

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THE LIPSCHITZ CONTINUITY OF SET AGGREGA- TION FUNCTIONS AND NEURAL NETWORKS FOR SETS

Anonymous authors

Paper under double-blind review

ABSTRACT

The Lipschitz constant of a neural network is connected to several important properties of the network such as its robustness and generalization. It is thus useful in many settings to estimate the Lipschitz constant of a model. Prior work has focused mainly on estimating the Lipschitz constant of multi-layer perceptrons and convolutional neural networks. Here we focus on data modeled as sets or multisets of vectors and on neural networks that can handle such data. These models typically apply some permutation invariant aggregation function, such as the sum, mean or max operator, to the input multisets to produce a single vector for each input sample. In this paper, we investigate whether these aggregation functions, **along with an attention-based aggregation function**, are Lipschitz continuous with respect to three distance functions for unordered multisets, and we compute their Lipschitz constants. In the general case, we find that each aggregation function is Lipschitz continuous with respect to only one of the three distance functions, **while the attention-based function is not Lipschitz continuous with respect to any of them**. Then, we build on these results to derive upper bounds on the Lipschitz constant of neural networks that can process multisets of vectors, while we also study their stability to perturbations and generalization under distribution shifts. To empirically verify our theoretical analysis, we conduct a series of experiments on datasets from different domains.

1 INTRODUCTION

In the past decade, deep neural networks have been applied with great success to several problems in different machine learning domains ranging from computer vision (Krizhevsky et al., 2012; He et al., 2016) to natural language processing (Vaswani et al., 2017; Peters et al., 2018). Owing to their recent success, these models are now ubiquitous in machine learning applications. However, deep neural networks can be very sensitive to their input. Indeed, it is well-known that if some specially designed small perturbation is applied to an image, it can cause a neural network model to make a false prediction even though the perturbed image looks “normal” to humans (Szegedy et al., 2014; Goodfellow et al., 2015).

A key metric for quantifying the robustness of neural networks to small perturbations is the Lipschitz constant. Training neural networks with bounded Lipschitz constant has been considered a promising direction for producing models robust to adversarial examples (Tsuzuku et al., 2018; Anil et al., 2019; Trockman & Kolter, 2021). However, if Lipschitz constraints are imposed, neural networks might lose a significant portion of their expressive power (Zhang et al., 2022a). Therefore, typically no constraints are imposed, and the neural network’s Lipschitz constant is determined once the model is trained. Unfortunately, even for two-layer neural networks, exact computation of this quantity is NP-hard (Virmaux & Scaman, 2018). A recent line of work has thus focused on estimating the Lipschitz constant of neural networks, mainly by deriving upper bounds (Virmaux & Scaman, 2018; Fazlyab et al., 2019; Latorre et al., 2020; Combettes & Pesquet, 2020; Kim et al., 2021; Pabbaraju et al., 2021; Chuang & Jegelka, 2022). Efficiency is often sacrificed for the sake of tighter bounds (e.g., use of semidefinite programming) which underlines the need for accurate estimation of the Lipschitz constant.

Prior work estimates mainly the Lipschitz constant of architectures composed of fully-connected and convolutional layers. However, in several domains, input data might correspond to complex objects which consist of other simpler objects. We typically model these complex objects as sets or multisets (i.e., a generalization of a set). For instance, in computer vision, a point cloud is a set of data points in the 3-dimensional space. Likewise, in natural language processing, documents

054 Table 1: Summary of main results. Lipschitz constants of the different aggregation functions with
 055 respect to the three considered distance functions. d denotes the dimension of the vectors. The “-”
 056 symbol denotes that the function is not Lipschitz continuous with respect to a given metric. \dagger : all
 057 multisets have equal cardinalities ($= M$).
 058

	SUM	MEAN	MAX
EMD	$\dagger L = M$	$L = 1$	$\dagger L = M$
HAUSDORFF DIST.	-	-	$L = \sqrt{d}$
MATCHING DIST.	$L = 1$	$\dagger L = 1/M$	$\dagger L = 1$

062 may be represented by multisets of word embeddings. Neural networks for sets typically consist of
 063 a series of fully-connected layers followed by an aggregation function which produces a represen-
 064 tation for the entire multiset (Zaheer et al., 2017; Qi et al., 2017a). For the model to be invariant
 065 to permutations of the multiset’s elements, a permutation invariant aggregation function needs to
 066 be employed. Common functions include the sum, mean and max operators. While previous work
 067 has studied the expressive power of neural networks that employ the aforementioned aggregation
 068 functions (Wagstaff et al., 2019; 2022), their Lipschitz continuity and stability to perturbations re-
 069 mains underexplored. Besides those standard aggregation functions, other methods for embedding
 070 multisets have been proposed recently such as the Fourier Sliced-Wasserstein embedding which is
 071 bi-Lipschitz with respect to the Wasserstein distance (Amir & Dym, 2025).

072 In this paper, we consider three distance functions between multisets of vectors and investigate
 073 whether the three commonly-employed aggregation functions (i.e., sum, mean, max), **along with**
 074 **an attention-based function**, are Lipschitz continuous with respect those functions. We show that
 075 for multisets of arbitrary size, each aggregation function is Lipschitz continuous with respect to
 076 only a single distance function, **while the attention-based function is not Lipschitz continuous with**
 077 **respect to any of them**. On the other hand, if all multisets have equal cardinalities, each aggregation
 078 function is Lipschitz continuous with respect to other distance functions as well. Our results are
 079 summarized in Table 1. We also study the Lipschitz constant of neural networks for sets which
 080 employ the aforementioned aggregation functions. We find that for multisets of arbitrary size, the
 081 models that employ the mean and max operators are Lipschitz continuous with respect to a single
 082 metric and we provide upper bounds on their Lipschitz constants. Strikingly, we also find that there
 083 exist models that employ the sum operator which are not Lipschitz continuous. We also relate the
 084 Lipschitz constant of those networks to their generalization performance under distribution shifts.
 085 We verify our theoretical results empirically on real-world datasets from different domains.

2 PRELIMINARIES

2.1 NOTATION

086 Let \mathbb{N} denote the set of natural numbers. Then, $[n] = \{1, \dots, n\} \subset \mathbb{N}$ for $n \geq 1$. Let also $\{\!\!\{ \cdot \}\!\!\}$
 087 denote a multiset, i.e., a generalized concept of a set that allows multiple instances for its elements.
 088 Since a set is also a *multiset*, in what follow we use the term “multiset” to refer to both sets and
 089 multisets. Here we focus on finite multisets whose elements are d -dimensional real vectors. Let
 090 $M \in \mathbb{N} \setminus \{1\}$. We denote by $\mathcal{S}_{\leq M}(\mathbb{R}^d)$ and by $\mathcal{S}_M(\mathbb{R}^d)$ the set of all those multisets that consist
 091 of at most M and of exactly M elements, respectively. We drop the subscript when it is clear from
 092 context. The elements of a multiset do not have an inherent ordering. Therefore, the two multisets
 093 $X = \{\!\!\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2 \}\!\!\}$ and $Y = \{\!\!\{ \mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_2 \}\!\!\}$ are equal to each other, i.e., $X = Y$. The cardinality
 094 $|X|$ of a multiset X is equal to the number of elements of X . Vectors are denoted by boldface
 095 lowercase letters (e.g., \mathbf{v} and \mathbf{u}) and matrices by boldface uppercase letters (e.g., \mathbf{A} and \mathbf{M}). Given
 096 some vector \mathbf{v} , we denote by $[\mathbf{v}]_i$ the i -th element of the vector. Likewise, given some matrix \mathbf{M} ,
 097 we denote by $[\mathbf{M}]_{ij}$ the element in the i -th row and j -th column of the matrix.

2.2 LIPSCHITZ CONTINUOUS FUNCTIONS

100 **Definition 2.1.** Given two metric spaces $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$, a function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is called
 101 Lipschitz continuous if there exists a real constant $L \geq 0$ such that, for all $x_1, x_2 \in \mathcal{X}$, we have that

$$d_{\mathcal{Y}}(f(x_1), f(x_2)) \leq L d_{\mathcal{X}}(x_1, x_2)$$

104 The smallest such L is called the Lipschitz constant of f .

105 In this paper, we focus on functions $f: \mathcal{S}(\mathbb{R}^d) \rightarrow \mathbb{R}^{d'}$ that map multisets of d -dimensional vectors
 106 to d' -dimensional vectors. Therefore, $\mathcal{X} = \mathcal{S}(\mathbb{R}^d)$, while $\mathcal{Y} = \mathbb{R}^{d'}$. For $d_{\mathcal{X}}$, we consider three
 107 distance functions for multisets of vectors (presented in subsection 2.4 below), while $d_{\mathcal{Y}}$ is induced
 108 by the ℓ_2 -norm, i.e., $d_{\mathcal{Y}}(f(x_1), f(x_2)) = \|f(x_1) - f(x_2)\|_2$.

108
109 2.3 AGGREGATION FUNCTIONS
110
111

As already discussed, we consider three permutation invariant aggregation functions which are commonly employed in deep learning architectures, namely the SUM, MEAN and MAX operators.

SUM	MEAN	MAX
$f_{\text{SUM}}(X) = \sum_{\mathbf{v} \in X} \mathbf{v}$	$f_{\text{MEAN}}(X) = \frac{1}{ X } \sum_{\mathbf{v} \in X} \mathbf{v}$	$[f_{\text{MAX}}(X)]_i = \max \left(\{[\mathbf{v}]_i : \mathbf{v} \in X\} \right), \quad \forall i \in [d]$

116 The sum aggregator can represent a strictly larger class of functions over sets than the mean and
117 max aggregators. If the elements of the input sets come from a countable set \mathcal{X} , then for an appropriate $f: \mathcal{X} \rightarrow \mathbb{R}$, the function defined as $g(\{x_1, \dots, x_n\}) = \sum_{i=1}^n f(x_i)$ maps the input sets
118 injectively to \mathbb{R} (Zaheer et al., 2017). Notably, it is also shown that injectivity is sufficient for ap-
119 proximation. On the other hand, the mean and max functions are not injective set functions. These
120 results have been also generalized to multisets (Xu et al., 2019). Note, however, that it has been
121 empirically observed that mean and max aggregators can outperform the sum aggregator in certain
122 applications (Zaheer et al., 2017; Cappart et al., 2023).
123

124 2.4 DISTANCE FUNCTIONS FOR UNORDERED MULTISETS
125

126 We next present the three considered functions for comparing multisets to each other. Let $X =$
127 $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ and $Y = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ denote two multisets of vectors, i.e., $X, Y \in \mathcal{S}(\mathbb{R}^d)$.
128 The three functions require to compute the distance between each element of the first multiset and
129 every element of the second multiset. We use the distance induced by the ℓ_2 -norm (i.e., Euclidean
130 distance) to that end. Note also that all three functions can be computed in polynomial time in the
131 number of elements of the input multisets.

132 **Earth Mover’s Distance.** The *earth mover’s distance* (EMD) is a measure of dissimilarity be-
133 tween two distributions (Rubner et al., 2000). Roughly speaking, given two distributions, the output
134 of EMD is proportional to the minimum amount of work required to change one distribution into
135 the other. Over probability distributions, EMD is also known as the Wasserstein metric with $p = 1$
136 (\mathcal{W}_1). We use the formulation of the EMD where the total weights of the signatures are equal to
137 each other which is known to be a metric on the space of sets of vectors (Rubner et al., 2000) and a
138 pseudometric on $\mathcal{S}(\mathbb{R}^d)$:

$$d_{\text{EMD}}(X, Y) = \min_{\mathbf{F}} \sum_{i=1}^m \sum_{j=1}^n [\mathbf{F}]_{ij} \|\mathbf{v}_i - \mathbf{u}_j\|_2$$

subject to $[\mathbf{F}]_{ij} \geq 0, \quad 1 \leq i \leq m, \quad 1 \leq j \leq n$

$$\sum_{j=1}^n [\mathbf{F}]_{ij} = \frac{1}{m}, \quad 1 \leq i \leq m$$

$$\sum_{i=1}^m [\mathbf{F}]_{ij} = \frac{1}{n}, \quad 1 \leq j \leq n$$

147 **Hausdorff distance.** The *Hausdorff distance* is another measure of dissimilarity between two mul-
148 tisets of vectors (Rockafellar & Wets, 1998). It represents the maximum distance of a multiset to the
149 nearest point in the other multiset, and is defined as follows:

$$h(X, Y) = \max_{i \in [m]} \min_{j \in [n]} \|\mathbf{v}_i - \mathbf{u}_j\|_2$$

150 The above distance function is not symmetric and thus it is not a metric. The bidirectional Hausdorff
151 distance between X and Y is then defined as:
152

$$d_H(X, Y) = \max(h(X, Y), h(Y, X))$$

153 The bidirectional Hausdorff distance is a metric on the space of sets of vectors and a pseudometric
154 on $\mathcal{S}(\mathbb{R}^d)$. Roughly speaking, its value is small if every point of either set is close to some point of
155 the other set.

156 **Matching Distance.** We also define a distance function for multisets of vectors, so-called *match-
157 ing distance*, where elements of one multiset are assigned to elements of the other. If one of the
158 multisets is larger than the other, some elements of the former are left unassigned. The assignments

162 are determined by a permutation of the elements of the larger multiset. Let \mathfrak{S}_n denote the set of all
 163 permutations of a multiset with n elements. The matching distance between X and Y is defined as:
 164

$$165 \quad d_M(X, Y) = \begin{cases} M(X, Y) & \text{if } m \geq n \\ M(Y, X) & \text{otherwise.} \end{cases}$$

$$167 \quad \text{where } M(X, Y) = \min_{\pi \in \mathfrak{S}_m} \left[\sum_{i=1}^n \|\mathbf{v}_{\pi(i)} - \mathbf{u}_i\|_2 + \sum_{i=n+1}^m \|\mathbf{v}_{\pi(i)}\|_2 \right]$$

169 and $M(Y, X)$ is defined analogously. **Variants of this distance function have been introduced in prior
 170 work (Chuang & Jegelka, 2022; Davidson & Dym, 2024).** If the elements of the input multisets do
 171 not contain the zero vector, the matching distance is a metric.

172 **Proposition 2.2** (Proof in Appendix B.1). *The matching distance is a metric on $\mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$ where
 173 $d \in \mathbb{N}$ and $\mathbf{0}$ is the zero vector. It is a pseudometric on $\mathcal{S}(\mathbb{R}^d)$.*

174 For multisets of the same size, the matching distance is related to EMD.

175 **Proposition 2.3** (Proof in Appendix B.2). *Let $X, Y \in \mathcal{S}(\mathbb{R}^d)$ denote two multisets of the same size,
 176 i. e., $|X| = |Y| = M$. Then, we have that $d_M(X, Y) = M d_{EMD}(X, Y)$.*

178 3 LIPSCHITZ CONTINUITY OF SET AGGREGATION FUNCTIONS AND 179 NEURAL NETWORKS

181 3.1 LIPSCHITZ CONTINUITY OF AGGREGATION FUNCTIONS

182 We first investigate whether the three aggregation functions which are key components in several
 183 neural network architectures are Lipschitz continuous with respect to the three considered distance
 184 functions for unordered multisets.

185 **Theorem 3.1** (Proof in Appendix B.3).

- 186 1. *The MEAN function defined on $\mathcal{S}_{\leq M}(\mathbb{R}^d)$ is Lipschitz continuous with respect to EMD and
 187 its Lipschitz constant is $L = 1$, but is not Lipschitz continuous with respect to the Hausdorff
 188 distance and with respect to the matching distance.*
- 189 2. *The SUM function defined on $\mathcal{S}_{\leq M}(\mathbb{R}^d)$ is Lipschitz continuous with respect to the matching
 190 distance and its Lipschitz constant is $L = 1$, but is not Lipschitz continuous with respect to
 191 EMD and with respect to the Hausdorff distance.*
- 192 3. *The MAX function defined on $\mathcal{S}_{\leq M}(\mathbb{R}^d)$ is Lipschitz continuous with respect to the Hausdorff
 193 distance and its Lipschitz constant is $L = \sqrt{d}$, but is not Lipschitz continuous with respect to
 194 EMD and with respect to the matching distance.*

196 The above theoretical result suggests that there is some correspondence between the three aggregation
 197 functions and the three metrics for unordered multisets. In fact, each aggregation function
 198 seems to be closely related to a single metric. We also observe that while the Lipschitz constants
 199 of the SUM and MEAN functions with respect to the matching distance and to EMD, respectively,
 200 is constant (equal to 1), the Lipschitz constant of the MAX function with respect to the Hausdorff
 201 distance depends on the dimension d of the vectors. **A direct consequence of the above Theorem is
 202 that no two of the considered distance functions are bi-Lipschitz equivalent.**

203 As discussed above, the SUM function is theoretically more expressive than the rest of the functions.
 204 However, in practice it has been observed that in certain tasks MEAN and MAX aggregators
 205 lead to higher levels of performance (Zaheer et al., 2017; Cappart et al., 2023). While this discrepancy
 206 between theory and empirical evidence may be attributed to the training procedure rather
 207 than to expressivity, it suggests that there is no single aggregation function that provides a superior
 208 performance under all possible circumstances and motivates the study of all three of them.

209 Our previous result showed that each aggregation function is Lipschitz continuous only with respect
 210 to a single metric for multisets. It turns out that if the multisets have fixed size, then the aggregation
 211 functions are Lipschitz continuous also with respect to other functions. **This is not surprising given
 212 Proposition B.2.**

213 **Lemma 3.2** (Proof in Appendix B.4).

- 214 1. *The MEAN function defined on $\mathcal{S}_M(\mathbb{R}^d)$ is Lipschitz continuous with respect to the matching
 215 distance and its Lipschitz constant is $L = \frac{1}{M}$, but is not Lipschitz continuous with respect to
 216 the Hausdorff distance.*

216 2. The SUM function defined on $\mathcal{S}_M(\mathbb{R}^d)$ is Lipschitz continuous with respect to EMD and its
 217 Lipschitz constant is $L = M$, but is not Lipschitz continuous with respect to the Hausdorff
 218 distance.

219 3. The MAX function defined on $\mathcal{S}_M(\mathbb{R}^d)$ is Lipschitz continuous with respect to EMD and its
 220 Lipschitz constant is $L = M$, and it is also Lipschitz continuous with respect to the matching
 221 distance and its Lipschitz constant is $L = 1$.

222 According to the above Lemma, the MAX function is Lipschitz continuous with respect to all three
 223 distance functions when all multisets have the same cardinality. This suggests that in such a setting,
 224 if any of the three distance functions is insensitive to some perturbation applied to the input data,
 225 this perturbation will not result in a large variation in the output of the MAX function.

226 In addition to the standard aggregation functions described above, recent work has also explored
 227 neural-based approaches for aggregating multisets of vectors. Here, we consider an *attention mechanism*,
 228 which is commonly employed to produce a vector from a multiset of vectors, and has
 229 achieved significant success in the fields of natural language processing (Yang et al., 2016; Niko-
 230 lentzos et al., 2020) and graph learning (Veličković et al., 2018; Brody et al., 2022). Given a multiset
 231 $X = \{\{\mathbf{v}_1, \dots, \mathbf{v}_m\}\} \in \mathcal{S}(\mathbb{R}^d)$, the attention mechanism is defined as follows:

$$232 \quad f_{\text{ATT}}(X) = \sum_{i=1}^m \alpha_i \mathbf{v}_i \quad \text{where} \quad \alpha_i = \frac{\exp(\mathbf{q}^\top g(\mathbf{W} \mathbf{v}_i))}{\sum_{j=1}^m \exp(\mathbf{q}^\top g(\mathbf{W} \mathbf{v}_j))}$$

235 where $\mathbf{W} \in \mathbb{R}^{d' \times d}$ and $\mathbf{q} \in \mathbb{R}^{d'}$ denote a trainable matrix and a trainable vector, respectively, while
 236 g denotes some activation function. The output of the mechanism is a convex combination of the
 237 multiset's elements.

238 We next investigate whether the attention mechanism $f_{\text{ATT}}(X)$ is Lipschitz continuous with respect
 239 to the three considered distance functions for multisets of vectors.

240 **Proposition 3.3** (Proof in Appendix B.5). *There exist instances of $f_{\text{ATT}}(X)$ defined on $\mathcal{S}_M(\mathbb{R}^d)$
 241 which are not Lipschitz continuous with respect to any of the three considered distance functions.*

242 Our result aligns with the finding of Kim et al. (2021) who showed that the standard self-attention
 243 mechanism is not Lipschitz. Note, however, that the definition of the considered attention mech-
 244 anism differs from that of self-attention. Kim et al. (2021) also proposed an alternative ℓ_2 self-
 245 attention that is Lipschitz. *Incorporating ℓ_2 attention into the definition of $f_{\text{ATT}}(X)$, unfortunately,
 246 does not make it Lipschitz* (more details in Appendix B.6).

247 3.2 UPPER BOUNDS OF LIPSCHITZ CONSTANTS OF NEURAL NETWORKS FOR SETS

248 Neural networks that are designed for multisets typically consist of a series of fully-connected layers
 249 (i. e., a multi-layer perceptron (MLP)) followed by an aggregation function which is then potentially
 250 followed by further fully-connected layers. Exact computation of the Lipschitz constant of MLPs
 251 is NP-hard (Virmaux & Scaman, 2018). However, as already discussed, there exist several approx-
 252 imation algorithms which can compute tight upper bounds for MLPs (Virmaux & Scaman, 2018;
 253 Fazlyab et al., 2019; Combettes & Pesquet, 2020). An MLP that consists of K layers is actu-
 254 ally a function $f_{\text{MLP}}: \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ defined as: $f_{\text{MLP}}(\mathbf{v}) = T_K \circ \rho_{K-1} \circ \dots \circ \rho_1 \circ T_1(\mathbf{v})$ where
 255 $T_i: \mathbf{v} \mapsto \mathbf{W}_i \mathbf{v} + \mathbf{b}_i$ is an affine function and ρ_i is a non-linear activation function for all $i \in [K]$.
 256 Let $\text{Lip}(f_{\text{MLP}})$ denote the Lipschitz constant of the MLP. Note that the Lipschitz constant depends
 257 on the choice of norm, and here we assume ℓ_2 -norms for the domain and codomain of f_{MLP} .

258 Given a multiset of vectors $X = \{\{\mathbf{v}_1, \dots, \mathbf{v}_m\}\}$, let NN_g denote a neural network model which
 259 computes its output as $\text{NN}_g(X) = f_{\text{MLP}_2}(g(\{\{f_{\text{MLP}_1}(\mathbf{v}_1), \dots, f_{\text{MLP}_1}(\mathbf{v}_m)\}\})$ where g denotes
 260 the employed aggregation function (i. e., MEAN, SUM or MAX).

262 Here we investigate whether NN_g is Lipschitz continuous with respect to the three considered met-
 263 rics for multisets of vectors. In fact, the next Theorem utilizes the Lipschitz constants for MEAN and
 264 MAX from Theorem 3.1 to upper bound the Lipschitz constants of those neural networks.

265 **Theorem 3.4** (Proof in Appendix B.7).

- 266 1. NN_{MEAN} defined on $\mathcal{S}_{\leq M}(\mathbb{R}^d)$ is Lipschitz continuous with respect to EMD and its Lipschitz
 267 constant is upper bounded by $\text{Lip}(f_{\text{MLP}_2}) \cdot \text{Lip}(f_{\text{MLP}_1})$.
- 268 2. There exist instances of NN_{SUM} defined on $\mathcal{S}_{\leq M}(\mathbb{R}^d)$ which are not Lipschitz continuous with
 269 respect to the matching distance.

270 3. NN_{MAX} defined on $\mathcal{S}_{\leq M}(\mathbb{R}^d)$ is Lipschitz continuous with respect to the Hausdorff distance
 271 and its Lipschitz constant is upper bounded by $\sqrt{d} \cdot \text{Lip}(f_{\text{MLP}_2}) \cdot \text{Lip}(f_{\text{MLP}_1})$.
 272

273 The above result suggests that if the Lipschitz constants of the MLPs are small, then the Lipschitz
 274 constant of the NN_{MEAN} and NN_{MAX} models with respect to EMD and Hausdorff distance, respec-
 275 tively, will also be small. Therefore, if proper weights are learned (or a method is employed that
 276 restricts the Lipschitz constant of the MLPs), we can obtain models stable under perturbations of the
 277 input multisets with respect to EMD or Hausdorff distance. **On the other hand, NN_{SUM} is not neces-**
 278 **sarily Lipschitz continuous with respect to the matching distance. This is due to the *bias parameters***
 279 **of f_{MLP_1} . Interestingly, if we omit the bias terms of that layer, NN_{SUM} also becomes Lipschitz**
 280 **continuous with respect to the matching distance.**

281 If the input multisets have fixed size, then we can derive upper bounds for the Lipschitz constant of
 282 NN_{SUM} , but also of NN_{MEAN} and NN_{MAX} with respect to other metrics.

283 **Lemma 3.5** (Proof in Appendix B.8).

284 1. NN_{MEAN} defined on $\mathcal{S}_M(\mathbb{R}^d)$ is Lipschitz continuous with respect to the matching distance and
 285 its Lipschitz constant is upper bounded by $\frac{1}{M} \cdot \text{Lip}(f_{\text{MLP}_2}) \cdot \text{Lip}(f_{\text{MLP}_1})$.
 286 2. NN_{SUM} defined on $\mathcal{S}_M(\mathbb{R}^d)$ is Lipschitz continuous with respect to the matching distance
 287 and its Lipschitz constant is upper bounded by $\text{Lip}(f_{\text{MLP}_2}) \cdot \text{Lip}(f_{\text{MLP}_1})$, and is also Lip-
 288 schitz continuous with respect to EMD and its Lipschitz constant is upper bounded by
 289 $M \cdot \text{Lip}(f_{\text{MLP}_2}) \cdot \text{Lip}(f_{\text{MLP}_1})$.
 290 3. NN_{MAX} defined on $\mathcal{S}_M(\mathbb{R}^d)$ is Lipschitz continuous with respect to EMD and its Lipschitz
 291 constant is upper bounded by $M \cdot \text{Lip}(f_{\text{MLP}_2}) \cdot \text{Lip}(f_{\text{MLP}_1})$, and it is also Lipschitz contin-
 292 uous with respect to the matching distance and its Lipschitz constant is upper bounded by
 293 $\text{Lip}(f_{\text{MLP}_2}) \cdot \text{Lip}(f_{\text{MLP}_1})$.
 294

3.3 STABILITY OF NEURAL NETWORKS FOR SETS UNDER PERTURBATIONS

295 The Lipschitz constant is a well-established tool for assessing the stability of neural networks to
 296 small perturbations. Due to space limitations, we only present a single perturbation, namely ele-
 297 ment addition. Other types of perturbations (e.g., element disruption) are provided in Appendix C.
 298 Theorem 3.4 implies that the output variation of NN_{MEAN} and NN_{MAX} under perturbations of the el-
 299 ements of an input multiset can be bounded via the EMD and Hausdorff distance between the input
 300 and perturbed multisets, respectively. It can be combined with the following result to determine the
 301 robustness of NN_{MEAN} and NN_{MAX} to the addition of a single element to a multiset.
 302

303 **Proposition 3.6** (Proof in Appendix B.9). *Given a multiset of vectors $X = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \in \mathcal{S}_{\leq M}(\mathbb{R}^d)$, let $X' = \{\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{v}_{n+1}\} \in \mathcal{S}_{\leq M}(\mathbb{R}^d)$ be the multiset where element \mathbf{v}_{n+1} has
 304 been added to X , where $n + 1 \leq M$. Then,*

306 1. The EMD between X and X' is bounded as $d_{\text{EMD}}(X, X') \leq \frac{1}{n(n+1)} \sum_{i=1}^n \|\mathbf{v}_i - \mathbf{v}_{n+1}\|$
 307 2. The Hausdorff distance between X and X' is equal to $d_H(X, X') = \min_{i \in [n]} \|\mathbf{v}_i - \mathbf{v}_{n+1}\|$
 308

3.4 GENERALIZATION OF NEURAL NETWORKS FOR SETS UNDER DISTRIBUTION SHIFTS

310 Finally, we capitalize on a prior result (Shen et al., 2018), and bound the generalization error of
 311 neural networks for sets under distribution shifts. Let \mathcal{X} denote the set of input data and \mathcal{Y} the
 312 output space. Here we focus on binary classification tasks, i.e., $\mathcal{Y} = \{0, 1\}$. Let μ_S and μ_T
 313 denote the distribution of *source* and *target* instances, respectively. In domain adaptation, a single
 314 labeling function $f: \mathcal{X} \rightarrow [0, 1]$ is associated with both the source and target domains. A hypothesis
 315 class \mathcal{H} is a set of predictor functions, i.e., $\forall h \in \mathcal{H}, h: \mathcal{X} \rightarrow \mathcal{Y}$. To estimate the adaptability
 316 of a hypothesis h , i.e., its generalization to the target distribution, the objective is to bound the
 317 target error (a.k.a. risk) $\epsilon_T(h) = \mathbb{E}_{x \sim \mu_T} [|h(x) - f(x)|]$ with respect to the source error $\epsilon_S(h) =$
 318 $\mathbb{E}_{x \sim \mu_S} [|h(x) - f(x)|]$ (Ben-David et al., 2010). Shen et al. show that if the hypothesis class is
 319 Lipschitz continuous, then the target error can be bounded by the Wasserstein distance with $p = 1$
 320 for empirical measures on the source and target domain samples.
 321

322 **Theorem 3.7** ((Shen et al., 2018)). *For all hypotheses $h \in \mathcal{H}$, the target error is bounded as:*

$$\epsilon_T(h) \leq \epsilon_S(h) + 2L\mathcal{W}_1(\mu_S, \mu_T) + \lambda$$

323 where L is the Lipschitz constant of h and λ is the combined error of the ideal hypothesis h^* that
 minimizes the combined error $\epsilon_S(h) + \epsilon_T(h)$.

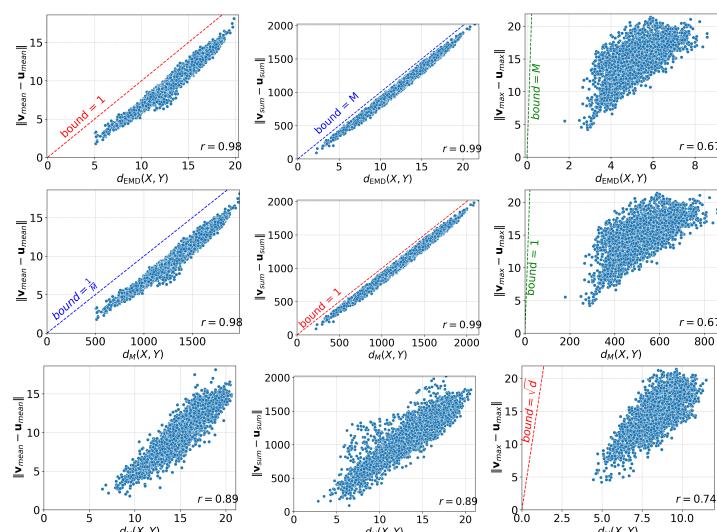


Figure 1: Each dot corresponds to a point cloud from the test set of ModelNet40. Each subfigure compares the distance of the *latent representations* of the point clouds computed by a distance function for multisets (i.e., EMD, Hausdorff distance or matching distance) against the Euclidean distance of the representations of the point clouds that emerge after the application of an aggregation function (i.e., MEAN, SUM or MAX). The correlation between the two distances is also computed and visualized. The Lipschitz bounds are illustrated with dashed lines.

This bound can be applied to neural networks for sets that are Lipschitz continuous with respect to a given metric. Since NN_{MEAN} and NN_{MAX} are Lipschitz continuous for arbitrary multisets, EMD and Hausdorff distance can serve as ground metrics for these models. Specifically, for the two aforementioned models, the domain discrepancy $\mathcal{W}_1(\mu_S, \mu_T)$ is defined as $\mathcal{W}_1(\mu_S, \mu_T) = \inf_{\pi \in \Pi(\mu_S, \mu_T)} \int d(X, Y) d\pi(X, Y)$ where $d(X, Y)$ is EMD or the Hausdorff distance, respectively.

4 NUMERICAL EXPERIMENTS

We experiment with two datasets from different domains: (i) *ModelNet40*: it contains 12,311 3D CAD models that belong to 40 object categories (Wu et al., 2015); and (ii) *Polarity*: it contains 10,662 positive and negative labeled movie review snippets from Rotten Tomatoes (Pang & Lee, 2004). Note that the samples of both datasets can be thought of as multisets of vectors. Each sample of ModelNet40 is a multiset of 3-dimensional vectors. Polarity consists of textual documents, and each document is represented as a multiset of word vectors. The word vectors are obtained from a publicly available pre-trained model (Mikolov et al., 2013).

4.1 LIPSCHITZ CONSTANT OF AGGREGATION FUNCTIONS

In the first set of experiments, we empirically validate the results of Theorem 3.1 and Lemma 3.2. To obtain a collection of multisets of vectors, we train three different neural network models on the ModelNet40 and Polarity datasets. The difference between the three models lies in the employed aggregation function: MEAN, SUM or MAX. More details about the different layers of those models are given in Appendix D. **Note that the multisets used to verify the Lipschitz constants of the aggregation functions could, in principle, be generated by any means. We use those models to create multisets since the objective is to investigate how these functions behave in comparison to the derived bounds when the inputs are sampled from real distributions.** Once the models are trained, we feed the test samples to them. For each test sample, we store the multiset of vectors produced by the layer of the model that precedes the aggregation function, and we also store the output of the aggregation function (a vector for each multiset). We then randomly choose 100 test samples, and for each pair of those samples, we compute the EMD, Hausdorff distance and matching distance of their multisets of vectors, and also the Euclidean distance of their vector representations produced by the aggregation function. This gives rise to 9 combinations of distance functions and aggregation functions in total. Due to limited available space, we only show results for ModelNet40 in Figure 1. The results for Polarity can be found in Appendix E.1. Note that there are $\binom{100}{2} = 4,950$ distinct pairs in total. Therefore, 4,950 dots are visualized in each subfigure. To quantify the relationship between the output of the distance functions for multisets and the Euclidean distances of their vec-

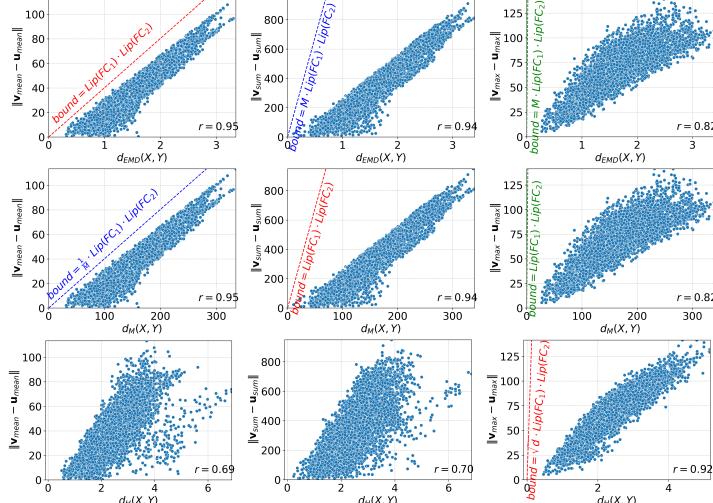


Figure 2: Each dot corresponds to a point cloud from the test set of ModelNet40. Each subfigure compares the distance of input point clouds computed by EMD, Hausdorff distance or matching distance against the Euclidean distance of the representations of the point clouds that emerge at the second-to-last layer of NN_{MEAN} , NN_{SUM} or NN_{MAX} .

tor representations, we compute and report the Pearson correlation coefficient. We observe from Figure 1 that the Lipschitz bounds (dash lines) successfully upper bound the Euclidean distance of the outputs of the aggregation functions. Note that all point clouds contained in the ModelNet40 dataset have equal cardinalities. Therefore, **the conclusions of both Theorem 3.1 and Lemma 3.2 apply to this case**, and thus we can derive Lipschitz constants for 7 out of the 9 combinations of distance functions for multisets and aggregation functions. We can see that the bounds that are associated with the MEAN and SUM functions are tight, while those associated with the MAX function are relatively loose. We also observe that the distances of the representations produced by the MEAN and SUM functions are very correlated with the distances produced by all three considered distance functions for multisets. On the other hand, the MAX function gives rise to representations that are less correlated with the produced distances.

4.2 UPPER BOUNDS OF LIPSCHITZ CONSTANTS OF NEURAL NETWORKS FOR SETS

In the second set of experiments, we empirically validate the results of Theorem 3.4 and Lemma 3.5 on the ModelNet40 and Polarity datasets. We build neural networks that consist of three layers: (i) a fully-connected layer; (ii) an aggregation function; and (iii) a second fully-connected layer. Therefore, those models first transform the elements of the input multisets using an affine function, then aggregate the representations of the elements of each multiset and finally they transform the aggregated representations using another affine function. Note that the Lipschitz constant of an affine function is equal to the largest singular value of the associated weight matrix, and can be exactly computed in polynomial time. We thus denote by $\text{Lip}(\text{FC}_1)$ and $\text{Lip}(\text{FC}_2)$ the Lipschitz constants of the two fully-connected layers, respectively. **Note also that the Lipschitz constant of most activation functions (e.g., ReLU, LeakyReLU, Tanh) is equal to 1.** Therefore, we can compute an upper bound of the Lipschitz constant of some models using Theorem 3.4 and Lemma 3.5. To train the models, we add a final layer to the models which transforms the vector representations of the multisets into class probabilities. We use the same experimental protocol as in subsection 4.1 above (i.e., we randomly choose 100 test samples). We only provide results for ModelNet40 in Figure 2, while the results for Polarity can be found in Appendix E.2. Since all point clouds contained in the ModelNet40 dataset have equal cardinalities, **the conclusions of both Theorem 3.4 and Lemma 3.5 apply to this setting**, and thus, once again, we can derive upper bounds on the Lipschitz constants for 7 out of the 9 combinations of distance functions for multisets and aggregation functions. We observe that the bounds (Lipschitz upper bounds from Theorem 3.4 and Lemma 3.5) indeed upper bound the Euclidean distance of the outputs of the aggregation functions. We can also see that the bounds that are associated with the MEAN function are tight, while those associated with the SUM and MAX functions are relatively loose and very loose, respectively. We also observe that the distances of the representations produced by the MEAN and SUM functions are very correlated with the distances produced by EMD and matching distance. On the other hand, the MAX function

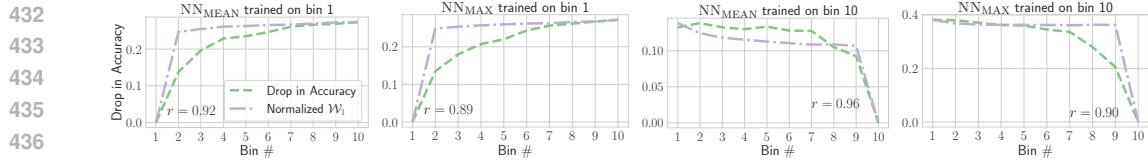


Figure 3: Size Generalization of NN_{MEAN} and NN_{MAX} models. For illustration purposes, the Wasserstein distances \mathcal{W}_1 are normalized to make the maximal distance equal to the greatest performance drops. The models of the left plots are trained on the first bucket, while those of the right plots on the last bucket.

gives rise to representations whose distances are less correlated with the distances produced by the distance functions for multisets.

4.3 STABILITY UNDER PERTURBATIONS OF INPUT MULTISETS

We now empirically study the stability of the two Lipschitz continuous models (NN_{MEAN} and NN_{MAX}) under perturbations of the input multisets. Our objective is to apply small perturbations to test samples such that the models misclassify the perturbed samples. We consider two different perturbations, Pert. #1 and Pert. #2. Both perturbations are applied to test samples once each model has been trained. We then examine whether the perturbation leads to a decrease in the accuracy achieved on the test set. Pert. #1 is the perturbation described in Proposition 3.6 and is applied to the multisets of ModelNet40. Specifically, we add to each test sample a single element. We choose to add the element that has the highest norm across the elements of all samples. Pert. #2 is applied to the multisets of Polarity. It adds random noise to each element of each multiset of the test set. Specifically, a random vector is sampled from $\mathcal{U}(0, 0.2)^d$ and is added to each element of each test sample. **We selected this distribution because its mean and standard deviation closely match the empirical mean and standard deviation of the dataset's word vectors.** The results are provided in Table 2. NN_{MEAN} appears to be insensitive to Pert. #1, while NN_{MAX} is insensitive to Pert. #2. The results indicate that NN_{MEAN} is more robust than NN_{MAX} to a larger perturbation that is associated with a single or a few elements of the multiset. On the other hand, NN_{MAX} is more robust to smaller perturbations applied to all elements of the multiset.

4.4 GENERALIZATION UNDER DISTRIBUTION SHIFTS

Finally, we investigate whether neural networks for multisets can generalize to multisets of different cardinalities. We randomly sample 2,000 documents from the Polarity dataset, and we represent them as multisets of word vectors. We then sort the multisets of word vectors based on their cardinality, and construct 10 bins, each containing 200 multisets. The i -th bin contains multisets $X_{(200i)+1}, X_{(200i)+2}, \dots, X_{(200i)+200}$ from the sorted list of multisets. We then train NN_{MEAN} and NN_{MAX} (which are Lipschitz continuous) on the first and the last bin and once the models are trained, we compute their accuracy on all 10 bins. We also compute the Wasserstein distance with $p = 1$ between domain distributions (i. e., between the first bin and the rest of the bins, and also between the last bin and the rest of the bins). We then aim to validate Theorem 3.7 which states that the error on different domains can be bounded by the Wasserstein distance between the data distributions. We thus compute the correlation between the accuracy drop and the Wasserstein distance between the two distributions. The results for NN_{MEAN} and NN_{MAX} are illustrated in Figure 3. The results are averaged over 10 runs. We observe that the Wasserstein distance between the data distributions using EMD (for NN_{MEAN}) and Hausdorff distance (for NN_{MAX}) as ground metrics highly correlates with the accuracy drop both in the case where the NN_{MEAN} and NN_{MAX} models are trained on small multisets and tested on larger multisets ($r = 0.92$ and $r = 0.90$, respectively) and also in the case where the models are trained on large multisets and tested on smaller multisets ($r = 0.94$ and $r = 0.90$, respectively). The correlation is slightly weaker in the case of the NN_{MAX} model. Our results suggest that the drop in accuracy is indeed related to the Wasserstein distance between the data distributions, and that it can provide insights into the generalization performance of the models.

5 CONCLUSION

In this paper, we studied the Lipschitz continuity of multiset aggregation functions with respect to three distance functions. We also explored the Lipschitz constants of neural networks that process multisets of vectors. Our theoretical results were confirmed by numerical experiments.

Table 2: Average drop in accuracy of NN_{MEAN} and NN_{MAX} after perturbations Pert. #1 and Pert. #2 are applied to the multisets of the test set.

Model	ModelNet40 Pert. #1	Polarity Pert. #2
NN_{MEAN}	$2.0 (\pm 1.3)$	$13.6 (\pm 7.1)$
NN_{MAX}	$20.1 (\pm 1.8)$	$4.8 (\pm 3.7)$

486 REFERENCES
487

488 Tal Amir and Nadav Dym. Fourier Sliced-Wasserstein Embedding for Multisets and Measures. In
489 *13th International Conference on Learning Representations*, 2025.

490 Tal Amir, Steven Gortler, Ilai Avni, Ravina Ravina, and Nadav Dym. Neural Injective Functions for
491 Multisets, Measures and Graphs via a Finite Witness Theorem. In *Advances in Neural Information
492 Processing Systems*, pp. 42516–42551, 2023.

493 Cem Anil, James Lucas, and Roger Grosse. Sorting Out Lipschitz Function Approximation. In
494 *Proceedings of the 36th International Conference on Machine Learning*, pp. 291–301, 2019.

495 Radu Balan, Naveed Haghani, and Maneesh Singh. Permutation-invariant representations with ap-
496 plications to graph deep learning. *Applied and Computational Harmonic Analysis*, pp. 101798,
497 2025.

498 Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
499 man Vaughan. A theory of learning from different domains. *Machine Learning*, 79:151–175,
500 2010.

501 Dimitris Bertsimas and John N Tsitsiklis. *Introduction to Linear Optimization*, volume 6. Athena
502 Scientific, 1997.

503 John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman. Learning
504 Bounds for Domain Adaptation. In *Advances in Neural Information Processing Systems*, pp.
505 129–136, 2007.

506 Maria Boulougouri, Pierre Vandergheynst, and Daniel Probst. Molecular set representation learning.
507 *Nature Machine Intelligence*, 6(7):754–763, 2024.

508 Shaked Brody, Uri Alon, and Eran Yahav. How Attentive are Graph Attention Networks? In *10th
509 International Conference on Learning Representations*, 2022.

510 Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
511 Veličković. Combinatorial Optimization and Reasoning with Graph Neural Networks. *Journal of
512 Machine Learning Research*, 24(130):1–61, 2023.

513 Ching-Yao Chuang and Stefanie Jegelka. Tree Mover’s Distance: Bridging Graph Metrics and
514 Stability of Graph Neural Networks. In *Advances in Neural Information Processing Systems*, pp.
515 2944–2957, 2022.

516 Brian Clarke, Eva Holtkamp, Hakime Öztürk, Marcel Mück, Magnus Wahlberg, Kayla Meyer, Felix
517 Munzlinger, Felix Brechtmann, Florian R Hözlwimmer, Jonas Lindner, et al. Integration of variant
518 annotations using deep set networks boosts rare variant association testing. *Nature Genetics*,
519 56(10):2271–2280, 2024.

520 Patrick L Combettes and Jean-Christophe Pesquet. Lipschitz Certificates for Layered Network
521 Structures Driven by Averaged Activation Operators. *SIAM Journal on Mathematics of Data
522 Science*, 2(2):529–557, 2020.

523 Yair Davidson and Nadav Dym. On the Hölder Stability of Multiset and Graph Neural Net-
524 works. In *13th International Conference on Learning Representations*, 2024.

525 Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
526 and Accurate Estimation of Lipschitz Constants for Deep Neural Networks. In *Advances in neural
527 information processing systems*, pp. 11427–11438, 2019.

528 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
529 Examples. In *3rd International Conference on Learning Representations*, 2015.

530 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
531 Recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
532 nition*, pp. 770–778, 2016.

540 Chaitanya K Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the Expressive
 541 Power of Geometric Graph Neural Networks. In *Proceedings of the 40th International Conference*
 542 *on Machine Learning*, pp. 15330–15355, 2023.

543

544 Hyunjik Kim, George Papamakarios, and Andriy Mnih. The Lipschitz Constant of Self-Attention.
 545 In *Proceedings of the 38th International Conference on Machine Learning*, pp. 5562–5571, 2021.

546

547 Masanari Kimura, Ryotaro Shimizu, Yuki Hirakawa, Ryosuke Goto, and Yuki Saito. On
 548 permutation-invariant neural networks. *arXiv preprint arXiv:2403.17410*, 2024.

549

550 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Con-
 551 volutional Neural Networks. In *Advances in Neural Information Processing Systems*, pp. 1097–
 552 1105, 2012.

553

554 Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural networks
 555 via sparse polynomial optimization. In *8th International Conference on Learning Representa-
 556 tions*, 2020.

557

558 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
 559 Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. In *Pro-
 ceedings of the 36th International Conference on Machine Learning*, pp. 3744–3753, 2019.

560

561 Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
 562 Jegelka. Sign and Basis Invariant Networks for Spectral Graph Representation Learning. In *11th
 International Conference on Learning Representations*, 2023.

563

564 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
 565 Learning Word Vectors for Sentiment Analysis. In *Proceedings of the 49th Annual Meeting of the
 Association for Computational Linguistics: Human Language Technologies*, pp. 142–150, 2011.

566

567 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Repre-
 568 sentations of Words and Phrases and their Compositionality. In *Advances in Neural Information
 569 Processing Systems*, pp. 3111–3119, 2013.

570

571 Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy Pooling:
 572 Learning Deep Permutation-Invariant Functions for Variable-Size Inputs. In *7th International
 Conference on Learning Representations*, 2019.

573

574 Giannis Nikolentzos, Antoine Tixier, and Michalis Vazirgiannis. Message Passing Attention Net-
 575 works for Document Understanding. In *Proceedings of the 34th AAAI Conference on Artificial
 576 Intelligence*, pp. 8544–8551, 2020.

577

578 Chirag Pabbaraju, Ezra Winston, and J Zico Kolter. Estimating Lipschitz constants of monotone
 579 deep equilibrium models. In *9th International Conference on Learning Representations*, 2021.

580

581 Bo Pang and Lillian Lee. A Sentimental Education: Sentiment Analysis Using Subjectivity Summa-
 582 rization Based on Minimum Cuts. In *Proceedings of the 42nd Annual Meeting of the Association
 for Computational Linguistics*, pp. 271–278, 2004.

583

584 Giovanni Pellegrini, Alessandro Tibo, Paolo Frasconi, Andrea Passerini, and Manfred Jaeger. Learn-
 585 ing Aggregation Functions. In *Proceedings of the 30th International Joint Conference on Artificial
 586 Intelligence*, pp. 2892–2898, 2021.

587

588 Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
 589 and Luke Zettlemoyer. Deep Contextualized Word Representations. In *Proceedings of the 2018
 Conference of the North American Chapter of the Association for Computational Linguistics: Human
 Language Technologies, Volume 1 (Long Papers)*, pp. 2227–2237, 2018.

590

591 Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep Learning on Point Sets
 592 for 3D Classification and Segmentation. In *Proceedings of the IEEE Conference on Computer
 593 Vision and Pattern Recognition*, pp. 652–660, 2017a.

594 Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep Hierarchical
 595 Feature Learning on Point Sets in a Metric Space. In *Advances in Neural Information Processing*
 596 *Systems*, pp. 5105–5114, 2017b.

597

598 R Tyrrell Rockafellar and Roger JB Wets. *Variational Analysis*. Springer, 1998.

599 Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The Earth Mover’s Distance as a Metric for
 600 Image Retrieval. *International Journal of Computer Vision*, 40:99–121, 2000.

601

602 Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein Distance Guided Representation
 603 Learning for Domain Adaptation. In *Proceedings of the 32nd AAAI Conference on Artificial*
 604 *Intelligence*, pp. 4058–4065, 2018.

605 Konstantinos Skianis, Giannis Nikolentzos, Stratis Limnios, and Michalis Vazirgiannis. Rep the
 606 Set: Neural Networks for Learning Set Representations. In *Proceedings of the 23rd International*
 607 *Conference on Artificial Intelligence and Statistics*, pp. 1410–1420, 2020.

608

609 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 610 and Rob Fergus. Intriguing Properties of Neural Networks. In *2nd International Conference on*
 611 *Learning Representations*, 2014.

612 Asher Trockman and J Zico Kolter. Orthogonalizing Convolutional Layers with the Cayley Trans-
 613 form. In *9th International Conference on Learning Representations*, 2021.

614

615 Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-Margin Training: Scalable Certifi-
 616 cation of Perturbation Invariance for Deep Neural Networks. In *Advances in Neural Information*
 617 *Processing Systems*, pp. 6542–6551, 2018.

618

619 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 620 Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. In *Advances in Neural In-*
 621 *formation Processing Systems*, pp. 6000–6010, 2017.

622

623 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 624 Bengio. Graph Attention Networks. In *6th International Conference on Learning Representa-*
 625 *tions*, 2018.

626

627 Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order Matters: Sequence to sequence for sets.
 628 In *4th International Conference on Learning Representations*, 2016.

629

630 Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
 631 efficient estimation. In *Advances in Neural Information Processing Systems*, pp. 3839–3848,
 632 2018.

633

634 Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A Osborne. On
 635 the Limitations of Representing Functions on Sets. In *Proceedings of the 36th International*
 636 *Conference on Machine Learning*, pp. 6487–6494, 2019.

637

638 Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Michael A Osborne, and Ingmar Posner. Uni-
 639 versal Approximation of Functions on Sets. *Journal of Machine Learning Research*, 23(151):
 640 1–56, 2022.

641

642 Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaou Tang, and Jianxiong
 643 Xiao. 3D ShapeNets: A Deep Representation for Volumetric Shapes. In *Proceedings of the IEEE*
 644 *Conference on Computer Vision and Pattern Recognition*, pp. 1912–1920, 2015.

645

646 Jiahao Xie and Guangmo Tong. Advances in Set Function Learning: A Survey of Techniques and
 647 Applications. *ACM Computing Surveys*, 57(7):1–37, 2025.

648

649 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
 650 Networks? In *7th International Conference on Learning Representations*, 2019.

651

652 Pinar Yanardag and SVN Vishwanathan. Deep Graph Kernels. In *Proceedings of the 21th ACM*
 653 *SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 1365–1374,
 654 2015.

648 Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
 649 Attention Networks for Document Classification. In *Proceedings of the 2016 Conference of the*
 650 *North American Chapter of the Association for Computational Linguistics: Human Language*
 651 *Technologies*, pp. 1480–1489, 2016.

652 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, and
 653 Alexander J Smola. Deep Sets. In *Advances in Neural Information Processing Systems*, pp.
 654 3394–3404, 2017.

656 Bohang Zhang, Du Jiang, Di He, and Liwei Wang. Rethinking Lipschitz Neural Networks and Certi-
 657 fied Robustness: A Boolean Function Perspective. In *Advances in Neural Information Processing*
 658 *Systems*, pp. 19398–19413, 2022a.

660 Jie Zhang, Chen Cai, George Kim, Yusu Wang, and Wei Chen. Composition design of high-entropy
 661 alloys with deep sets learning. *npj Computational Materials*, 8(1):89, 2022b.

663 Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. FSPool: Learning Set Representations with
 664 Featurewise Sort Pooling. In *8th International Conference on Learning Representations*, 2020.

666 A RELATED WORK

668 In recent years, there has been an increasing interest in applying machine learning algorithms to set-
 669 structured data. Since sets and multisets are inherently unordered, these models need to be invariant
 670 to permutations of the elements in the input set. It has been shown that, otherwise, the ordering of
 671 inputs strongly affects performance (Vinyals et al., 2016).

673 The seminal work of Zaheer et al. (2017) introduced DeepSets, a model that uses the sum aggregator
 674 to produce permutation-invariant set representations. They showed that when the elements of the
 675 input sets come from a countable set \mathcal{X} , then for an appropriate $f: \mathcal{X} \rightarrow \mathbb{R}$, the function defined as

$$676 g(\{x_1, \dots, x_n\}) = \sum_{i=1}^n f(x_i)$$
 677 maps the input sets injectively to \mathbb{R} . This result was later extended to multisets (Xu et al., 2019). In the countable case, an embedding dimension of 1 already suffices
 678 for injectivity. When $\mathcal{X} = \mathbb{R}$, multiset cardinalities are bounded by m and f is continuous, an em-
 679 bedding dimension of at least m is both necessary and sufficient for injectivity (Wagstaff et al., 2019;
 680 2022). For $\mathcal{X} = \mathbb{R}^d$, an embedding dimension of at least md is necessary (Joshi et al., 2023). Most
 681 of these results rely on polynomial constructions to build injective multiset functions, after which the
 682 universal approximation theorem is invoked to argue that MLPs can approximate such polynomials.
 683 Amir et al. (2023) investigate whether MLP-based multiset functions are actually injective. They
 684 show that injectivity depends on the activation function. Specifically, analytic non-polynomial ac-
 685 tivation functions yield injective models, while networks with piecewise linear activation functions
 686 are injective only when \mathcal{X} is finite or corresponds to certain irregular, countably infinite sets.

686 Besides DeepSets, several other architectures and aggregation functions have been proposed re-
 687 cently. PointNet is another important architecture, primarily designed for point cloud data (Qi et al.,
 688 2017a). It consists of the same components as DeepSets, but instead of a sum aggregation function,
 689 it employs a max aggregator. To allow PointNet to capture local structures at different scales, Qi
 690 et al. (2017b) proposed PointNet++, a hierarchical model which applies PointNet recursively to
 691 nested partitions of the input set. Janossy pooling applies a neural network to all permutations of
 692 the input data and averages their outputs (Murphy et al., 2019). Since computing all permutations
 693 is generally intractable, the authors also propose some practical approximations. Set Transformer
 694 is a variant of the Transformer architecture designed for sets (Lee et al., 2019). Due to its attention
 695 mechanism, the model can capture interactions between elements in the input set. RepSet is an-
 696 other model designed for set-structured data which generates set representations by comparing the
 697 input set against learnable latent sets using a network flow algorithm (Skianis et al., 2020). FSPool
 698 sorts each feature across the elements of the set, and then computes a weighted sum of the elements
 699 where different weights can be learned for each feature dimension (Zhang et al., 2020). Pellegrini
 700 et al. (2021) propose a learnable aggregation function which can approximate common aggregation
 701 functions (e.g., mean, sum, max), but also more complex functions. Kimura et al. (2024) introduce
 702 the Hölder’s Power DeepSets, a model tha generalized DeepSets by employing function known as
 703 power-mean (a.k.a. Hölder mean), controlled by an exponent p .

Recently, a line of works has studied the Lipschitz continuity of aggregation functions and has developed embeddings that are bi-Lipschitz. Amir et al. (2023) showed that although DeepSets models that use analytic non-polynomial activation functions are injective, they are not bi-Lipschitz with respect to the 2-Wasserstein distance. Davidson & Dym (2024) investigated the Hölder continuity of neural networks for sets, a relaxation of Lipschitz continuity. They relied on a probabilistic framework of Hölder stability in expectation and showed that DeepSets with ReLU activation functions have an expected lower-Hölder exponent of $3/2$, whereas smooth activation functions yield a much worse expected lower-Hölder exponent. Balan et al. (2025) presented an embedding scheme based on sorting random projections of the multiset elements. The embedding is shown to be injective and bi-Lipschitz. The Fourier Sliced-Wasserstein (FSW) embedding is another theoretically grounded method for learning representations of sets (Amir & Dym, 2025). It computes random projections of the input data, and for each projection it samples the cosine transform of the corresponding quantile function. From a theoretical standpoint, the FSW embedding has a significant advantage over most previous methods, as it is proven to be both injective and bi-Lipschitz.

Neural network models that can handle set-structured data have been applied across diverse domains, including biology (Clarke et al., 2024), chemistry (Boulougouri et al., 2024) and materials science (Zhang et al., 2022b). In some applications, domain knowledge is incorporated into those models. For instance, Lim et al. (2023) introduce neural architectures specifically designed for eigenvector-based inputs, which can be viewed as variants of DeepSets, while explicitly accounting for the symmetries inherent in eigenvectors. For a recent overview of neural network models for set-structured data, we refer the reader to the survey by Xie & Tong (2025).

B PROOFS

We next provide the proofs of the theoretical claims made in the main paper.

B.1 PROOF OF PROPOSITION 2.2

We will show that the matching distance is a metric on $\mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$. Let $X, Y \in \mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$. Non-negativity and symmetry hold trivially in all cases. Furthermore, $d_M(X, X) = 0$, while the distance between two distinct points is always positive. Suppose that $m = |X| > |Y| = n$. Then, we have that:

$$d_M(X, Y) = \min_{\pi \in \mathfrak{S}_m} \left[\sum_{i=1}^n \|\mathbf{v}_{\pi(i)} - \mathbf{u}_i\| + \sum_{i=n+1}^m \|\mathbf{v}_{\pi(i)}\| \right] \geq \sum_{i=n+1}^m \|\mathbf{v}_{\pi(i)}\| > 0$$

since $\|\mathbf{v}\| > 0$ for all $\mathbf{v} \in \mathbb{R}^d \setminus \{\mathbf{0}\}$. If $|X| = |Y| = m$, since the two multisets are different from each other, there exists at least one vector \mathbf{u}_i with $i \in [m]$ such that $\mathbf{u}_i \in Y$, but $\mathbf{u}_i \notin X$. Let $\pi^* \in \mathfrak{S}_m$ denote a permutation associated with $d_M(X, Y)$. Then, we have that:

$$d_M(X, Y) = \|\mathbf{v}_{\pi^*(1)} - \mathbf{u}_1\| + \dots + \|\mathbf{v}_{\pi^*(i)} - \mathbf{u}_i\| + \dots + \|\mathbf{v}_{\pi^*(m)} - \mathbf{u}_m\| \geq \|\mathbf{v}_{\pi^*(i)} - \mathbf{u}_i\| > 0$$

Thus, we only need to prove that the triangle inequality holds. Let $S \in \mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$. The three multisets can have different cardinalities. Let $|X| = m$, $|Y| = n$ and $|S| = k$. Then, $X = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$, $Y = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ and $Z = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_k\}$. There are 6 different cases. But it suffices to show that the triangle inequality holds when $|X| \geq |Y| \geq |Z|$, when $|Z| \geq |Y| \geq |X|$ and when $|X| \geq |Z| \geq |Y|$. Proofs for the rest of the cases are similar.

Case 1: Suppose $|X| \geq |Y| \geq |Z|$. Let S_1^* denote the matching produced by the solution of the matching distance function $d_M(X, Z)$

$$\pi_1^* = \arg \min_{\pi \in \mathfrak{S}_m} \left[\sum_{i=1}^k \|\mathbf{v}_{\pi(i)} - \mathbf{z}_i\| + \sum_{i=k+1}^m \|\mathbf{v}_{\pi(i)}\| \right]$$

Likewise, let π_2^* denote the matching produced by the solution of the matching distance function $d_M(Z, Y)$

$$\pi_2^* = \arg \min_{\pi \in \mathfrak{S}_n} \left[\sum_{i=1}^k \|\mathbf{u}_{\pi(i)} - \mathbf{z}_i\| + \sum_{i=k+1}^n \|\mathbf{u}_{\pi(i)}\| \right]$$

756 Then, we have

$$\begin{aligned}
758 \quad d_M(X, Z) + d_M(Z, Y) &= \sum_{i=1}^k \|\mathbf{v}_{\pi_1^*(i)} - \mathbf{z}_i\| + \sum_{i=k+1}^m \|\mathbf{v}_{\pi_1^*(i)}\| + \sum_{i=1}^k \|\mathbf{z}_i - \mathbf{u}_{\pi_2^*(i)}\| + \sum_{i=k+1}^n \|\mathbf{u}_{\pi_2^*(i)}\| \\
759 \\
760 \\
761 &= \sum_{i=1}^k \left[\|\mathbf{v}_{\pi_1^*(i)} - \mathbf{z}_i\| + \|\mathbf{z}_i - \mathbf{u}_{\pi_2^*(i)}\| \right] + \sum_{i=k+1}^n \left[\|\mathbf{v}_{\pi_1^*(i)}\| + \|\mathbf{u}_{\pi_2^*(i)}\| \right] + \sum_{i=n+1}^m \|\mathbf{v}_{\pi_1^*(i)}\| \\
762 \\
763 \\
764 &\geq \sum_{i=1}^k \|\mathbf{v}_{\pi_1^*(i)} - \mathbf{u}_{\pi_2^*(i)}\| + \sum_{i=k+1}^n \|\mathbf{v}_{\pi_1^*(i)} - \mathbf{u}_{\pi_2^*(i)}\| + \sum_{i=n+1}^m \|\mathbf{v}_{\pi_1^*(i)}\| \\
765 \\
766 \\
767 &= \sum_{i=1}^n \|\mathbf{v}_{\pi_1^*(i)} - \mathbf{u}_{\pi_2^*(i)}\| + \sum_{i=n+1}^m \|\mathbf{v}_{\pi_1^*(i)}\| \\
768 \\
769 \\
770 &\geq \min_{\pi \in \mathfrak{S}_m} \left[\sum_{i=1}^n \|\mathbf{v}_{\pi(i)} - \mathbf{u}_i\| + \sum_{i=n+1}^m \|\mathbf{v}_{\pi(i)}\| \right] \\
771 \\
772 &= d_M(X, Y) \\
773
\end{aligned}$$

774 **Case 2:** Suppose $|X| \geq |Z| \geq |Y|$. Let π_1^* denote the matching produced by the solution of the
775 matching distance function $d_M(X, Z)$

$$\pi_1^* = \arg \min_{\pi \in \mathfrak{S}_m} \left[\sum_{i=1}^k \|\mathbf{v}_{\pi(i)} - \mathbf{z}_i\| + \sum_{i=k+1}^m \|\mathbf{v}_{\pi(i)}\| \right]$$

776 Likewise, let π_2^* denote the matching produced by the solution of the matching distance function
777 $d_M(Z, Y)$

$$\pi_2^* = \arg \min_{\pi \in \mathfrak{S}_k} \left[\sum_{i=1}^n \|\mathbf{z}_{\pi(i)} - \mathbf{u}_i\| + \sum_{i=n+1}^k \|\mathbf{z}_{\pi(i)}\| \right]$$

778 Then, we have

$$\begin{aligned}
779 \quad d_M(X, Z) + d_M(Z, Y) &= \sum_{i=1}^k \|\mathbf{v}_{\pi_1^*(i)} - \mathbf{z}_i\| + \sum_{i=k+1}^m \|\mathbf{v}_{\pi_1^*(i)}\| + \sum_{i=1}^n \|\mathbf{z}_{\pi_2^*(i)} - \mathbf{u}_i\| + \sum_{i=n+1}^k \|\mathbf{z}_{\pi_2^*(i)}\| \\
780 \\
781 &= \sum_{i=1}^n \left[\|\mathbf{v}_{\pi_1^*(\pi_2^*(i))} - \mathbf{z}_{\pi_2^*(i)}\| + \|\mathbf{z}_{\pi_2^*(i)} - \mathbf{u}_i\| \right] \\
782 \\
783 &\quad + \sum_{i=n+1}^k \left[\|\mathbf{v}_{\pi_1^*(\pi_2^*(i))} - \mathbf{z}_{\pi_2^*(i)}\| + \|\mathbf{z}_{\pi_2^*(i)}\| \right] + \sum_{i=k+1}^m \|\mathbf{v}_{\pi_1^*(i)}\| \\
784 \\
785 &\geq \sum_{i=1}^n \|\mathbf{v}_{\pi_1^*(\pi_2^*(i))} - \mathbf{u}_i\| + \sum_{i=n+1}^k \|\mathbf{v}_{\pi_1^*(\pi_2^*(i))}\| + \sum_{i=k+1}^m \|\mathbf{v}_{\pi_1^*(i)}\| \\
786 \\
787 &\geq \min_{\pi \in \mathfrak{S}_m} \left[\sum_{i=1}^n \|\mathbf{v}_{\pi(i)} - \mathbf{u}_i\| + \sum_{i=n+1}^k \|\mathbf{v}_{\pi(i)}\| \right] \\
788 \\
789 &= d_M(X, Y) \\
790 \\
791
\end{aligned}$$

801 **Case 3:** Suppose $|Z| \geq |Y| \geq |X|$. Let π_1^* denote the matching produced by the solution of the
802 matching distance function $d_M(X, Z)$

$$\pi_1^* = \arg \min_{\pi \in \mathfrak{S}_k} \sum_{i=1}^m \left[\|\mathbf{v}_i - \mathbf{z}_{\pi(i)}\| + \sum_{i=m+1}^k \|\mathbf{z}_{\pi(i)}\| \right]$$

803 Likewise, let π_2^* denote the matching produced by the solution of the matching distance function
804 $d_M(Z, Y)$

$$\pi_2^* = \arg \min_{\pi \in \mathfrak{S}_k} \left[\sum_{i=1}^n \|\mathbf{u}_i - \mathbf{z}_{\pi(i)}\| + \sum_{i=n+1}^k \|\mathbf{z}_{\pi(i)}\| \right]$$

810 Then, we have
 811

$$812 d_M(X, Z) + d_M(Z, Y) = \sum_{i=1}^m \|\mathbf{v}_i - \mathbf{z}_{\pi_1^*(i)}\| + \sum_{i=m+1}^k \|\mathbf{z}_{\pi_1^*(i)}\| + \sum_{i=1}^n \|\mathbf{z}_{\pi_2^*(i)} - \mathbf{u}_i\| + \sum_{i=n+1}^k \|\mathbf{z}_{\pi_2^*(i)}\|$$

$$813$$

$$814$$

815 For each $i \in [k]$, there exists a single $j \in [k]$ such that $\pi_1^*(i) = \pi_2^*(j)$. For each $i, j \in [k]$ with
 816 $\pi_1^*(i) = \pi_2^*(j)$ one of the following holds
 817

- 818 1. $\|\mathbf{v}_i - \mathbf{z}_{\pi_1^*(i)}\| + \|\mathbf{z}_{\pi_2^*(j)} - \mathbf{u}_j\| \geq \|\mathbf{v}_i - \mathbf{u}_j\|$ if $i \leq m$ and $j \leq n$
- 819 2. $\|\mathbf{v}_i - \mathbf{z}_{\pi_1^*(i)}\| + \|\mathbf{z}_{\pi_2^*(j)}\| \geq \|\mathbf{v}_i\|$ if $i \leq m$ and $j > n$
- 820 3. $\|\mathbf{z}_{\pi_1^*(i)}\| + \|\mathbf{z}_{\pi_2^*(j)} - \mathbf{u}_j\| \geq \|\mathbf{u}_j\|$ if $i > m$ and $j \leq n$
- 821 4. $\|\mathbf{z}_{\pi_1^*(i)}\| + \|\mathbf{z}_{\pi_2^*(j)}\| \geq 0$ if $i > m$ and $j > n$

$$822$$

$$823$$

824 Note that $d_M(X, Z) + d_M(Z, Y)$ can be written as a sum of k terms, where each term corresponds
 825 to one of the above 4 sums of norms. If we take pairs of terms of types 2 and 3 and we sum them,
 826 we have that
 827

$$828 \|\mathbf{v}_i - \mathbf{z}_{\pi_1^*(i)}\| + \|\mathbf{z}_{\pi_2^*(j)}\| + \|\mathbf{z}_{\pi_1^*(i)}\| + \|\mathbf{z}_{\pi_2^*(j)} - \mathbf{u}_j\| \geq \|\mathbf{v}_i\| + \|\mathbf{u}_j\| = \|\mathbf{v}_i\| + \|\mathbf{u}_j\| \geq \|\mathbf{v}_i - \mathbf{u}_j\|$$

$$829$$

830 Note also that type 2 occurs $m - n$ times more than type 3. Therefore, using the inequalities for the
 831 4 types of sums of norms above, we have
 832

$$833 d_M(X, Z) + d_M(Z, Y) \geq \min_{\pi \in \mathfrak{S}_m} \left[\sum_{i=1}^n \|\mathbf{v}_{\pi(i)} - \mathbf{u}_{\pi(i)}\| + \sum_{i=n+1}^m \|\mathbf{v}_{\pi(i)}\| \right]$$

$$834$$

$$835 = d_M(X, Y)$$

$$836$$

837 In case $\mathbf{0}$ can be an element of the multisets, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d)$ with $X \neq Y$ such that
 838 $d_M(X, Y) = 0$, i.e., the distance between two distinct points can be equal to 0. The rest of the
 839 properties still hold, and thus the matching distance is a pseudometric on $\mathcal{S}(\mathbb{R}^d)$.
 840

841 B.2 PROOF OF PROPOSITION 2.3

842 If $|X| = |Y| = M$, the second and third constraints of the optimization problem that needs to be
 843 solved to compute $d_{\text{EMD}}(X, Y)$ become as follows:
 844

$$845 \sum_{j=1}^M [\mathbf{F}]_{ij} = \frac{1}{M}, \quad 1 \leq i \leq M \quad \text{and} \quad \sum_{i=1}^M [\mathbf{F}]_{ij} = \frac{1}{M}, \quad 1 \leq j \leq M$$

$$846$$

$$847$$

$$848$$

849 Therefore, matrix \mathbf{F} is a doubly stochastic matrix. The Birkhoff-von Neumann Theorem states
 850 that the set of $M \times M$ doubly stochastic matrices forms a convex polytope whose vertices are the
 851 $M \times M$ permutation matrices. Furthermore, it is known that the optimal value of a linear objective
 852 in a nonempty polytope is attained at a vertex of the polytope (Bertsimas & Tsitsiklis, 1997). The
 853 optimal solution would thus be a permutation matrix \mathbf{F} . Let also $\sigma \in S_M$ denote the permutation
 854 that is associated with that matrix. Therefore, we have that:
 855

$$856 M d_{\text{EMD}}(X, Y) = M \min_{\mathbf{P} \in \mathcal{B}_M} \sum_{i=1}^M \sum_{j=1}^M [\mathbf{P}]_{ij} \|\mathbf{v}_i - \mathbf{u}_j\|_2$$

$$857$$

$$858 = M \min_{\mathbf{P} \in \Pi_M} \sum_{i=1}^M \sum_{j=1}^M [\mathbf{P}]_{ij} \|\mathbf{v}_i - \mathbf{u}_j\|_2$$

$$859$$

$$860 = M \min_{\pi \in \mathfrak{S}_M} \left[\sum_{i=1}^n \|\mathbf{v}_{\pi(i)} - \mathbf{u}_i\|_2 \right]$$

$$861$$

$$862$$

$$863 = d_M(X, Y)$$

864 B.3 PROOF OF THEOREM 3.1
865866 B.3.1 THE MEAN FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD
867

868 Let $X = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ and $Y = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be two multisets, consisting of m and n
869 vectors of dimension d , respectively. Let also \mathbf{F}^* denote the matrix that minimizes $d_{\text{EMD}}(X, Y)$.
870 Then, we have that:

$$\begin{aligned}
 871 \left\| f_{\text{MEAN}}(X) - f_{\text{MEAN}}(Y) \right\| &= \left\| \frac{1}{m} \sum_{i=1}^m \mathbf{v}_i - \frac{1}{n} \sum_{j=1}^n \mathbf{u}_j \right\| \\
 872 &= \left\| \sum_{i=1}^m \frac{1}{m} \mathbf{v}_i - \sum_{j=1}^n \frac{1}{n} \mathbf{u}_j \right\| \\
 873 &= \left\| \sum_{i=1}^m \left(\sum_{j=1}^n [\mathbf{F}^*]_{ij} \right) \mathbf{v}_i - \sum_{j=1}^n \left(\sum_{i=1}^m [\mathbf{F}^*]_{ij} \right) \mathbf{u}_j \right\| \\
 874 &= \left\| \sum_{i=1}^m \sum_{j=1}^n [\mathbf{F}^*]_{ij} (\mathbf{v}_i - \mathbf{u}_j) \right\| \\
 875 &\leq \sum_{i=1}^m \sum_{j=1}^n \|[\mathbf{F}^*]_{ij} (\mathbf{v}_i - \mathbf{u}_j)\| \\
 876 &= \sum_{i=1}^m \sum_{j=1}^n [\mathbf{F}^*]_{ij} \|(\mathbf{v}_i - \mathbf{u}_j)\| \\
 877 &= d_{\text{EMD}}(X, Y)
 \end{aligned}$$

889 The MEAN function is thus Lipschitz continuous with respect to EMD and the Lipschitz constant is
890 equal to 1.

891
892 B.3.2 THE MEAN FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
893 MATCHING DISTANCE

894 Suppose that the MEAN function is Lipschitz continuous with respect to the matching distance. Let
895 $L > 0$ be given. Let also $\epsilon > 0$ and $c > (2L + 1)\epsilon$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2\}$, $Y = \{\mathbf{u}_1\}$ be two multisets,
896 consisting of 2 and 1 vectors of dimension d , respectively. Then, we set $\mathbf{v}_1 = \mathbf{u}_1 = (c, c, \dots, c)^\top$,
897 and $\mathbf{v}_2 = (\epsilon, \epsilon, \dots, \epsilon)^\top$. Clearly, we have that $d_M(X, Y) = \|\mathbf{v}_2\| = \sqrt{d}\epsilon$. We also have that:

$$\begin{aligned}
 898 \left\| f_{\text{MEAN}}(X) - f_{\text{MEAN}}(Y) \right\| &= \left\| \frac{1}{2} \sum_{i=1}^2 \mathbf{v}_i - \mathbf{u}_1 \right\| \\
 899 &= \left\| \frac{1}{2} \mathbf{v}_1 + \frac{1}{2} \mathbf{v}_2 - \mathbf{u}_1 \right\| \\
 900 &= \left\| \frac{1}{2} (c, c, \dots, c)^\top + \frac{1}{2} (\epsilon, \epsilon, \dots, \epsilon)^\top - (c, c, \dots, c)^\top \right\| \\
 901 &= \left\| \left(\frac{\epsilon - c}{2}, \frac{\epsilon - c}{2}, \dots, \frac{\epsilon - c}{2} \right)^\top \right\| \\
 902 &= \frac{1}{2} \|(\epsilon - c, \epsilon - c, \dots, \epsilon - c)^\top\| \\
 903 &= \frac{1}{2} \sqrt{\underbrace{(\epsilon - c)^2 + (\epsilon - c)^2 + \dots + (\epsilon - c)^2}_{d \text{ times}}} \\
 904 &= \frac{1}{2} \sqrt{d}(\epsilon - c) \\
 905 &> \frac{1}{2} \sqrt{d}((2L + 1)\epsilon - \epsilon) \\
 906 &= L\sqrt{d}\epsilon
 \end{aligned}$$

$$= L d_M(X, Y)$$

Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d)$ such that $\|f_{\text{MEAN}}(X) - f_{\text{MEAN}}(Y)\| > L d_M(X, Y)$, which is a contradiction. Thus, the MEAN function is not Lipschitz continuous with respect to the matching distance.

B.3.3 THE MEAN FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE HAUSDORFF DISTANCE

Suppose that the MEAN function is Lipschitz continuous with respect to the Hausdorff distance. Let $L > 0$ be given. Let also $\epsilon > 0$ and $c > 3L\epsilon$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, $Y = \{\mathbf{u}_1, \mathbf{u}_2\}$ be two multisets, consisting of 3 and 2 vectors of dimension d , respectively. Then, we set $\mathbf{v}_1 = \mathbf{u}_1 = (-c, -c, \dots, -c)^\top$, $\mathbf{v}_2 = \mathbf{u}_2 = (c, c, \dots, c)^\top$ and $\mathbf{v}_3 = (c + \epsilon, c + \epsilon, \dots, c + \epsilon)^\top$. Clearly, we have that $d_H(X, Y) = \max_{i \in [3]} \min_{j \in [2]} \|\mathbf{v}_i - \mathbf{u}_j\| = \|\mathbf{v}_3 - \mathbf{u}_2\| = \sqrt{d}\epsilon$. We also have that:

$$\begin{aligned} \|f_{\text{MEAN}}(X) - f_{\text{MEAN}}(Y)\| &= \left\| \frac{1}{3} \sum_{i=1}^3 \mathbf{v}_i - \frac{1}{2} \sum_{j=1}^2 \mathbf{u}_j \right\| \\ &= \left\| \frac{1}{3} \mathbf{v}_1 + \frac{1}{3} \mathbf{v}_2 + \frac{1}{3} \mathbf{v}_3 - \frac{1}{2} \mathbf{u}_1 - \frac{1}{2} \mathbf{u}_2 \right\| \\ &= \left\| \frac{1}{3} \mathbf{v}_3 \right\| \\ &= \frac{1}{3} \sqrt{(c + \epsilon)^2 + (c + \epsilon)^2 + \dots + (c + \epsilon)^2} \\ &= \frac{1}{3} \sqrt{d(c + \epsilon)^2} \\ &= \frac{1}{3} \sqrt{d}(c + \epsilon) \\ &> \frac{1}{3} \sqrt{d}(3L\epsilon + \epsilon) \\ &> L\sqrt{d}\epsilon \\ &= L d_H(X, Y) \end{aligned}$$

For any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d)$ such that $\|f_{\text{MEAN}}(X) - f_{\text{MEAN}}(Y)\| > L d_H(X, Y)$. We have thus reached a contradiction. Therefore, the MEAN function is not Lipschitz continuous with respect to the Hausdorff distance.

B.3.4 THE SUM FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Suppose that the SUM function is Lipschitz continuous with respect to EMD. Let $L > 0$ be given. Then, let $m = \lfloor L + 1 \rfloor$. Let also $X = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$, $Y = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ be two multisets, each consisting of m vectors. We construct the two sets such that $\mathbf{v}_1 = \mathbf{u}_1$, $\mathbf{v}_2 = \mathbf{u}_2, \dots, \mathbf{v}_{m-1} = \mathbf{u}_{m-1}$, and $\mathbf{v}_1 + \dots + \mathbf{v}_{m-1} = \mathbf{u}_1 + \dots + \mathbf{u}_{m-1} = 0$. Let also $\|\mathbf{v}_m - \mathbf{u}_m\| = m$. We already showed in subsection B.3.1 that the distance between the mean vectors of two multisets of vectors is a lower bound on the EMD between them. Therefore, we have that:

$$\begin{aligned} \sum_{i=1}^m \sum_{j=1}^m [\mathbf{F}]_{ij} \|\mathbf{v}_i - \mathbf{u}_j\| &\geq \left\| \frac{1}{m} \sum_{i=1}^m \mathbf{v}_i - \frac{1}{m} \sum_{j=1}^m \mathbf{u}_j \right\| \\ &= \frac{1}{m} \|(\mathbf{v}_1 - \mathbf{u}_1) + (\mathbf{v}_2 - \mathbf{u}_2) + \dots + (\mathbf{v}_m - \mathbf{u}_m)\| \\ &= \frac{1}{m} \|\mathbf{v}_m - \mathbf{u}_m\| \\ &= \frac{1}{m} m = 1 \end{aligned}$$

We can achieve the lower bound if we set the values of \mathbf{F} as follows:

$$[\mathbf{F}^*]_{ij} = \begin{cases} \frac{1}{m} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

972 Therefore, the EMD between X and Y is equal to 1. Then, we have that:
 973

$$\begin{aligned}
 974 \quad \|f_{\text{SUM}}(X) - f_{\text{SUM}}(Y)\| &= \left\| \sum_{i=1}^m \mathbf{v}_i - \sum_{j=1}^m \mathbf{u}_j \right\| \\
 975 &= \|(\mathbf{v}_1 - \mathbf{u}_1) + (\mathbf{v}_2 - \mathbf{u}_2) + \dots + (\mathbf{v}_m - \mathbf{u}_m)\| \\
 976 &= \|\mathbf{v}_m - \mathbf{u}_m\| \\
 977 &= m \cdot 1 \\
 978 &= m \sum_{i=1}^m \sum_{j=1}^m [\mathbf{F}^*]_{ij} \|\mathbf{v}_i - \mathbf{u}_j\| \\
 979 &> L \sum_{i=1}^m \sum_{j=1}^m [\mathbf{F}^*]_{ij} \|\mathbf{v}_i - \mathbf{u}_j\| \\
 980 &= L d_{\text{EMD}}(X, Y) \\
 981 \\
 982 \\
 983 \\
 984 \\
 985 \\
 986
 \end{aligned}$$

987 Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$ such that $\|f_{\text{SUM}}(X) - f_{\text{SUM}}(Y)\| > L d_{\text{EMD}}(X, Y)$. We have thus arrived at a contradiction, and the SUM function is not Lipschitz
 988 continuous with respect to EMD.
 989

991 B.3.5 THE SUM FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING 992 DISTANCE

993 Let $X = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ and $Y = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be two multisets, consisting of m and n
 994 vectors of dimension d , respectively. Without loss of generality, we assume that $m > n$. Let π^*
 995 denote the matching produced by the solution of the matching distance function:
 996

$$997 \quad \pi^* = \arg \min_{\pi \in \mathfrak{S}_m} \left[\sum_{i=1}^n \|\mathbf{v}_{\pi(i)} - \mathbf{u}_i\| + \|\mathbf{v}_{\pi(n+1)}\| + \dots + \|\mathbf{v}_{\pi(m)}\| \right]
 998$$

1000 Then, we have that:

$$\begin{aligned}
 1001 \quad \|f_{\text{SUM}}(X) - f_{\text{SUM}}(Y)\| &= \left\| \sum_{i=1}^m \mathbf{v}_i - \sum_{j=1}^n \mathbf{u}_j \right\| \\
 1002 &= \|(\mathbf{v}_{\pi^*(1)} - \mathbf{u}_1) + \dots + (\mathbf{v}_{\pi^*(n)} - \mathbf{u}_n) + \mathbf{v}_{\pi^*(n+1)} + \dots + \mathbf{v}_{\pi^*(m)}\| \\
 1003 &\leq \|\mathbf{v}_{\pi^*(1)} - \mathbf{u}_1\| + \dots + \|\mathbf{v}_{\pi^*(n)} - \mathbf{u}_n\| + \|\mathbf{v}_{\pi^*(n+1)}\| + \dots + \|\mathbf{v}_{\pi^*(m)}\| \\
 1004 &= \sum_{i=1}^n \|\mathbf{v}_{\pi^*(i)} - \mathbf{u}_i\| + \|\mathbf{v}_{\pi^*(n+1)}\| + \dots + \|\mathbf{v}_{\pi^*(m)}\| \\
 1005 &= \min_{\pi \in \mathfrak{S}_m} \left[\sum_{i=1}^n \|\mathbf{v}_{\pi(i)} - \mathbf{u}_i\| + \|\mathbf{v}_{\pi(n+1)}\| + \dots + \|\mathbf{v}_{\pi(m)}\| \right] \\
 1006 &= d_M(X, Y) \\
 1007 \\
 1008 \\
 1009 \\
 1010 \\
 1011 \\
 1012
 \end{aligned}$$

1013 which concludes the proof. The SUM function is thus Lipschitz continuous with respect to the
 1014 matching distance and the Lipschitz constant is equal to 1.
 1015

1016 B.3.6 THE SUM FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE 1017 HAUSDORFF DISTANCE

1018 Suppose that the SUM function is Lipschitz continuous with respect to the Hausdorff distance. Let
 1019 $L > 0$ be given. Let also $\epsilon > 0$ and $c > L\epsilon$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2\}$, $Y = \{\mathbf{u}_1\}$ be two multisets,
 1020 consisting of 2 and 1 vectors of dimension d , respectively. Then, we set $\mathbf{v}_1 = \mathbf{u}_1 = (c, c, \dots, c)^\top$
 1021 and $\mathbf{v}_2 = (c+\epsilon, c+\epsilon, \dots, c+\epsilon)^\top$. Clearly, we have that $d_H(X, Y) = \max_{i \in [2]} \min_{j \in [1]} \|\mathbf{v}_i - \mathbf{u}_j\| =$
 1022 $\|\mathbf{v}_2 - \mathbf{u}_1\| = \sqrt{d}\epsilon$. We also have that:
 1023

$$1024 \quad \|f_{\text{SUM}}(X) - f_{\text{SUM}}(Y)\| = \left\| \sum_{i=1}^2 \mathbf{v}_i - \mathbf{u}_1 \right\|
 1025$$

$$\begin{aligned}
1026 &= \|\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{u}_1\| \\
1027 &= \|\mathbf{v}_2\| \\
1028 &= \sqrt{(c+\epsilon)^2 + (c+\epsilon)^2 + \dots + (c+\epsilon)^2} \\
1029 &= \sqrt{d(c+\epsilon)^2} \\
1030 &= \sqrt{d}(c+\epsilon) \\
1031 &> \sqrt{d}(L\epsilon + \epsilon) \\
1032 &> L\sqrt{d}\epsilon \\
1033 &> L d_H(X, Y) \\
1034 &= L d_H(X, Y) \\
1035 & \\
1036 & \\
1037 & \\
1038 & \\
1039 & \\
1040 & \\
1041 & \\
1042 & \\
1043 & \\
1044 & \\
1045 & \\
1046 & \\
1047 & \\
1048 & \\
1049 & \\
1050 & \\
1051 & \\
1052 & \\
1053 & \\
1054 & \\
1055 & \\
1056 & \\
1057 & \\
1058 & \\
1059 & \\
1060 & \\
1061 & \\
1062 & \\
1063 & \\
1064 & \\
1065 & \\
1066 & \\
1067 & \\
1068 & \\
1069 & \\
1070 & \\
1071 & \\
1072 & \\
1073 & \\
1074 & \\
1075 & \\
1076 & \\
1077 & \\
1078 & \\
1079 & \\
\end{aligned}$$

Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$ such that $\|f_{\text{SUM}}(X) - f_{\text{SUM}}(Y)\| > L d_H(X, Y)$, which is a contradiction. Therefore, the SUM function is also not Lipschitz continuous with respect to the Hausdorff distance.

B.3.7 THE MAX FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Suppose that the MAX function is Lipschitz continuous with respect to EMD. Let $L > 0$ be given. Then, let $m = \lfloor L + 1 \rfloor$. Let also $X = \{\{\mathbf{v}_1, \dots, \mathbf{v}_m\}\}$, $Y = \{\{\mathbf{u}_1, \dots, \mathbf{u}_m\}\}$ be two multisets, each consisting of m d -dimensional vectors. We construct the two sets such that $\mathbf{v}_1 = \mathbf{u}_1, \mathbf{v}_2 = \mathbf{u}_2, \dots, \mathbf{v}_{m-1} = \mathbf{u}_{m-1}$, and $\mathbf{v}_1 + \dots + \mathbf{v}_{m-1} = \mathbf{u}_1 + \dots + \mathbf{u}_{m-1} = 0$. Suppose that the elements of vectors $\mathbf{v}_m, \mathbf{u}_m$ are larger than those of all other vectors of X and Y , respectively. Therefore, we have that $[\mathbf{v}_m]_k \geq [\mathbf{v}_i]_k, \forall i \in [m]$ and $k \in [d]$. We also have that $[\mathbf{u}_m]_k \geq [\mathbf{u}_j]_k, \forall j \in [m]$ and $k \in [d]$. Let also $\|\mathbf{v}_m - \mathbf{u}_m\| = 1$. We already showed in subsection B.3.1 that the distance between the mean vectors of two multisets of vectors is a lower bound on the EMD between them. Therefore, we have that:

$$\begin{aligned}
1052 & \sum_{i=1}^m \sum_{j=1}^m [\mathbf{F}]_{ij} \|\mathbf{v}_i - \mathbf{u}_j\| \geq \left\| \frac{1}{m} \sum_{i=1}^m \mathbf{v}_i - \frac{1}{m} \sum_{j=1}^m \mathbf{u}_j \right\| \\
1053 &= \frac{1}{m} \|(\mathbf{v}_1 - \mathbf{u}_1) + (\mathbf{v}_2 - \mathbf{u}_2) + \dots + (\mathbf{v}_m - \mathbf{u}_m)\| \\
1054 &= \frac{1}{m} \|\mathbf{v}_m - \mathbf{u}_m\| \\
1055 &= \frac{1}{m} \\
1056 & \\
1057 & \\
1058 & \\
1059 & \\
1060 & \\
1061 & \\
1062 & \\
1063 & \\
1064 & \\
1065 & \\
1066 & \\
1067 & \\
1068 & \\
1069 & \\
1070 & \\
1071 & \\
1072 & \\
1073 & \\
1074 & \\
1075 & \\
1076 & \\
1077 & \\
1078 & \\
1079 & \\
\end{aligned}$$

We can achieve the lower bound if we set the values of \mathbf{F} as follows:

$$[\mathbf{F}^*]_{ij} = \begin{cases} \frac{1}{m} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Therefore, the EMD between X and Y is equal to $1/m$. Then, we have that

$$\begin{aligned}
1066 & \|\mathbf{v}_{\max} - \mathbf{u}_{\max}\| = \|\mathbf{v}_m - \mathbf{u}_m\| \\
1067 &= m \cdot \frac{1}{m} \\
1068 &= m \sum_{i=1}^m \sum_{j=1}^m [\mathbf{F}^*]_{ij} \|\mathbf{v}_i - \mathbf{u}_j\| \\
1069 &= m \sum_{i=1}^m \sum_{j=1}^m [\mathbf{F}^*]_{ij} \|\mathbf{v}_i - \mathbf{u}_j\| \\
1070 &> L \sum_{i=1}^m \sum_{j=1}^m [\mathbf{F}^*]_{ij} \|\mathbf{v}_i - \mathbf{u}_j\| \\
1071 &= L d_{\text{EMD}}(X, Y) \\
1072 & \\
1073 & \\
1074 & \\
1075 & \\
1076 & \\
1077 & \\
1078 & \\
1079 & \\
\end{aligned}$$

Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d)$ such that $\|\mathbf{v}_{\max} - \mathbf{u}_{\max}\| > L d_{\text{EMD}}(X, Y)$, which is a contradiction. Therefore, the MAX function is not Lipschitz continuous with respect to EMD.

1080 B.3.8 THE MAX FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
 1081 MATCHING DISTANCE
 1082

1083 Let $L > 0$ be given. Let also $\epsilon > 0$ and $c > L\epsilon$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2\}$, $Y = \{\mathbf{u}_1\}$ be two multisets, con-
 1084 sisting of 2 and 1 vectors of dimension d , respectively. Then, we set $\mathbf{v}_1 = \mathbf{u}_1 = (-c, -c, \dots, -c)^\top$,
 1085 and $\mathbf{v}_2 = (\epsilon, \epsilon, \dots, \epsilon)^\top$. Clearly, we have that $d_M(X, Y) = \|\mathbf{v}_2\| = \sqrt{d\epsilon}$. Let also \mathbf{v}_{\max} and \mathbf{u}_{\max}
 1086 denote the vectors that emerge after applying max pooling across all points of X and Y , respectively.
 1087 We also have that:

$$\begin{aligned}
 1088 \quad \|f_{\max}(X) - f_{\max}(Y)\| &= \|\mathbf{v}_{\max} - \mathbf{u}_{\max}\| \\
 1089 &= \|\mathbf{v}_{\max} - \mathbf{u}_1\| \\
 1090 &= \left\| (\max(-c, \epsilon), \max(-c, \epsilon), \dots, \max(-c, \epsilon))^\top - (-c, -c, \dots, -c)^\top \right\| \\
 1091 &= \|(\epsilon, \epsilon, \dots, \epsilon)^\top - (-c, -c, \dots, -c)^\top\| \\
 1092 &= \sqrt{\underbrace{(\epsilon + c)^2 + (\epsilon + c)^2 + \dots + (\epsilon + c)^2}_{d \text{ times}}} \\
 1093 &= \sqrt{d}(c + \epsilon) \\
 1094 &> \sqrt{d}(L\epsilon + \epsilon) \\
 1095 &> L\sqrt{d}\epsilon \\
 1096 &> Ld_M(X, Y) \\
 1097 &= Ld_M(X, Y) \\
 1098 & \\
 1099 & \\
 1100 & \\
 1101 & \\
 1102 &
 \end{aligned}$$

1103 For any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d)$ such that $\|f_{\max}(X) - f_{\max}(Y)\| > L d_M(X, Y)$. Based
 1104 on the above inequality, the MAX function is not Lipschitz continuous with respect to the matching
 1105 distance.

1106 B.3.9 THE MAX FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE HAUSDORFF
 1107 DISTANCE
 1108

1109 Let $X = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ and $Y = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ denote two multisets of vectors. Let also
 1110 \mathbf{v}_{\max} and \mathbf{u}_{\max} denote the vectors that emerge after applying max pooling across all points of X and
 1111 Y , respectively. We will show that $\forall k \in [d]$, we have that $|[\mathbf{v}_{\max}]_k - [\mathbf{u}_{\max}]_k| \leq d_H(X, Y)$.
 1112 By contradiction, we assume that there is some $k \in [d]$ such that $|[\mathbf{v}_{\max}]_k - [\mathbf{u}_{\max}]_k| >$
 1113 $d_H(X, Y)$. Without loss of generality, we also assume that $[\mathbf{v}_{\max}]_k \geq [\mathbf{u}_{\max}]_k$, and therefore
 1114 $|\mathbf{v}_{\max}]_k - [\mathbf{u}_{\max}]_k| = [\mathbf{v}_{\max}]_k - [\mathbf{u}_{\max}]_k$.
 1115

1116 Since $[\mathbf{u}_{\max}]_k \geq [\mathbf{u}_j]_k, \forall j \in [n]$, we have that $[\mathbf{v}_{\max}]_k - [\mathbf{u}_{\max}]_k \leq [\mathbf{v}_{\max}]_k - [\mathbf{u}_j]_k, \forall j \in [n]$. Since
 1117 by our assumption above, $|\mathbf{v}_{\max}]_k - [\mathbf{u}_{\max}]_k| = [\mathbf{v}_{\max}]_k - [\mathbf{u}_{\max}]_k > d_H(X, Y)$, it follows that

$$[\mathbf{v}_{\max}]_k - [\mathbf{u}_j]_k > d_H(X, Y), \quad \forall j \in [n] \tag{1}$$

1118 Note that there is at least one vector $\mathbf{v}_i \in X$ such that $[\mathbf{v}_i]_k = [\mathbf{v}_{\max}]_k$. From equation 1,
 1119 we have for this vector that $[\mathbf{v}_i]_k - [\mathbf{u}_j]_k > d_H(X, Y), \forall j \in [n]$. Then, we have $\|\mathbf{v}_i - \mathbf{u}_j\| =$
 1120 $\sqrt{([\mathbf{v}_i]_1 - [\mathbf{u}_j]_1)^2 + \dots + ([\mathbf{v}_i]_k - [\mathbf{u}_j]_k)^2 + \dots + ([\mathbf{v}_i]_d - [\mathbf{u}_j]_d)^2} \geq \sqrt{([\mathbf{v}_i]_k - [\mathbf{u}_j]_k)^2} =$
 1121 $[\mathbf{v}_i]_k - [\mathbf{u}_j]_k > d_H(X, Y), \forall j \in [n]$. We thus have that $\min_{j \in [n]} \|\mathbf{v}_i - \mathbf{u}_j\| > d_H(X, Y)$ which is a
 1122 contradiction since $\min_{j \in [n]} \|\mathbf{v}_i - \mathbf{u}_j\| \leq \max_{i \in [m]} \min_{j \in [n]} \|\mathbf{v}_i - \mathbf{u}_j\| = h(X, Y) \leq d_H(X, Y)$.
 1123 Therefore, we have that $|\mathbf{v}_{\max}]_k - [\mathbf{u}_{\max}]_k| \leq d_H(X, Y)$.
 1124

1125 Since k was arbitrary, the above inequality holds for all $k \in [d]$. We thus have

$$\begin{aligned}
 1126 \quad \|f_{\max}(X) - f_{\max}(Y)\| &= \|\mathbf{v}_{\max} - \mathbf{u}_{\max}\| \\
 1127 &= \sqrt{([\mathbf{v}_{\max}]_1 - [\mathbf{u}_{\max}]_1)^2 + ([\mathbf{v}_{\max}]_2 - [\mathbf{u}_{\max}]_2)^2 + \dots + ([\mathbf{v}_{\max}]_d - [\mathbf{u}_{\max}]_d)^2} \\
 1128 &\leq \sqrt{\underbrace{([d_H(X, Y)])^2 + ([d_H(X, Y)])^2 + \dots + ([d_H(X, Y)])^2}_{d \text{ times}}}
 \end{aligned}$$

$$\begin{aligned}
1134 &= \sqrt{d(d_H(X, Y))^2} \\
1135 &= \sqrt{d} d_H(X, Y) \\
1136 &= \sqrt{d} d_H(X, Y)
\end{aligned}$$

1137 which concludes the proof. Therefore, The MAX function is Lipschitz continuous with respect to the
1138 Hausdorff distance and the Lipschitz constant is equal to \sqrt{d} .
1139

1140 B.4 PROOF OF LEMMA 3.2

1142 B.4.1 THE MEAN FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING 1143 DISTANCE

1145 Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i.e., $|X| = M$ and
1146 $X \in \mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$, $\forall X \in \mathcal{X}$ where $M \in \mathbb{N}$. Let $X, Y \in \mathcal{X}$ denote two multisets. By Proposition 2.3,
1147 we have that $d_M(X, Y) = M d_{\text{EMD}}(X, Y)$. By Theorem 3.1, we have that:

$$\begin{aligned}
1148 &\left\| f_{\text{MEAN}}(X) - f_{\text{MEAN}}(Y) \right\| \leq d_{\text{EMD}}(X, Y) \\
1149 &= \frac{1}{M} d_M(X, Y) \quad (\text{due to Proposition 2.3})
\end{aligned}$$

1152 The MEAN function restricted to inputs from set \mathcal{X} is thus Lipschitz continuous with respect to the
1153 matching distance and the Lipschitz constant is equal to $\frac{1}{M}$.
1154

1155 B.4.2 THE MEAN FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE 1156 HAUSDORFF DISTANCE

1157 Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i.e., $|X| = M$, $\forall X \in$
1158 \mathcal{X} where $M \in \mathbb{N}$. Suppose that the MEAN function restricted to inputs from set \mathcal{X} is Lipschitz
1159 continuous with respect to the Hausdorff distance. Let $L > 0$ be given. Let also $\epsilon > 0$ and
1160 $c > L\epsilon\sqrt{3}$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, $Y = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be two multisets, consisting of 3 vectors
1161 of dimension d , respectively. Then, we set $\mathbf{v}_1 = \mathbf{u}_1 = (-\frac{c}{2}, -\frac{c}{2}, \dots, -\frac{c}{2})^\top$, $\mathbf{v}_2 = \mathbf{u}_2 = \mathbf{u}_3 =$
1162 $(\frac{c}{2}, \frac{c}{2}, \dots, \frac{c}{2})^\top$, $\mathbf{v}_3 = (\frac{c+\epsilon}{2}, \frac{c+\epsilon}{2}, \dots, \frac{c+\epsilon}{2})^\top$ and $\mathbf{u}_3 = (-\frac{c+\epsilon}{2}, -\frac{c+\epsilon}{2}, \dots, -\frac{c+\epsilon}{2})^\top$. Clearly, we
1163 have that $d_H(X, Y) = \max_{i \in [3]} \min_{j \in [3]} \|\mathbf{v}_i - \mathbf{u}_j\| = \max_{j \in [3]} \min_{i \in [3]} \|\mathbf{v}_i - \mathbf{u}_j\| = \|\mathbf{v}_3 - \mathbf{u}_2\| =$
1164 $\|\mathbf{v}_1 - \mathbf{u}_3\| = \frac{\sqrt{d}\epsilon}{2}$. We also have that:

$$\begin{aligned}
1166 &\left\| f_{\text{MEAN}}(X) - f_{\text{MEAN}}(Y) \right\| = \left\| \frac{1}{3} \sum_{i=1}^3 \mathbf{v}_i - \frac{1}{3} \sum_{i=1}^3 \mathbf{u}_i \right\| \\
1167 &= \left\| \frac{1}{3} (\mathbf{v}_1 - \mathbf{u}_1 + \mathbf{v}_2 - \mathbf{u}_2 + \mathbf{v}_3 - \mathbf{u}_3) \right\| \\
1168 &= \frac{1}{\sqrt{3}} \|\mathbf{v}_3 - \mathbf{u}_3\| \\
1169 &= \frac{1}{\sqrt{3}} \left\| \left(\frac{c+\epsilon}{2}, \frac{c+\epsilon}{2}, \dots, \frac{c+\epsilon}{2} \right)^\top - \left(-\frac{c+\epsilon}{2}, -\frac{c+\epsilon}{2}, \dots, -\frac{c+\epsilon}{2} \right)^\top \right\| \\
1170 &= \frac{1}{\sqrt{3}} \|(c+\epsilon, c+\epsilon, \dots, c+\epsilon)^\top\| \\
1171 &= \frac{1}{\sqrt{3}} \sqrt{(c+\epsilon)^2 + (c+\epsilon)^2 + \dots + (c+\epsilon)^2} \\
1172 &= \frac{1}{\sqrt{3}} \sqrt{d(c+\epsilon)^2} \\
1173 &= \frac{1}{\sqrt{3}} \sqrt{d}(c+\epsilon) \\
1174 &> \frac{1}{\sqrt{3}} \sqrt{d}(L\epsilon\sqrt{3} + \epsilon) \\
1175 &> L \frac{1}{\sqrt{3}} \sqrt{3}\sqrt{d}\epsilon
\end{aligned}$$

$$\begin{aligned}
1188 &= L\sqrt{d}\epsilon \\
1189 &> L\frac{\sqrt{d}\epsilon}{2} \\
1190 &= L d_H(X, Y) \\
1191 \\
1192 &= L d_H(X, Y)
\end{aligned}$$

1193 Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{X}$ such that $\|f_{\text{MEAN}}(X) - f_{\text{MEAN}}(Y)\| > L d_H(X, Y)$,
1194 which is a contradiction. Therefore, the MEAN function is not Lipschitz continuous with respect to
1195 the Hausdorff distance even when it is restricted to inputs from set \mathcal{X} .
1196

1197 B.4.3 THE SUM FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

1199 Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i. e., $|X| = M, \forall X \in \mathcal{X}$
1200 where $M \in \mathbb{N}$. Let $X, Y \in \mathcal{X}$ denote two multisets. By Proposition 2.3, we have that $d_M(X, Y) =$
1201 $M d_{\text{EMD}}(X, Y)$. By Theorem 3.1, we have that:
1202

$$\begin{aligned}
1203 &\|f_{\text{SUM}}(X) - f_{\text{SUM}}(Y)\| \leq d_M(X, Y) \\
1204 &= M d_{\text{EMD}}(X, Y) \quad (\text{due to Proposition 2.3})
\end{aligned}$$

1206 Therefore, the SUM function restricted to inputs from set \mathcal{X} is Lipschitz continuous with respect to
1207 EMD and the Lipschitz constant is equal to M .
1208

1209 B.4.4 THE SUM FUNCTION IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE 1210 HAUSDORFF DISTANCE

1212 Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i. e., $|X| = M, \forall X \in$
1213 \mathcal{X} where $M \in \mathbb{N}$. Suppose that the SUM function restricted to inputs from set \mathcal{X} is Lipschitz
1214 continuous with respect to the Hausdorff distance. Let $L > 0$ be given. Let also $\epsilon > 0$ and
1215 $c > L\epsilon$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, $Y = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be two multisets, consisting of 3 vectors of
1216 dimension d , respectively. Then, we set $\mathbf{v}_1 = \mathbf{u}_1 = (-\frac{c}{2}, -\frac{c}{2}, \dots, -\frac{c}{2})^\top$, $\mathbf{v}_2 = \mathbf{u}_2 = \mathbf{u}_3 =$
1217 $(\frac{c}{2}, \frac{c}{2}, \dots, \frac{c}{2})^\top$, $\mathbf{v}_3 = (\frac{c+\epsilon}{2}, \frac{c+\epsilon}{2}, \dots, \frac{c+\epsilon}{2})^\top$ and $\mathbf{u}_3 = (-\frac{c+\epsilon}{2}, -\frac{c+\epsilon}{2}, \dots, -\frac{c+\epsilon}{2})^\top$. Clearly, we
1218 have that $d_H(X, Y) = \max_{i \in [3]} \min_{j \in [3]} \|\mathbf{v}_i - \mathbf{u}_j\| = \max_{j \in [3]} \min_{i \in [3]} \|\mathbf{v}_i - \mathbf{u}_j\| = \|\mathbf{v}_3 - \mathbf{u}_2\| =$
1219 $\|\mathbf{v}_1 - \mathbf{u}_3\| = \frac{\sqrt{d}\epsilon}{2}$. We also have that:
1220

$$\begin{aligned}
1222 &\|f_{\text{SUM}}(X) - f_{\text{SUM}}(Y)\| = \left\| \sum_{i=1}^3 \mathbf{v}_i - \sum_{i=1}^3 \mathbf{u}_i \right\| \\
1223 &= \|\mathbf{v}_1 - \mathbf{u}_1 + \mathbf{v}_2 - \mathbf{u}_2 + \mathbf{v}_3 - \mathbf{u}_3\| \\
1224 &= \|\mathbf{v}_3 - \mathbf{u}_3\| \\
1225 &= \left\| \left(\frac{c+\epsilon}{2}, \frac{c+\epsilon}{2}, \dots, \frac{c+\epsilon}{2} \right)^\top - \left(-\frac{c+\epsilon}{2}, -\frac{c+\epsilon}{2}, \dots, -\frac{c+\epsilon}{2} \right)^\top \right\| \\
1226 &= \|(c+\epsilon, c+\epsilon, \dots, c+\epsilon)^\top\| \\
1227 &= \sqrt{(c+\epsilon)^2 + (c+\epsilon)^2 + \dots + (c+\epsilon)^2} \\
1228 &= \sqrt{d(c+\epsilon)^2} \\
1229 &= \sqrt{d}(c+\epsilon) \\
1230 &> \sqrt{d}(L\epsilon + \epsilon) \\
1231 &> L\frac{\sqrt{d}\epsilon}{2} \\
1232 &= L d_H(X, Y)
\end{aligned}$$

1239 Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{X}$ such that $\|f_{\text{SUM}}(X) - f_{\text{SUM}}(Y)\| > L d_H(X, Y)$,
1240 which is a contradiction. Therefore, the SUM function is not Lipschitz continuous with respect to
1241 the Hausdorff distance even when it is restricted to inputs from set \mathcal{X} .
1242

1242 B.4.5 THE MAX FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING
 1243 DISTANCE

1245 Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i. e., $|X| = M, \forall X \in \mathcal{X}$
 1246 where $M \in \mathbb{N}$. Let $X = \{\{v_1, v_2, \dots, v_M\}\} \in \mathcal{X}$, and $Y = \{\{u_1, u_2, \dots, u_M\}\} \in \mathcal{X}$ denote two
 1247 multisets. Then, we have that:

$$1248 \quad \left\| f_{\text{MAX}}(X) - f_{\text{MAX}}(Y) \right\| = \sqrt{([v_{\text{max}}]_1 - [u_{\text{max}}]_1)^2 + ([v_{\text{max}}]_2 - [u_{\text{max}}]_2)^2 + \dots + ([v_{\text{max}}]_d - [u_{\text{max}}]_d)^2} \quad (2)$$

1250 Note that $\forall k \in [d]$, there exists at least one $v_i \in X$ such that $[v_{\text{max}}]_k = [v_i]_k$, and also at least one
 1251 $u_j \in Y$ such that $[u_{\text{max}}]_k = [u_j]_k$. Furthermore, we denote by π^* the matching produced by the
 1252 solution of the matching distance function:

$$1254 \quad \pi^* = \arg \min_{\pi \in \mathfrak{S}_M} \sum_{i=1}^M \|v_{\pi(i)} - u_i\|$$

1257 Then, $\forall k \in [M]$ where $[v_{\text{max}}]_k \geq [u_{\text{max}}]_k$ and $[v_{\text{max}}]_k = [v_{\pi(i)}]_k$, we have that:

$$1259 \quad ([v_{\text{max}}]_k - [u_{\text{max}}]_k)^2 = ([v_{\pi(i)}]_k - [u_{\text{max}}]_k)^2 \\ 1260 \quad = \min_{j \in [M]} ([v_{\pi(i)}]_k - [u_j]_k)^2 \\ 1261 \quad \leq ([v_{\pi(i)}]_k - [u_i]_k)^2 \quad (3)$$

1262 Likewise, $\forall k \in [M]$ where $[u_{\text{max}}]_k > [v_{\text{max}}]_k$ and $[u_{\text{max}}]_k = [u_i]_k$, we have that:

$$1265 \quad ([v_{\text{max}}]_k - [u_{\text{max}}]_k)^2 = ([v_{\text{max}}]_k - [u_i]_k)^2 \\ 1266 \quad = \min_{j \in [M]} ([v_j]_k - [u_i]_k)^2 \\ 1267 \quad \leq ([v_{\pi(i)}]_k - [u_i]_k)^2 \quad (4)$$

1270 Then, from equations equation 2, equation 3, equation 4, and assuming that $[u_{\text{max}}]_1 = [u_1]_1 \geq$
 1271 $[v_{\text{max}}]_1, [u_{\text{max}}]_2 = [u_1]_2 \geq [v_{\text{max}}]_2$ and $[v_{\text{max}}]_d = [v_{\pi(M)}]_d \geq [u_{\text{max}}]_d$, we have that:

$$1273 \quad \left\| f_{\text{MAX}}(X) - f_{\text{MAX}}(Y) \right\| = \sqrt{([v_{\text{max}}]_1 - [u_{\text{max}}]_1)^2 + ([v_{\text{max}}]_2 - [u_{\text{max}}]_2)^2 + \dots + ([v_{\text{max}}]_d - [u_{\text{max}}]_d)^2} \\ 1274 \quad \leq \sqrt{([v_{\pi(1)}]_1 - [u_1]_1)^2 + ([v_{\pi(1)}]_2 - [u_1]_2)^2 + \dots + ([v_{\pi(M)}]_d - [u_M]_d)^2} \\ 1275 \quad \leq \sqrt{([v_{\pi(1)}]_1 - [u_1]_1)^2 + ([v_{\pi(2)}]_2 - [u_2]_2)^2 + \dots + ([v_{\pi(M)}]_d - [u_M]_d)^2} \\ 1276 \quad \leq \|v_{\pi(1)} - u_1\| + \|v_{\pi(2)} - u_2\| + \dots + \|v_{\pi(M)} - u_M\| \\ 1277 \quad = d_M(X, Y)$$

1281 The MAX function restricted to inputs from set \mathcal{X} is thus Lipschitz continuous with respect to the
 1282 matching distance and the Lipschitz constant is equal to 1.

1284 B.4.6 THE MAX FUNCTION IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

1286 Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i. e., $|X| = M, \forall X \in \mathcal{X}$
 1287 where $M \in \mathbb{N}$. Let $X, Y \in \mathcal{X}$ denote two multisets. We have shown in subsection B.4.5 above that:

$$1288 \quad \left\| f_{\text{MAX}}(X) - f_{\text{MAX}}(Y) \right\| \leq d_M(X, Y)$$

1290 By Proposition 2.3, we have that $d_M(X, Y) = M d_{\text{EMD}}(X, Y)$. Therefore, we have that:

$$1292 \quad \left\| f_{\text{MAX}}(X) - f_{\text{MAX}}(Y) \right\| \leq d_M(X, Y) \\ 1293 \quad = M d_{\text{EMD}}(X, Y) \quad (\text{due to Proposition 2.3})$$

1295 The MAX function restricted to inputs from set \mathcal{X} is thus Lipschitz continuous with respect to EMD
 1296 and the Lipschitz constant is equal to M .

1296 B.5 PROOF OF PROPOSITION 3.3
12971298 B.5.1 THE ATT MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD
1299

1300 Suppose that the ATT mechanism is Lipschitz continuous with respect to EMD. Let $L > 0$ be given.
 1301 Let also $\epsilon > 0$ and $c > \frac{2(1+\exp(d\epsilon))L\epsilon}{\exp(d\epsilon)-1}$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2\}$, $Y = \{\mathbf{u}_1, \mathbf{u}_2\}$ be two multisets,
 1302 each consisting of 2 vectors of dimension d . Then, suppose that $\mathbf{v}_1 = \mathbf{u}_1 = (c, c, \dots, c)^\top$, $\mathbf{v}_2 =$
 1303 $(\epsilon, \epsilon, \dots, \epsilon)^\top$ and $\mathbf{u}_2 = (-\epsilon, -\epsilon, \dots, -\epsilon)^\top$. Clearly, we have that $d_{EMD}(X, Y) = \frac{1}{2}\|\mathbf{v}_2 - \mathbf{u}_2\| =$
 1304 $\sqrt{d}\epsilon$. Let also $\mathbf{W} = -\mathbf{I}$ and $\mathbf{q} = \mathbf{1}$ where \mathbf{I} denotes the $d \times d$ identity matrix and $\mathbf{1}$ denotes the
 1305 d -dimensional vector of all ones. We define g as the ReLU function. The attention coefficients of
 1306 the elements of X are equal to:

$$\alpha_1^X = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_1))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_j))} = \frac{\exp(0)}{\exp(0) + \exp(0)} = \frac{1}{2}$$

$$\alpha_2^X = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_2))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_j))} = \frac{\exp(0)}{\exp(0) + \exp(0)} = \frac{1}{2}$$

1313 The attention coefficients of the elements of Y are equal to:

$$\alpha_1^Y = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_1))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_j))} = \frac{\exp(0)}{\exp(0) + \exp(d\epsilon)} = \frac{1}{1 + \exp(d\epsilon)}$$

$$\alpha_2^Y = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_2))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_j))} = \frac{\exp(d\epsilon)}{\exp(0) + \exp(d\epsilon)} = \frac{\exp(d\epsilon)}{1 + \exp(d\epsilon)}$$

1320 We then have that:

$$\begin{aligned} \|f_{\text{ATT}}(X) - f_{\text{ATT}}(Y)\| &= \left\| \sum_{i=1}^2 \alpha_i^X \mathbf{v}_i - \sum_{j=1}^2 \alpha_j^Y \mathbf{u}_j \right\| \\ &= \left\| \frac{1}{2}\mathbf{v}_1 + \frac{1}{2}\mathbf{v}_2 - \frac{1}{1 + \exp(d\epsilon)}\mathbf{u}_1 - \frac{\exp(d\epsilon)}{1 + \exp(d\epsilon)}\mathbf{u}_2 \right\| \\ &= \left\| \frac{\exp(d\epsilon) - 1}{2(1 + \exp(d\epsilon))}(c, c, \dots, c)^\top + \frac{3\exp(d\epsilon) + 1}{2(1 + \exp(d\epsilon))}(\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &> \left\| \frac{\exp(d\epsilon) - 1}{2(1 + \exp(d\epsilon))}(c, c, \dots, c)^\top \right\| \\ &> \left\| \frac{\exp(d\epsilon) - 1}{2(1 + \exp(d\epsilon))} \left(\frac{2(1 + \exp(d\epsilon))L\epsilon}{\exp(d\epsilon) - 1}, \frac{2(1 + \exp(d\epsilon))L\epsilon}{\exp(d\epsilon) - 1}, \dots, \frac{2(1 + \exp(d\epsilon))L\epsilon}{\exp(d\epsilon) - 1} \right)^\top \right\| \\ &= \left\| L(\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &= L \sqrt{\underbrace{\epsilon^2 + \epsilon^2 + \dots + \epsilon^2}_{d \text{ times}}} \\ &= L\sqrt{d}\epsilon \\ &= L d_{EMD}(X, Y) \end{aligned}$$

1342 We have now reached a contradiction. It turns out that for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d)$,
 1343 $\mathbf{W} \in \mathbb{R}^{d \times d}$ and $\mathbf{q} \in \mathbb{R}^d$ such that $\|f_{\text{ATT}}(X) - f_{\text{ATT}}(Y)\| > L d_{EMD}(X, Y)$. Thus, the ATT
 1344 mechanism is not Lipschitz continuous with respect to EMD.

1345 B.5.2 THE ATT MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
1346 MATCHING DISTANCE

1347 Suppose that the ATT mechanism is Lipschitz continuous with respect to the matching distance. Let
 1348 $L > 0$ be given. Let also $\epsilon > 0$ and $c > \frac{2(1+\exp(d\epsilon))2L\epsilon}{\exp(d\epsilon)-1}$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2\}$, $Y = \{\mathbf{u}_1, \mathbf{u}_2\}$ be two

multisets, each consisting of 2 vectors of dimension d . Then, suppose that $\mathbf{v}_1 = \mathbf{u}_1 = (c, c, \dots, c)^\top$, $\mathbf{v}_2 = (\epsilon, \epsilon, \dots, \epsilon)^\top$ and $\mathbf{u}_2 = (-\epsilon, -\epsilon, \dots, -\epsilon)^\top$. Clearly, we have that $d_M(X, Y) = \|\mathbf{v}_2 - \mathbf{u}_2\| = 2\sqrt{d}\epsilon$. Let also $\mathbf{W} = -\mathbf{I}$ and $\mathbf{q} = \mathbf{1}$ where \mathbf{I} denotes the $d \times d$ identity matrix and $\mathbf{1}$ denotes the d -dimensional vector of all ones. We choose g to be the ReLU activation function. The attention coefficients of the elements of X are equal to:

$$\alpha_1^X = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_1))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_j))} = \frac{\exp(0)}{\exp(0) + \exp(0)} = \frac{1}{2}$$

$$\alpha_2^X = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_2))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_j))} = \frac{\exp(0)}{\exp(0) + \exp(0)} = \frac{1}{2}$$

The attention coefficients of the elements of Y are equal to:

$$\alpha_1^Y = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_1))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_j))} = \frac{\exp(0)}{\exp(0) + \exp(d\epsilon)} = \frac{1}{1 + \exp(d\epsilon)}$$

$$\alpha_2^Y = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_2))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_j))} = \frac{\exp(d\epsilon)}{\exp(0) + \exp(d\epsilon)} = \frac{\exp(d\epsilon)}{1 + \exp(d\epsilon)}$$

We then have that:

$$\begin{aligned} \|f_{\text{ATT}}(X) - f_{\text{ATT}}(Y)\| &= \left\| \sum_{i=1}^2 \alpha_i^X \mathbf{v}_i - \sum_{j=1}^2 \alpha_j^Y \mathbf{u}_j \right\| \\ &= \left\| \frac{1}{2} \mathbf{v}_1 + \frac{1}{2} \mathbf{v}_2 - \frac{1}{1 + \exp(d\epsilon)} \mathbf{u}_1 - \frac{\exp(d\epsilon)}{1 + \exp(d\epsilon)} \mathbf{u}_2 \right\| \\ &= \left\| \frac{\exp(d\epsilon) - 1}{2(1 + \exp(d\epsilon))} (c, c, \dots, c)^\top + \frac{3\exp(d\epsilon) + 1}{2(1 + \exp(d\epsilon))} (\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &> \left\| \frac{\exp(d\epsilon) - 1}{2(1 + \exp(d\epsilon))} (c, c, \dots, c)^\top \right\| \\ &> \left\| \frac{\exp(d\epsilon) - 1}{2(1 + \exp(d\epsilon))} \left(\frac{2(1 + \exp(d\epsilon))2L\epsilon}{\exp(d\epsilon) - 1}, \frac{2(1 + \exp(d\epsilon))2L\epsilon}{\exp(d\epsilon) - 1}, \dots, \frac{2(1 + \exp(d\epsilon))2L\epsilon}{\exp(d\epsilon) - 1} \right)^\top \right\| \\ &= \left\| 2L(\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &= 2L \sqrt{\underbrace{\epsilon^2 + \epsilon^2 + \dots + \epsilon^2}_{d \text{ times}}} \\ &= 2L\sqrt{d}\epsilon \\ &= L d_M(X, Y) \end{aligned}$$

Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$, $\mathbf{W} \in \mathbb{R}^{d \times d}$ and $\mathbf{q} \in \mathbb{R}^d$ such that $\|f_{\text{ATT}}(X) - f_{\text{ATT}}(Y)\| > L d_M(X, Y)$. Thus, the ATT mechanism is not Lipschitz continuous with respect to the matching distance.

B.5.3 THE ATT MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE HAUSDORFF DISTANCE

Suppose that the ATT mechanism is Lipschitz continuous with respect to the Hausdorff distance. Let $L > 0$ be given. Let also $\epsilon > 0$ and $c > \frac{2(1+\exp(d\epsilon))2L\epsilon}{\exp(d\epsilon)-1}$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2\}$, $Y = \{\mathbf{u}_1, \mathbf{u}_2\}$ be two multisets, each consisting of 2 vectors of dimension d . Then, we set $\mathbf{v}_1 = \mathbf{u}_1 = (c, c, \dots, c)^\top$, $\mathbf{v}_2 = (\epsilon, \epsilon, \dots, \epsilon)^\top$ and $\mathbf{u}_2 = (-\epsilon, -\epsilon, \dots, -\epsilon)^\top$. Clearly, we have that $d_H(X, Y) \leq \|\mathbf{v}_2 - \mathbf{u}_2\| = 2\sqrt{d}\epsilon$. Let also $\mathbf{W} = -\mathbf{I}$ and $\mathbf{q} = \mathbf{1}$ where \mathbf{I} denotes the $d \times d$ identity matrix and $\mathbf{1}$ denotes the d -dimensional vector of all ones. We choose g to be the ReLU activation function. The attention coefficients of the elements of X are equal to:

$$\alpha_1^X = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_1))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_j))} = \frac{\exp(0)}{\exp(0) + \exp(0)} = \frac{1}{2}$$

$$\alpha_2^X = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_2))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_j))} = \frac{\exp(0)}{\exp(0) + \exp(0)} = \frac{1}{2}$$

d-dimensional vector of all ones. We choose g to be the ReLU activation function. The attention coefficients of the elements of X are equal to:

$$\alpha_1^X = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_1))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_j))} = \frac{\exp(0)}{\exp(0) + \exp(0)} = \frac{1}{2}$$

$$\alpha_2^X = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_2))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{v}_j))} = \frac{\exp(0)}{\exp(0) + \exp(0)} = \frac{1}{2}$$

The attention coefficients of the elements of Y are equal to:

$$\alpha_1^Y = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_1))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_j))} = \frac{\exp(0)}{\exp(0) + \exp(d\epsilon)} = \frac{1}{1 + \exp(d\epsilon)}$$

$$\alpha_2^Y = \frac{\exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_2))}{\sum_{j=1}^2 \exp(\mathbf{1}^\top \text{ReLU}(-\mathbf{I}\mathbf{u}_j))} = \frac{\exp(d\epsilon)}{\exp(0) + \exp(d\epsilon)} = \frac{\exp(d\epsilon)}{1 + \exp(d\epsilon)}$$

We then have that:

$$\begin{aligned} \|f_{\text{ATT}}(X) - f_{\text{ATT}}(Y)\| &= \left\| \sum_{i=1}^2 \alpha_i^X \mathbf{v}_i - \sum_{j=1}^2 \alpha_j^Y \mathbf{u}_j \right\| \\ &= \left\| \frac{1}{2} \mathbf{v}_1 + \frac{1}{2} \mathbf{v}_2 - \frac{1}{1 + \exp(d\epsilon)} \mathbf{u}_1 - \frac{\exp(d\epsilon)}{1 + \exp(d\epsilon)} \mathbf{u}_2 \right\| \\ &= \left\| \frac{\exp(d\epsilon) - 1}{2(1 + \exp(d\epsilon))} (c, c, \dots, c)^\top + \frac{3\exp(d\epsilon) + 1}{2(1 + \exp(d\epsilon))} (\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &> \left\| \frac{\exp(d\epsilon) - 1}{2(1 + \exp(d\epsilon))} (c, c, \dots, c)^\top \right\| \\ &> \left\| \frac{\exp(d\epsilon) - 1}{2(1 + \exp(d\epsilon))} \left(\frac{2(1 + \exp(d\epsilon))2L\epsilon}{\exp(d\epsilon) - 1}, \frac{2(1 + \exp(d\epsilon))2L\epsilon}{\exp(d\epsilon) - 1}, \dots, \frac{2(1 + \exp(d\epsilon))2L\epsilon}{\exp(d\epsilon) - 1} \right)^\top \right\| \\ &= \left\| 2L(\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &= 2L \sqrt{\underbrace{\epsilon^2 + \epsilon^2 + \dots + \epsilon^2}_{d \text{ times}}} \\ &= 2L\sqrt{d\epsilon} \\ &= L d_H(X, Y) \end{aligned}$$

Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d)$, $\mathbf{W} \in \mathbb{R}^{d \times d}$ and $\mathbf{q} \in \mathbb{R}^d$ such that $\|f_{\text{ATT}}(X) - f_{\text{ATT}}(Y)\| > L d_M(X, Y)$, which is a contradiction. Therefore, the ATT mechanism is not Lipschitz continuous with respect to the Hausdorff distance.

B.6 LIPSCHITZ CONTINUITY OF ATT_{ℓ_2} MECHANISM

We demonstrate here that the attention mechanism is not Lipschitz continuous with respect to the considered functions, even when ℓ_2 attention is used. Given a multiset $X = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \in \mathcal{S}(\mathbb{R}^d)$, the attention mechanism is defined as follows:

$$f_{\text{ATT}_{\ell_2}}(X) = \sum_{i=1}^m \alpha_i \mathbf{v}_i \quad \text{where} \quad \alpha_i = \frac{\exp(-\|\mathbf{q} - g(\mathbf{W}\mathbf{v}_i)\|)}{\sum_{j=1}^m \exp(-\|\mathbf{q} - g(\mathbf{W}\mathbf{v}_j)\|)}$$

where $\mathbf{W} \in \mathbb{R}^{d' \times d}$ and $\mathbf{q} \in \mathbb{R}^{d'}$ denote a trainable matrix and a trainable vector, respectively, while g denotes some activation function.

1458
1459B.6.1 THE ATT_{ℓ_2} MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD1460
1461
1462
1463
1464
1465
1466
1467

Suppose that the ATT_{ℓ_2} mechanism is Lipschitz continuous with respect to EMD. Let $L > 0$ be given. Let also $\epsilon > 0$ and $c > \frac{2(1+\exp(-\sqrt{d}\epsilon))L\epsilon}{1-\exp(-\sqrt{d}\epsilon)}$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2\}$, $Y = \{\mathbf{u}_1, \mathbf{u}_2\}$ be two multisets, each consisting of 2 vectors of dimension d . Then, suppose that $\mathbf{v}_1 = \mathbf{u}_1 = (c, c, \dots, c)^\top$, $\mathbf{v}_2 = (\epsilon, \epsilon, \dots, \epsilon)^\top$ and $\mathbf{u}_2 = (-\epsilon, -\epsilon, \dots, -\epsilon)^\top$. Clearly, we have that $d_{EMD}(X, Y) = \frac{1}{2}\|\mathbf{v}_2 - \mathbf{u}_2\| = \sqrt{d}\epsilon$. Let also $\mathbf{W} = -\mathbf{I}$ and $\mathbf{q} = (-\epsilon, -\epsilon, \dots, -\epsilon)^\top$ where \mathbf{I} denotes the $d \times d$ identity matrix. We define g as the ReLU function. The attention coefficients of the elements of X are equal to:

1468
1469
1470
1471
1472
1473

$$\alpha_1^X = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{v}_1)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q}^\top - \text{ReLU}(-\mathbf{I}\mathbf{v}_j)\|)} = \frac{\exp(-\|\mathbf{q}\|)}{\exp(-\|\mathbf{q}\|) + \exp(-\|\mathbf{q}\|)} = \frac{1}{2}$$

$$\alpha_2^X = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{v}_2)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{v}_j)\|)} = \frac{\exp(-\|\mathbf{q}\|)}{\exp(-\|\mathbf{q}\|) + \exp(-\|\mathbf{q}\|)} = \frac{1}{2}$$

1474
1475
1476

The attention coefficients of the elements of Y are equal to:

1477
1478
1479
1480
1481
1482
1483

$$\alpha_1^Y = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{u}_1)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{u}_j)\|)} = \frac{\exp(-\|\mathbf{q}\|)}{\exp(-\|\mathbf{q}\|) + \exp(0)} = \frac{\exp(-\sqrt{d}\epsilon)}{1 + \exp(-\sqrt{d}\epsilon)}$$

$$\alpha_2^Y = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{u}_2)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{u}_j)\|)} = \frac{\exp(0)}{\exp(0) + \exp(-\|\mathbf{q}\|)} = \frac{1}{1 + \exp(-\sqrt{d}\epsilon)}$$

1484

We then have that:

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509

$$\begin{aligned} \|f_{\text{ATT}_{\ell_2}}(X) - f_{\text{ATT}_{\ell_2}}(Y)\| &= \left\| \sum_{i=1}^2 \alpha_i^X \mathbf{v}_i - \sum_{j=1}^2 \alpha_j^Y \mathbf{u}_j \right\| \\ &= \left\| \frac{1}{2}\mathbf{v}_1 + \frac{1}{2}\mathbf{v}_2 - \frac{\exp(-\sqrt{d}\epsilon)}{1 + \exp(-\sqrt{d}\epsilon)} \mathbf{u}_1 - \frac{1}{1 + \exp(-\sqrt{d}\epsilon)} \mathbf{u}_2 \right\| \\ &= \left\| \frac{\exp(-\sqrt{d}\epsilon) - 1}{2(1 + \exp(-\sqrt{d}\epsilon))} (c, c, \dots, c)^\top + \frac{\exp(-\sqrt{d}\epsilon) + 3}{2(1 + \exp(-\sqrt{d}\epsilon))} (\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &> \left\| \frac{\exp(-\sqrt{d}\epsilon) - 1}{2(1 + \exp(-\sqrt{d}\epsilon))} (c, c, \dots, c)^\top \right\| \\ &= \left\| \frac{1 - \exp(-\sqrt{d}\epsilon)}{2(1 + \exp(-\sqrt{d}\epsilon))} (c, c, \dots, c)^\top \right\| \\ &> \left\| \frac{1 - \exp(-\sqrt{d}\epsilon)}{2(1 + \exp(-\sqrt{d}\epsilon))} \left(\frac{2(1 + \exp(-\sqrt{d}\epsilon))L\epsilon}{1 - \exp(-\sqrt{d}\epsilon)}, \dots, \frac{2(1 + \exp(-\sqrt{d}\epsilon))L\epsilon}{1 - \exp(-\sqrt{d}\epsilon)} \right)^\top \right\| \\ &= \left\| L(\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &= L \sqrt{\underbrace{\epsilon^2 + \epsilon^2 + \dots + \epsilon^2}_{d \text{ times}}} \\ &= L\sqrt{d}\epsilon \\ &= L d_{EMD}(X, Y) \end{aligned}$$

1510

We have now reached a contradiction. It turns out that for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d)$, $\mathbf{W} \in \mathbb{R}^{d \times d}$ and $\mathbf{q} \in \mathbb{R}^d$ such that $\|f_{\text{ATT}_{\ell_2}}(X) - f_{\text{ATT}_{\ell_2}}(Y)\| > L d_{EMD}(X, Y)$. Thus, the ATT_{ℓ_2} mechanism is not Lipschitz continuous with respect to EMD.

1512 B.6.2 THE ATT_{ℓ_2} MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
 1513 MATCHING DISTANCE

1514 Suppose that the ATT_{ℓ_2} mechanism is Lipschitz continuous with respect to the matching distance.
 1515 Let $L > 0$ be given. Let also $\epsilon > 0$ and $c > \frac{2(1+\exp(-\sqrt{d}\epsilon))2L\epsilon}{1-\exp(-\sqrt{d}\epsilon)}$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2\}$, $Y = \{u_1, u_2\}$ be two multisets, each consisting of 2 vectors of dimension d . Then, suppose that $\mathbf{v}_1 = u_1 = (c, c, \dots, c)^\top$, $\mathbf{v}_2 = (\epsilon, \epsilon, \dots, \epsilon)^\top$ and $u_2 = (-\epsilon, -\epsilon, \dots, -\epsilon)^\top$. Clearly, we have that $d_M(X, Y) = \|\mathbf{v}_2 - u_2\| = 2\sqrt{d}\epsilon$. Let also $\mathbf{W} = -\mathbf{I}$ and $\mathbf{q} = (-\epsilon, -\epsilon, \dots, -\epsilon)^\top$ where \mathbf{I} denotes the $d \times d$ identity matrix. We choose g to be the ReLU activation function. The attention coefficients of the elements of X are equal to:

$$\alpha_1^X = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{v}_1)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q}^\top - \text{ReLU}(-\mathbf{I}\mathbf{v}_j)\|)} = \frac{\exp(-\|\mathbf{q}\|)}{\exp(-\|\mathbf{q}\|) + \exp(-\|\mathbf{q}\|)} = \frac{1}{2}$$

$$\alpha_2^X = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{v}_2)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{v}_j)\|)} = \frac{\exp(-\|\mathbf{q}\|)}{\exp(-\|\mathbf{q}\|) + \exp(-\|\mathbf{q}\|)} = \frac{1}{2}$$

1529 The attention coefficients of the elements of Y are equal to:

$$\alpha_1^Y = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}u_1)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}u_j)\|)} = \frac{\exp(-\|\mathbf{q}\|)}{\exp(-\|\mathbf{q}\|) + \exp(0)} = \frac{\exp(-\sqrt{d}\epsilon)}{1 + \exp(-\sqrt{d}\epsilon)}$$

$$\alpha_2^Y = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}u_2)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}u_j)\|)} = \frac{\exp(0)}{\exp(0) + \exp(-\|\mathbf{q}\|)} = \frac{1}{1 + \exp(-\sqrt{d}\epsilon)}$$

1538 We then have that:

$$\begin{aligned} \|f_{\text{ATT}_{\ell_2}}(X) - f_{\text{ATT}_{\ell_2}}(Y)\| &= \left\| \sum_{i=1}^2 \alpha_i^X \mathbf{v}_i - \sum_{j=1}^2 \alpha_j^Y u_j \right\| \\ &= \left\| \frac{1}{2} \mathbf{v}_1 + \frac{1}{2} \mathbf{v}_2 - \frac{\exp(-\sqrt{d}\epsilon)}{1 + \exp(-\sqrt{d}\epsilon)} u_1 - \frac{1}{1 + \exp(-\sqrt{d}\epsilon)} u_2 \right\| \\ &= \left\| \frac{\exp(-\sqrt{d}\epsilon) - 1}{2(1 + \exp(-\sqrt{d}\epsilon))} (c, c, \dots, c)^\top + \frac{\exp(-\sqrt{d}\epsilon) + 3}{2(1 + \exp(-\sqrt{d}\epsilon))} (\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &> \left\| \frac{\exp(-\sqrt{d}\epsilon) - 1}{2(1 + \exp(-\sqrt{d}\epsilon))} (c, c, \dots, c)^\top \right\| \\ &= \left\| \frac{1 - \exp(-\sqrt{d}\epsilon)}{2(1 + \exp(-\sqrt{d}\epsilon))} (c, c, \dots, c)^\top \right\| \\ &> \left\| \frac{1 - \exp(-\sqrt{d}\epsilon)}{2(1 + \exp(-\sqrt{d}\epsilon))} \left(\frac{2(1 + \exp(-\sqrt{d}\epsilon))2L\epsilon}{1 - \exp(-\sqrt{d}\epsilon)}, \dots, \frac{2(1 + \exp(-\sqrt{d}\epsilon))2L\epsilon}{1 - \exp(-\sqrt{d}\epsilon)} \right)^\top \right\| \\ &= \left\| 2L(\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &= 2L \sqrt{\underbrace{\epsilon^2 + \epsilon^2 + \dots + \epsilon^2}_{d \text{ times}}} \\ &= 2L\sqrt{d}\epsilon \\ &= L d_M(X, Y) \end{aligned}$$

1564 Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d \setminus \{0\})$, $\mathbf{W} \in \mathbb{R}^{d \times d}$ and $\mathbf{q} \in \mathbb{R}^d$ such that
 1565 $\|f_{\text{ATT}_{\ell_2}}(X) - f_{\text{ATT}_{\ell_2}}(Y)\| > L d_M(X, Y)$. Thus, the ATT_{ℓ_2} mechanism is not Lipschitz continuous
 with respect to the matching distance.

1566

B.6.3 THE ATT_{ℓ_2} MECHANISM IS NOT LIPSCHITZ CONTINUOUS WITH RESPECT TO THE
1567 HAUSDORFF DISTANCE

1568

1569 Suppose that the ATT_{ℓ_2} mechanism is Lipschitz continuous with respect to the Hausdorff distance.
 1570 Let $L > 0$ be given. Let also $\epsilon > 0$ and $c > \frac{2(1+\exp(-\sqrt{d}\epsilon))2L\epsilon}{1-\exp(-\sqrt{d}\epsilon)}$. Let $X = \{\mathbf{v}_1, \mathbf{v}_2\}$, $Y = \{ \mathbf{u}_1, \mathbf{u}_2 \}$ be two multisets, each consisting of 2 vectors of dimension d . Then, we set $\mathbf{v}_1 = \mathbf{u}_1 = (c, c, \dots, c)^\top$, $\mathbf{v}_2 = (\epsilon, \epsilon, \dots, \epsilon)^\top$ and $\mathbf{u}_2 = (-\epsilon, -\epsilon, \dots, -\epsilon)^\top$. Clearly, we have that $d_H(X, Y) \leq \|\mathbf{v}_2 - \mathbf{u}_2\| = 2\sqrt{d}\epsilon$. Let also $\mathbf{W} = -\mathbf{I}$ and $\mathbf{q} = \mathbf{1}$ where \mathbf{I} denotes the $d \times d$ identity matrix and $\mathbf{1}$ denotes the d -dimensional vector of all ones. We choose g to be the ReLU activation function. The attention coefficients of the elements of X are equal to:

1576

$$\alpha_1^X = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{v}_1)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q}^\top - \text{ReLU}(-\mathbf{I}\mathbf{v}_j)\|)} = \frac{\exp(-\|\mathbf{q}\|)}{\exp(-\|\mathbf{q}\|) + \exp(-\|\mathbf{q}\|)} = \frac{1}{2}$$

$$\alpha_2^X = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{v}_2)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{v}_j)\|)} = \frac{\exp(-\|\mathbf{q}\|)}{\exp(-\|\mathbf{q}\|) + \exp(-\|\mathbf{q}\|)} = \frac{1}{2}$$

1582

1583

The attention coefficients of the elements of Y are equal to:

1584

$$\alpha_1^Y = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{u}_1)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{u}_j)\|)} = \frac{\exp(-\|\mathbf{q}\|)}{\exp(-\|\mathbf{q}\|) + \exp(0)} = \frac{\exp(-\sqrt{d}\epsilon)}{1 + \exp(-\sqrt{d}\epsilon)}$$

$$\alpha_2^Y = \frac{\exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{u}_2)\|)}{\sum_{j=1}^2 \exp(-\|\mathbf{q} - \text{ReLU}(-\mathbf{I}\mathbf{u}_j)\|)} = \frac{\exp(0)}{\exp(0) + \exp(-\|\mathbf{q}\|)} = \frac{1}{1 + \exp(-\sqrt{d}\epsilon)}$$

1590

1591

We then have that:

1593

$$\begin{aligned} \|f_{\text{ATT}_{\ell_2}}(X) - f_{\text{ATT}_{\ell_2}}(Y)\| &= \left\| \sum_{i=1}^2 \alpha_i^X \mathbf{v}_i - \sum_{j=1}^2 \alpha_j^Y \mathbf{u}_j \right\| \\ &= \left\| \frac{1}{2} \mathbf{v}_1 + \frac{1}{2} \mathbf{v}_2 - \frac{\exp(-\sqrt{d}\epsilon)}{1 + \exp(-\sqrt{d}\epsilon)} \mathbf{u}_1 - \frac{1}{1 + \exp(-\sqrt{d}\epsilon)} \mathbf{u}_2 \right\| \\ &= \left\| \frac{\exp(-\sqrt{d}\epsilon) - 1}{2(1 + \exp(-\sqrt{d}\epsilon))} (c, c, \dots, c)^\top + \frac{\exp(-\sqrt{d}\epsilon) + 3}{2(1 + \exp(-\sqrt{d}\epsilon))} (\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &> \left\| \frac{\exp(-\sqrt{d}\epsilon) - 1}{2(1 + \exp(-\sqrt{d}\epsilon))} (c, c, \dots, c)^\top \right\| \\ &= \left\| \frac{1 - \exp(-\sqrt{d}\epsilon)}{2(1 + \exp(-\sqrt{d}\epsilon))} (c, c, \dots, c)^\top \right\| \\ &> \left\| \frac{1 - \exp(-\sqrt{d}\epsilon)}{2(1 + \exp(-\sqrt{d}\epsilon))} \left(\frac{2(1 + \exp(-\sqrt{d}\epsilon))2L\epsilon}{1 - \exp(-\sqrt{d}\epsilon)}, \dots, \frac{2(1 + \exp(-\sqrt{d}\epsilon))2L\epsilon}{1 - \exp(-\sqrt{d}\epsilon)} \right)^\top \right\| \\ &= \left\| 2L(\epsilon, \epsilon, \dots, \epsilon)^\top \right\| \\ &= 2L \sqrt{\underbrace{\epsilon^2 + \epsilon^2 + \dots + \epsilon^2}_{d \text{ times}}} \\ &= 2L\sqrt{d}\epsilon \\ &= L d_H(X, Y) \end{aligned}$$

1617

1618

Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d)$, $\mathbf{W} \in \mathbb{R}^{d \times d}$ and $\mathbf{q} \in \mathbb{R}^d$ such that $\|f_{\text{ATT}_{\ell_2}}(X) - f_{\text{ATT}_{\ell_2}}(Y)\| > L d_M(X, Y)$, which is a contradiction. Therefore, the ATT_{ℓ_2} mechanism is not Lipschitz continuous with respect to the Hausdorff distance.

1620 B.7 PROOF OF THEOREM 3.4
16211622 B.7.1 THERE EXIST NN_{SUM} MODELS WHICH ARE NOT LIPSCHITZ CONTINUOUS WITH
1623 RESPECT TO THE MATCHING DISTANCE1624 Suppose that NN_{SUM} is a neural network model which computes its output as follows:
1625

1626
$$\mathbf{v}_X = f_2 \left(\text{ReLU} \left(\{ \{ f_1(\mathbf{v}_1), \dots, f_1(\mathbf{v}_m) \} \} \right) \right)$$

1627

1628 where $X = \{ \{ \mathbf{v}_1, \dots, \mathbf{v}_m \} \}$ is a multiset, and f_1 and f_2 are fully-connected layers, i.e., $f_1(x) =$
1629 $a_1 x + b_1$ and $f_2(x) = a_2 x + b_2$. Furthermore, suppose that $a_1 > 0$, $b_1 > 0$ and $a_2 > 0$. Note that
1630 the Lipschitz constants of f_1 and f_2 are $\text{Lip}(f_1) = a_1$ and $\text{Lip}(f_2) = a_2$, respectively.
16311632 Suppose that the NN_{SUM} model is Lipschitz continuous with respect to the matching distance. Let
1633 $L > 0$ be given. Let also $X = \{ \{ v_1, v_2 \} \}$, $Y = \{ \{ u_1 \} \}$ be two multisets that contain real numbers.
1634 We construct the two sets such that $v_1 = v_2 = u_1 = c$ where $0 < c < \frac{b_1}{L a_1}$. Thus, we have that
1635 $d_M(X, Y) = |c| = c$. We also have that $b_1 > c L a_1$. Then, we have:
1636

1637
$$\begin{aligned} \left\| f_2 \left(\sum_{j=1}^2 f_1(c) \right) - f_2 \left(f_1(c) \right) \right\| &= \left\| f_2 \left(\sum_{j=1}^2 \text{ReLU}(a_1 c + b_1) \right) - f_2 \left(\text{ReLU}(a_1 c + b_1) \right) \right\| \\ 1638 &= \left\| f_2 \left(2(a_1 c + b_1) \right) - f_2 \left(a_1 c + b_1 \right) \right\| \\ 1639 &= \left\| a_2 \left(2(a_1 c + b_1) \right) + b_2 - a_2 \left(a_1 c + b_1 \right) - b_2 \right\| \\ 1640 &= \|a_2(a_1 c + b_1)\| \\ 1641 &> \|a_2(a_1 c + c L a_1)\| \\ 1642 &= \|(L + 1) a_2 a_1 c\| \\ 1643 &> (L + 1) \text{Lip}(f_2) \text{Lip}(f_1) c \\ 1644 &> L \text{Lip}(f_2) \text{Lip}(f_1) d_M(X, Y) \end{aligned}$$

1645 Therefore, for any $L > 0$, there exist $X, Y \in \mathcal{S}(\mathbb{R}^d \setminus \{ \mathbf{0} \})$ such that $\left\| f_2 \left(\sum_{\mathbf{v} \in X} f_1(\mathbf{v}) \right) - f_2 \left(\sum_{\mathbf{u} \in Y} f_1(\mathbf{u}) \right) \right\| > L \text{Lip}(f_2) \text{Lip}(f_1) d_M(X, Y)$. Based on the above, there exist NN_{SUM} mod-
1646 els which are not Lipschitz continuous with respect to the matching distance.
16471648 B.7.2 THE NN_{MEAN} MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD
16491650 Let $X = \{ \{ \mathbf{v}_1, \dots, \mathbf{v}_m \} \}$, $Y = \{ \{ \mathbf{u}_1, \dots, \mathbf{u}_n \} \}$ be two multisets of vectors. Let also $\text{Lip}(f_{\text{MLP}_1})$
1651 and $\text{Lip}(f_{\text{MLP}_2})$ denote the Lipschitz constants of the f_{MLP_1} and f_{MLP_2} , respectively. Finally, let \mathbf{F}^*
1652 denote the matrix that minimizes $d_{\text{EMD}}(X, Y)$. Then, we have:
1653

1654
$$\begin{aligned} 1655 \left\| f_{\text{MLP}_2} \left(\frac{1}{m} \sum_{i=1}^m f_{\text{MLP}_1}(\mathbf{v}_i) \right) - f_{\text{MLP}_2} \left(\frac{1}{n} \sum_{j=1}^n f_{\text{MLP}_1}(\mathbf{u}_j) \right) \right\| &\leq \text{Lip}(f_{\text{MLP}_2}) \left\| \frac{1}{m} \sum_{i=1}^m f_{\text{MLP}_1}(\mathbf{v}_i) - \frac{1}{n} \sum_{j=1}^n f_{\text{MLP}_1}(\mathbf{u}_j) \right\| \\ 1656 &\leq \text{Lip}(f_{\text{MLP}_2}) \sum_{i=1}^m \sum_{j=1}^n [\mathbf{F}^*]_{ij} \|f_{\text{MLP}_1}(\mathbf{v}_i) - f_{\text{MLP}_1}(\mathbf{v}_j)\| \\ 1657 &\leq \text{Lip}(f_{\text{MLP}_2}) \sum_{i=1}^m \sum_{j=1}^n [\mathbf{F}^*]_{ij} \text{Lip}(f_{\text{MLP}_1}) \|\mathbf{v}_i - \mathbf{v}_j\| \\ 1658 &= \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) \sum_{i=1}^m \sum_{j=1}^n [\mathbf{F}^*]_{ij} \|\mathbf{v}_i - \mathbf{v}_j\| \\ 1659 &= \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_{\text{EMD}}(X, Y) \end{aligned}$$

1660 Note that whether the above can hold as an equality depends on f_{MLP_1} and f_{MLP_2} , and therefore, the
1661 Lipschitz constant of the NN_{MEAN} model is upper bounded by $\text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_{\text{EMD}}(X, Y)$.
1662

1674 B.7.3 THE NN_{MAX} MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE HAUSDORFF
 1675 DISTANCE

1677 Let $X = \{\{\mathbf{v}_1, \dots, \mathbf{v}_m\}\}$, $Y = \{\{\mathbf{u}_1, \dots, \mathbf{u}_n\}\}$ be two multisets of vectors. Let also $\text{Lip}(f_{\text{MLP}_1})$
 1678 and $\text{Lip}(f_{\text{MLP}_2})$ denote the Lipschitz constants of the f_{MLP_1} and f_{MLP_2} , respectively. Let
 1679 $f_{\text{MLP}_1}(X) = \{\{f_{\text{MLP}_1}(\mathbf{v}_1), \dots, f_{\text{MLP}_1}(\mathbf{v}_m)\}\}$ and $f_{\text{MLP}_1}(Y) = \{\{f_{\text{MLP}_1}(\mathbf{u}_1), \dots, f_{\text{MLP}_1}(\mathbf{u}_n)\}\}$.
 1680 Let also $\mathbf{v}_{i^*}, \mathbf{u}_{j^*}$ and $f_{\text{MLP}_1}(\mathbf{v}_{i^{**}}), f_{\text{MLP}_1}(\mathbf{u}_{j^{**}})$ denote the vectors from which
 1681 $d_H(X, Y)$ and $d_H(f_{\text{MLP}_1}(X), f_{\text{MLP}_1}(Y))$ emerge, i.e., $d_H(X, Y) = \|\mathbf{v}_{i^*} - \mathbf{u}_{j^*}\|$ and
 1682 $d_H(f_{\text{MLP}_1}(X), f_{\text{MLP}_1}(Y)) = \|f_{\text{MLP}_1}(\mathbf{v}_{i^{**}}) - f_{\text{MLP}_1}(\mathbf{u}_{j^{**}})\|$. Without loss of generality, we
 1683 also assume that $h(f_{\text{MLP}_1}(X), f_{\text{MLP}_1}(Y)) \geq h(f_{\text{MLP}_1}(Y), f_{\text{MLP}_1}(X))$. Then, we have:
 1684

$$\begin{aligned}
 \left\| f_{\text{MLP}_2}\left(\left(f_{\text{MLP}_1}(\mathbf{v}_i)\right)_{\max}\right) - f_{\text{MLP}_2}\left(\left(f_{\text{MLP}_1}(\mathbf{u}_j)\right)_{\max}\right) \right\| &\leq \text{Lip}(f_{\text{MLP}_2}) \left\| \left(f_{\text{MLP}_1}(\mathbf{v}_i)\right)_{\max} - \left(f_{\text{MLP}_1}(\mathbf{u}_j)\right)_{\max} \right\| \\
 &\leq \text{Lip}(f_{\text{MLP}_2}) \sqrt{d} d_H(f_{\text{MLP}_1}(X), f_{\text{MLP}_1}(Y)) \\
 &= \sqrt{d} \text{Lip}(f_{\text{MLP}_2}) \max_{i \in [m]} \min_{j \in [n]} \left\| f_{\text{MLP}_1}(\mathbf{v}_i) - f_{\text{MLP}_1}(\mathbf{u}_j) \right\| \\
 &\leq \sqrt{d} \text{Lip}(f_{\text{MLP}_2}) \text{Lip}(f_{\text{MLP}_1}) \max_{i \in [m]} \min_{j \in [n]} \|\mathbf{v}_i - \mathbf{u}_j\| \\
 &\leq \sqrt{d} \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_H(X, Y)
 \end{aligned}$$

1696 We have thus shown that the NN_{MAX} model is Lipschitz continuous with respect to the Hausdorff
 1697 distance and its Lipschitz constant is upper bounded by $\sqrt{d} \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2})$.
 1698

1699 B.8 PROOF OF LEMMA 3.5

1700 B.8.1 THE NN_{MEAN} MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING
 1701 DISTANCE

1702 Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i.e., $|X| = M$ and
 1703 $X \in \mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$, $\forall X \in \mathcal{X}$ where $M \in \mathbb{N}$. Let $X, Y \in \mathcal{X}$ denote two multisets. We have shown
 1704 in subsection B.7.2 above that:

$$\left\| f_{\text{MLP}_2}\left(\frac{1}{m} \sum_{i=1}^m f_{\text{MLP}_1}(\mathbf{v}_i)\right) - f_{\text{MLP}_2}\left(\frac{1}{n} \sum_{j=1}^n f_{\text{MLP}_1}(\mathbf{u}_j)\right) \right\| \leq \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_{\text{EMD}}(X, Y)$$

1710 By Proposition 2.3, we have that $d_M(X, Y) = M d_{\text{EMD}}(X, Y)$. Therefore, we have that:
 1711

$$\begin{aligned}
 \left\| f_{\text{MLP}_2}\left(\frac{1}{m} \sum_{i=1}^m f_{\text{MLP}_1}(\mathbf{v}_i)\right) - f_{\text{MLP}_2}\left(\frac{1}{n} \sum_{j=1}^n f_{\text{MLP}_1}(\mathbf{u}_j)\right) \right\| &\leq \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_{\text{EMD}}(X, Y) \\
 &= \frac{1}{M} \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_M(X, Y) \quad (\text{due to Proposition 2.3})
 \end{aligned}$$

1717 The NN_{MEAN} model is Lipschitz continuous with respect to the matching distance and its Lipschitz
 1718 constant is upper bounded by $\frac{1}{M} \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2})$.
 1719

1720 B.8.2 THE NN_{SUM} MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING
 1721 DISTANCE

1722 Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i.e., $|X| = M$ and
 1723 $X \in \mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$, $\forall X \in \mathcal{X}$ where $M \in \mathbb{N}$. Let $X, Y \in \mathcal{X}$ denote two multisets. Let π^* denote the
 1724 matching produced by the solution of the matching distance function:
 1725

$$\pi^* = \arg \min_{\pi \in \mathfrak{S}_M} \sum_{i=1}^M \|\mathbf{v}_{\pi(i)} - \mathbf{u}_i\|$$

1728 Then, we have:

$$\begin{aligned}
 1729 \quad & \left\| f_{\text{MLP}_2} \left(\sum_{i=1}^M f_{\text{MLP}_1}(\mathbf{v}_i) \right) - f_{\text{MLP}_2} \left(\sum_{j=1}^M f_{\text{MLP}_1}(\mathbf{u}_j) \right) \right\| \leq \text{Lip}(f_{\text{MLP}_2}) \left\| \sum_{i=1}^M f_{\text{MLP}_1}(\mathbf{v}_i) - \sum_{j=1}^M f_{\text{MLP}_1}(\mathbf{u}_j) \right\| \\
 1730 \quad & \leq \text{Lip}(f_{\text{MLP}_2}) \sum_{i=1}^M \left\| f_{\text{MLP}_1}(\mathbf{v}_{\pi^*(i)}) - f_{\text{MLP}_1}(\mathbf{u}_i) \right\| \text{(due to Lemma 3.2)} \\
 1731 \quad & \leq \text{Lip}(f_{\text{MLP}_2}) \sum_{i=1}^M \text{Lip}(f_{\text{MLP}_1}) \|\mathbf{v}_{\pi^*(i)} - \mathbf{u}_i\| \\
 1732 \quad & \leq \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) \sum_{i=1}^M \|\mathbf{v}_{\pi^*(i)} - \mathbf{u}_i\| \\
 1733 \quad & = \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_M(X, Y)
 \end{aligned}$$

1734 which concludes the proof. The NN_{SUM} model is thus Lipschitz continuous with respect to the
 1735 matching distance and its Lipschitz constant is upper bounded by $\text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2})$.

1736 B.8.3 THE NN_{SUM} MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

1737 Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i.e., $|X| = M$ and
 1738 $X \in \mathcal{S}(\mathbb{R}^d)$, $\forall X \in \mathcal{X}$ where $M \in \mathbb{N}$. Let $X, Y \in \mathcal{X}$ denote two multisets. We have shown in
 1739 subsection B.8.2 above that:

$$1740 \quad \left\| f_{\text{MLP}_2} \left(\sum_{i=1}^M f_{\text{MLP}_1}(\mathbf{v}_i) \right) - f_{\text{MLP}_2} \left(\sum_{j=1}^M f_{\text{MLP}_1}(\mathbf{u}_j) \right) \right\| \leq \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_M(X, Y)$$

1741 By Proposition 2.3, we have that $d_M(X, Y) = M d_{\text{EMD}}(X, Y)$. Therefore, we have that:

$$\begin{aligned}
 1742 \quad & \left\| f_{\text{MLP}_2} \left(\sum_{i=1}^M f_{\text{MLP}_1}(\mathbf{v}_i) \right) - f_{\text{MLP}_2} \left(\sum_{j=1}^M f_{\text{MLP}_1}(\mathbf{u}_j) \right) \right\| \leq \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_M(X, Y) \\
 1743 \quad & = M \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_{\text{EMD}}(X, Y) \quad \text{(due to Proposition 2.3)}
 \end{aligned}$$

1744 Therefore, the NN_{SUM} model is Lipschitz continuous with respect to EMD and its Lipschitz constant
 1745 is upper bounded by $M \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2})$.

1746 B.8.4 THE NN_{MAX} MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO THE MATCHING 1747 DISTANCE

1748 Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i.e., $|X| = M$ and
 1749 $X \in \mathcal{S}(\mathbb{R}^d \setminus \{\mathbf{0}\})$, $\forall X \in \mathcal{X}$ where $M \in \mathbb{N}$. Let $X, Y \in \mathcal{X}$ denote two multisets. Let π^* denote the
 1750 matching produced by the solution of the matching distance function:

$$1751 \quad \pi^* = \arg \min_{\pi \in \mathfrak{S}_M} \sum_{i=1}^M \|\mathbf{v}_{\pi(i)} - \mathbf{u}_i\|$$

1752 Then, we have:

$$\begin{aligned}
 1753 \quad & \left\| f_{\text{MLP}_2} \left((f_{\text{MLP}_1}(\mathbf{v}_i))_{\max} \right) - f_{\text{MLP}_2} \left((f_{\text{MLP}_1}(\mathbf{u}_j))_{\max} \right) \right\| \leq \text{Lip}(f_{\text{MLP}_2}) \left\| (f_{\text{MLP}_1}(\mathbf{v}_i))_{\max} - (f_{\text{MLP}_1}(\mathbf{u}_j))_{\max} \right\| \\
 1754 \quad & \leq \text{Lip}(f_{\text{MLP}_2}) \sum_{i=1}^M \left\| f_{\text{MLP}_1}(\mathbf{v}_{\pi^*(i)}) - f_{\text{MLP}_1}(\mathbf{u}_i) \right\| \text{(due to Lemma 3.2)} \\
 1755 \quad & \leq \text{Lip}(f_{\text{MLP}_2}) \sum_{i=1}^M \text{Lip}(f_{\text{MLP}_1}) \|\mathbf{v}_{\pi^*(i)} - \mathbf{u}_i\| \\
 1756 \quad & \leq \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) \sum_{i=1}^M \|\mathbf{v}_{\pi^*(i)} - \mathbf{u}_i\|
 \end{aligned}$$

$$= \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_M(X, Y)$$

We conclude that the NN_{MAX} model is Lipschitz continuous with respect to the matching distance and its Lipschitz constant is upper bounded by $\text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2})$.

B.8.5 THE NN_{MAX} MODEL IS LIPSCHITZ CONTINUOUS WITH RESPECT TO EMD

Let \mathcal{X} denote a set that contains multisets of vectors of equal cardinalities, i.e., $|X| = M$ and $X \in \mathcal{S}(\mathbb{R}^d)$, $\forall X \in \mathcal{X}$ where $M \in \mathbb{N}$. Let $X, Y \in \mathcal{X}$ denote two multisets. We have shown in subsection B.8.4 above that:

$$\left\| f_{\text{MLP}_2} \left((f_{\text{MLP}_1}(\mathbf{v}_i))_{\max} \right) - f_{\text{MLP}_2} \left((f_{\text{MLP}_1}(\mathbf{u}_j))_{\max} \right) \right\| \leq \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_M(X, Y)$$

By Proposition 2.3, we have that $d_M(X, Y) = M d_{\text{EMD}}(X, Y)$. Therefore, we have that:

$$\begin{aligned} \left\| f_{\text{MLP}_2} \left((f_{\text{MLP}_1}(\mathbf{v}_i))_{\max} \right) - f_{\text{MLP}_2} \left((f_{\text{MLP}_1}(\mathbf{u}_j))_{\max} \right) \right\| &\leq \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_M(X, Y) \\ &= M \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2}) d_{\text{EMD}}(X, Y) \quad (\text{due to Proposition 2.3}) \end{aligned}$$

We thus have that the NN_{MAX} model is Lipschitz continuous with respect to EMD and its Lipschitz constant is upper bounded by $M \text{Lip}(f_{\text{MLP}_1}) \text{Lip}(f_{\text{MLP}_2})$.

B.9 PROOF OF PROPOSITION 3.6

(1) Let $\mathbf{F} \in \mathbb{R}^{n \times (n+1)}$ be a matrix. We set the elements of \mathbf{F} equal to the following values:

$$[\mathbf{F}]_{ij} = \begin{cases} \frac{1}{n(n+1)} & \text{if } j = n+1 \\ \frac{1}{n+1} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Then, we have that:

$$\begin{aligned} [\mathbf{F}]_{ij} &> 0, \quad 1 \leq i \leq n, \quad 1 \leq j \leq n+1 \\ \sum_{j=1}^{n+1} [\mathbf{F}]_{ij} &= \frac{1}{n}, \quad 1 \leq i \leq n \\ \sum_{i=1}^n [\mathbf{F}]_{ij} &= \frac{1}{n+1}, \quad 1 \leq j \leq n+1 \end{aligned}$$

Therefore, \mathbf{F} is a feasible solution of the EMD formulation and its value is equal to:

$$\sum_{i=1}^n \sum_{j=1}^{n+1} [\mathbf{F}]_{ij} \|\mathbf{v}_i - \mathbf{v}_j\| = \frac{1}{n(n+1)} \sum_{i=1}^n \|\mathbf{v}_i - \mathbf{v}_{n+1}\|$$

We thus have that:

$$d_{\text{EMD}}(X, X') \leq \frac{1}{n(n+1)} \sum_{i=1}^n \|\mathbf{v}_i - \mathbf{v}_{n+1}\|$$

A simple case where the inequality holds with equality is when $\mathbf{v}_1 = \mathbf{v}_2 = \dots = \mathbf{v}_n = \mathbf{v}_{n+1}$.

(2) The bidirectional Hausdorff distance between X and X' is defined as:

$$d_H(X, X') = \max(h(X, X'), h(X', X))$$

For each $i \in [n]$, we have that $\min_{j \in [n+1]} \|\mathbf{v}_i - \mathbf{v}_j\| = \|\mathbf{v}_i - \mathbf{v}_i\| = 0$. Therefore, we have that:

$$h(X, X') = \max_{i \in [n]} \min_{j \in [n+1]} \|\mathbf{v}_i - \mathbf{v}_j\| = 0$$

We thus obtain the following:

$$d_H(X, X') = h(X', X) = \max_{i \in [n+1]} \min_{j \in [n]} \|\mathbf{v}_i - \mathbf{v}_j\|$$

For each $i \in [n]$, we have that $\min_{j \in [n]} \|\mathbf{v}_i - \mathbf{v}_j\| = \|\mathbf{v}_i - \mathbf{v}_i\| = 0$. Therefore, we have that:

$$d_H(X, X') = h(X', X) = \min_{j \in [n]} \|\mathbf{v}_{n+1} - \mathbf{v}_j\|$$

1836 C STABILITY OF NEURAL NETWORKS FOR SETS UNDER PERTURBATIONS

1838 Lemma 3.5 implies that the output variation of NN_{MEAN} , NN_{SUM} and NN_{MAX} under perturbations
 1839 of the elements of an input set can be bounded via the EMD and Hausdorff distance between the
 1840 input and perturbed sets, respectively. We next investigate what are the values of EMD, Hausdorff
 1841 distance and matching distance when an element of a multiset is replaced by a new element.

1842 **Proposition C.1.** *Given a multiset of vectors $X = \{\mathbf{v}_1, \dots, \mathbf{v}_{i-1}, \mathbf{v}_i, \mathbf{v}_{i+1}, \dots, \mathbf{v}_n\} \in \mathcal{S}(\mathbb{R}^d)$, let
 1843 $X' = \{\mathbf{v}_1, \dots, \mathbf{v}_{i-1}, \mathbf{v}'_i, \mathbf{v}_{i+1}, \dots, \mathbf{v}_n\} \in \mathcal{S}(\mathbb{R}^d)$ be the multiset where element \mathbf{v}_i is perturbed to
 1844 \mathbf{v}'_i . Then,*

1845 1. *The EMD and matching distance between X and X' are equal to:*

$$1847 \quad d_{\text{EMD}}(X, X') = \frac{1}{n} \|\mathbf{v}_i - \mathbf{v}'_i\| \quad \text{and} \quad d_M(X, X') = \|\mathbf{v}_i - \mathbf{v}'_i\|$$

1850 2. *The Hausdorff distance between X and X' is bounded as:*

$$1851 \quad d_H(X, X') \leq \|\mathbf{v}_i - \mathbf{v}'_i\|$$

1854 *Proof.* (1) We set $\mathbf{u}_1 = \mathbf{v}_1, \mathbf{u}_2 = \mathbf{v}_2, \dots, \mathbf{u}_i = \mathbf{v}'_i, \dots, \mathbf{u}_n = \mathbf{v}_n$. For the matching distance, we
 1855 have:

$$1856 \quad d_M(X, X') = \min_{\pi \in \mathfrak{S}_n} \left[\sum_{i=1}^n \|\mathbf{v}_{\pi(i)} - \mathbf{u}_i\| \right] \\ 1857 \quad \leq \|\mathbf{v}_1 - \mathbf{v}_1\| + \|\mathbf{v}_2 - \mathbf{v}_2\| + \dots + \|\mathbf{v}_i - \mathbf{v}'_i\| + \dots + \|\mathbf{v}_n - \mathbf{v}_n\| \\ 1859 \quad = \|\mathbf{v}_i - \mathbf{v}'_i\|$$

1861 Suppose that $\pi^* \in \mathfrak{S}_n$ is the permutation associated with $d_M(X, X')$. Then, we have:

$$1863 \quad \|\mathbf{v}_i - \mathbf{v}'_i\| = \|\mathbf{v}_1 + \dots + \mathbf{v}_i + \dots + \mathbf{v}_n - \mathbf{v}_1 - \dots - \mathbf{v}'_i - \dots - \mathbf{v}_n\| \\ 1864 \quad = \|\mathbf{v}_1 + \dots + \mathbf{v}_i + \dots + \mathbf{v}_n - \mathbf{u}_1 - \dots - \mathbf{u}_i - \dots - \mathbf{u}_n\| \\ 1865 \quad \leq \|\mathbf{v}_{\pi^*(1)} - \mathbf{u}_1\| + \dots + \|\mathbf{v}_{\pi^*(i)} - \mathbf{u}_i\| + \dots + \|\mathbf{v}_{\pi^*(n)} - \mathbf{u}_n\| \\ 1866 \quad = d_M(X, X')$$

1868 We showed that $d_M(X, X') \leq \|\mathbf{v}_i - \mathbf{v}'_i\|$ and that $\|\mathbf{v}_i - \mathbf{v}'_i\| \leq d_M(X, X')$. Therefore,
 1869 $d_M(X, X') = \|\mathbf{v}_i - \mathbf{v}'_i\|$. Since $|X| = |X'| = n$, by Proposition 2.3, we have that $d_M(X, X') = n d_{\text{EMD}}(X, X')$. The following then holds:

$$1872 \quad d_{\text{EMD}}(X, X') = \frac{1}{n} \|\mathbf{v}_i - \mathbf{v}'_i\|$$

1874 (2) We set $\mathbf{u}_1 = \mathbf{v}_1, \mathbf{u}_2 = \mathbf{v}_2, \dots, \mathbf{u}_i = \mathbf{v}'_i, \dots, \mathbf{u}_n = \mathbf{v}_n$. The Hausdorff distance is equal to:

$$1875 \quad d_H(X, X') = \max(h(X, X'), h(X', X))$$

1877 For each $j \in [i-1] \cup i+1, \dots, n$, we have that $\min_{k \in [n]} \|\mathbf{v}_j - \mathbf{u}_k\| = \|\mathbf{v}_j - \mathbf{v}_j\| = 0$. For each
 1878 $j \in [i-1] \cup i+1, \dots, n$, we also have that $\min_{k \in [n]} \|\mathbf{u}_j - \mathbf{v}_k\| = \|\mathbf{v}_j - \mathbf{v}_j\| = 0$. Therefore, we
 1879 have that:

$$1880 \quad h(X, X') = \min_{j \in [n]} \|\mathbf{v}_i - \mathbf{u}_j\| \leq \|\mathbf{v}_i - \mathbf{u}_i\| = \|\mathbf{v}_i - \mathbf{v}'_i\| \\ 1881 \\ 1882 \quad h(X', X) = \min_{j \in [n]} \|\mathbf{u}_i - \mathbf{v}_j\| \leq \|\mathbf{u}_i - \mathbf{v}_i\| = \|\mathbf{v}_i - \mathbf{v}'_i\|$$

1884 Both $h(X, X')$ and $h(X', X)$ are thus no greater than $\|\mathbf{v}_i - \mathbf{v}'_i\|$. We then have that:

$$1886 \quad d_H(X, X') = \max(h(X, X'), h(X', X)) \\ 1887 \quad \leq \max(\|\mathbf{v}_i - \mathbf{v}'_i\|, \|\mathbf{v}_i - \mathbf{v}'_i\|) \\ 1888 \quad = \|\mathbf{v}_i - \mathbf{v}'_i\|$$

1889 \square

We next investigate what are the values of EMD, Hausdorff distance and matching distance when a random vector sampled from $\mathcal{U}(0, k)^d$ is added to each element of a multiset.

Proposition C.2. *Given a multiset of vectors $X = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} \in \mathcal{S}(\mathbb{R}^d)$, let $X' = \{\mathbf{v}_1 + \mathbf{u}_1, \mathbf{v}_2 + \mathbf{u}_2, \dots, \mathbf{v}_n + \mathbf{u}_n\} \in \mathcal{S}(\mathbb{R}^d)$ where $\mathbf{u}_i \sim \mathcal{U}(0, k)^d$ for all $i \in [n]$. Then,*

1. The EMD and matching distance between X and X' is bounded as:

$$d_{\text{EMD}}(X, X') \leq k\sqrt{d} \quad \text{and} \quad d_M(X, X') \leq nk\sqrt{d}$$

2. The Hausdorff distance between X and X' is bounded as:

$$d_H(X, X') \leq k\sqrt{d}$$

Proof. (1) Note that

$$\|\mathbf{v}_i - \mathbf{v}_i - \mathbf{u}_i\| = \|\mathbf{u}_i\| \leq \sqrt{\underbrace{k^2 + k^2 + \dots + k^2}_{d \text{ times}}} = k\sqrt{d}$$

For the matching distance, we have:

$$\begin{aligned} d_M(X, X') &= \min_{\pi \in \mathfrak{S}_n} \left[\sum_{i=1}^n \|\mathbf{v}_{\pi(i)} - \mathbf{v}_i - \mathbf{u}_i\| \right] \\ &\leq \|\mathbf{v}_1 - \mathbf{v}_1 - \mathbf{u}_1\| + \|\mathbf{v}_2 - \mathbf{v}_2 - \mathbf{u}_2\| + \dots + \|\mathbf{v}_n - \mathbf{v}_n - \mathbf{u}_n\| \\ &= \|\mathbf{u}_1\| + \|\mathbf{u}_2\| + \dots + \|\mathbf{u}_n\| \\ &\leq \underbrace{k\sqrt{d} + k\sqrt{d} + \dots + k\sqrt{d}}_{n \text{ times}} \\ &= nk\sqrt{d} \end{aligned}$$

Since $|X| = |X'| = n$, by Proposition 2.3, we have that $d_M(X, X') = n d_{\text{EMD}}(X, X')$. The following then holds:

$$d_{\text{EMD}}(X, X') \leq \frac{1}{n} nk\sqrt{d} = k\sqrt{d}$$

(2) The Hausdorff distance is equal to:

$$d_H(X, X') = \max(h(X, X'), h(X', X))$$

We have that:

$$h(X, X') = \max_{i \in [n]} \min_{j \in [n]} \|\mathbf{v}_i - \mathbf{v}_j - \mathbf{u}_j\| \leq \max_{i \in [n]} \|\mathbf{v}_i - \mathbf{v}_i - \mathbf{u}_i\| = \max_{i \in [n]} \|\mathbf{u}_i\| \leq k\sqrt{d}$$

$$h(X', X) = \max_{i \in [n]} \min_{j \in [n]} \|\mathbf{v}_i + \mathbf{u}_i - \mathbf{v}_j\| \leq \max_{i \in [n]} \|\mathbf{v}_i + \mathbf{u}_i - \mathbf{v}_i\| = \max_{i \in [n]} \|\mathbf{u}_i\| \leq k\sqrt{d}$$

Both $h(X, X')$ and $h(X', X)$ are thus no greater than $k\sqrt{d}$. We then have that:

$$\begin{aligned} d_H(X, X') &= \max(h(X, X'), h(X', X)) \\ &\leq \max(k\sqrt{d}, k\sqrt{d}) \\ &= k\sqrt{d} \end{aligned}$$

□

D EXPERIMENTAL SETUP

We next provide details about the experimental setup in the different experiments we conducted.

1944
1945

D.1 LIPSCHITZ CONSTANT OF AGGREGATION FUNCTIONS

1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

ModelNet40. We produce point clouds consisting of 100 particles (x, y, z -coordinates) from the mesh representation of objects. Each set is normalized by the initial layer of the deep network to have zero mean (along individual axes) and unit (global) variance. Each neural network consists of an MLP, followed by an aggregation function (i. e., SUM, MEAN or MAX) which in turn is followed by another MLP. The first MLP transforms the representations of the particles, while the aggregation function produces a single vector representation for each point cloud. The two MLPs consist of two layers and the ReLU function is applied to the output of the first layer. The output of the second layer of the second MLP is followed by the softmax function which outputs class probabilities. The hidden dimension size of all layers is set to 64. The model is trained by minimizing the cross-entropy loss. The minimization is performed using Adam with a learning rate equal to 0.001. The number of epochs is set to 200 and the batch size to 64. At the end of each epoch, we compute the performance of the model on the validation set, and we choose as our final model the one that achieved the smallest loss on the validation set. Note that in this set of experiments we do not compute the EMD, Hausdorff and matching distance between the input multisets, but we compute the distance of the “latent” multisets that emerge at the output of the first MLP (just before the aggregation function is applied) of each chosen model.

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974

Polarity. We represent each document as a multiset of the embeddings of its words. The word embeddings are obtained from a pre-trained model which contains 300-dimensional vectors (Mikolov et al., 2013). The embeddings are first fed to an MLP, and then an aggregation function (i. e., SUM, MEAN or MAX) is applied which produces a single vector representation for each document. This vector representation is passed onto another MLP. The two MLPs consist of two layers and the ReLU function is applied to the output of the first layer of each MLP. The output of the second MLP is followed by the softmax function. The hidden dimension size of all layers is set to 64. The model is trained by minimizing the cross-entropy loss. The minimization is performed using Adam with a learning rate equal to 0.001. The number of epochs is set to 200 and the batch size to 64. At the end of each epoch, we compute the performance of the model on the validation set, and we choose as our final model the one that achieved the smallest loss on the validation set. As discussed above, in each experiment, we compute the distance of the “latent” multisets that emerge at the output of the first MLP (just before the aggregation function is applied) of the model that achieves the lowest validation loss.

1975
1976

D.2 LIPSCHITZ CONSTANT OF NEURAL NETWORKS FOR SETS

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

ModelNet40. We produce point clouds with 100 particles (x, y, z -coordinates) from the mesh representation of objects. The data points of the point clouds are first fed to a fully-connected layer. Then, the data points of each point clouds are aggregated (i. e., SUM, MEAN or MAX function is utilized) and this results into a single vector representation for each point cloud. This vector representation is then fed to another fully-connected layer. The output of this layer passes through the ReLU function and is finally fed to a fully-connected layer which is followed by the softmax function and produces class probabilities. The output dimension of the first two fully-connected layers is set to 64. The model is trained by minimizing the cross-entropy loss. The Adam optimizer is employed with a learning rate of 0.001. The number of epochs is set to 200 and the batch size to 64. At the end of each epoch, we compute the performance of the model on the validation set, and we choose as our final model the one that achieved the smallest loss on the validation set. Note that the Lipschitz constant of an affine function $f: \mathbf{v} \mapsto \mathbf{W}\mathbf{v} + \mathbf{b}$ where $\mathbf{W} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ is the largest singular value of matrix \mathbf{W} . Therefore, in this experiment we can exactly compute the Lipschitz constants of the two fully-connected layers.

1991
1992
1993
1994
1995
1996
1997

Polarity. We represent each document as a multiset of the embeddings of its words. The word embeddings are obtained from a publicly available pre-trained model (Mikolov et al., 2013). We randomly split the dataset into training, validation, and test sets with a 80 : 10 : 10 split ratio. The embeddings are first fed to a fully-connected layer, and then an aggregation function (i. e., SUM, MEAN or MAX) is applied which produces a single vector representation for each document. This vector representation is passed onto another fully-connected layer. The ReLU function is applied to the emerging vector and then a final fully-connected layer followed by the softmax function outputs class probabilities. The output dimension of the first two fully-connected layers is set to 64. The

1998 model is trained by minimizing the cross-entropy loss. The minimization is performed using Adam
 1999 with a learning rate equal to 0.001. The number of epochs is set to 200 and the batch size to 64.
 2000 At the end of each epoch, we compute the performance of the model on the validation set, and we
 2001 choose as our final model the one that achieved the smallest loss on the validation set. As discussed
 2002 above, we can exactly compute the Lipschitz constants of the two fully-connected layers.
 2003

2004 D.3 STABILITY UNDER PERTURBATIONS OF INPUT MULTISETS

2006 **ModelNet40.** We produce point clouds with 100 particles (x, y, z -coordinates) from the mesh representation
 2007 of objects. The NN_{MEAN} and NN_{MAX} models consist of an MLP which transforms the
 2008 representations of the particles, an aggregation function (MEAN and MAX, respectively) and a sec-
 2009 ond MLP which produces the output (i. e., class probabilities). Both MLPs consist of two hidden
 2010 layers. The ReLU function is applied to the outputs of the first layer. The hidden dimension size
 2011 is set to 64 for all hidden layers. The model is trained by minimizing the cross-entropy loss. The
 2012 Adam optimizer is employed with a learning rate of 0.001. The number of epochs is set to 200
 2013 and the batch size to 64. At the end of each epoch, we compute the performance of the model on
 2014 the validation set, and we choose as our final model the one that achieved the smallest loss on the
 2015 validation set.

2016 **Polarity.** Each document of the Polarity dataset is represented as a multiset of word vectors. The
 2017 word vectors are obtained from a publicly available pre-trained model (Mikolov et al., 2013). We
 2018 randomly split the dataset into training, validation, and test sets with a 80 : 10 : 10 split ratio.
 2019 The NN_{MEAN} and NN_{MAX} models consist of an MLP which transforms the representations of the
 2020 words, an aggregation function (MEAN and MAX, respectively) and a second MLP which produces
 2021 the output. Both MLPs consist of two hidden layers. The ReLU function is applied to the outputs of
 2022 the first layer. The hidden dimension size is set to 64 for all hidden layers. The model is trained for
 2023 20 epochs by minimizing the cross-entropy loss function with the Adam optimizer and a learning
 2024 rate of 0.001. At the end of each epoch, we compute the performance of the model on the validation
 2025 set, and we choose as our final model the one that achieved the smallest loss on the validation set.
 2026

2027 D.4 GENERALIZATION UNDER DISTRIBUTION SHIFTS

2028 This set of experiments is conducted on the Polarity dataset. The architecture of NN_{MEAN} and
 2029 NN_{MAX} , and the training details are same as in subsection D.3 above.
 2030

2031 E ADDITIONAL RESULTS

2032 E.1 LIPSCHITZ CONSTANT OF AGGREGATION FUNCTIONS

2033 We next provide some additional empirical results that validate the findings of Theorem 3.1 (i. e.,
 2034 Lipschitz constants of aggregation functions). We experiment with the Polarity dataset. Figure 4
 2035 visualizes the relationship between the output of the three considered distance functions and the
 2036 Euclidean distance of the aggregated representations of multisets of documents from the Polarity
 2037 dataset. Since the Polarity dataset consists of documents which might differ from each other in the
 2038 number of terms, by Theorem 3.1 we can derive upper bounds only for 3 out of the 9 combinations
 2039 of distance functions for multisets and aggregation functions. As expected, the Lipschitz bounds
 2040 (dash lines) upper bound the Euclidean distance of the outputs of the aggregation functions. With
 2041 regards to the tightness of the bounds, we observe that the bounds that are associated with the MEAN
 2042 and SUM functions are tighter than the one associated with the MAX function. The correlations
 2043 between the distances of multisets and the Euclidean distances of the aggregated representations of
 2044 multisets are relatively low in most of the cases. All three distance functions are mostly correlated
 2045 with the aggregation functions with which they are related via Theorem 3.1. The highest correlation
 2046 is achieved between EMD and the MEAN function ($r = 0.89$).
 2047

2049 E.2 UPPER BOUNDS OF LIPSCHITZ CONSTANTS OF NEURAL NETWORKS FOR SETS

2050 We next provide some additional empirical results that validate the findings of Theorem 3.1 (i. e.,
 2051 upper bounds of Lipschitz constants of neural networks for sets). Since the Polarity dataset consists

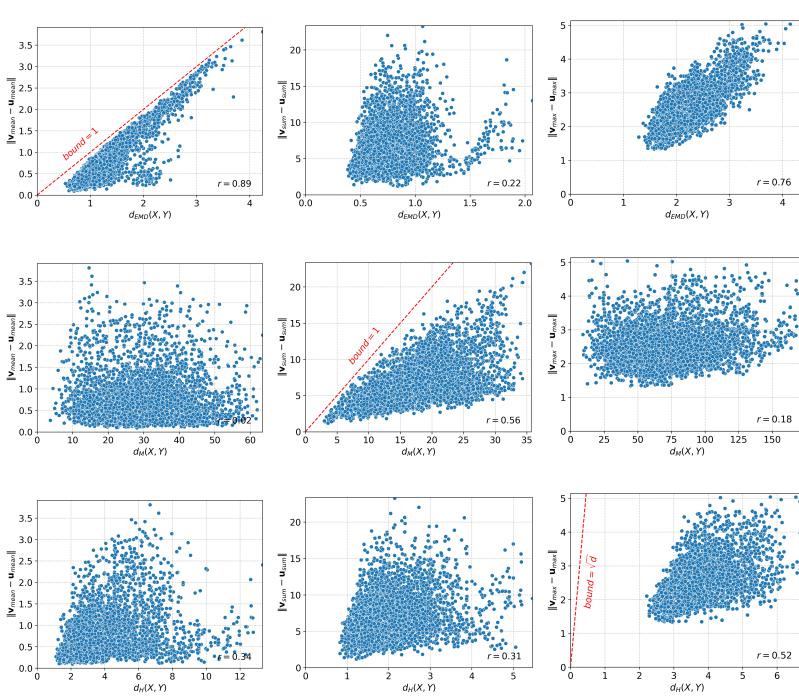


Figure 4: Each dot corresponds to a textual document from the test set of Polarity that is represented as a multiset of word vectors. Each subfigure compares the distance of documents computed by a distance function for multisets (i.e., EMD, Hausdorff distance or matching distance) against the Euclidean distance of the representations of the documents that emerge after the application of an aggregation function (i.e., MEAN, SUM or MAX). The correlation between the two distances is also computed and visualized. The Lipschitz bounds (dash lines) upper bound the distances of the outputs of the aggregation functions.

of documents which might differ from each other in the number of terms, by Theorem 3.4 we can derive upper bounds only for 2 out of the 9 combinations of distance functions for multisets and aggregation functions. While the dash lines upper bound the Euclidean distance of the outputs of the aggregation functions, both bounds are relatively loose on the Polarity dataset. The correlations between the distances of the representations produced by the neural network for the multisets and the distances produced by distance functions for multisets are much lower than those of the previous experiments. The highest correlation is equal to 0.55 (between the neural network that utilizes the MEAN aggregation function and EMD), while there are even negative correlations. This is not surprising since for most of the combinations, there are no upper bounds on the Lipschitz constant of the corresponding neural networks.

We also visualize the relationship between the output of the three considered distance functions and the Euclidean distance of the multiset representations that are produced by a neural network that utilizes the attention mechanism that is presented in section 3.2. Specifically, the neural network is identical to NN_{MEAN} , NN_{SUM} and NN_{MAX} , but instead of the standard aggregation functions, it employs the aforementioned attention mechanism. The experiments are conducted on the ModelNet40 dataset and the results are shown in Figure 6. We have shown that the attention mechanism is not Lipschitz continuous with respect to any of the three considered distance functions, and therefore the neural network models that employ this mechanism are also not Lipschitz continuous. We observe in Figure 6 that the correlations are indeed much lower than those illustrated in Figure 2 which confirms our theoretical result.

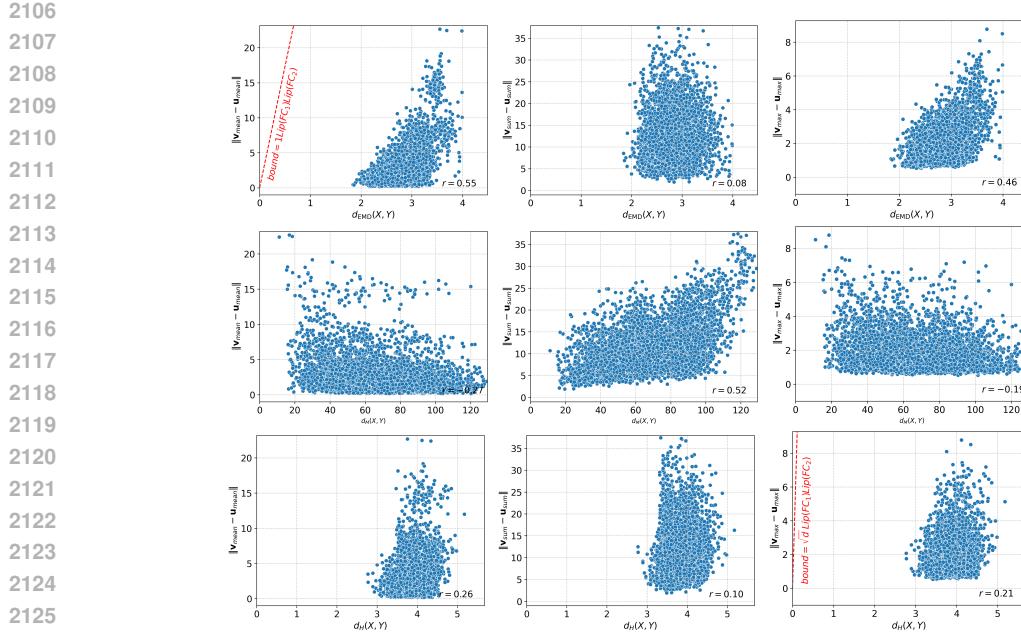


Figure 5: Each dot corresponds to a textual document from the test set of Polarity. Each subfigure compares the distance of input documents represented as multisets of word vectors computed by EMD, Hausdorff distance or matching distance against the Euclidean distance of the representations of the documents that emerge at the second-to-last layer of NN_{MEAN} , NN_{SUM} or NN_{MAX} . The correlation between the two distances is also computed and reported. The Lipschitz bounds (dash lines) upper bound the distances of the outputs of the neural networks.

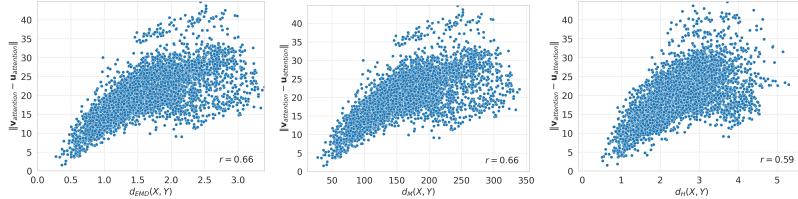


Figure 6: Each dot corresponds to a point cloud from the test set of ModelNet40. Each subfigure compares the distance of the *latent representations* of the point clouds computed by a distance function for multisets (i.e., EMD, Hausdorff distance or matching distance) against the Euclidean distance of the representations of the point clouds that emerge at the second-to-last layer of a neural network that consists of a fully-connected layer, an attention mechanism that aggregates the representations of the elements and two more fully-connected layers. The correlation between the two distances is also computed and visualized.

E.3 STABILITY OF NEURAL NETWORKS FOR SETS UNDER PERTURBATIONS

Here we provide some further details about the experiments presented in subsection 4.3. Specifically, for the experiments conducted on ModelNet40, we attribute the drop in performance of NN_{MAX} to the large Hausdorff distances between each test sample and its perturbed version. For each test sample X_i (where $i \in [2468]$), let X'_i denote the multiset that emerges from the application of Pert. #1 to X_i . Let also y_i denote the class label of sample X_i . We compute the Hausdorff distance between X_i and X'_i ($d_H(X_i, X'_i)$). We then compute the average Hausdorff distance between X_i and the rest of the test samples that belong to the same class as X_i . Let $\mathcal{S}_i = \{X_j : j \in [2468], y_i = y_j\}$ denote the set of all test samples that belong to the same class as X_i . Then, we compute $\bar{d}_H(X_i, \mathcal{S}_i)$ as follows:

$$\bar{d}_H(X_i, \mathcal{S}_i) = \frac{1}{|\mathcal{S}_i| - 1} \sum_{Y \in \mathcal{S}_i \setminus \{X_i\}} d_H(X_i, Y)$$

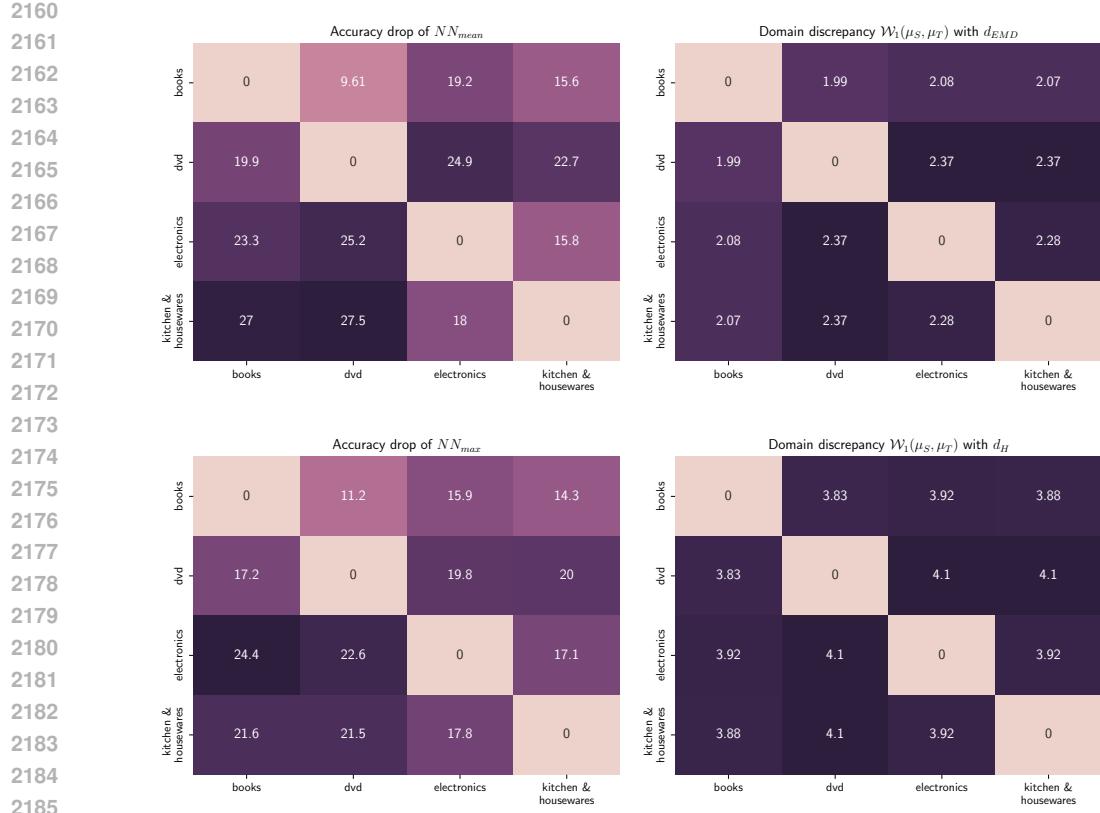


Figure 7: Accuracy drop of the NN_{MEAN} and NN_{MAX} models, and Wasserstein distance with $p = 1$ between groups when the EMD and the Hausdorff distance are used as ground metrics.

We then compute $d_H(X_i, X'_i) - \bar{d}_H(X_i, \mathcal{S}_i)$. If this value is positive, then the distance from X_i to X'_i is greater than the average distance of X_i to the other multisets that belong to the same class as X_i . We calculated this value for all test samples and then computed the average value which was found to be $2.63(\pm 1.10)$. In general, the perturbation increases the upper bound of the Lipschitz constant of NN_{MAX} compared to the upper bound for samples that belong to the same class, and thus X_i and X'_i might end up having dissimilar representations. On the other hand, for EMD, the average distance is equal to $-1.18(\pm 0.72)$. For EMD the upper bound is in general tighter than the bound for pairs of multisets that belong to the same class, and this explains why NN_{MEAN} is robust to Pert. #1.

E.4 GENERALIZATION UNDER DISTRIBUTION SHIFTS

To evaluate the generalization of the two Lipschitz continuous models (NN_{MEAN} and NN_{MAX}) under distribution shifts, we also experiment with the Amazon review dataset (Blitzer et al., 2007). The dataset consists of product reviews from Amazon for four different types of products (domains), namely books, DVDs, electronics and kitchen appliances. For each domain, there exist 2,000 labeled reviews (positive or negative) and the classes are balanced. We construct 4 adaptation tasks. In each task, the NN_{MEAN} and NN_{MAX} models are trained on reviews for a single type of products and evaluated on all domains.

Each review is represented as a multiset of word vectors. The word vectors are obtained from a publicly available pre-trained model (Mikolov et al., 2013). The NN_{MEAN} and NN_{MAX} models consist of an MLP which transforms the representations of the words, an aggregation function (MEAN and MAX, respectively) and a second MLP which produces the output. Both MLPs consist of two hidden layers. The ReLU function is applied to the outputs of the first layer and also dropout is applied between the two layers with $p = 0.2$. The hidden dimension size is set to 64 for all hidden layers.

2214
2215
2216Table 3: Average performance (accuracy or root mean square error) of the NN_{SUM} , NN_{MEAN} and NN_{MAX} on the four benchmark datasets.2217
2218
2219
2220
2221
2222
2223

The model is trained for 50 epochs by minimizing the cross-entropy loss function with the Adam optimizer and a learning rate of 0.001. At the end of each epoch, we compute the performance of the model on the validation set, and we choose as our final model the one that achieved the smallest loss on the validation set.

Figure 7 illustrates the Wasserstein distance with $p = 1$ between groups when the EMD (Top Right) and the Hausdorff distance (Bottom Right) are used as ground metrics. It also shows the drop in accuracy when the NN_{MEAN} (Top Left) and NN_{MAX} (Bottom Left) models are trained on one domain and evaluated on the others. Each row corresponds to one specific model, e.g., the first row represents the model trained on the reviews for books. We observe that in general the drop in accuracy follows a similar pattern with the distance between the source and target domains, i.e., the higher the distance the higher the drop in accuracy. We also computed the Pearson correlation between the drop in accuracy and the domain discrepancies. We found that the Wasserstein distance based on EMD highly correlates with the accuracy drop of NN_{MEAN} ($r = 0.917$), while there is an even higher correlation between the Wasserstein distance based on Hausdorff distance and the accuracy drop of NN_{MAX} ($r = 0.941$).

2239

2240
2241

E.5 PREDICTIVE PERFORMANCE OF NEURAL NETWORKS FOR SETS

2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252

We next evaluate the NN_{SUM} , NN_{MEAN} and NN_{MAX} models on four classification and regression datasets, namely ModelNet40, Polarity, IMDB and IMDB-BINARY. The first two datasets are described in section 4. IMDB contains movie reviews from the IMDb database (Maas et al., 2011). The targets are the ratings that accompany the reviews (10 different values). We treat this task as a regression problem. IMDB-BINARY is a standard graph classification dataset (Yanardag & Vishwanathan, 2015), commonly used for evaluating graph kernels and graph neural networks. Each graph of the IMDB-BINARY dataset was represented as a multiset of the degrees of its nodes. The results are illustrated in Table 3. Each experiment was repeated 5 times with different random seeds, and for each dataset we report average accuracy (for ModelNet40, Polarity and IMDB-BINARY) or average root mean square error (for IMDB) on the dataset’s test set and the corresponding standard deviation.

2253
2254
2255
2256

We can see that NN_{MAX} outperforms the other models on ModelNet40. A possible explanation is that all input multisets have the same size, and in such a setting the max aggregator is Lipschitz continuous with respect to all three considered distance functions. Therefore, NN_{MAX} can effectively capture the distances between the point clouds in ModelNet40.

2257
2258
2259
2260
2261

Polarity consists of short reviews (average number of terms = 20). Therefore, whether a review is positive or negative depends primarily on the presence of one or a few terms that indicate sentiment. These terms can be considered extreme elements, and the Hausdorff distance relies on such extreme elements when comparing its inputs. This distance function thus seems to be suitable for this task and potentially explains why NN_{MAX} is the best-performing model on this dataset.

2262
2263
2264
2265
2266
2267
2268

The reviews contained in the IMDB dataset are much longer than those in the Polarity dataset (average number of terms = 254). Due to the potential presence of outlier terms, the Hausdorff distance may not accurately capture document similarity. The matching distance can also be sensitive to document length. In contrast, EMD captures the overall semantic alignment between documents, and compares documents based on their overall meaning. This makes EMD more suitable for this task, which is empirically confirmed by the superior performance of NN_{MEAN} compared to the other two models.

2268 NN_{SUM} is the best-performing method on the IMDB-BINARY dataset. In this dataset, capturing
2269 both the number of nodes and their degrees is essential. The matching distance is well suited for this
2270 task, and the stronger performance of the NN_{SUM} model, which is Lipschitz continuous with respect
2271 to this distance (under certain conditions), supports this intuition.
2272

2273 E.6 PRACTICAL GUIDANCE ON CHOOSING ARCHITECTURES 2274

2275 As a general guideline, one should choose the function that is Lipschitz continuous with respect
2276 to the distance function that best captures the distances between the multisets in the considered
2277 dataset or problem. For example, in problems where the shape of the input object matters (e.g.,
2278 shapes extracted from medical images or 3D scans), Hausdorff distance is preferable to EMD and
2279 the matching distance since we would like to detect whether any part of one shape is far away from
2280 the other shape, even if the rest of the shapes are well-aligned. However, in some cases, not a
2281 single distance function is suitable for a single problem. For instance, consider the problem of text
2282 categorization, where documents are represented as multisets of word vectors. If two documents are
2283 considered similar when they contain similar terms, regardless of their length, the EMD is likely
2284 to best capture the distance between them. On the other hand, if similarity is determined by the
2285 presence of just one or a few extreme shared words, the Hausdorff distance is more appropriate.
2286 This illustrates that selecting an aggregation function typically requires some domain knowledge.
2287 In the absence of such knowledge, choosing an aggregation function can be challenging, except in
2288 special cases, such as when multisets have the same cardinality where our results indicate that the
2289 max function is Lipschitz continuous with respect to all distance functions.
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321