whether MLP-based multiset functions are actually injective. They
show that injectivity depends on the activation function. Specifically, analytic non-polynomial ac-
tivation functions yield injective models, while networks with piecewise linear activation functions
are injective only when X is finite or corresponds to certain irregular, countably infinite sets.

Besides DeepSets, several other architectures and aggregation functions have been proposed re-
cently. PointNet is another important architecture, primarily designed for point cloud data (Qi et al.,
2017a). It consists of the same components as DeepSets, but instead of a sum aggregation function,
it employs a max aggregator. To allow PointNet to capture local structures at different scales, Qi
et al. (2017b) proposed PointNet++, a hierarchical model which applies PointNet recursively to
nested partitions of the input set. Janossy pooling applies a neural network to all permutations of
the input data and averages their outputs (Murphy et al., 2019). Since computing all permutations
is generally intractable, the authors also propose some practical approximations. Set Transformer
is a variant of the Transformer architecture designed for sets (Lee et al., 2019). Due to its attention
mechanism, the model can capture interactions between elements in the input set. RepSet is an-
other model designed for set-structured data which generates set representations by comparing the
input set against learnable latent sets using a network flow algorithm (Skianis et al., 2020). FSPool
sorts each feature across the elements of the set, and then computes a weighted sum of the elements
where different weights can be learned for each feature dimension (Zhang et al., 2020). Pellegrini
et al. (2021) propose a a learnable aggregation function which can approximate common aggregation
functions (e. g., mean, sum, max), but also more complex functions. Kimura et al. (2024) introduce
the Hölder’s Power DeepSets, a model tha generalized DeepSets by employing function known as
power-mean (a.k.a. Hölder mean), controlled by an exponent p.
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Recently, a line of works has studied the Lipschitz continuity of aggregation functions and has de-
veloped embeddings that are bi-Lipschitz. Amir et al. (2023) showed that although DeepSets models
that use analytic non-polynomial activation functions are injective, they are not bi-Lipschitz with re-
spect to the 2-Wasserstein distance. Davidson & Dym (2024) investigated the Hölder continuity of
neural networks for sets, a relaxation of Lipschitz continuity. They relied on a probabilistic frame-
work of Hölder stability in expectation and showed that DeepSets with ReLU activation functions
have an expected lower-Hölder exponent of 3/2, whereas smooth activation functions yield a much
worse expected lower-Hölder exponent. Balan et al. (2025) presented an embedding scheme based
on sorting random projections of the multiset elements. The embedding is shown to be injective and
bi-Lipschitz. The Fourier Sliced–Wasserstein (FSW) embedding is another theoretically grounded
method for learning representations of sets (Amir & Dym, 2025). It computes random projections of
the input data, and for each projection it samples the cosine transform of the corresponding quantile
function. From a theoretical standpoint, the FSW embedding has a significant advantage over most
previous methods, as it is proven to be both injective and bi-Lipschitz.

Neural network models that can handle set-structured data have been applied across diverse do-
mains, including biology (Clarke et al., 2024), chemistry (Boulougouri et al., 2024) and materials
science (Zhang et al., 2022b). In some applications, domain knowledge is incorporated into those
models. For instance, Lim et al. (2023) introduce neural architectures specifically designed for
eigenvector-based inputs, which can be viewed as variants of DeepSets, while explicitly accounting
for the symmetries inherent in eigenvectors. For a recent overview of neural network models for
set-structured data, we refer the reader to the survey by Xie & Tong (2025).

B PROOFS

We next provide the proofs of the theoretical claims made in the main paper.

B.1 PROOF OF PROPOSITION 2.2

We will show that the matching distance is a metric on S(Rd \ {0}). Let X,Y ∈ S(Rd \ {0}).
Non-negativity and symmetry hold trivially in all cases. Furthermore, dM (X,X) = 0, while the
distance between two distinct points is always positive. Suppose that m = |X| > |Y | = n. Then,
we have that:

dM (X,Y ) = min
π∈Sm

[ n∑
i=1

∥vπ(i) − ui∥+
m∑

i=n+1

∥vπ(i)∥
]
≥

m∑
i=n+1

∥vπ(i)∥ > 0

since ∥v∥ > 0 for all v ∈ Rd \ {0}. If |X| = |Y | = m, since the two multisets are different from
each other, there exists at least one vector ui with i ∈ [m] such that ui ∈ Y , but ui ̸∈ X . Let
π∗ ∈ Sm denote a permutation associated with dM (X,Y ). Then, we have that:

dM (X,Y ) = ∥vπ∗(1) − u1∥+ . . .+ ∥vπ∗(i) − ui∥+ . . .+ ∥vπ∗(m) − um∥ ≥ ∥vπ∗(i) − ui∥ > 0

Thus, we only need to prove that the triangle inequality holds. Let S ∈ S(Rd \ {0}). The three
multisets can have different cardinalities. Let |X| = m, |Y | = n and |S| = k. Then, X =
{{v1,v2, . . . ,vm}}, Y = {{u1,u2, . . . ,un}} and Z = {{z1, z2, . . . , zk}}. There are 6 different cases.
But it suffices to show that the triangle inequality holds when |X| ≥ |Y | ≥ |Z|, when |Z| ≥ |Y | ≥
|X| and when |X| ≥ |Z| ≥ |Y |. Proofs for the rest of the cases are similar.

Case 1: Suppose |X| ≥ |Y | ≥ |Z|. Let S∗
1 denote the matching produced by the solution of the

matching distance function dM (X,Z)

π∗
1 = argmin

π∈Sm

[ k∑
i=1

∥vπ(i) − zi∥+
m∑

i=k+1

∥vπ(i)∥
]

Likewise, let π∗
2 denote the matching produced by the solution of the matching distance function

dM (Z, Y )

π∗
2 = argmin

π∈Sn

[ k∑
i=1

∥uπ(i) − zi∥+
n∑

i=k+1

∥uπ(i)∥
]
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Then, we have

dM (X,Z) + dM (Z, Y ) =

k∑
i=1

∥vπ∗
1 (i)

− zi∥+
m∑

i=k+1

∥vπ∗
1 (i)

∥+
k∑

i=1

∥zi − uπ∗
2 (i)

∥+
n∑

i=k+1

∥uπ∗
2 (i)

∥

=

k∑
i=1

[
∥vπ∗

1 (i)
− zi∥+ ∥zi − uπ∗

2 (i)
∥
]
+

n∑
i=k+1

[
∥vπ∗

1 (i)
∥+ ∥ − uπ∗

2 (i)
∥
]
+

m∑
i=n+1

∥vπ∗
1 (i)

∥

≥
k∑

i=1

∥vπ∗
1 (i)

− uπ∗
2 (i)

∥+
n∑

i=k+1

∥vπ∗
1 (i)

− uπ∗
2 (i)

∥+
m∑

i=n+1

∥vπ∗
1 (i)

∥

=

n∑
i=1

∥vπ∗
1 (i)

− uπ∗
2 (i)

∥+
m∑

i=n+1

∥vπ∗
1 (i)

∥

≥ min
π∈Sm

[ n∑
i=1

∥vπ(i) − ui∥+
m∑

i=n+1

∥vπ(i)∥
]

= dM (X,Y )

Case 2: Suppose |X| ≥ |Z| ≥ |Y |. Let π∗
1 denote the matching produced by the solution of the

matching distance function dM (X,Z)

π∗
1 = argmin

π∈Sm

[ k∑
i=1

∥vπ(i) − zi∥+
m∑

i=k+1

∥vπ(i)∥
]

Likewise, let π∗
2 denote the matching produced by the solution of the matching distance function

dM (Z, Y )

π∗
2 = argmin

π∈Sk

[ n∑
i=1

∥zπ(i) − ui∥+
k∑

i=n+1

∥zπ(i)∥
]

Then, we have

dM (X,Z) + dM (Z, Y ) =

k∑
i=1

∥vπ∗
1 (i)

− zi∥+
m∑

i=k+1

∥vπ∗
1 (i)

∥+
n∑

i=1

∥zπ∗
2 (i)

− ui∥+
k∑

i=n+1

∥zπ∗
2 (i)

∥

=

n∑
i=1

[
∥vπ∗

1 (π
∗
2 (i))

− zπ∗
2 (i)

∥+ ∥zπ∗
2 (i)

− ui∥
]

+

k∑
i=n+1

[
∥vπ∗

1 (π
∗
2 (i))

− zπ∗
2 (i)

∥+ ∥zπ∗
2 (i)

∥
]
+

m∑
i=k+1

∥vπ∗
1 (i)

∥

≥
n∑

i=1

∥vπ∗
1 (π

∗
2 (i))

− ui∥+
k∑

i=n+1

∥vπ∗
1 (π

∗
2 (i))

∥+
m∑

i=k+1

∥vπ∗
1 (i)

∥

≥ min
π∈Sm

[ n∑
i=1

∥vπ(i) − ui∥+
m∑

i=n+1

∥vπ(i)∥
]

= dM (X,Y )

Case 3: Suppose |Z| ≥ |Y | ≥ |X|. Let π∗
1 denote the matching produced by the solution of the

matching distance function dM (X,Z)

π∗
1 = argmin

π∈Sk

m∑
i=1

[
∥vi − zπ(i)∥+

k∑
i=m+1

∥zπ(i)∥
]

Likewise, let π∗
2 denote the matching produced by the solution of the matching distance function

dM (Z, Y )

π∗
2 = argmin

π∈Sk

[ n∑
i=1

∥ui − zπ(i)∥+
k∑

i=n+1

∥zπ(i)∥
]
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Then, we have

dM (X,Z)+dM (Z, Y ) =

m∑
i=1

∥vi−zπ∗
1 (i)

∥+
k∑

i=m+1

∥zπ∗
1 (i)

∥+
n∑

i=1

∥zπ∗
2 (i)

−ui∥+
k∑

i=n+1

∥zπ∗
2 (i)

∥

For each i ∈ [k], there exists a single j ∈ [k] such that π∗
1(i) = π∗

2(j). For each i, j ∈ [k] with
π∗
1(i) = π∗

2(j) one of the following holds

1. ∥vi − zπ∗
1 (i)

∥+ ∥zπ∗
2 (j)

− uj∥ ≥ ∥vi − uj∥ if i ≤ m and j ≤ n

2. ∥vi − zπ∗
1 (i)

∥+ ∥zπ∗
2 (j)

∥ ≥ ∥vi∥ if i ≤ m and j > n

3. ∥zπ∗
1 (i)

∥+ ∥zπ∗
2 (j)

− uj∥ ≥ ∥uj∥ if i > m and j ≤ n

4. ∥zπ∗
1 (i)

∥+ ∥zπ∗
2 (j)

∥ ≥ 0 if i > m and j > n

Note that dM (X,Z) + dM (Z, Y ) can be written as a sum of k terms, where each term corresponds
to one of the above 4 sums of norms. If we take pairs of terms of types 2 and 3 and we sum them,
we have that

∥vi−zπ∗
1 (i)

∥+∥zπ∗
2 (j)

∥+∥zπ∗
1 (i)

∥+∥zπ∗
2 (j)

−uj∥ ≥ ∥vi∥+∥uj∥ = ∥vi∥+∥−uj∥ ≥ ∥vi−uj∥
Note also that type 2 occurs m− n times more than type 3. Therefore, using the inequalities for the
4 types of sums of norms above, we have

dM (X,Z) + dM (Z, Y ) ≥ min
π∈Sm

[ n∑
i=1

∥vπ(i) − uπ(i)∥+
m∑

i=n+1

∥vπ(i)∥
]

= dM (X,Y )

In case 0 can be an element of the multisets, there exist X,Y ∈ S(Rd) with X ̸= Y such that
dM (X,Y ) = 0, i. e., the distance between two distinct points can be equal to 0. The rest of the
properties still hold, and thus the matching distance in a pseudometric on S(Rd).

B.2 PROOF OF PROPOSITION 2.3

If |X| = |Y | = M , the second and third constraints of the optimization problem that needs to be
solved to compute dEMD(X,Y ) become as follows:

M∑
j=1

[F]ij =
1

M
, 1 ≤ i ≤ M and

M∑
i=1

[F]ij =
1

M
, 1 ≤ j ≤ M

Therefore, matrix F is a doubly stochastic matrix. The Birkhoff-von Neumann Theorem states
that the set of M × M doubly stochastic matrices forms a convex polytope whose vertices are the
M ×M permutation matrices. Furthermore, it is known that the optimal value of a linear objective
in a nonempty polytope is attained at a vertex of the polytope (Bertsimas & Tsitsiklis, 1997). The
optimal solution would thus be a permutation matrix F. Let also σ ∈ SM denote the permutation
that is associated with that matrix. Therefore, we have that:

MdEMD(X,Y ) = M min
P∈BM

M∑
i=1

M∑
j=1

[P]ij ∥vi − uj∥2

= M min
P∈ΠM

M∑
i=1

M∑
j=1

[P]ij ∥vi − uj∥2

= M min
π∈SM

[ n∑
i=1

∥vπ(i) − ui∥2
]

= dM (X,Y )
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B.3 PROOF OF THEOREM 3.1

B.3.1 THE MEAN FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Let X = {{v1,v2, . . . ,vm}} and Y = {{u1,u2, . . . ,un}} be two multisets, consisting of m and n
vectors of dimension d, respectively. Let also F∗ denote the matrix that minimizes dEMD(X,Y ).
Then, we have that:∥∥∥fMEAN(X)− fMEAN(Y )

∥∥∥ =

∥∥∥∥ 1

m

m∑
i=1

vi −
1

n

n∑
j=1

uj

∥∥∥∥
=

∥∥∥∥ m∑
i=1

1

m
vi −

n∑
j=1

1

n
uj

∥∥∥∥
=

∥∥∥∥ m∑
i=1

( n∑
j=1

[F∗]ij

)
vi −

n∑
j=1

( m∑
i=1

[F∗]ij

)
uj

∥∥∥∥
=

∥∥∥∥ m∑
i=1

n∑
j=1

[F∗]ij(vi − uj)

∥∥∥∥
≤

m∑
i=1

n∑
j=1

∥[F∗]ij(vi − uj)∥

=

m∑
i=1

n∑
j=1

[F∗]ij∥(vi − uj)∥

= dEMD(X,Y )

The MEAN function is thus Lipschitz continuous with respect to EMD and the Lipschitz constant is
equal to 1.

B.3.2 THE MEAN FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
MATCHING DISTANCE

Suppose that the MEAN function is Lipschitz continuous with respect to the matching distance. Let
L > 0 be given. Let also ϵ > 0 and c > (2L+ 1)ϵ. Let X = {v1,v2}, Y = {u1} be two multisets,
consisting of 2 and 1 vectors of dimension d, respectively. Then, we set v1 = u1 = (c, c, . . . , c)⊤,
and v2 = (ϵ, ϵ, . . . , ϵ)⊤. Clearly, we have that dM (X,Y ) = ∥v2∥ =

√
dϵ. We also have that:∥∥∥fMEAN(X)− fMEAN(Y )

∥∥∥ =

∥∥∥∥12
2∑

i=1

vi − u1

∥∥∥∥
=

∥∥∥∥12v1 +
1

2
v2 − u1

∥∥∥∥
=

∥∥∥∥12(c, c, . . . , c)⊤ +
1

2
(ϵ, ϵ, . . . , ϵ)⊤ − (c, c, . . . , c)⊤

∥∥∥∥
=

∥∥∥∥(ϵ− c

2
,
ϵ− c

2
, . . . ,

ϵ− c

2

)⊤
∥∥∥∥

=
1

2
∥(ϵ− c, ϵ− c, . . . , ϵ− c)⊤∥

=
1

2

√
(ϵ− c)2 + (ϵ− c)2 + . . .+ (ϵ− c)2︸ ︷︷ ︸

d times

=
1

2

√
d(c− ϵ)

>
1

2

√
d
(
(2L+ 1)ϵ− ϵ

)
= L

√
dϵ
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= LdM (X,Y )

Therefore, for any L > 0, there exist X,Y ∈ S(Rd) such that ∥fMEAN(X) − fMEAN(Y )∥ >
LdM (X,Y ), which is a contradiction. Thus, the MEAN function is not Lipschitz continuous with
respect to the matching distance.

B.3.3 THE MEAN FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
HAUSDORFF DISTANCE

Suppose that the MEAN function is Lipschitz continuous with respect to the Hausdorff distance. Let
L > 0 be given. Let also ϵ > 0 and c > 3Lϵ. Let X = {v1,v2,v3}, Y = {u1,u2} be two
multisets, consisting of 3 and 2 vectors of dimension d, respectively. Then, we set v1 = u1 =
(−c,−c, . . . ,−c)⊤, v2 = u2 = (c, c, . . . , c)⊤ and v3 = (c+ ϵ, c+ ϵ, . . . , c+ ϵ)⊤. Clearly, we have
that dH(X,Y ) = maxi∈[3] minj∈[2] ∥vi − uj∥ = ∥v3 − u2∥ =

√
dϵ. We also have that:∥∥∥fMEAN(X)− fMEAN(Y )

∥∥∥ =

∥∥∥∥13
3∑

i=1

vi −
1

2

2∑
j=1

uj

∥∥∥∥
=

∥∥∥∥13v1 +
1

3
v2 +

1

3
v3 −

1

2
u1 −

1

2
u2

∥∥∥∥
=

∥∥∥∥13v3

∥∥∥∥
=

1

3

√
(c+ ϵ)2 + (c+ ϵ)2 + . . .+ (c+ ϵ)2

=
1

3

√
d(c+ ϵ)2

=
1

3

√
d(c+ ϵ)

>
1

3

√
d(3Lϵ+ ϵ)

> L
√
dϵ

= LdH(X,Y )

For any L > 0, there exist X,Y ∈ S(Rd) such that ∥fMEAN(X) − fMEAN(Y )∥ > LdH(X,Y ). We
have thus reached a contradiction. Therefore, the MEAN function is not Lipschitz continuous with
respect to the Hausdorff distance.

B.3.4 THE SUM FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Suppose that the SUM function is Lipschitz continuous with respect to EMD. Let L > 0 be given.
Then, let m = ⌊L + 1⌋. Let also X = {{v1, . . . ,vm}}, Y = {{u1, . . . ,um}} be two multisets, each
consisting of m vectors. We construct the two sets such that v1 = u1,v2 = u2, . . . ,vm−1 = um−1,
and v1 + . . .+ vm−1 = u1 + . . .+ um−1 = 0. Let also ∥vm − um∥ = m. We already showed in
subsection B.3.1 that the distance between the mean vectors of two multisets of vectors is a lower
bound on the EMD between them. Therefore, we have that:

m∑
i=1

m∑
j=1

[F]ij∥vi − uj∥ ≥
∥∥∥∥ 1

m

m∑
i=1

vi −
1

m

m∑
j=1

uj

∥∥∥∥
=

1

m
∥(v1 − u1) + (v2 − u2) + . . .+ (vm − um)∥

=
1

m
∥vm − um∥

=
1

m
m = 1

We can achieve the lower bound if we set the values of F as follows:

[F∗]ij =

{
1
m if i = j

0 if i ̸= j

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Therefore, the EMD between X and Y is equal to 1. Then, we have that:∥∥∥fSUM(X)− fSUM(Y )
∥∥∥ =

∥∥∥∥ m∑
i=1

vi −
m∑
j=1

uj

∥∥∥∥
= ∥(v1 − u1) + (v2 − u2) + . . .+ (vm − um)∥
= ∥vm − um∥
= m · 1

= m

m∑
i=1

m∑
j=1

[F∗]ij∥vi − uj∥

> L

m∑
i=1

m∑
j=1

[F∗]ij∥vi − uj∥

= LdEMD(X,Y )

Therefore, for any L > 0, there exist X,Y ∈ S(Rd \ {0}) such that ∥fSUM(X) − fSUM(Y )∥ >
LdEMD(X,Y ). We have thus arrived at a contradiction, and the SUM function is not Lipschitz
continuous with respect to EMD.

B.3.5 THE SUM FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING
DISTANCE

Let X = {{v1,v2, . . . ,vm}} and Y = {{u1,u2, . . . ,un}} be two multisets, consisting of m and n
vectors of dimension d, respectively. Without loss of generality, we assume that m > n. Let π∗

denote the matching produced by the solution of the matching distance function:

π∗ = argmin
π∈Sm

[ n∑
i=1

∥vπ(i) − ui∥+ ∥vπ(n+1)∥+ . . .+ ∥vπ(m)∥
]

Then, we have that:∥∥∥fSUM(X)− fSUM(Y )
∥∥∥ =

∥∥∥∥ m∑
i=1

vi −
n∑

j=1

uj

∥∥∥∥
= ∥(vπ∗(1) − u1) + . . .+ (vπ∗(n) − un) + vπ∗(n+1) + . . .+ vπ∗(m)∥
≤ ∥vπ∗(1) − u1∥+ . . .+ ∥vπ∗(n) − un∥+ ∥vπ∗(n+1)∥+ . . .+ ∥vπ∗(m)∥

=

n∑
i=1

∥vπ∗(i) − ui∥+ ∥vπ∗(n+1)∥+ . . .+ ∥vπ∗(m)∥

= min
π∈Sm

[ n∑
i=1

∥vπ(i) − ui∥+ ∥vπ(n+1)∥+ . . .+ ∥vπ(m)∥
]

= dM (X,Y )

which concludes the proof. The SUM function is thus Lipschitz continuous with respect to the
matching distance and the Lipschitz constant is equal to 1.

B.3.6 THE SUM FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
HAUSDORFF DISTANCE

Suppose that the SUM function is Lipschitz continuous with respect to the Hausdorff distance. Let
L > 0 be given. Let also ϵ > 0 and c > Lϵ. Let X = {v1,v2}, Y = {u1} be two multisets,
consisting of 2 and 1 vectors of dimension d, respectively. Then, we set v1 = u1 = (c, c, . . . , c)⊤

and v2 = (c+ϵ, c+ϵ, . . . , c+ϵ)⊤. Clearly, we have that dH(X,Y ) = maxi∈[2] minj∈[1] ∥vi−uj∥ =

∥v2 − u1∥ =
√
dϵ. We also have that:∥∥∥fSUM(X)− fSUM(Y )

∥∥∥ =

∥∥∥∥ 2∑
i=1

vi − u1

∥∥∥∥
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= ∥v1 + v2 − u1∥
= ∥v2∥
=

√
(c+ ϵ)2 + (c+ ϵ)2 + . . .+ (c+ ϵ)2

=
√
d(c+ ϵ)2

=
√
d(c+ ϵ)

>
√
d(Lϵ+ ϵ)

> L
√
dϵ

= LdH(X,Y )

Therefore, for any L > 0, there exist X,Y ∈ S(Rd \ {0}) such that ∥fSUM(X) − fSUM(Y )∥ >
LdH(X,Y ), which is a contradiction. Therefore, the SUM function is also not Lipschitz continuous
with respect to the Hausdorff distance.

B.3.7 THE MAX FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Suppose that the MAX function is Lipschitz continuous with respect to EMD. Let L > 0 be given.
Then, let m = ⌊L + 1⌋. Let also X = {{v1, . . . ,vm}}, Y = {{u1, . . . ,um}} be two multisets,
each consisting of m d-dimensional vectors. We construct the two sets such that v1 = u1,v2 =
u2, . . . ,vm−1 = um−1, and v1 + . . .+ vm−1 = u1 + . . .+ um−1 = 0. Suppose that the elements
of vectors vm, um are larger than those of all other vectors of X and Y , respectively. Therefore,
we have that [vm]k ≥ [vi]k, ∀i ∈ [m] and k ∈ [d]. We also have that [um]k ≥ [uj ]k, ∀j ∈ [m]
and k ∈ [d]. Let also ∥vm − um∥ = 1. We already showed in subsection B.3.1 that the distance
between the mean vectors of two multisets of vectors is a lower bound on the EMD between them.
Therefore, we have that:

m∑
i=1

m∑
j=1

[F]ij∥vi − uj∥ ≥
∥∥∥∥ 1

m

m∑
i=1

vi −
1

m

n∑
j=1

uj

∥∥∥∥
=

1

m
∥(v1 − u1) + (v2 − u2) + . . .+ (vm − um)∥

=
1

m
∥vm − um∥

=
1

m

We can achieve the lower bound if we set the values of F as follows:

[F∗]ij =

{
1
m if i = j

0 if i ̸= j

Therefore, the EMD between X and Y is equal to 1/m. Then, we have that

∥vmax − umax∥ = ∥vm − um∥

= m · 1

m

= m

m∑
i=1

m∑
j=1

[F∗]ij∥vi − uj∥

> L

m∑
i=1

m∑
j=1

[F∗]ij∥vi − uj∥

= LdEMD(X,Y )

Therefore, for any L > 0, there exist X,Y ∈ S(Rd) such that ∥vmax − umax∥ > LdEMD(X,Y ),
which is a contradiction. Therefore, the MAX function is not Lipschitz continuous with respect to
EMD.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.3.8 THE MAX FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
MATCHING DISTANCE

Let L > 0 be given. Let also ϵ > 0 and c > Lϵ. Let X = {v1,v2}, Y = {u1} be two multisets, con-
sisting of 2 and 1 vectors of dimension d, respectively. Then, we set v1 = u1 = (−c,−c, . . . ,−c)⊤,
and v2 = (ϵ, ϵ, . . . , ϵ)⊤. Clearly, we have that dM (X,Y ) = ∥v2∥ =

√
dϵ. Let also vmax and umax

denote the vectors that emerge after applying max pooling across all points of X and Y , respectively.
We also have that:∥∥∥fMAX(X)− fMAX(Y )

∥∥∥ = ∥vmax − umax∥
= ∥vmax − u1∥
=

∥∥∥(max(−c, ϵ),max(−c, ϵ), . . . ,max(−c, ϵ)
)⊤ − (−c,−c, . . . ,−c)⊤

∥∥∥
= ∥(ϵ, ϵ, . . . , ϵ)⊤ − (−c,−c, . . . ,−c)⊤∥

=
√

(ϵ+ c)2 + (ϵ+ c)2 + . . .+ (ϵ+ c)2︸ ︷︷ ︸
d times

=
√
d(c+ ϵ)

>
√
d(Lϵ+ ϵ)

> L
√
dϵ

= LdM (X,Y )

For any L > 0, there exist X,Y ∈ S(Rd) such that ∥fMAX(X)− fMAX(Y )∥ > LdM (X,Y ). Based
on the above inequality, the MAX function is not Lipschitz continuous with respect to the matching
distance.

B.3.9 THE MAX FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE HAUSDORFF
DISTANCE

Let X = {{v1,v2, . . . ,vm}} and Y = {{u1,u2, . . . ,un}} denote two multisets of vectors. Let also
vmax and umax denote the vectors that emerge after applying max pooling across all points of X and
Y , respectively. We will show that ∀k ∈ [d], we have that

∣∣[vmax]k − [umax]k
∣∣ ≤ dH(X,Y ).

By contradiction, we assume that that there is some k ∈ [d] such that
∣∣[vmax]k − [umax]k

∣∣ >
dH(X,Y ). Without loss of generality, we also assume that [vmax]k ≥ [umax]k, and therefore∣∣[vmax]k − [umax]k

∣∣ = [vmax]k − [umax]k.

Since [umax]k ≥ [uj ]k, ∀j ∈ [n], we have that [vmax]k − [umax]k ≤ [vmax]k − [uj ]k, ∀j ∈ [n]. Since
by our assumption above,

∣∣[vmax]k − [umax]k
∣∣ = [vmax]k − [umax]k > dH(X,Y ), it follows that

[vmax]k − [uj ]k > dH(X,Y ), ∀j ∈ [n] (1)

Note that there is at least one vector vi ∈ X such that [vi]k = [vmax]k. From equation equation 1,
we have for this vector that [vi]k − [uj ]k > dH(X,Y ), ∀j ∈ [n]. Then, we have ∥vi − uj∥ =√(

[vi]1 − [uj ]1
)2

+ . . .+
(
[vi]k − [uj ]k

)2
+ . . .+

(
[vi]d − [uj ]d

)2 ≥
√(

[vi]k − [uj ]k
)2

=

[vi]k− [uj ]k > dH(X,Y ), ∀j ∈ [n]. We thus have that minj∈[n] ∥vi−uj∥ > dH(X,Y ) which is a
contradiction since minj∈[n] ∥vi − uj∥ ≤ maxı∈[m] minj∈[n] ∥vı − uj∥ = h(X,Y ) ≤ dH(X,Y ).
Therefore, we have that

∣∣[vmax]k − [umax]k
∣∣ ≤ dH(X,Y ).

Since k was arbitrary, the above inequality holds for all k ∈ [d]. We thus have∥∥∥fMAX(X)− fMAX(Y )
∥∥∥ = ∥vmax − umax∥

=

√(
[vmax]1 − [umax]1

)2
+

(
[vmax]2 − [umax]2

)2
+ . . .+

(
[vmax]d − [umax]d

)2
≤

√(
dH(X,Y )

)2
+
(
dH(X,Y )

)2
+ . . .+

(
dH(X,Y )

)2︸ ︷︷ ︸
d times
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=

√
d
(
dH(X,Y )

)2
=

√
d dH(X,Y )

which concludes the proof. Therefore, The MAX function is Lipschitz continuous with respect to the
Hausdorff distance and the Lipschitz constant is equal to

√
d.

B.4 PROOF OF LEMMA 3.2

B.4.1 THE MEAN FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING
DISTANCE

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M and
X ∈ S(Rd\{0}), ∀X ∈ X where M ∈ N. Let X,Y ∈ X denote two multisets. By Proposition 2.3,
we have that dM (X,Y ) = MdEMD(X,Y ). By Theorem 3.1, we have that:∥∥∥fMEAN(X)− fMEAN(Y )

∥∥∥ ≤ dEMD(X,Y )

=
1

M
dM (X,Y ) (due to Proposition 2.3)

The MEAN function restricted to inputs from set X is thus Lipschitz continuous with respect to the
matching distance and the Lipschitz constant is equal to 1

M .

B.4.2 THE MEAN FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
HAUSDORFF DISTANCE

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M , ∀X ∈
X where M ∈ N. Suppose that the MEAN function restricted to inputs from set X is Lipschitz
continuous with respect to the Hausdorff distance. Let L > 0 be given. Let also ϵ > 0 and
c > Lϵ

√
3. Let X = {v1,v2,v3}, Y = {u1,u2,u3} be two multisets, consisting of 3 vectors

of dimension d, respectively. Then, we set v1 = u1 = (− c
2 ,− c

2 , . . . ,− c
2 )

⊤, v2 = u2 = u3 =(
c
2 ,

c
2 , . . . ,

c
2

)⊤
, v3 =

(
c+ϵ
2 , c+ϵ

2 , . . . , c+ϵ
2

)⊤
and u3 =

(
− c+ϵ

2 ,− c+ϵ
2 , . . . ,− c+ϵ

2

)⊤
Clearly, we

have that dH(X,Y ) = maxi∈[3] minj∈[3] ∥vi−uj∥ = maxj∈[3] mini∈[3] ∥vi−uj∥ = ∥v3−u2∥ =

∥v1 − u3∥ =
√
dϵ
2 . We also have that:∥∥∥fMEAN(X)− fMEAN(Y )

∥∥∥ =

∥∥∥∥13
3∑

i=1

vi −
1

3

3∑
i=1

u1

∥∥∥∥
=

∥∥∥∥13(v1 − u1 + v2 − u2 + v3 − u3)

∥∥∥∥
=

1√
3
∥v3 − u3∥

=
1√
3

∥∥∥(c+ ϵ

2
,
c+ ϵ

2
, . . . ,

c+ ϵ

2

)⊤
−
(
− c+ ϵ

2
,−c+ ϵ

2
, . . . ,−c+ ϵ

2

)⊤∥∥∥
=

1√
3
∥(c+ ϵ, c+ ϵ, . . . , c+ ϵ)⊤∥

=
1√
3

√
(c+ ϵ)2 + (c+ ϵ)2 + . . .+ (c+ ϵ)2

=
1√
3

√
d(c+ ϵ)2

=
1√
3

√
d(c+ ϵ)

>
1√
3

√
d(Lϵ

√
3 + ϵ)

> L
1√
3

√
3
√
dϵ
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= L
√
dϵ

> L

√
dϵ

2
= LdH(X,Y )

Therefore, for any L > 0, there exist X,Y ∈ X such that ∥fMEAN(X)− fMEAN(Y )∥ > LdH(X,Y ),
which is a contradiction. Therefore, the MEAN function is not Lipschitz continuous with respect to
the Hausdorff distance even when it is restricted to inputs from set X .

B.4.3 THE SUM FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M , ∀X ∈ X
where M ∈ N. Let X,Y ∈ X denote two multisets. By Proposition 2.3, we have that dM (X,Y ) =
MdEMD(X,Y ). By Theorem 3.1, we have that:∥∥∥fSUM(X)− fSUM(Y )

∥∥∥ ≤ dM (X,Y )

= MdEMD(X,Y ) (due to Proposition 2.3)

Therefore, the SUM function restricted to inputs from set X is Lipschitz continuous with respect to
EMD and the Lipschitz constant is equal to M .

B.4.4 THE SUM FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
HAUSDORFF DISTANCE

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M , ∀X ∈
X where M ∈ N. Suppose that the SUM function restricted to inputs from set X is Lipschitz
continuous with respect to the Hausdorff distance. Let L > 0 be given. Let also ϵ > 0 and
c > Lϵ. Let X = {v1,v2,v3}, Y = {u1,u2,u3} be two multisets, consisting of 3 vectors of
dimension d, respectively. Then, we set v1 = u1 = (− c

2 ,− c
2 , . . . ,− c

2 )
⊤, v2 = u2 = u3 =(

c
2 ,

c
2 , . . . ,

c
2

)⊤
, v3 =

(
c+ϵ
2 , c+ϵ

2 , . . . , c+ϵ
2

)⊤
and u3 =

(
− c+ϵ

2 ,− c+ϵ
2 , . . . ,− c+ϵ

2

)⊤
Clearly, we

have that dH(X,Y ) = maxi∈[3] minj∈[3] ∥vi−uj∥ = maxj∈[3] mini∈[3] ∥vi−uj∥ = ∥v3−u2∥ =

∥v1 − u3∥ =
√
dϵ
2 . We also have that:

∥∥∥fSUM(X)− fSUM(Y )
∥∥∥ =

∥∥∥∥ 3∑
i=1

vi −
3∑

i=1

u1

∥∥∥∥
= ∥v1 − u1 + v2 − u2 + v3 − u3∥
= ∥v3 − u3∥

=
∥∥∥(c+ ϵ

2
,
c+ ϵ

2
, . . . ,

c+ ϵ

2

)⊤
−

(
− c+ ϵ

2
,−c+ ϵ

2
, . . . ,−c+ ϵ

2

)⊤∥∥∥
= ∥(c+ ϵ, c+ ϵ, . . . , c+ ϵ)⊤∥
=

√
(c+ ϵ)2 + (c+ ϵ)2 + . . .+ (c+ ϵ)2

=
√
d(c+ ϵ)2

=
√
d(c+ ϵ)

>
√
d(Lϵ+ ϵ)

> L

√
dϵ

2
= LdH(X,Y )

Therefore, for any L > 0, there exist X,Y ∈ X such that ∥fSUM(X) − fSUM(Y )∥ > LdH(X,Y ),
which is a contradiction. Therefore, the SUM function is not Lipschitz continuous with respect to
the Hausdorff distance even when it is restricted to inputs from set X .
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B.4.5 THE MAX FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING
DISTANCE

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M , ∀X ∈ X
where M ∈ N. Let X = {{v1,v2, . . . ,vM}} ∈ X , and Y = {{u1,u2, . . . ,uM}} ∈ X denote two
multisets. Then, we have that:∥∥∥fMAX(X)−fMAX(Y )

∥∥∥ =

√(
[vmax]1 − [umax]1

)2
+

(
[vmax]2 − [umax]2

)2
+ . . .+

(
[vmax]d − [umax]d

)2
(2)

Note that ∀k ∈ [d], there exists at least one vi ∈ X such that [vmax]k = [vi]k, and also at least one
uj ∈ Y such that [umax]k = [uj ]k. Furthermore, we denote by π∗ the matching produced by the
solution of the matching distance function:

π∗ = argmin
π∈SM

M∑
i=1

∥vπ(i) − ui∥

Then, ∀k ∈ [M ] where [vmax]k ≥ [umax]k and [vmax]k = [vπ(i)]k, we have that:(
[vmax]k − [umax]k

)2
=

(
[vπ(i)]k − [umax]k

)2
= min

j∈[M ]

(
[vπ(i)]k − [uj ]k

)2
(3)

≤
(
[vπ(i)]k − [ui]k

)2
Likewise, ∀k ∈ [M ] where [umax]k > [vmax]k and [umax]k = [ui]k, we have that:(

[vmax]k − [umax]k
)2

=
(
[vmax]k − [ui]k

)2
= min

j∈[M ]

(
[vj ]k − [ui]k

)2
(4)

≤
(
[vπ(i)]k − [ui]k

)2
Then, from equations equation 2, equation 3, equation 4, and assuming that [umax]1 = [u1]1 ≥
[vmax]1, [umax]2 = [u1]2 ≥ [vmax]2 and [vmax]d = [vπ(M)]d ≥ [umax]d, we have that:∥∥∥fMAX(X)− fMAX(Y )

∥∥∥ =

√(
[vmax]1 − [umax]1

)2
+

(
[vmax]2 − [umax]2

)2
+ . . .+

(
[vmax]d − [umax]d

)2
≤

√(
[vπ(1)]1 − [u1]1

)2
+

(
[vπ(1)]2 − [u1]2

)2
+ . . .+

(
[vπ(M)]d − [uM ]d

)2
≤

√(
[vπ(1)]1 − [u1]1

)2
+

(
[uπ(2)]2 − [v2]2

)2
+ . . .+

√(
[vπ(M)]d − [uM ]d

)2
≤ ∥vπ(1) − u1∥+ ∥vπ(2) − u2∥+ . . .+ ∥vπ(M) − uM∥
= dM (X,Y )

The MAX function restricted to inputs from set X is thus Lipschitz continuous with respect to the
matching distance and the Lipschitz constant is equal to 1.

B.4.6 THE MAX FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M , ∀X ∈ X
where M ∈ N. Let X,Y ∈ X denote two multisets. We have shown in subsection B.4.5 above that:∥∥∥fMAX(X)− fMAX(Y )

∥∥∥ ≤ dM (X,Y )

By Proposition 2.3, we have that dM (X,Y ) = MdEMD(X,Y ). Therefore, we have that:∥∥∥fMAX(X)− fMAX(Y )
∥∥∥ ≤ dM (X,Y )

= M dEMD(X,Y ) (due to Proposition 2.3)

The MAX function restricted to inputs from set X is thus Lipschitz continuous with respect to EMD
and the Lipschitz constant is equal to M .
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B.5 PROOF OF PROPOSITION 3.3

B.5.1 THE ATT MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Suppose that the ATT mechanism is Lipschitz continuous with respect to EMD. Let L > 0 be given.
Let also ϵ > 0 and c > 2(1+exp(dϵ))Lϵ

exp(dϵ)−1 . Let X = {v1,v2}, Y = {u1,u2} be two multisets,
each consisting of 2 vectors of dimension d. Then, suppose that v1 = u1 = (c, c, . . . , c)⊤, v2 =
(ϵ, ϵ, . . . , ϵ)⊤ and u2 = (−ϵ,−ϵ, . . . ,−ϵ)⊤. Clearly, we have that dEMD(X,Y ) = 1

2∥v2 − u2∥ =√
dϵ. Let also W = −I and q = 1 where I denotes the d × d identity matrix and 1 denotes the

d-dimensional vector of all ones. We define g as the ReLU function. The attention coefficients of
the elements of X are equal to:

αX
1 =

exp
(
1⊤RELU(−I v1)

)∑2
j=1 exp

(
1⊤RELU(−I vj)

) =
exp(0)

exp(0) + exp(0)
=

1

2

αX
2 =

exp
(
1⊤RELU(−I v2)

)∑2
j=1 exp

(
1⊤RELU(−I vj)

) =
exp(0)

exp(0) + exp(0)
=

1

2

The attention coefficients of the elements of Y are equal to:

αY
1 =

exp
(
1⊤RELU(−I u1)

)∑2
j=1 exp

(
1⊤RELU(−I uj)

) =
exp(0)

exp(0) + exp(dϵ)
=

1

1 + exp(dϵ)

αY
2 =

exp
(
1⊤RELU(−I u2)

)∑2
j=1 exp

(
1⊤RELU(−I uj)

) =
exp(dϵ)

exp(0) + exp(dϵ)
=

exp(dϵ)

1 + exp(dϵ)

We then have that:∥∥∥fATT(X)− fATT(Y )
∥∥∥ =

∥∥∥∥ 2∑
i=1

αX
i vi −

2∑
j=1

αY
j uj

∥∥∥∥
=

∥∥∥∥12v1 +
1

2
v2 −

1

1 + exp(dϵ)
u1 −

exp(dϵ)

1 + exp(dϵ)
u2

∥∥∥∥
=

∥∥∥∥ exp(dϵ)− 1

2(1 + exp(dϵ))
(c, c, . . . , c)⊤ +

3 exp(dϵ) + 1

2(1 + exp(dϵ))
(ϵ, ϵ, . . . , ϵ)⊤

∥∥∥∥
>

∥∥∥∥ exp(dϵ)− 1

2(1 + exp(dϵ))
(c, c, . . . , c)⊤

∥∥∥∥
>

∥∥∥∥ exp(dϵ)− 1

2(1 + exp(dϵ))

(
2(1 + exp(dϵ))Lϵ

exp(dϵ)− 1
,
2(1 + exp(dϵ))Lϵ

exp(dϵ)− 1
, . . . ,

2(1 + exp(dϵ))Lϵ

exp(dϵ)− 1

)⊤∥∥∥∥
=

∥∥∥∥L(ϵ, ϵ, . . . , ϵ)⊤∥∥∥∥
= L

√
ϵ2 + ϵ2 + . . .+ ϵ2︸ ︷︷ ︸

d times

= L
√
dϵ

= LdEMD(X,Y )

We have now reached a contradiction. It turns out that for any L > 0, there exist X,Y ∈ S(Rd),
W ∈ Rd×d and q ∈ Rd such that ∥fATT(X) − fATT(Y )∥ > LdEMD(X,Y ). Thus, the ATT
mechanism is not Lipschitz continuous with respect to EMD.

B.5.2 THE ATT MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
MATCHING DISTANCE

Suppose that the ATT mechanism is Lipschitz continuous with respect to the matching distance. Let
L > 0 be given. Let also ϵ > 0 and c > 2(1+exp(dϵ))2Lϵ

exp(dϵ)−1 . Let X = {v1,v2}, Y = {u1,u2} be two
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multisets, each consisting of 2 vectors of dimension d. Then, suppose that v1 = u1 = (c, c, . . . , c)⊤,
v2 = (ϵ, ϵ, . . . , ϵ)⊤ and u2 = (−ϵ,−ϵ, . . . ,−ϵ)⊤. Clearly, we have that dM (X,Y ) = ∥v2−u2∥ =

2
√
dϵ. Let also W = −I and q = 1 where I denotes the d × d identity matrix and 1 denotes the

d-dimensional vector of all ones. We choose g to be the ReLU activation function. The attention
coefficients of the elements of X are equal to:

αX
1 =

exp
(
1⊤RELU(−I v1)

)∑2
j=1 exp

(
1⊤RELU(−I vj)

) =
exp(0)

exp(0) + exp(0)
=

1

2

αX
2 =

exp
(
1⊤RELU(−I v2)

)∑2
j=1 exp

(
1⊤RELU(−I vj)

) =
exp(0)

exp(0) + exp(0)
=

1

2

The attention coefficients of the elements of Y are equal to:

αY
1 =

exp
(
1⊤RELU(−I u1)

)∑2
j=1 exp

(
1⊤RELU(−I uj)

) =
exp(0)

exp(0) + exp(dϵ)
=

1

1 + exp(dϵ)

αY
2 =

exp
(
1⊤RELU(−I u2)

)∑2
j=1 exp

(
1⊤RELU(−I uj)

) =
exp(dϵ)

exp(0) + exp(dϵ)
=

exp(dϵ)

1 + exp(dϵ)

We then have that:∥∥∥fATT(X)− fATT(Y )
∥∥∥ =

∥∥∥∥ 2∑
i=1

αX
i vi −

2∑
j=1

αY
j uj

∥∥∥∥
=

∥∥∥∥12v1 +
1

2
v2 −

1

1 + exp(dϵ)
u1 −

exp(dϵ)

1 + exp(dϵ)
u2

∥∥∥∥
=

∥∥∥∥ exp(dϵ)− 1

2(1 + exp(dϵ))
(c, c, . . . , c)⊤ +

3 exp(dϵ) + 1

2(1 + exp(dϵ))
(ϵ, ϵ, . . . , ϵ)⊤

∥∥∥∥
>

∥∥∥∥ exp(dϵ)− 1

2(1 + exp(dϵ))
(c, c, . . . , c)⊤

∥∥∥∥
>

∥∥∥∥ exp(dϵ)− 1

2(1 + exp(dϵ))

(
2(1 + exp(dϵ))2Lϵ

exp(dϵ)− 1
,
2(1 + exp(dϵ))2Lϵ

exp(dϵ)− 1
, . . . ,

2(1 + exp(dϵ))2Lϵ

exp(dϵ)− 1

)⊤∥∥∥∥
=

∥∥∥∥2L(ϵ, ϵ, . . . , ϵ)⊤∥∥∥∥
= 2L

√
ϵ2 + ϵ2 + . . .+ ϵ2︸ ︷︷ ︸

d times

= 2L
√
dϵ

= LdM (X,Y )

Therefore, for any L > 0, there exist X,Y ∈ S(Rd \ {0}), W ∈ Rd×d and q ∈ Rd such that
∥fATT(X) − fATT(Y )∥ > LdM (X,Y ). Thus, the ATT mechanism is not Lipschitz continuous with
respect to the matching distance.

B.5.3 THE ATT MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
HAUSDORFF DISTANCE

Suppose that the ATT mechanism is Lipschitz continuous with respect to the Hausdorff distance. Let
L > 0 be given. Let also ϵ > 0 and c > 2(1+exp(dϵ))2Lϵ

exp(dϵ)−1 . Let X = {v1,v2}, Y = {u1,u2} be
two multisets, each consisting of 2 vectors of dimension d. Then, we set v1 = u1 = (c, c, . . . , c)⊤,
v2 = (ϵ, ϵ, . . . , ϵ)⊤ and u2 = (−ϵ,−ϵ, . . . ,−ϵ)⊤. Clearly, we have that dH(X,Y ) ≤ ∥v2 −u2∥ =

2
√
dϵ. Let also W = −I and q = 1 where I denotes the d × d identity matrix and 1 denotes the
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d-dimensional vector of all ones. We choose g to be the ReLU activation function. The attention
coefficients of the elements of X are equal to:

αX
1 =

exp
(
1⊤RELU(−I v1)

)∑2
j=1 exp

(
1⊤RELU(−I vj)

) =
exp(0)

exp(0) + exp(0)
=

1

2

αX
2 =

exp
(
1⊤RELU(−I v2)

)∑2
j=1 exp

(
1⊤RELU(−I vj)

) =
exp(0)

exp(0) + exp(0)
=

1

2

The attention coefficients of the elements of Y are equal to:

αY
1 =

exp
(
1⊤RELU(−I u1)

)∑2
j=1 exp

(
1⊤RELU(−I uj)

) =
exp(0)

exp(0) + exp(dϵ)
=

1

1 + exp(dϵ)

αY
2 =

exp
(
1⊤RELU(−I u2)

)∑2
j=1 exp

(
1⊤RELU(−I uj)

) =
exp(dϵ)

exp(0) + exp(dϵ)
=

exp(dϵ)

1 + exp(dϵ)

We then have that:∥∥∥fATT(X)− fATT(Y )
∥∥∥ =

∥∥∥∥ 2∑
i=1

αX
i vi −

2∑
j=1

αY
j uj

∥∥∥∥
=

∥∥∥∥12v1 +
1

2
v2 −

1

1 + exp(dϵ)
u1 −

exp(dϵ)

1 + exp(dϵ)
u2

∥∥∥∥
=

∥∥∥∥ exp(dϵ)− 1

2(1 + exp(dϵ))
(c, c, . . . , c)⊤ +

3 exp(dϵ) + 1

2(1 + exp(dϵ))
(ϵ, ϵ, . . . , ϵ)⊤

∥∥∥∥
>

∥∥∥∥ exp(dϵ)− 1

2(1 + exp(dϵ))
(c, c, . . . , c)⊤

∥∥∥∥
>

∥∥∥∥ exp(dϵ)− 1

2(1 + exp(dϵ))

(
2(1 + exp(dϵ))2Lϵ

exp(dϵ)− 1
,
2(1 + exp(dϵ))2Lϵ

exp(dϵ)− 1
, . . . ,

2(1 + exp(dϵ))2Lϵ

exp(dϵ)− 1

)⊤∥∥∥∥
=

∥∥∥∥2L(ϵ, ϵ, . . . , ϵ)⊤∥∥∥∥
= 2L

√
ϵ2 + ϵ2 + . . .+ ϵ2︸ ︷︷ ︸

d times

= 2L
√
dϵ

= LdH(X,Y )

Therefore, for any L > 0, there exist X,Y ∈ S(Rd), W ∈ Rd×d and q ∈ Rd such that ∥fATT(X)−
fATT(Y )∥ > LdM (X,Y ), which is a contradiction. Therefore, the ATT mechanism is not Lipschitz
continuous with respect to the Hausdorff distance.

B.6 LIPSCHITZ CONTINUITY OF ATTℓ2 MECHANISM

We demonstrate here that the attention mechanism is not Lipschitz continuous with respect to the
considered functions, even when ℓ2 attention is used. Given a multiset X = {{v1, . . . ,vm}} ∈
S(Rd), the attention mechanism is defined as follows:

fATTℓ2
(X) =

m∑
i=1

αivi where αi =
exp

(
−
∥∥q− g(Wvi)

∥∥)∑m
j=1 exp

(
−

∥∥q− g(Wvj)
∥∥)

where W ∈ Rd′×d and q ∈ Rd′
denote a trainable matrix and a trainable vector, respectively, while

g denotes some activation function.
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B.6.1 THE ATTℓ2 MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Suppose that the ATTℓ2 mechanism is Lipschitz continuous with respect to EMD. Let L > 0 be
given. Let also ϵ > 0 and c > 2(1+exp(−

√
dϵ))Lϵ

1−exp(−
√
dϵ)

. Let X = {v1,v2}, Y = {u1,u2} be two

multisets, each consisting of 2 vectors of dimension d. Then, suppose that v1 = u1 = (c, c, . . . , c)⊤,
v2 = (ϵ, ϵ, . . . , ϵ)⊤ and u2 = (−ϵ,−ϵ, . . . ,−ϵ)⊤. Clearly, we have that dEMD(X,Y ) = 1

2

∥∥v2 −
u2

∥∥ =
√
dϵ. Let also W = −I and q = (−ϵ,−ϵ, . . . ,−ϵ)⊤ where I denotes the d × d identity

matrix. We define g as the ReLU function. The attention coefficients of the elements of X are equal
to:

αX
1 =

exp
(
−
∥∥q− RELU(−I v1)

∥∥)∑2
j=1 exp

(
−
∥∥q⊤ − RELU(−I vj)

∥∥) =
exp

(
−
∥∥q∥∥)

exp
(
−

∥∥q∥∥)+ exp
(
−

∥∥q∥∥) =
1

2

αX
2 =

exp
(
−
∥∥q− RELU(−I v2)

∥∥)∑2
j=1 exp

(
−
∥∥q− RELU(−I vj)

∥∥) =
exp

(
−

∥∥q∥∥)
exp

(
−
∥∥q∥∥)+ exp

(
−

∥∥q∥∥) =
1

2

The attention coefficients of the elements of Y are equal to:

αY
1 =

exp
(
−
∥∥q− RELU(−I u1)

∥∥)∑2
j=1 exp

(
−
∥∥q− RELU(−I uj)

∥∥) =
exp

(
−

∥∥q∥∥)
exp

(
−

∥∥q∥∥)+ exp(0)
=

exp(−
√
dϵ)

1 + exp(−
√
dϵ)

αY
2 =

exp
(
−
∥∥q− RELU(−I u2)

∥∥)∑2
j=1 exp

(
−
∥∥q− RELU(−I uj)

∥∥) =
exp(0)

exp(0) + exp
(
− ∥q∥

) =
1

1 + exp(−
√
dϵ)

We then have that:∥∥∥fATTℓ2
(X)− fATTℓ2

(Y )
∥∥∥ =

∥∥∥∥ 2∑
i=1

αX
i vi −

2∑
j=1

αY
j uj

∥∥∥∥
=

∥∥∥∥12v1 +
1

2
v2 −

exp(−
√
dϵ)

1 + exp(−
√
dϵ)

u1 −
1

1 + exp(−
√
dϵ)

u2

∥∥∥∥
=

∥∥∥∥ exp(−
√
dϵ)− 1

2(1 + exp(−
√
dϵ))

(c, c, . . . , c)⊤ +
exp(−

√
dϵ) + 3

2(1 + exp(−
√
dϵ))

(ϵ, ϵ, . . . , ϵ)⊤
∥∥∥∥

>

∥∥∥∥ exp(−
√
dϵ)− 1

2(1 + exp(−
√
dϵ))

(c, c, . . . , c)⊤
∥∥∥∥

=

∥∥∥∥ 1− exp(−
√
dϵ)

2(1 + exp(−
√
dϵ))

(c, c, . . . , c)⊤
∥∥∥∥

>

∥∥∥∥ 1− exp(−
√
dϵ)

2(1 + exp(−
√
dϵ))

(
2(1 + exp(−

√
dϵ))Lϵ

1− exp(−
√
dϵ)

, . . . ,
2(1 + exp(−

√
dϵ))Lϵ

1− exp(−
√
dϵ)

)⊤∥∥∥∥
=

∥∥∥∥L(ϵ, ϵ, . . . , ϵ)⊤∥∥∥∥
= L

√
ϵ2 + ϵ2 + . . .+ ϵ2︸ ︷︷ ︸

d times

= L
√
dϵ

= LdEMD(X,Y )

We have now reached a contradiction. It turns out that for any L > 0, there exist X,Y ∈ S(Rd),
W ∈ Rd×d and q ∈ Rd such that ∥fATTℓ2

(X) − fATTℓ2
(Y )∥ > LdEMD(X,Y ). Thus, the ATTℓ2

mechanism is not Lipschitz continuous with respect to EMD.
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B.6.2 THE ATTℓ2 MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
MATCHING DISTANCE

Suppose that the ATTℓ2 mechanism is Lipschitz continuous with respect to the matching distance.
Let L > 0 be given. Let also ϵ > 0 and c > 2(1+exp(−

√
dϵ))2Lϵ

1−exp(−
√
dϵ)

. Let X = {v1,v2}, Y =

{u1,u2} be two multisets, each consisting of 2 vectors of dimension d. Then, suppose that v1 =
u1 = (c, c, . . . , c)⊤, v2 = (ϵ, ϵ, . . . , ϵ)⊤ and u2 = (−ϵ,−ϵ, . . . ,−ϵ)⊤. Clearly, we have that
dM (X,Y ) = ∥v2 − u2∥ = 2

√
dϵ. Let also W = −I and q = (−ϵ,−ϵ, . . . ,−ϵ)⊤ where I denotes

the d×d identity matrix. We choose g to be the ReLU activation function. The attention coefficients
of the elements of X are equal to:

αX
1 =

exp
(
−
∥∥q− RELU(−I v1)

∥∥)∑2
j=1 exp

(
−
∥∥q⊤ − RELU(−I vj)

∥∥) =
exp

(
−
∥∥q∥∥)

exp
(
−

∥∥q∥∥)+ exp
(
−

∥∥q∥∥) =
1

2

αX
2 =

exp
(
−
∥∥q− RELU(−I v2)

∥∥)∑2
j=1 exp

(
−
∥∥q− RELU(−I vj)

∥∥) =
exp

(
−

∥∥q∥∥)
exp

(
−
∥∥q∥∥)+ exp

(
−

∥∥q∥∥) =
1

2

The attention coefficients of the elements of Y are equal to:

αY
1 =

exp
(
−
∥∥q− RELU(−I u1)

∥∥)∑2
j=1 exp

(
−
∥∥q− RELU(−I uj)

∥∥) =
exp

(
−

∥∥q∥∥)
exp

(
−

∥∥q∥∥)+ exp(0)
=

exp(−
√
dϵ)

1 + exp(−
√
dϵ)

αY
2 =

exp
(
−
∥∥q− RELU(−I u2)

∥∥)∑2
j=1 exp

(
−
∥∥q− RELU(−I uj)

∥∥) =
exp(0)

exp(0) + exp
(
− ∥q∥

) =
1

1 + exp(−
√
dϵ)

We then have that:∥∥∥fATTℓ2
(X)− fATTℓ2

(Y )
∥∥∥ =

∥∥∥∥ 2∑
i=1

αX
i vi −

2∑
j=1

αY
j uj

∥∥∥∥
=

∥∥∥∥12v1 +
1

2
v2 −

exp(−
√
dϵ)

1 + exp(−
√
dϵ)

u1 −
1

1 + exp(−
√
dϵ)

u2

∥∥∥∥
=

∥∥∥∥ exp(−
√
dϵ)− 1

2(1 + exp(−
√
dϵ))

(c, c, . . . , c)⊤ +
exp(−

√
dϵ) + 3

2(1 + exp(−
√
dϵ))

(ϵ, ϵ, . . . , ϵ)⊤
∥∥∥∥

>

∥∥∥∥ exp(−
√
dϵ)− 1

2(1 + exp(−
√
dϵ))

(c, c, . . . , c)⊤
∥∥∥∥

=

∥∥∥∥ 1− exp(−
√
dϵ)

2(1 + exp(−
√
dϵ))

(c, c, . . . , c)⊤
∥∥∥∥

>

∥∥∥∥ 1− exp(−
√
dϵ)

2(1 + exp(−
√
dϵ))

(
2(1 + exp(−

√
dϵ))2Lϵ

1− exp(−
√
dϵ)

, . . . ,
2(1 + exp(−

√
dϵ))2Lϵ

1− exp(−
√
dϵ)

)⊤∥∥∥∥
=

∥∥∥∥2L(ϵ, ϵ, . . . , ϵ)⊤∥∥∥∥
= 2L

√
ϵ2 + ϵ2 + . . .+ ϵ2︸ ︷︷ ︸

d times

= 2L
√
dϵ

= LdM (X,Y )

Therefore, for any L > 0, there exist X,Y ∈ S(Rd \ {0}), W ∈ Rd×d and q ∈ Rd such that
∥fATTℓ2

(X)− fATTℓ2
(Y )∥ > LdM (X,Y ). Thus, the ATTℓ2 mechanism is not Lipschitz continuous

with respect to the matching distance.
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B.6.3 THE ATTℓ2 MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
HAUSDORFF DISTANCE

Suppose that the ATTℓ2 mechanism is Lipschitz continuous with respect to the Hausdorff distance.
Let L > 0 be given. Let also ϵ > 0 and c > 2(1+exp(−

√
dϵ))2Lϵ

1−exp(−
√
dϵ)

. Let X = {v1,v2}, Y =

{u1,u2} be two multisets, each consisting of 2 vectors of dimension d. Then, we set v1 = u1 =
(c, c, . . . , c)⊤, v2 = (ϵ, ϵ, . . . , ϵ)⊤ and u2 = (−ϵ,−ϵ, . . . ,−ϵ)⊤. Clearly, we have that dH(X,Y ) ≤
∥v2 − u2∥ = 2

√
dϵ. Let also W = −I and q = 1 where I denotes the d× d identity matrix and 1

denotes the d-dimensional vector of all ones. We choose g to be the ReLU activation function. The
attention coefficients of the elements of X are equal to:

αX
1 =

exp
(
−
∥∥q− RELU(−I v1)

∥∥)∑2
j=1 exp

(
−
∥∥q⊤ − RELU(−I vj)

∥∥) =
exp

(
−
∥∥q∥∥)

exp
(
−

∥∥q∥∥)+ exp
(
−

∥∥q∥∥) =
1

2

αX
2 =

exp
(
−
∥∥q− RELU(−I v2)

∥∥)∑2
j=1 exp

(
−
∥∥q− RELU(−I vj)

∥∥) =
exp

(
−

∥∥q∥∥)
exp

(
−
∥∥q∥∥)+ exp

(
−

∥∥q∥∥) =
1

2

The attention coefficients of the elements of Y are equal to:

αY
1 =

exp
(
−
∥∥q− RELU(−I u1)

∥∥)∑2
j=1 exp

(
−
∥∥q− RELU(−I uj)

∥∥) =
exp

(
−

∥∥q∥∥)
exp

(
−

∥∥q∥∥)+ exp(0)
=

exp(−
√
dϵ)

1 + exp(−
√
dϵ)

αY
2 =

exp
(
−
∥∥q− RELU(−I u2)

∥∥)∑2
j=1 exp

(
−
∥∥q− RELU(−I uj)

∥∥) =
exp(0)

exp(0) + exp
(
− ∥q∥

) =
1

1 + exp(−
√
dϵ)

We then have that:∥∥∥fATTℓ2
(X)− fATTℓ2

(Y )
∥∥∥ =

∥∥∥∥ 2∑
i=1

αX
i vi −

2∑
j=1

αY
j uj

∥∥∥∥
=

∥∥∥∥12v1 +
1

2
v2 −

exp(−
√
dϵ)

1 + exp(−
√
dϵ)

u1 −
1

1 + exp(−
√
dϵ)

u2

∥∥∥∥
=

∥∥∥∥ exp(−
√
dϵ)− 1

2(1 + exp(−
√
dϵ))

(c, c, . . . , c)⊤ +
exp(−

√
dϵ) + 3

2(1 + exp(−
√
dϵ))

(ϵ, ϵ, . . . , ϵ)⊤
∥∥∥∥

>

∥∥∥∥ exp(−
√
dϵ)− 1

2(1 + exp(−
√
dϵ))

(c, c, . . . , c)⊤
∥∥∥∥

=

∥∥∥∥ 1− exp(−
√
dϵ)

2(1 + exp(−
√
dϵ))

(c, c, . . . , c)⊤
∥∥∥∥

>

∥∥∥∥ 1− exp(−
√
dϵ)

2(1 + exp(−
√
dϵ))

(
2(1 + exp(−

√
dϵ))2Lϵ

1− exp(−
√
dϵ)

, . . . ,
2(1 + exp(−

√
dϵ))2Lϵ

1− exp(−
√
dϵ)

)⊤∥∥∥∥
=

∥∥∥∥2L(ϵ, ϵ, . . . , ϵ)⊤∥∥∥∥
= 2L

√
ϵ2 + ϵ2 + . . .+ ϵ2︸ ︷︷ ︸

d times

= 2L
√
dϵ

= LdH(X,Y )

Therefore, for any L > 0, there exist X,Y ∈ S(Rd), W ∈ Rd×d and q ∈ Rd such that
∥fATTℓ2

(X) − fATTℓ2
(Y )∥ > LdM (X,Y ), which is a contradiction. Therefore, the ATTℓ2 mech-

anism is not Lipschitz continuous with respect to the Hausdorff distance.
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B.7 PROOF OF THEOREM 3.4

B.7.1 THERE EXIST NNSUM MODELS WHICH ARE NOT LIPSCHITZ CONTINUOUS WITH
RESPECT TO THE MATCHING DISTANCE

Suppose that NNSUM is a neural network model which computes its output as follows:

vX = f2

(
ReLU

({{
f1(v1), . . . , f1(vm)

}}))
where X = {{v1, . . . ,vm}} is a multiset, and f1 and f2 are fully-connected layers, i. e., f1(x) =
a1 x+ b1 and f2(x) = a2 x+ b2. Furthermore, suppose that a1 > 0, b1 > 0 and a2 > 0. Note that
the Lipschitz constants of f1 and f2 are Lip(f1) = a1 and Lip(f2) = a2, respectively.

Suppose that the NNSUM model is Lipschitz continuous with respect to the matching distance. Let
L > 0 be given. Let also X = {{v1, v2}}, Y = {{u1}} be two multisets that contain real numbers.
We construct the two sets such that v1 = v2 = u1 = c where 0 < c < b1

La1
. Thus, we have that

dM (X,Y ) = |c| = c. We also have that b1 > cLa1. Then, we have:∥∥∥∥f2( 2∑
j=1

f1(c)

)
− f2

(
f1(c)

)∥∥∥∥ =

∥∥∥∥f2( 2∑
j=1

ReLU(a1 c+ b1)

)
− f2

(
ReLU(a1 c+ b1)

)∥∥∥∥
=

∥∥∥f2(2 (a1 c+ b1)
)
− f2

(
a1 c+ b1

)∥∥∥
=

∥∥∥a2(2 (a1 c+ b1)
)
+ b2 − a2

(
a1 c+ b1

)
− b2

∥∥∥
= ∥a2(a1 c+ b1)∥
> ∥a2(a1 c+ cL a1)∥
= ∥(L+ 1) a2 a1 c∥
> (L+ 1)Lip(f2)Lip(f1) c
> LLip(f2)Lip(f1) dM (X,Y )

Therefore, for any L > 0, there exist X,Y ∈ S(Rd \ {0}) such that
∥∥∥f2(∑

v∈X f1(v)
)
−

f2

(∑
u∈Y f1(u)

)∥∥∥ > LLip(f2)Lip(f1) dM (X,Y ). Based on the above, there exist NNSUM mod-
els which are not Lipschitz continuous with respect to the matching distance.

B.7.2 THE NNMEAN MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Let X = {{v1, . . . ,vm}}, Y = {{u1, . . . ,un}} be two multisets of vectors. Let also Lip(fMLP1
)

and Lip(fMLP2
) denote the Lipschitz constants of the fMLP1

and fMLP2
, respectively. Finally, let F∗

denote the matrix that minimizes dEMD(X,Y ). Then, we have:∥∥∥∥fMLP2

(
1

m

m∑
i=1

fMLP1
(vi)

)
− fMLP2

(
1

n

n∑
j=1

fMLP1
(uj)

)∥∥∥∥ ≤ Lip(fMLP2
)

∥∥∥∥ 1

m

m∑
i=1

fMLP1
(vi)−

1

n

n∑
j=1

fMLP1
(uj)

∥∥∥∥
≤ Lip(fMLP2

)

m∑
i=1

n∑
j=1

[F∗]ij∥fMLP1
(vi)− fMLP1

(vj)∥

≤ Lip(fMLP2
)

m∑
i=1

n∑
j=1

[F∗]ijLip(fMLP1
)∥vi − vj∥

= Lip(fMLP1
)Lip(fMLP2

)

m∑
i=1

n∑
j=1

[F∗]ij∥vi − vj∥

= Lip(fMLP1
)Lip(fMLP2

)dEMD(X,Y )

Note that whether the above can hold as an equality depends on fMLP1
and fMLP2

, and therefore, the
Lipschitz constant of the NNMEAN model is upper bounded by Lip(fMLP1)Lip(fMLP2)dEMD(X,Y ).
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B.7.3 THE NNMAX MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE HAUSDORFF
DISTANCE

Let X = {{v1, . . . ,vm}}, Y = {{u1, . . . ,un}} be two multisets of vectors. Let also Lip(fMLP1)
and Lip(fMLP2) denote the Lipschitz constants of the fMLP1 and fMLP2 , respectively. Let
fMLP1

(X) =
{{
fMLP1

(v1), . . . , fMLP1
(vm)

}}
and fMLP1

(Y ) =
{{
fMLP1

(u1), . . . , fMLP1
(un)

}}
.

Let also vi∗ ,uj∗ and fMLP1
(vi∗∗), fMLP1

(uj∗∗) denote the vectors from which

dH(X,Y ) and dH

(
fMLP1

(X), fMLP1
(Y )

)
emerge, i. e., dH(X,Y ) = ∥vi∗ − uj∗∥ and

dH

(
fMLP1

(X), fMLP1
(Y )

)
=

∥∥∥fMLP1
(vi∗∗) − fMLP1

(uj∗∗)
∥∥∥. Without loss of generality, we

also assume that h
(
fMLP1

(X), fMLP1
(Y )

)
≥ h

(
fMLP1

(Y ), fMLP1
(X)

)
. Then, we have:∥∥∥∥fMLP2

((
fMLP1(vi)

)
max

)
− fMLP2

((
fMLP1(uj)

)
max

)∥∥∥∥ ≤ Lip(fMLP2)
∥∥∥(fMLP1(vi)

)
max −

(
fMLP1(uj)

)
max

∥∥∥
≤ Lip(fMLP2)

√
d dH

(
fMLP1

(X), fMLP1
(Y )

)
=

√
dLip(fMLP2

) max
i∈[m]

min
j∈[n]

∥∥∥fMLP1
(vi)− fMLP1

(uj)
∥∥∥

≤
√
dLip(fMLP2)Lip(fMLP1) max

i∈[m]
min
j∈[n]

∥vi − uj∥

≤
√
dLip(fMLP1

)Lip(fMLP2
)dH(X,Y )

We have thus shown that the NNMAX model is Lipschitz continuous with respect to the Hausdorff
distance and its Lipschitz constant is upper bounded by

√
dLip(fMLP1)Lip(fMLP2).

B.8 PROOF OF LEMMA 3.5

B.8.1 THE NNMEAN MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING
DISTANCE

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M and
X ∈ S(Rd \ {0}), ∀X ∈ X where M ∈ N. Let X,Y ∈ X denote two multisets. We have shown
in subsection B.7.2 above that:∥∥∥∥fMLP2

(
1

m

m∑
i=1

fMLP1
(vi)

)
− fMLP2

(
1

n

n∑
j=1

fMLP1
(uj)

)∥∥∥∥ ≤ Lip(fMLP1
)Lip(fMLP2

)dEMD(X,Y )

By Proposition 2.3, we have that dM (X,Y ) = MdEMD(X,Y ). Therefore, we have that:∥∥∥∥fMLP2

(
1

m

m∑
i=1

fMLP1
(vi)

)
− fMLP2

(
1

n

n∑
j=1

fMLP1
(uj)

)∥∥∥∥ ≤ Lip(fMLP1
)Lip(fMLP2

)dEMD(X,Y )

=
1

M
Lip(fMLP1

)Lip(fMLP2
)dM (X,Y ) (due to Proposition 2.3)

The NNMEAN model is Lipschitz continuous with respect to the matching distance and its Lipschitz
constant is upper bounded by 1

M Lip(fMLP1)Lip(fMLP2).

B.8.2 THE NNSUM MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING
DISTANCE

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M and
X ∈ S(Rd \ {0}), ∀X ∈ X where M ∈ N. Let X,Y ∈ X denote two multisets. Let π∗ denote the
matching produced by the solution of the matching distance function:

π∗ = argmin
π∈SM

M∑
i=1

∥vπ(i) − ui∥
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Then, we have:∥∥∥∥fMLP2

( M∑
i=1

fMLP1(vi)

)
− fMLP2

( M∑
j=1

fMLP1(uj)

)∥∥∥∥ ≤ Lip(fMLP2)

∥∥∥∥ M∑
i=1

fMLP1(vi)−
M∑
j=1

fMLP1(uj)

∥∥∥∥
≤ Lip(fMLP2)

M∑
i=1

∥∥∥fMLP1(vπ∗(i))− fMLP1(ui)
∥∥∥(due to Lemma 3.2)

≤ Lip(fMLP2)

M∑
i=1

Lip(fMLP1)∥vπ∗(i) − ui∥

≤ Lip(fMLP1)Lip(fMLP2)

M∑
i=1

∥vπ∗(i) − ui∥

= Lip(fMLP1)Lip(fMLP2)dM (X,Y )

which concludes the proof. The NNSUM model is thus Lipschitz continuous with respect to the
matching distance and its Lipschitz constant is upper bounded by Lip(fMLP1)Lip(fMLP2).

B.8.3 THE NNSUM MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M and
X ∈ S(Rd), ∀X ∈ X where M ∈ N. Let X,Y ∈ X denote two multisets. We have shown in
subsection B.8.2 above that:∥∥∥∥fMLP2

( M∑
i=1

fMLP1(vi)

)
− fMLP2

( M∑
j=1

fMLP1(uj)

)∥∥∥∥ ≤ Lip(fMLP1)Lip(fMLP2)dM (X,Y )

By Proposition 2.3, we have that dM (X,Y ) = MdEMD(X,Y ). Therefore, we have that:∥∥∥∥fMLP2

( M∑
i=1

fMLP1
(vi)

)
− fMLP2

( M∑
j=1

fMLP1
(uj)

)∥∥∥∥ ≤ Lip(fMLP1
)Lip(fMLP2

)dM (X,Y )

= MLip(fMLP1
)Lip(fMLP2

)dEMD(X,Y ) (due to Proposition 2.3)

Therefore, the NNSUM model is Lipschitz continuous with respect to EMD and its Lipschitz constant
is upper bounded by MLip(fMLP1)Lip(fMLP2).

B.8.4 THE NNMAX MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING
DISTANCE

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M and
X ∈ S(Rd \ {0}), ∀X ∈ X where M ∈ N. Let X,Y ∈ X denote two multisets. Let π∗ denote the
matching produced by the solution of the matching distance function:

π∗ = argmin
π∈SM

M∑
i=1

∥vπ(i) − ui∥

Then, we have:∥∥∥∥fMLP2

((
fMLP1(vi)

)
max

)
− fMLP2

((
fMLP1(uj)

)
max

)∥∥∥∥ ≤ Lip(fMLP2)
∥∥∥(fMLP1(vi)

)
max −

(
fMLP1(uj)

)
max

∥∥∥
≤ Lip(fMLP2)

M∑
i=1

∥∥∥fMLP1(vπ∗(i))− fMLP1(ui)
∥∥∥(due to Lemma 3.2)

≤ Lip(fMLP2)

M∑
i=1

Lip(fMLP1)∥vπ∗(i) − ui∥

≤ Lip(fMLP1)Lip(fMLP2)

M∑
i=1

∥vπ∗(i) − ui∥
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= Lip(fMLP1
)Lip(fMLP2

)dM (X,Y )

We conclude that the NNMAX model is Lipschitz continuous with respect to the matching distance
and its Lipschitz constant is upper bounded by Lip(fMLP1

)Lip(fMLP2
).

B.8.5 THE NNMAX MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Let X denote a set that contains multisets of vectors of equal cardinalities, i. e., |X| = M and
X ∈ S(Rd), ∀X ∈ X where M ∈ N. Let X,Y ∈ X denote two multisets. We have shown in
subsection B.8.4 above that:∥∥∥∥fMLP2

((
fMLP1(vi)

)
max

)
− fMLP2

((
fMLP1(uj)

)
max

)∥∥∥∥ ≤ Lip(fMLP1)Lip(fMLP2)dM (X,Y )

By Proposition 2.3, we have that dM (X,Y ) = MdEMD(X,Y ). Therefore, we have that:∥∥∥∥fMLP2

((
fMLP1(vi)

)
max

)
− fMLP2

((
fMLP1(uj)

)
max

)∥∥∥∥ ≤ Lip(fMLP1)Lip(fMLP2)dM (X,Y )

= MLip(fMLP1)Lip(fMLP2)dEMD(X,Y ) (due to Proposition 2.3)
We thus have that the NNMAX model is Lipschitz continuous with respect to EMD and its Lipschitz
constant is upper bounded by M Lip(fMLP1

)Lip(fMLP2
).

B.9 PROOF OF PROPOSITION 3.6

(1) Let F ∈ Rn×(n+1) be a matrix. We set the elements of F equal to the following values:

[F]ij =


1

n(n+1) if j = n+ 1
1

n+1 if i = j

0 otherwise

Then, we have that:
[F]ij > 0, 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1

n+1∑
j=1

[F]ij =
1

n
, 1 ≤ i ≤ n

n∑
i=1

[F]ij =
1

n+ 1
, 1 ≤ j ≤ n+ 1

Therefore, F is a feasible solution of the EMD formulation and its value is equal to:
n∑

i=1

n+1∑
j=1

[F]ij ∥vi − vj∥ =
1

n(n+ 1)

n∑
i=1

∥vi − vn+1∥

We thus have that:

dEMD(X,X ′) ≤ 1

n(n+ 1)

n∑
i=1

∥vi − vn+1∥

A simple case where the inequality holds with equality is when v1 = v2 = . . . = vn = vn+1.

(2) The bidirectional Hausdorff distance between X and X ′ is defined as:
dH(X,X ′) = max

(
h(X,X ′), h(X ′, X)

)
For each i ∈ [n], we have that minj∈[n+1] ∥vi − vj∥ = ∥vi − vi∥ = 0. Therefore, we have that:

h(X,X ′) = max
i∈[n]

min
j∈[n+1]

∥vi − vj∥ = 0

We thus obtain the following:
dH(X,X ′) = h(X ′, X) = max

i∈[n+1]
min
j∈[n]

∥vi − vj∥

For each i ∈ [n], we have that minj∈[n] ∥vi − vj∥ = ∥vi − vi∥ = 0. Therefore, we have that:

dH(X,X ′) = h(X ′, X) = min
j∈[n]

∥vn+1 − vj∥
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C STABILITY OF NEURAL NETWORKS FOR SETS UNDER PERTURBATIONS

Lemma 3.5 implies that the output variation of NNMEAN, NNSUM and NNMAX under perturbations
of the elements of an input set can be bounded via the EMD and Hausdorff distance between the
input and perturbed sets, respectively. We next investigate what are the values of EMD, Hausdorff
distance and matching distance when an element of a multiset is replaced by a new element.
Proposition C.1. Given a multiset of vectors X = {{v1, . . . ,vi−1,vi,vi+1, . . . ,vn}} ∈ S(Rd), let
X ′ = {{v1, . . . ,vi−1,v

′
i,vi+1, . . . ,vn}} ∈ S(Rd) be the multiset where element vi is perturbed to

v′
i. Then,

1. The EMD and matching distance between X and X ′ are equal to:

dEMD(X,X ′) =
1

n
∥vi − v′

i∥ and dM(X,X ′) = ∥vi − v′
i∥

2. The Hausdorff distance between X and X ′ is bounded as:

dH(X,X ′) ≤ ∥vi − v′
i∥

Proof. (1) We set u1 = v1, u2 = v2, . . . , ui = v′
i, . . ., un = vn. For the matching distance, we

have:

dM (X,X ′) = min
π∈Sn

[ n∑
i=1

∥vπ(i) − ui∥
]

≤ ∥v1 − v1∥+ ∥v2 − v2∥+ . . .+ ∥vi − v′
i∥+ . . .+ ∥vn − vn∥

= ∥vi − v′
i∥

Suppose that π∗ ∈ Sn is the permutation associated with dM (X,X ′). Then, we have:

∥vi − v′
i∥ = ∥v1 + . . .+ vi + . . .+ vn − v1 − . . .− v′

i − . . .− vn∥
= ∥v1 + . . .+ vi + . . .+ vn − u1 − . . .− ui − . . .− un∥
≤ ∥vπ∗(1) − u1∥+ . . .+ ∥vπ∗(i) − ui∥+ . . .+ ∥vπ∗(n) − un∥
= dM (X,X ′)

We showed that dM (X,X ′) ≤ ∥vi − v′
i∥ and that ∥vi − v′

i∥ ≤ dM (X,X ′). Therefore,
dM (X,X ′) = ∥vi − v′

i∥. Since |X| = |X ′| = n, by Proposition 2.3, we have that dM (X,X ′) =
ndEMD(X,X ′). The following then holds:

dEMD(X,X ′) =
1

n
∥vi − v′

i∥

(2) We set u1 = v1, u2 = v2, . . . , ui = v′
i, . . ., un = vn. The Hausdorff distance is equal to:

dH(X,X ′) = max
(
h(X,X ′), h(X ′, X)

)
For each j ∈ [i− 1] ∪ i+ 1, . . . , n, we have that mink∈[n] ∥vj − uk∥ = ∥vj − vj∥ = 0. For each
j ∈ [i− 1] ∪ i+ 1, . . . , n, we also have that mink∈[n] ∥uj − vk∥ = ∥vj − vj∥ = 0. Therefore, we
have that:

h(X,X ′) = min
j∈[n]

∥vi − uj∥ ≤ ∥vi − ui∥ = ∥vi − v′
i∥

h(X ′, X) = min
j∈[n]

∥ui − vj∥ ≤ ∥ui − vi∥ = ∥vi − v′
i∥

Both h(X,X ′) and h(X ′, X) are thus no greater than ∥vi − v′
i∥. We then have that:

dH(X,X ′) = max
(
h(X,X ′), h(X ′, X)

)
≤ max

(
∥vi − v′

i∥, ∥vi − v′
i∥
)

= ∥vi − v′
i∥
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We next investigate what are the values of EMD, Hausdorff distance and matching distance when a
random vector sampled from U(0, k)d is added to each element of a multiset.

Proposition C.2. Given a multiset of vectors X = {{v1,v2, . . . ,vn}} ∈ S(Rd), let X ′ = {{v1 +
u1,v2 + u2, . . . ,vn + un}} ∈ S(Rd) where ui ∼ U(0, k)d for all i ∈ [n]. Then,

1. The EMD and matching distance between X and X ′ is bounded as:

dEMD(X,X ′) ≤ k
√
d and dM(X,X ′) ≤ nk

√
d

2. The Hausdorff distance between X and X ′ is bounded as:

dH(X,X ′) ≤ k
√
d

Proof. (1) Note that

∥vi − vi − ui∥ = ∥ui∥ ≤
√

k2 + k2 + . . .+ k2︸ ︷︷ ︸
d times

= k
√
d

For the matching distance, we have:

dM (X,X ′) = min
π∈Sn

[ n∑
i=1

∥vπ(i) − vi − ui∥
]

≤ ∥v1 − v1 − u1∥+ ∥v2 − v2 − u2∥+ . . .+ ∥vn − vn − un∥
= ∥ − u1∥+ ∥ − u2∥+ . . .+ ∥ − un∥
≤ k

√
d+ k

√
d+ . . .+ k

√
d︸ ︷︷ ︸

n times

= nk
√
d

Since |X| = |X ′| = n, by Proposition 2.3, we have that dM (X,X ′) = ndEMD(X,X ′). The
following then holds:

dEMD(X,X ′) ≤ 1

n
nk

√
d = k

√
d

(2) The Hausdorff distance is equal to:

dH(X,X ′) = max
(
h(X,X ′), h(X ′, X)

)
We have that:

h(X,X ′) = max
i∈[n]

min
j∈[n]

∥vi − vj − uj∥ ≤ max
i∈[n]

∥vi − vi − ui∥ = max
i∈[n]

∥ − ui∥ ≤ k
√
d

h(X ′, X) = max
i∈[n]

min
j∈[n]

∥vi + ui − vj∥ ≤ max
i∈[n]

∥vi + ui − vi∥ = max
i∈[n]

∥ui∥ ≤ k
√
d

Both h(X,X ′) and h(X ′, X) are thus no greater than k
√
d. We then have that:

dH(X,X ′) = max
(
h(X,X ′), h(X ′, X)

)
≤ max

(
k
√
d, k

√
d
)

= k
√
d

D EXPERIMENTAL SETUP

We next provide details about the experimental setup in the different experiments we conducted.
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D.1 LIPSCHITZ CONSTANT OF AGGREGATION FUNCTIONS

ModelNet40. We produce point clouds consisting of 100 particles (x, y, z-coordinates) from the
mesh representation of objects. Each set is normalized by the initial layer of the deep network to
have zero mean (along individual axes) and unit (global) variance. Each neural network consists of
an MLP, followed by an aggregation function (i. e., SUM, MEAN or MAX) which in turn is followed
by another MLP. The first MLP transforms the representations of the particles, while the aggregation
function produces a single vector representation for each point cloud. The two MLPs consist of two
layers and the ReLU function is applied to the output of the first layer. The output of the second
layer of the second MLP is followed by the softmax function which outputs class probabilities. The
hidden dimension size of all layers is set to 64. The model is trained by minimizing the cross-entropy
loss. The minimization is performed using Adam with a learning rate equal to 0.001. The number of
epochs is set to 200 and the batch size to 64. At the end of each epoch, we compute the performance
of the model on the validation set, and we choose as our final model the one that achieved the
smallest loss on the validation set. Note that in this set of experiments we do not compute the EMD,
Hausdorff and matching distance between the input multisets, but we compute the distance of the
“latent” multisets that emerge at the output of the first MLP (just before the aggregation function is
applied) of each chosen model.

Polarity. We represent each document as a multiset of the embeddings of its words. The word em-
beddings are obtained from a pre-trained model which contains 300-dimensional vectors (Mikolov
et al., 2013). The embeddings are first fed to an MLP, and then an aggregation function (i. e., SUM,
MEAN or MAX) is applied which produces a single vector representation for each document. This
vector representation is passed onto another MLP. The two MLPs consist of two layers and the ReLU
function is applied to the output of the first layer of each MLP. The output of the second MLP is
followed by the softmax function. The hidden dimension size of all layers is set to 64. The model
is trained by minimizing the cross-entropy loss. The minimization is performed using Adam with
a learning rate equal to 0.001. The number of epochs is set to 200 and the batch size to 64. At the
end of each epoch, we compute the performance of the model on the validation set, and we choose
as our final model the one that achieved the smallest loss on the validation set. As discussed above,
in each experiment, we compute the distance of the “latent” multisets that emerge at the output of
the first MLP (just before the aggregation function is applied) of the model that achieves the lowest
validation loss.

D.2 LIPSCHITZ CONSTANT OF NEURAL NETWORKS FOR SETS

ModelNet40. We produce point clouds with 100 particles (x, y, z-coordinates) from the mesh rep-
resentation of objects. The data points of the point clouds are first fed to a fully-connected layer.
Then, the data points of each point clouds are aggregated (i. e., SUM, MEAN or MAX function is
utilized) and this results into a single vector representation for each point cloud. This vector repre-
sentation is then fed to another fully-connected layer. The output of this layer passes through the
ReLU function and is finally fed to a fully-connected layer which is followed by the softmax func-
tion and produces class probabilities. The output dimension of the first two fully-connected layers
is set to 64. The model is trained by minimizing the cross-entropy loss. The Adam optimizer is
employed with a learning rate of 0.001. The number of epochs is set to 200 and the batch size to
64. At the end of each epoch, we compute the performance of the model on the validation set, and
we choose as our final model the one that achieved the smallest loss on the validation set. Note that
the Lipschitz constant of an affine function f : v 7→ Wv + b where W ∈ Rm×n and b ∈ Rm is
the largest singular value of matrix W. Therefore, in this experiment we can exactly compute the
Lipschitz constants of the two fully-connected layers.

Polarity. We represent each document as a multiset of the embeddings of its words. The word
embeddings are obtained from a publicly available pre-trained model (Mikolov et al., 2013). We
randomly split the dataset into training, validation, and test sets with a 80 : 10 : 10 split ratio. The
embeddings are first fed to a fully-connected layer, and then an aggregation function (i. e., SUM,
MEAN or MAX) is applied which produces a single vector representation for each document. This
vector representation is passed onto another fully-connected layer. The ReLU function is applied to
the emerging vector and then a final fully-connected layer followed by the softmax function outputs
class probabilities. The output dimension of the first two fully-connected layers is set to 64. The
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model is trained by minimizing the cross-entropy loss. The minimization is performed using Adam
with a learning rate equal to 0.001. The number of epochs is set to 200 and the batch size to 64.
At the end of each epoch, we compute the performance of the model on the validation set, and we
choose as our final model the one that achieved the smallest loss on the validation set. As discussed
above, we can exactly compute the Lipschitz constants of the two fully-connected layers.

D.3 STABILITY UNDER PERTURBATIONS OF INPUT MULTISETS

ModelNet40. We produce point clouds with 100 particles (x, y, z-coordinates) from the mesh rep-
resentation of objects. The NNMEAN and NNMAX models consist of an MLP which transforms the
representations of the particles, an aggregation function (MEAN and MAX, respectively) and a sec-
ond MLP which produces the output (i. e., class probabilities). Both MLPs consist of two hidden
layers. The ReLU function is applied to the outputs of the first layer. The hidden dimension size
is set to 64 for all hidden layers. The model is trained by minimizing the cross-entropy loss. The
Adam optimizer is employed with a learning rate of 0.001. The number of epochs is set to 200
and the batch size to 64. At the end of each epoch, we compute the performance of the model on
the validation set, and we choose as our final model the one that achieved the smallest loss on the
validation set.

Polarity. Each document of the Polarity dataset is represented as a multiset of word vectors. The
word vectors are obtained from a publicly available pre-trained model (Mikolov et al., 2013). We
randomly split the dataset into training, validation, and test sets with a 80 : 10 : 10 split ratio.
The NNMEAN and NNMAX models consist of an MLP which transforms the representations of the
words, an aggregation function (MEAN and MAX, respectively) and a second MLP which produces
the output. Both MLPs consist of two hidden layers. The ReLU function is applied to the outputs of
the first layer. The hidden dimension size is set to 64 for all hidden layers. The model is trained for
20 epochs by minimizing the cross-entropy loss function with the Adam optimizer and a learning
rate of 0.001. At the end of each epoch, we compute the performance of the model on the validation
set, and we choose as our final model the one that achieved the smallest loss on the validation set.

D.4 GENERALIZATION UNDER DISTRIBUTION SHIFTS

This set of experiments is conducted on the Polarity dataset. The architecture of NNMEAN and
NNMAX, and the training details are same as in subsection D.3 above.

E ADDITIONAL RESULTS

E.1 LIPSCHITZ CONSTANT OF AGGREGATION FUNCTIONS

We next provide some additional empirical results that validate the findings of Theorem 3.1 (i. e.,
Lipschitz constants of aggregation functions). We experiment with the Polarity dataset. Figure 4
visualizes the relationship between the output of the three considered distance functions and the
Euclidean distance of the aggregated representations of multisets of documents from the Polarity
dataset. Since the Polarity dataset consists of documents which might differ from each other in the
number of terms, by Theorem 3.1 we can derive upper bounds only for 3 out of the 9 combinations
of distance functions for multisets and aggregation functions. As expected, the Lipschitz bounds
(dash lines) upper bound the Euclidean distance of the outputs of the aggregation functions. With
regards to the tightness of the bounds, we observe that the bounds that are associated with the MEAN
and SUM functions are tighter than the one associated with the MAX function. The correlations
between the distances of multisets and the Euclidean distances of the aggregated representations of
multisets are relatively low in most of the cases. All three distance functions are mostly correlated
with the aggregation functions with which they are related via Theorem 3.1. The highest correlation
is achieved between EMD and the MEAN function (r = 0.89).

E.2 UPPER BOUNDS OF LIPSCHITZ CONSTANTS OF NEURAL NETWORKS FOR SETS

We next provide some additional empirical results that validate the findings of Theorem 3.1 (i. e.,
upper bounds of Lipschitz constants of neural networks for sets). Since the Polarity dataset consists

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure 4: Each dot corresponds to a textual document from the test set of Polarity that is represented
as a multiset of word vectors. Each subfigure compares the distance of documents computed by
a distance function for multisets (i. e., EMD, Hausdorff distance or matching distance) against the
Euclidean distance of the representations of the documents that emerge after the application of an
aggregation function (i. e., MEAN, SUM or MAX). The correlation between the two distances is
also computed and visualized. The Lipschitz bounds (dash lines) upper bound the distances of the
outputs of the aggregation functions.

of documents which might differ from each other in the number of terms, by Theorem 3.4 we can
derive upper bounds only for 2 out of the 9 combinations of distance functions for multisets and
aggregation functions. While the dash lines upper bound the Euclidean distance of the outputs of
the aggregation functions, both bounds are relatively loose on the Polarity dataset. The correlations
between the distances of the representations produced by the neural network for the multisets and
the distances produced by distance functions for multisets are much lower than those of the previous
experiments. The highest correlation is equal to 0.55 (between the neural network that utilizes
the MEAN aggregation function and EMD), while there are even negative correlations. This is not
surprising since for most of the combinations, there are no upper bounds on the Lipschitz constant
of the corresponding neural networks.

We also visualize the relationship between the output of the three considered distance functions and
the Euclidean distance of the multiset representations that are produced by a neural network that
utilizes the attention mechanism that is presented in section 3.2. Specifically, the neural network is
identical to NNMEAN, NNSUM and NNMAX, but instead of the standard aggregation functions, it em-
ploys the aforementioned attention mechanism. The experiments are conducted on the ModelNet40
dataset and the results are shown in Figure 6. We have shown that the attention mechanism is not
Lipschitz continuous with respect to any of the three considered distance functions, and therefore
the neural network models that employ this mechanism are also not Lipschitz continuous. We ob-
serve in Figure 6 that the correlations are indeed much lower than those illustrated in Figure 2 which
confirms our theoretical result.
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Figure 5: Each dot corresponds to a textual document from the test set of Polarity. Each subfigure
compares the distance of input documents represented as multisets of word vectors computed by
EMD, Hausdorff distance or matching distance against the Euclidean distance of the representations
of the documents that emerge at the second-to-last layer of NNMEAN, NNSUM or NNMAX. The corre-
lation between the two distances is also computed and reported. The Lipschitz bounds (dash lines)
upper bound the distances of the outputs of the neural networks.

Figure 6: Each dot corresponds to a point cloud from the test set of ModelNet40. Each subfig-
ure compares the distance of the latent representations of the point clouds computed by a distance
function for multisets (i. e., EMD, Hausdorff distance or matching distance) against the Euclidean
distance of the representations of the point clouds that emerge at the second-to-last layer of a neural
network that consists of a fully-connected layer, an attention mechanism that aggregates the repre-
sentations of the elements and two more fully-connected layers. The correlation between the two
distances is also computed and visualized.

E.3 STABILITY OF NEURAL NETWORKS FOR SETS UNDER PERTURBATIONS

Here we provide some further details about the experiments presented in subsection 4.3. Specifically,
for the experiments conducted on ModelNet40, we attribute the drop in performance of NNMAX to the
large Hausdorff distances between each test sample and its perturbed version. For each test sample
Xi (where i ∈ [2468]), let X ′

i denote the multiset that emerges from the application of Pert. #1 to
Xi. Let also yi denote the class label of sample Xi. We compute the Hausdorff distance between Xi

and X ′
i (dH(Xi, X

′
i)). We then compute the average Hausdorff distance between Xi and the rest of

the test samples that belong to the same class as Xi. Let Si = {Xj : j ∈ [2468], yi = yj} denote the
set of all test samples that belong to the same class as Xi. Then, we compute d̄H(Xi,Si) as follows:

d̄H(Xi,Si) =
1

|Si| − 1

∑
Y ∈Si\{Xi}

dH(Xi, Y )
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Figure 7: Accuracy drop of the NNMEAN and NNMAX models, and Wasserstein distance with p = 1
between groups when the EMD and the Hausdorff distance are used as ground metrics.

We then compute dH(Xi, X
′
i) − d̄H(Xi,Si). If this value is positive, then the distance from Xi to

X ′
i is greater than the average distance of Xi to the other multisets that belong to the same class as

Xi. We calculated this value for all test samples and then computed the average value which was
found to be 2.63(±1.10). In general, the perturbation increases the upper bound of the Lipschitz
constant of NNMAX compared to the upper bound for samples that belong to the same class, and thus
Xi and X ′

i might end up having dissimilar representations. On the other hand, for EMD, the average
distance is equal to −1.18(±0.72). For EMD the upper bound is in general tighter than the bound
for pairs of multisets that belong to the same class, and this explains why NNMEAN is robust to Pert.
#1.

E.4 GENERALIZATION UNDER DISTRIBUTION SHIFTS

To evaluate the generalization of the two Lipschitz continuous models (NNMEAN and NNMAX) under
distribution shifts, we also experiment with the Amazon review dataset (Blitzer et al., 2007). The
dataset consists of product reviews from Amazon for four different types of products (domains),
namely books, DVDs, electronics and kitchen appliances. For each domain, there exist 2, 000 la-
beled reviews (positive or negative) and the classes are balanced. We construct 4 adaptation tasks.
In each task, the NNMEAN and NNMAX models are trained on reviews for a single type of products
and evaluated on all domains.

Each review is represented as a multiset of word vectors. The word vectors are obtained from a
publicly available pre-trained model (Mikolov et al., 2013). The NNMEAN and NNMAX models consist
of an MLP which transforms the representations of the words, an aggregation function (MEAN and
MAX, respectively) and a second MLP which produces the output. Both MLPs consist of two hidden
layers. The ReLU function is applied to the outputs of the first layer and also dropout is applied
between the two layers with p = 0.2. The hidden dimension size is set to 64 for all hidden layers.
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Table 3: Average performance (accuracy or root mean square error) of the NNSUM, NNMEAN and
NNMAX on the four benchmark datasets.

MODELNET40 (↑) POLARITY (↑) IMDB (↓) IMDB-BINARY (↑)
NNSUM 60.07 ± 2.12 76.93 ± 2.42 0.2210 ± 0.0085 70.20 ± 1.72
NNMEAN 63.41 ± 0.98 77.11 ± 2.34 0.2159 ± 0.0033 67.00 ± 2.52
NNMAX 77.21 ± 1.09 78.14 ± 1.94 0.2259 ± 0.0017 61.40 ± 2.57

The model is trained for 50 epochs by minimizing the cross-entropy loss function with the Adam
optimizer and a learning rate of 0.001. At the end of each epoch, we compute the performance of
the model on the validation set, and we choose as our final model the one that achieved the smallest
loss on the validation set.

Figure 7 illustrates the Wasserstein distance with p = 1 between groups when the EMD (Top Right)
and the Hausdorff distance (Bottom Right) are used as ground metrics. It also shows the drop
in accuracy when the NNMEAN (Top Left) and NNMAX (Bottom Left) models are trained on one
domain and evaluated on the others. Each row corresponds to one specific model, e. g., the first
row represents the model trained on the reviews for books. We observe that in general the drop in
accuracy follows a similar pattern with the distance between the source and target domains, i. e.,
the higher the distance the higher the drop in accuracy. We also computed the Pearson correlation
between the drop in accuracy and the domain dicrepancies. We found that the Wasserstein distance
based on EMD highly correlates with the accuracy drop of NNMEAN (r = 0.917), while there is
an even higher correlation between the Wasserstein distance based on Hausdorff distance and the
accuracy drop of NNMAX (r = 0.941).

E.5 PREDICTIVE PERFORMANCE OF NEURAL NETWORKS FOR SETS

We next evaluate the NNSUM, NNMEAN and NNMAX models on four classification and regression
datasets, namely ModelNet40, Polarity, IMDB and IMDB-BINARY. The first two datasets are de-
scribed in section 4. IMDB contains movie reviews from the IMDb database (Maas et al., 2011).
The targets are the ratings that accompany the reviews (10 different values). We treat this task as a
regression problem. IMDB-BINARY is a standard graph classification dataset (Yanardag & Vish-
wanathan, 2015), commonly used for evaluating graph kernels and graph neural networks. Each
graph of the IMDB-BINARY dataset was represented as a multiset of the degrees of its nodes. The
results are illustrated in Table 3. Each experiment was repeated 5 times with different random seeds,
and for each dataset we report average accuracy (for ModelNet40, Polarity and IMDB-BINARY) or
average root mean square error (for IMDB) on the dataset’s test set and the corresponding standard
deviation.

We can see that NNMAX outperforms the other models on ModelNet40. A possible explanation
is that all input multisets have the same size, and in such a setting the max aggregator is Lipschitz
continuous with respect to all three considered distance functions. Therefore, NNMAX can effectively
capture the distances between the point clouds in ModelNet40.

Polarity consists of short reviews (average number of terms = 20). Therefore, whether a review is
positive or negative depends primarily on the presence of one or a few terms that indicate sentiment.
These terms can be considered extreme elements, and the Hausdorff distance relies on such extreme
elements when comparing its inputs. This distance function thus seems to be suitable for this task
and potentially explains why NNMAX is the best-performing model on this dataset.

The reviews contained in the IMDB dataset are much longer than those in the Polarity dataset (aver-
age number of terms = 254). Due to the potential presence of outlier terms, the Hausdorff distance
may not accurately capture document similarity. The matching distance can also be sensitive to doc-
ument length. In contrast, EMD captures the overall semantic alignment between documents, and
compares documents based on their overall meaning. This makes EMD more suitable for this task,
which is empirically confirmed by the superior performance of NNMEAN compared to the other two
models.
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NNSUM is the best-performing method on the IMDB-BINARY dataset. In this dataset, capturing
both the number of nodes and their degrees is essential. The matching distance is well suited for this
task, and the stronger performance of the NNSUM model, which is Lipschitz continuous with respect
to this distance (under certain conditions), supports this intuition.

E.6 PRACTICAL GUIDANCE ON CHOOSING ARCHITECTURES

As a general guideline, one should choose the function that is Lipschitz continuous with respect
to the distance function that best captures the distances between the multisets in the considered
dataset or problem. For example, in problems where the shape of the input object matters (e. g.,
shapes extracted from medical images or 3D scans), Hausdorff distance is preferable to EMD and
the matching distance since we would like to detect whether any part of one shape is far away from
the other shape, even if the rest of the shapes are well-aligned. However, in some cases, not a
single distance function is suitable for a single problem. For instance, consider the problem of text
categorization, where documents are represented as multisets of word vectors. If two documents are
considered similar when they contain similar terms, regardless of their length, the EMD is likely
to best capture the distance between them. On the other hand, if similarity is determined by the
presence of just one or a few extreme shared words, the Hausdorff distance is more appropriate.
This illustrates that selecting an aggregation function typically requires some domain knowledge.
In the absence of such knowledge, choosing an aggregation function can be challenging, except in
special cases, such as when multisets have the same cardinality where our results indicate that the
max function is Lipschitz continuous with respect to all distance functions.
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