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Abstract

Several multi-agent techniques are utilized to reduce the com-
plexity of classical planning tasks, however, their applicabil-
ity to temporal planning domains is a currently open line of
study in the field of Automated Planning.
In this paper, we present MA-LAMA, a centralized, un-5

threated, satisfying, total-order, multi-agent temporal planner,
that exploits the ’multi-agent nature’ of temporal domains to,
as its predecessor LAMA, perform plan optimization.
In MA-LAMA, temporal tasks are translated to the con-
strained snap-actions paradigm, and an automatic agent de-10

composition, goal assignment and required cooperation anal-
ysis are carried to build independent search steps, called
Search Phases. These Search Phases are then solved by con-
secutive agent local searches, using classical heuristics and
temporal constraints.15

Experimentation shows that MA-LAMA is able to solve a
wide range of classical and temporal multi-agent domains,
performing significantly better in plan quality than other
state-of-the-art temporal planners.

Introduction20

In numerous scenarios the systems we plan for are naturally
viewed as multi-agent (MA) systems, and, additionally, MA
systems inherently tend to require some degree of concur-
rency between agents to operate efficiently. Some examples
of temporal MA planning (MAP) scenarios that present ’MA25

nature’ can be found in the International Planning Compe-
tition (IPC) benchmark domains, e.g. Rovers and Satellites,
with independent homogeneous agents; and Elevators or Lo-
gistics, where interaction between agents is required.

In contrast, Automated Planning literature has classically30

considered temporal and MAP as two individual lines of
work. This can be viewed in the MAP Survey (Torreño et al.
2017), where it is stated that the handling of scenarios de-
rived from temporal MA systems is an open point that needs
to be addressed, as MAP solvers tend to focus on classical35

planning domains.
In that survey, they also present some classifications for

MAP solvers in terms of their taxonomy: threaded, with in-
terleaved planning and coordination, and unthreaded, deal-
ing with planning and coordination separately. Their compu-40

tational structure: centralized, with a monolithic design and
a central process, and distributed, sharing the planning task

across multiple processing units. And their privacy preser-
vation: providing strong, object cardinality or weak privacy,
depending on the extent to which each agent’s sensitive in- 45

formation is preserved. For plan quality optimization (one of
the main points of interest of this work), MAP systems tend
to make use of cost aware classical planners, like LAMA
(Richter and Westphal 2010).

MAP techniques used across all types of MAP solvers 50

are different from those used in temporal planners, which
tend to revolve around time and numeric reasoning to deal
with the inherent complexity of concurrent actions search
spaces (Rintanen 2007). Our objective with this paper is to
test the MAP techniques’ effectiveness in dealing with tem- 55

poral complexity, especially in areas where time reasoning-
based planners struggle, as not coupled with makespan plan
quality optimization.

MA-LAMA is the result of the integration of these tech-
niques: a centralized, unthreaded, satisfying, total-order, 60

temporal MAP system that can deal with MA temporal
tasks. Our contribution is centered around the application
of automated task decomposition, goal assignment, and re-
quired cooperation MAP techniques to temporal tasks. This
results in a planning algorithm that exploits the MA and con- 65

current nature of temporal MA domains.
The paper is structured as follows. The next section

presents the related literature. Then MA-LAMA is pre-
sented, first broadly and after, in a detailed per-component
view. Finally, we provide an empirical evaluation of the 70

planner, followed by the conclusions and future work.

Related Work
Literature on both MAP and temporal planning is extensive
as separate lines of work. To our knowledge, TFPOP (Braf-
man and Domshlak 2008) is the only MA planner that is 75

able to deal both with time and durative-actions. It follows
a centralized scheme, producing non-linear plans that main-
tain a thread of sequentially ordered actions per agent, ex-
ploiting the concept of coordination points for loosely cou-
pled agents and through CSP+planning. However, it was not 80

compared to any other MAP solver.
Regarding MA planning, some examples of threaded

MAP planners are partial-order-planning (POP) based plan-
ners, as MH-FMAP (Torreño, Sapena, and Onaindia 2015),
which computes distributed versions of hDTG and hLand 85



heuristics; MAD-A∗ (Nissim and Brafman 2013), an op-
timal solver based in local agent evaluation of each state;
GPPP (Maliah, Shani, and Stern 2014), which builds a re-
laxed public plan before each local planning stage; and
MAPlan (Fišer, Štolba, and Komenda 2015), which follows90

a flexible distributed implementation of local agent state
search methods, as well as both local and global heuristics,
as hFF and LM-Cut, showing strong performance specially
with distributed computation agents.

For unthreaded MAP planners, some approaches to this95

type are: PMR (Luis, Fernández, and Borrajo 2020), based
in plan merging and reuse with simultaneous planning by
all agents; CMAP (Borrajo and Fernández 2015), with weak
privacy preservation in agents assembly and single-agent
search; Distoplan (Fabre et al. 2010), an optimal planner100

that exploits independence between agents, not limiting their
possible interactions beforehand; PSM (Tožička, Jakubuv,
and Komenda 2015), which expands Distoplan and intro-
duces Planning State Machines: agent local task represen-
tations that can be merged or projected; A# (Jezequel and105

Fabre 2012), with cost informed and constrained factored
planning following A∗ search; and DPP (Maliah, Shani, and
Stern 2016), one of the best performing unthreaded MAP
solvers through accurate public projection of MAP task in-
formation with object cardinality privacy preserving.110

Other MA techniques include symmetry score based task
decomposition for classical (Nissim, Apsel, and Brafman
2012) and numeric planning (Shleyfman, Kuroiwa, and
Beck 2023).

In our case, MA-LAMA deals with MAP solving with115

a traditional approach, considering sequential total-order
planning. We also make use of several MAP techniques
not yet mentioned, such as: task decomposition into local
search regions (Lansky 1991), exploiting loosely coupled
agents from TFPOP, coordination points detection and con-120

straints definition from Planning First (Nissim, Brafman,
and Domshlak 2010), distributed planning graphs with co-
ordination constraints from DPGM (Pellier 2010), required
cooperation (Zhang, Sreedharan, and Kambhampati 2016),
also used in the MARC planner (Sreedharan, Zhang, and125

Kambhampati 2015); satisfiability through sequential MAP
task solving from µ-SATPLAN (Dimopoulos, Hashmi, and
Moraitis 2012), and automatic MAP agent decomposition
from ADP (Crosby, Rovatsos, and Petrick 2013).

Several of these MAP planners, and others, participated in130

the 2015 Competition of Distributed and Multi-Agent Plan-
ning (CoDMAP) (Komenda, Štolba, and Kovács 2016), be-
ing the top performers ADP in coverage and CMAP-q in
quality for the centralized track, and PSM and MAPlan for
the distributed track overall.135

Regarding temporal planning, several temporal plan-
ners incorporate techniques that MA-LAMA makes us of,
such us the snap-actions paradigm, continuous numeric ef-
fects treatment and temporal frontier state constraints from
POPF (Coles et al. 2021) and OPTIC (Benton, Coles, and140

Coles 2012), both from the COLIN (Coles et al. 2012) fam-
ily of planners; and TFLAP (Sapena, Marzal, and Onaindia
2018) multi-heuristic search based in hFF and hLand, which
had good performance in the 2018 IPC temporal track.

Other participants in this competition were POPCORN 145

(Savaş et al. 2016), which is able to operate with control
parameters, TemPorAl (Cenamor et al. 2018), a portfolio
that was the top performer in the competition, and CP4TP
(Furelos-Blanco and Jonsson 2018), another portfolio. From
2014 IPC temporal track, notable participants were: IT- 150

SAT (Feyzbakhsh Rankooh and Ghassem-Sani 2015), a
SAT-Based Temporally Expressive Planner; YAHSP3 (Vi-
dal 2014), which computes lookahead relaxed plans and
uses them in state-space heuristic search; and Temporal FD
(TFD) (Eyerich, Mattmüller, and Röger 2012), that uses 155

context-enhanced additive heuristic over a temporal search
space.

In contrast, MA-LAMA opens a new way to study tempo-
ral domains, as we aim to deal with the temporal complex-
ity of concurrent actions search spaces with only MA tech- 160

niques, by making use of the necessary temporal techniques
only to maintain temporal and numeric soundness.

Background
Following PDDL2.1 semantics (Fox and Long 2003), we de-
fine the input for our planning algorithm as: 165

Definition 1. Temporal Planning Tasks
A temporal planning task is defined as Λ =
⟨ρ, ϑ,Oinst, Odur, s0, g⟩ where:
• ρ is a set of atomic propositional facts,
• ϑ is a set of real-valued numeric fluents, 170

• Oinst is a set of grounded instantaneous actions,
• Odur is a set of grounded durative actions,
• s0 is the initial state, and
• g is the goal condition.

Instantaneous actions, ainst ∈ Oinst, and durative ac- 175

tions, adur ∈ Odur, differ from each other in the fact that
durative actions take time, dur(adur), to perform a state
transition from s to s′. Instantaneous actions preconditions,
pre(ainst), and effects, eff (ainst) are expanded to start con-
ditions, startCond(adur), end conditions, endCond(adur), 180

over all dur(adur) conditions, inv(adur), start effects, start-
Eff (adur), end effects endEff (adur) and numeric effects,
contEff (adur).

Start and end endpoints of adur, a⊢ and a⊣, can
be encoded as instantaneous actions, with pre(a⊢) = 185

startCond(adur), eff (a⊢) = startEff (adur), pre(a⊣) =
endCond(adur), and eff (a⊣) = endEff (adur). This decom-
position produces snap actions, allowing planners to reason
with concurrent operators, as it allows them to overlap. The
invariant condition, inv(adur), for a durative action (adur) 190

must be maintained throughout the open interval between a⊢
and a⊣.

For the numeric effects, we impose the same restrictions
as the COLIN family of planners: the contribution of any
durative action to the rate of change of each numeric fluent, 195

υ ∈ ϑ, remains constant, so the rate of change of a certain
variable, δυ, only is modified when the snap actions are ap-
plied.

Additionally, a metric, M , can be defined to determine the
quality of a plan, and it would be the planner’s duty to find 200



which plan achieves a higher optimization of that metric.
Different planners support a wide range of metric formula-
tions, as the total-cost implementation in LAMA (Richter
and Westphal 2010) and time-dependent continuous costs in
OPTIC. In our case, we define M as a set of weighted nu-205

meric variables, {w1∗υ1, w2∗υ2, ..., wn∗υn}where υn ∈ ϑ
and wn is a real number. υ can also be the duration of the
plan, the total-time.

From this input, MA-LAMA translates it and utilises in-
ternally the multi-valued planning tasks (MPTs) representa-210

tion, also referred as SAS+ planning problems (Bäckström
and Nebel 1995). For ease of presentation, we consider a
simplified version of MPTs that omits axioms and with con-
ditional effects compiled away.

Definition 2. Multi-valued planning tasks (MPTs)215

A multi-valued planning task (MPT) is a 4-tuple ⟨V, I,G,A⟩
where:

• V is a finite set of multi-valued variables υ,

• I is the initial state for V ,

• G is the goal condition and a partial state of V , and220

• A is a set of instantaneous actions.

The key difference between the two planning task rep-
resentations is that variables in an MPT are multi-valued,
rather than standard booleans in PDDL2.1. However, for our
work we need to extend the MPT definition to fully encom-225

pass all the temporal task components, thus, we include the
set of multi-valued numeric variables, N, and the metric, M,
resulting in our extended MPT (eMPT) definition:

Definition 3. Extended Multi-valued planning tasks
(eMPTs)230

An extended multi-valued planning task (MPT) is a 6-tuple
⟨V, I,G,A,N,M⟩ where:

• V , I , G, A are defined as in the MPT Definition.

• N , a finite set of multi-valued numeric variables, n, each
defined by a real numeric value and a finite set of exclu-235

sive states, and

• M , a metric to measure the plan quality, directly as-
signed from the temporal task.

This extension allow us to deal with any numeric opera-
tion as an effect over N . We will expand on how to calculate240

the possible values for each numeric variable n in the MA-
LAMA details section.

The MPT representation also allows us to build the casual
graph (CG), which represents dependencies among vari-
ables according to the available actions, and is the root for245

the MA task decomposition techniques.

Definition 4. Casual Graphs
For a MPT Φ with a set of variables V , the Casual Graph of
Φ, CG(Φ) is the directed graph with a set of vertex V that
contains an arc (υ, υ′) iff υ ̸= υ′ and there exists an action250

that can affect the value of υ′, requiring a precondition that
specifies the value of υ.

MA-LAMA Overview
MA-LAMA is a satisfying temporal planner that utilizes
MA task decomposition and required cooperation tech- 255

niques to deal with the temporal complexity of concurrent
actions search spaces. Additionally, it is designed to deliver
fast and highly optimized solutions for MAP tasks.

Let us provide a comprehensive overview of the internal
functioning of MA-LAMA, shown in Figure 1. The first step 260

involves a translation of the temporal task, where the dura-
tive actions are transformed to snap actions, adding the same
control predicates between a⊢ and a⊣ actions as the COLIN
planner (Coles et al. 2012). Then, the snap temporal task is
encoded into an eMPT and two MA algorithms take place: 265

• Agent Decomposition (AD): following the ideas of ADP
(Crosby, Rovatsos, and Petrick 2013), MA-LAMA de-
composes the eMPT in terms of mostly independent en-
tities, called agents.

• Goal Categorization and Assignment (GCA): coordina- 270

tion points are computed following the principles of re-
quired cooperation (Zhang, Sreedharan, and Kambham-
pati 2016), and the task goals are categorized into coop-
eration and coordination subsets. Then, the goals are as-
signed to agents based on metric estimations, creating in- 275

dividual eMPTs to be solved subsequently and in groups,
in what we call Search Phases.

Our objective with these two algorithms is to be able
to strive for near optimal Search Phases solving, and, al-
though we are aware that our decomposition results in a 280

non-complete search space, we assume this compromise to
achieve efficiency.

In each Search Phase, several eMPTs are solved, taking as
an input the temporal constraints imposed by the previous
agent eMPT and, similarly, Search Phases inherit the initial 285

state from the previously solved one solution.
For each eMPT, we launch a modified version of the

LAMA planner, with numeric, temporal and constraints
frameworks built on top. Each eMPT is solved by a WA*
search using two classical heuristics: hFF (Hoffmann and 290

Nebel 2001) and hLand (Hoffmann, Porteous, and Sebastia
2004) (Sebastia, Onaindia, and Marzal 2006).

All eMPTs in each Search Phase generate a partial plan
based on snap actions, so, after all phases are solved, we
need to launch a Unify module that translates them to the 295

temporal paradigm and assembles them, checking their tem-
poral soundness and producing the full temporal plan.

Although privacy discussion is not a main topic for this
work, we can safely state that MA-LAMA preserves weak
privacy between the agents found by the AD, but not if a 300

decomposition is not found, as MA-LAMA continues and
solves the single-agent complete eMPT in this case.

MA-LAMA insight
MA-LAMA makes use of the LAMA MPT representation,
inherited from Fast Downward (FD) (Helmert 2006), which 305

only needs to be modified to support the snap task numeric
conditions, numCond, and any form of contEff during the
temporal task instantiation and multi-valued variables com-
putation through the invariant search.



Figure 1: MA-LAMA general structure. The input is a
PDDL2.1 temporal task that is decomposed to launch sev-
eral Constrained Search Phases. All partial plans are unified
at the end to produce a full temporal plan as output.

Additionally, as we have expanded the original MPTs def-310

inition to eMPTs, we need to determine the possible val-
ues for the multi-valued numeric variables, n ∈ N . For
each numeric variable n, the set of states, ϵ is obtained by:
∀a ∈ A→ ϵ = ϵ ∪ {n ∈ N : n ∈ contEff (a)}, plus the un-
defined state, u. contEff (a) and numCond(a) are expanded315

so that all numeric operations that can be solved before the
search are solved. Thus, in our eMPTs and for each fluent
numeric variable, we encode the current numeric value and
last applied numeric effect.

Next, we will review in detail each MA-LAMA execution320

module, starting with Agent Decomposition and Goal Cate-
gorization and Assignment, and continue with Constrained
Search and Unify, as shown in Figure 1

1- Agent Decomposition
Most variable decompositions divide the domain vari-325

ables between private, variables (that cannot be changed by
and are not required by any other agent) and public (repre-
senting the environment in which the agents operate), P .

We borrow from Crosby et al. (2013) their variable de-
composition definition. In short, a variable decomposition330

of an eMPT divides it in a set of variable groups, Ω =
{Ω1,Ω2, ...,Ωn}, and a set of public variables, P , that can
be empty. In their work, they also define Agent Variable De-
compositions (ADP); variable decompositions where there
are no joint actions and no external actions that can affect335

any agent internal variables. We do not need to impose this
restriction, as we will deal with required cooperation in a
later stage.

Algorithm 1 gives a pseudo-code overview of the MA-
LAMA Agent Decomposition (AD) module, which pro-340

duces a set of eMPTs ⟨V, I,G,A,N,M⟩, where all com-
ponents are set with the exception of G.

We consider three main stages in the AD module:
1) Find Possible Agents starts with the ADP basis: remov-
ing 2-way cycles from the CG and take resulting root nodes345

that still have one successor left as possible agents. Then,
the algorithms differ, as we aim for different objectives with
the decompositions: minimize local agent search space for

Algorithm 1: Agent Decomposition (AD)
Input: eMPT ⟨V, I,G,A,N,M⟩
Output: Agent Decomposed Task set Φ =
{Φ1,Φ2, ...,Φn}

1: Find Possible Agents
2: CG generation
3: Ω← {ν ∈ V : ν root node of CG\2 way cycles}
4: Ω← AssembleAgents(Ω)
5: Extend Private Agent Sets
6: repeat
7: for Ωn ∈ Ω do
8: Ωn ← Ωn ∪ {υ ∈ V : υ only successor of ∪ Ωn}
9: end for

10: until Ω can no longer be refined
11: An ← {a ∈ A, υ ∈ Ωn : ∃υ ∈ ∪eff (a) ∪ ∪pre(a)}
12: Extend Public Agent Sets
13: repeat
14: for Ωn ∈ Ω do
15: Ωn ← Ωn ∪{υ ∈ V : υ is connected with ∪ Ωn in

the CG ∧ υ not yet assigned}
16: end for
17: until every υ ∈ V is assigned
18: An ← {a ∈ A : ∪eff (a) ∪ ∪pre(a) ∈ Ωn ∧ a not

assigned in previous step}
19: Nn ← {n ∈ N : n ∈ ∪contEff ({a ∈ An}) ∪
∪numPre({a ∈ An})}

20: In ← {v ∈ I : v ∈ Vn}
21: Mn ← {(w ∗ n) ∈M : n ∈ Nn}
22: return {Ωn, In, ∅, An, Nn,Mn}

MA-LAMA, and minimize mandatory agent coordination in
ADP. 350

We run an Assemble Agents step before expanding all
agent sets, so that possible agents are more refined and re-
ally coupled agents are merged. The full assembly step can
be summarized in one rule:

For two possible agents [υ, υ′] in a root node set Ω, υ and 355

υ′ are assembled if there is a path between υ and υ′ in the
CG.
2) Extend Private Agent Sets Agents sets are then ex-
panded so that every υ ∈ V that is only successor of an
agent set, Ωn, is added to it. This process is repeated un- 360

til all sets can no longer be refined, and a set of actions is
added to each agent such that, for every action a ∈ A, it is
added to the private set of actions of a certain agent, An, if
there exists a variable υ that exists in eff (a) or pre(a).

This results in a private set of variables, Ωn and actions 365

An for each agent; therefore, the rest of the variables and
actions are assumed public, P .
3) Extend Public Agent Sets Agent variable sets are com-
pleted with all the variables that are reachable in the CG for
a certain agent, n: actions not yet assigned are added to Ωn 370

following the same past rule, but using the new complete
variable set; numeric variables N and metric, M are added
to Nn and Mn if they appear in the conteff(a) or numCond(a)
for every a ∈ An; and the initial state I and metric M are
decomposed and added to an agent n if they appear in Vn. 375



Algorithm 2: Goal Categorization and Assignment (GCA)
Input: Agent Task Set, Φ = {Φ1,Φ2, ...,Φn}, and goals, G
Output: Cooperation and Coordination Search Phases, σ =
{σ1, σ2, ..., σn}

1: Coordination Points Variables
2: CoorP ← ∅ (Coordination Points)
3: for {Φn,Φm} ∈

(
Φ
2

)
do

4: CoorP ← CoorP ∪ {υ ∈ P : ∃(an ∈ An, am ∈
Am) : υ ∈ pre(an) ∧υ ∈ eff(am) }

5: end for
6: Single Goal Relaxed Plans Obtention
7: Gcoop, Gcoord ← ∅ (Coord and Coop goal sets)
8: for g ∈ G do
9: Solg ← ∅ (relaxed solutions set)

10: for Φ ∈ do
11: Solg ← Solg ∪ relaxedSearch(Φn, g)
12: end for
13: if Solg ̸= ∅ then
14: Gcoop ← Gcoop ∪ g, Solg
15: else
16: Solg ← relaxedSearch(Φ, g)
17: Solg ← CoorP in Solg
18: Gcoord ← Gcoord ∪ g, Solg
19: end if
20: end for
21: Goal Assignment and Search Phases Creation
22: σcoop ← Gcoop,MinCostAssignment(Φ, Gcoop)
23: σcoord ← ∅
24: for gcoord ∈ Gcoord do
25: σn ← gcoord ∪ CoorP in gcoord.Solg , Φn in

gcoord.Solg
26: σcoord ← σcoord ∪ σn

27: end for
28: return σcoop ∪ σcoord

Our variable decomposition for an eMPT is both sound
and complete as we meet all the same three criteria explained
in Crosby et al. (2013), in Theorem 6.1.

Finally, the output of the algorithm is a set of tasks, Φ =
{Φ1,Φ2, ...,Φn}, one for each agent and without any goal380

assigned. This set is the input for the Goal Categorization
and Assignment stage.

2- Goal Categorization and Assignment
Algorithm 2 shows the Goal Categorization and Assign-

ment (GCA). The objective is to further exploit the MA na-385

ture of the domains by studying how the goals from the orig-
inal temporal task, G, can be assigned to the agent eMPT set,
Φ, to achieve optimized solutions.

The basis of the GCA algorithm is the Required Cooper-
ation (RC) Analysis (Zhang, Sreedharan, and Kambhampati390

2016), in which they formally describe the possible agent
interactions within an eMPT. From now on, we will refer
to goals that require Type-1 RC (Heterogeneous Agents) or
Type-2 RC (Homogeneous Agents) Casual Loops interac-
tions as coordination goals, and goals that require Type-2395

RC Traversability interactions, or no RC at all, as coopera-

tion goals. The output of the GCA is a set of Search Phases,
each one aiming to solve a goal subset of coordination or
cooperation {g} ∈ G.

We consider three main stages for the GCA module: 400

1) Coordination Points Variables Coordination points are
certain points in an agent plan where it possibly influences
or is influenced by other agents. Following this idea, we ob-
tain variables that may be coordination points in our Φ by
extracting from P all variables that are both a precondition 405

in one agent actions and an effect in other agent actions.
2) Single Goal Relaxed Plans Obtention Then, we launch a
relaxed (ignore delete effects and ignore numCond()) search
for each goal g ∈ G and agent eMPT Φn ∈ Φ and calculate
a metric value for the relaxed solution, computing numeric 410

variables limits and using the worst-case scenario for fluents
in contEff().

If a solution is found for any of Φn, then the goal is con-
sidered a cooperation goal, and our aim is then changed to
find the most optimized relaxed solution through iterative 415

relaxed searches and for each agent that can achieve it.
If a solution is not found, g requires coordination, and

a relaxed search is launched for the same g with the full
eMPT, trying to minimize the number of used agents in the
relaxed solution. The values for variables selected as possi- 420

ble coordination points are stored for later use in the Search
Steps creation. The optimization of all relaxed search pro-
cesses take place for a configurable amount of time or until
the complete search space has been explored.
3) Goal Assignment and Search Phases Creation We deal 425

with coordination and cooperation goals in different ways:
• for cooperation goals, all goals are assigned in a way that

minimizes the total sum of all relaxed metrics in a single
Search Phase, σ1, where agents involved, Φn ∈ Φ, are
those with at least one goal assigned, and 430

• for coordination goals, one Search Phase is created for
each, {σ2, ..., σn}, where agents involved are those that
appear in the relaxed plan, additionally, the coordination
points for each agent are also assigned as goals.

We check if the assignments are valid from a numeric con- 435

ditions perspective before continuing. If there are no relaxed
solution for one of the agents in a Search Phase, the process
is restarted assigning weights to each agent metric estima-
tion, lowering the use of constrained agents.

In average, the time it takes for the GCA to find the best 440

relaxed solution is in the order of milliseconds.

3- Constrained Search
The Constrained Search process receives as an input the
full set of Search Phases, σ = {σ1, σ2, ..., σn}, each with
a set of eMPT, Φ = {Φ1,Φ2, ...,Φn}. We launch a multi- 445

heuristic constrained search over each eMPT, inheriting tem-
poral constraints, (Φn, υ, t, d), set by the public variables,
P , between each agent search, so that interactions between
agents are only considered when necessary.

Definition 5. Temporal Constraints 450

A Temporal Constraint, (Φn, υ, t, d), states that the agent,
Φ, sets a certain value, υ, at the moment, t, for the a certain
duration, d.



Figure 2: A Cooperation Search Phase: each agent, Φn, pro-
duces temporal constraints for the next. All agents share ini-
tial state, S0, and produce a combined final state, Sf . The
phase makespan, t, is the longest agent plan makespan.

Figure 3: Coordination Search Phase structure, where each
agent, Φn, produces the initial state, S, for the next. The final
state, Sf is produced by the last agent. The makespan of the
phase, t, is the sum of all agent local plans.

We will now divide the search description in two: first,
each individual search characteristics are explained, and455

then, details on solving whole Search Phases are provided.

1) Search details For each eMPT, We launch a WA* for-
ward total-order search with two classical heuristics, hFF

(Hoffmann and Nebel 2001), Cost-Sensitive FF/add variant,
and hLand (Hoffmann, Porteous, and Sebastia 2004) (Se-460

bastia, Onaindia, and Marzal 2006). This choice is based on
the fact that most MA temporal domains revolve their tem-
poral complexity over the concepts of cooperation and co-
ordination, so the eMPTs that we solve at this point tend to
not require complex necessary simultaneity.465

During search, all states are evaluated with respect to both
heuristics, and, when choosing which state to expand, the
search algorithm alternates between both based on numer-
ical priorities. Inherited from the LAMA planner, we also
make use of preferred-operators, which represent operators470

that are estimated to be useful in a given state.
A temporal framework is introduced to deal with local

concurrency, incorporating constraints among snap-actions
to guarantee that the preconditions for the new actions are
satisfied in the frontier state, as well as keep track of the475

makespan and running actions start-end times for each state.
We follow the same principles with the numeric frame-

work, including the necessary mechanisms to be able to deal
with continuous numeric operations and numeric precondi-
tions. Note that our only aim with these frameworks is to480

guarantee temporal and numeric soundness, and that we do
not reason with time or incorporate other numeric solutions
as LPs for the sake of fast search graphs exploration.

2) Solving Search Phases All Search Phases need a tem-
poral constraints system for two main purposes:485

• for cooperation goals, to assure that restrictions over
variables υ ∈ P are preserved, and

• for coordination goals, to synchronize the agents around
the coordination points.

In practice, temporal constraints are used as conditions in 490

cooperation Search Phases (see Figure 2), computing them
as inv() = v, starting at time, t, for the duration, d. When
a cooperation agent finds a solution, it also computes a set
of Temporal Constraints, containing all times a variable v ∈
P value was required or changed. Consecutive agents use 495

this list as limitations to their own local search graphs, and
adding their own restrictions when they find a solution.

We solve coordination Search Phases, Figure 3, follow-
ing the agent order dictated by the coordination points, ob-
taining the coordination goal at the end. Each agent inherits 500

from the last a set of temporal constraints representing the
already obtained subgoals and end states, which serve as the
initial state for each local search.

Metric optimization in each Search Phase type is achieved
differently. First, a cooperation Search Phase will be as op- 505

timized as its individual eMPTs are. Since several goals are
achieved per agent, the ones with more goals are prioritized,
so they solve their eMPTs less restricted by temporal con-
straints. Coordination Search Phases eMPTs generally only
solve one goal, so they are not as promising in terms of 510

numeric optimization. On the other hand, temporal concur-
rency can still be improved, and it is handled in the next step.

4- Unify
The final step in MA-LAMA execution consists of the uni-
fication of all partial plans for each Search Phase to obtain a 515

full temporal plan.
The unification process of each agent in a Search Phase,

Φn ∈ σj , snap partial plan, is simple, as we have already
dealt with concurrency and constraints in all cases but in
between coordination Search Phases. The partial plans for 520

each Search Phase are obtained by assembling each Φn par-
tial plan in a concurrent manner for cooperation Search
Phases, and consecutively in coordination Search Phases.

In order to combine all partial plans, we first check for
each coordination Search Phase pair, σn, σm, and the vari- 525

ables from P that are affected in their respective snap partial
plans, Pn, Pm. If Pn ∩ Pm = ∅, then both σn and σm are
added to the complete temporal plan in a concurrent manner.

Finally, all remaining partial plans are combined consec-
utively. During this process, we also calculate the total cost 530

of the final plan; check that the temporal, numeric and logic
constraints soundness is maintained; and change the snap
actions plan paradigm to temporal.

Experimentation
Our experimentation is divided in two sections. First, we 535

study the coverage results of MA-LAMA in temporal and
non temporal domains against other classical and temporal
solvers, in order to check if the AD and GCA MA algo-
rithms are suitable to deal with a wide range of MA scenar-
ios. And, second, we analyse MA-LAMA plan quality per- 540

formance for increasingly difficult temporal problems, and
against other state-of-the-art temporal planners.



CoDMAP Domains MA-L CMAP ADP Goal Types
Blocksworld 20 19 (1) 20 -

Depot 17 (3) 17 (3) 16(4) -
DriverLog 20 19 (1) 20 Coop
Elevators 20 18 (2) 20 Coop&Coor
Logistics 20 19 (1) 20 Coop&Coor
Rovers 20 20 20 Coop

Satellites 20 20 20 Coop
Sokoban 14 (6) 13 (7) 17(3) -

Taxi 20 20 20 Coop
Wireless 6 (14) 5 (15) 9(11) -

Woodworking 16 (4) 15 (5) 20 -
Zenotravel 20 19 (1) 20 Coop

Total 213 204 222 Coop
Domains (origin) MA-L TFLAP OPTIC TFD POPC Goal Types

Rovers (IPC) 11 1(10) 8 (3) 10 (1) 6 (5) Coop
Satellite (IPC) 11 11 7 (4) 5 (6) 0 (11) Coop

Zenotravel (IPC) 16 14 (2) 8 (8) 16 7 (9) Coop
Logistics (CodMAP) 20 20 20 20 0 (20) Coop&Coor

Taxi (CodMAP) 20 18 (2) 20 20 20 Coop
Total 78 54 63 71 33 Coop

Table 1: Coverage results (not solved domains in parenthe-
sis) for CoDMAP non-temporal (up) and CoDMAP and IPC
temporal (down) MA domains. MA-LAMA goal types de-
tected are shown for domains with valid decompositions. All
executions are limited to 10 minutes and 4GB of RAM.

Coverage for classical and temporal tasks
We first check the coverage of MA-LAMA in classical and
temporal domains, results can be seen in Table 1.545

For classical planning, we analyse over the CoDMAP do-
mains and against the ADP-legacy and CMAP-q planners.
These are the winners for the competition coverage and
quality tracks, and both share internal functionalities with
MA-LAMA: ADP shares the root of the agent decompo-550

sition, launching FF if the decomposition is not valid; and
CMAP-q, that obfuscates the full domain information inter-
nally and makes use of the LAMA planner during search.

We obtain a similar coverage performance to ADP when
an agent decomposition is found, and to CMAP-q if the de-555

composition is invalid (generally, when the AD delivers a
decomposition that does not match the competition original
domain). Compared with ADP, the slightly worse coverage
performance of MA-LAMA is explained by this, as we solve
less domains when no decomposition is found. Overall, MA-560

LAMA achieves a coverage of 88,75%, compared to 92,5%
from ADP-legacy and 85% from CMAP-q.

For MA temporal domains, we compare against other
state-of-the-art temporal planners, already mentioned in the
related work section: OPTIC, TFLAP, TFD and POPCORN.565

We exclude Yahsp3, as its single-thread version is outper-
formed by TFD and does not work with metrics in our tests,
and both TemPorAl and CP4TP, as they are portfolios and
the comparisons would not be significant. The domains we
chose are Rovers, Satellites and Zenotravel from IPC, and570

adapted Taxis and Logistics from CodMAP to make them
temporal, as Logistics presents required cooperation and
Taxis allow us to check a less complex scenario.

In this case, MA-LAMA outperforms all planners, spe-
cially for IPC domains, where only TFLAP in Satellites and575

TFD in Zenotravel are able to match MA-LAMA. Regarding
the agent decompositions, we obtain the ones a human oper-
ator would set: planes in Zenotravel, rovers in Rovers, satel-

Figure 4: Expanded Nodes for each problem (no of agents)
in Rovers IPC domain.

Figure 5: Search Time in seconds for each problem (no of
agents) in Rovers IPC domain.

lites in Satellites, planes and trucks in Logistics and taxis in
Taxis. Additionally, only Logistics contained coordination 580

goals, but this did not affect coverage performance. With
these results, we can conclude that the AD and GCA algo-
rithms are suitable to deal with MA temporal domains.

The coverage results show that MA-LAMA is able to
solve a wide range of problems in MA classical domains, 585

and improves state-of-the-art coverage performance for the
most complex MA temporal domains.

Plan quality performance
In this section, we will study the plan quality performance
in MA temporal domains, the main focus of our planner. For 590

the reasons we outlined in the previous point, we launch the
same five planners: OPTIC, TFLAP, TFD, POPCORN and
MA-LAMA. Results are detailed in Table 2. For all domains,
we consider problems once the MA nature becomes relevant.

MA-LAMA dominates in Rovers (weighted battery) and 595

Zenotravel (weighted fuel + makespan) domains, delivering
better quality plans in all instances for Rovers and almost all
for Zenotravel, where TFLAP also wins in some problems.
These two domains are launched with metrics that are not
completely coupled with the makespan of the plan, and the 600

two best performing planners (TFLAP only in Zenotravel)
make use of classical heuristics and do not reason with time,
meaning that this can be an advantage when optimizing met-
rics not coupled with the makespan.

For Satellites (makespan), result are mixed, MA-LAMA 605

gives better solutions in four problems, and OPTIC and TFD
in three. It is clear that planners that reason with time per-
form better with the makespan metric, but, as instances get
more complex, MA-LAMA deals better with them and is
able to deliver good solutions in these last problems. This 610



Domain (metric) Problem 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Rovers (w
battery)

MA-LAMA 48.6 18.99 88.99 155.8 79.8 102.3 77.0 135.3 33.2 313.4 388.6
POPCORN 130.2 37.2 93.4 - - 156.8 184.3 - 136.6 - -

TFD 101.1 47.2 100 172.1 94.1 215.2 100.2 214.6 224.4 346.0 -
TFLAP - - - - - 137.3 - - - - -
OPTIC 99.9 38.8 96.5 215.6 143.8 184.7 198.7 217.4 - - -

Satellites
(makespan)

MA-LAMA 134.50 205.90 230.25 132.89 129.12 192.16 120.18 93.54 153.60 247.92 555.90
TFD - - 262.45 104.05 87.71 - - - 93.92 283.43 -

TFLAP 217.57 479.33 385.36 634.91 361.01 462.91 370.22 385.51 296.31 509.53 948.83
OPTIC 115.74 150.91 171.79 149.10 108.63 - - 83.74 100.63 - -

Zenotravel
(makespan
+ w fuel)

MA-LAMA 19.83 54.47 45.95 35.92 237.72 76.7 103.17 123.7 268.26 182.61 210.3 324.42 154.64 373.43 398.15
POPCORN 124.7 127.01 366.1 719.69 - 313.74 213.49 - - - - - - - -

TFD 39.77 111.19 236.7 651.96 268.73 208.24 146.42 194.72 1464.59 242.81 574.42 1756.12 880.85 1674.44 3301.31
TFLAP 24.99 82.75 76.38 213.95 196.13 81.75 81.94 92.59 390.97 133.04 303.66 504.84 414.58 - -
OPTIC 38.66 66.93 102.17 131.03 283.3 - 400.28 130.07 291.74 - - - - - -

Logistics
(w fuel)

MA-LAMA 169.0 131.0 114.0 177.0 168.0 192.0 247.0 188.0 263.0 231.9 210.0 170.5 308.4 266.2 197.0
TFD 183.0 217.0 104.0 177.0 168.0 304.0 247.0 168.0 521.0 434.4 332.4 216.2 290.0 221.0 235.2

TFLAP 159.0 131.0 114.0 177.0 158.0 172.0 247.0 158.0 239.0 287.0 244.0 217.0 264.8 311.0 256.0
OPTIC 183.0 131.0 114.0 187.0 158.0 206.0 247.0 178.0 253.0 272.4 213.9 192.8 318.0 313.2 229.2

Taxi (w
dist)

MA-LAMA 5.6 4.6 5.1 7.1 4.6 4.6 6.5 7.5 17.5 18.9 27.3 23.4 19.8 28.3 31.2
POPCORN 21.5 18.9 8.1 55 8.1 36.8 28.6 54.7 53.5 68.2 73.7 66.1 65.8 91.3 73.8

TFD 16.8 4.6 7.2 14.2 4.6 4.6 11.8 15.3 53.4 34.5 43.5 24.3 24.3 61 55.4
TFLAP 5.6 4.6 5.1 6.6 4.6 4.6 6.5 7.5 17.5 18.9 18.9 19.8 19.8 - -
OPTIC 5.6 4.6 4.6 21 4.6 4.6 29.1 45.7 20.1 22 58.8 35 69.8 75 73.5

Table 2: Quality of plans on IPC benchmarks (Rovers, Satellites and Zenotravel), and temporal CodMAP domains (Logistics
and Taxi), limited to 10 minutes and 4GB of RAM. Smaller is better in all domains. Absence of a planner in a given domain
indicates that it solved no problems. ”w” means weighted.

trend is present in the domains.
The CodMAP domains are significantly less complex than

the IPC ones, as several planners find optimal (or near op-
timal) solutions for several instances. In these cases, MA-
LAMA depends on the GCA algorithm to deliver the best615

solution, as a non-optimal goal assignment results in a non-
optimal final solution, which happens in several instances
of Taxis (weighted distance) and Logistics (weighted fuel).
Similarly to the previous case, as problems incorporate more
agents and variables, all planners begin to struggle to opti-620

mize the solutions, and the MA nature of MA-LAMA proves
to be an advantage in these cases for both domains.

Logistics has been incorporated as the case where coordi-
nation goals cannot be avoided, and MA-LAMA is able to
find the optimal solution only in some easier domains, show-625

ing good performance in the latest ones. This proves that the
GCA is only suitable for scenarios where finding optimal
solutions in a short time span is not feasible, as it looses too
much information in the estimation process for lighter ones.

Lastly, we want to take a look on the search time and ex-630

panded nodes for each planner in the Rovers domain, shown
in Figure 4 and Figure 5. POPCORN and TFLAP are ex-
cluded since they do not solve the majority of the problems.

For OPTIC, and more notably for TFD, the increase in ex-
panded nodes can be tied to an increase in search time, and635

increasing the number of agents causes them to struggle to
find good, if any, solution. MA-LAMA does not reproduce
these behaviors, expanded nodes and search time remain
stable through the whole domain, with peaks in expanded
nodes when the individual agent eMPTs are harder, as in640

p16. Additionally, the increase in the number of agents does
not translate in worse performance, as the AD and GCA al-
gorithms remove much of the temporal complexity that this
certain domain presents.

To conclude, experiments infer that the MA techniques in645

MA-LAMA perform suitable decompositions for MA tem-
poral domains, and that MA-LAMA delivers better plan

quality performance than other state-of-the-art temporal
solvers in the most complex problems for all tested domains.

Future work and limitations 650

MA-LAMA does not reason with temporal or numeric in-
formation during search, so, in domains where a decompo-
sition is not found, it is expected to underperform other plan-
ners. Other techniques, as symmetry based decompositions
or search time reasoning could be incorporated for theses 655

cases. Additionally, the classical heuristics used can run into
plateaus during search due to the lack of temporal reasoning.

The AD algorithm can be improved to cover a wider range
of MA domains, as currently there are several domains from
CodMAP that remain hard to decompose automatically into 660

logical sets of variables.
Finally, our experimentation shows that MA-LAMA im-

proved plan quality performance over multi-agent temporal
domains over the state-of-the-art, but it is expected to be
dominated in other types of scenarios. A future line of work 665

may consider including MA-LAMA and other planners to
build a portfolio, launching only selected planners based on
a domain structure analysis performed before the search.

Conclusions
In this paper, we presented MA-LAMA, a satisfying tempo- 670

ral MA planner that utilises MA techniques to deal with con-
current action search spaces. The AD and GCA algorithms
decompose the temporal MAP tasks in Search Phases in a
way that reduces temporal complexity and that is suitable
for metric optimization. 675

Our experimentation shows that MA-LAMA outperforms
other state-of-the-art temporal planners in terms of coverage
and plan quality in MA temporal domains, especially in the
most complex domain instances.
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