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ABSTRACT

In this paper, we present Consistent4D, a novel approach for generating 4D dy-
namic objects from uncalibrated monocular videos. Uniquely, we cast the 360-
degree dynamic object reconstruction as a 4D generation problem, eliminating
the need for tedious multi-view data collection and camera calibration. This is
achieved by leveraging the object-level 3D-aware image diffusion model as a su-
pervision signal for training dynamic Neural Radiance Fields (DyNeRF). Specif-
ically, we propose a cascade DyNeRF to facilitate stable training convergence
and temporal continuity given the time-discrete supervision signal. To achieve
spatial and temporal consistency of the 4D generation, an interpolation-driven
consistency loss is further introduced, which aligns the rendered frames with the
interpolated frames from a pre-trained video interpolation model. Extensive ex-
periments show that the proposed Consistent4D significantly outperforms previ-
ous 4D reconstruction approaches as well as per-frame 3D generation approaches,
opening up new possibilities for 4D dynamic object generation from a single-view
uncalibrated video. Project page: https://consistent4d.github.io.

Figure 1: Video-to-4D generation results of two input videos. We show the renderings at 2 view-
points and 3 timestamps to demonstrate the spatial-temporal consistency achieved by Consistent4D.

1 INTRODUCTION

Dynamic 3D content creation, is critical for a variety of downstream applications, including virtual
reality, augmented reality, autonomous driving simulation, and gaming. Existing 4D reconstruction
methods typically rely on synchronized multi-view videos (Li et al., 2022; Fridovich-Keil et al.,
2023; Shao et al., 2023) or calibrated monocular videos (Li et al., 2021; Pumarola et al., 2021;
Park et al., 2021b;a). These approaches, although effective, necessitate complex camera setups and
rigorous camera calibrations, constraining their usability and scalability in real-world settings. They
also struggle with reconstructing unobserved regions.
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To adresss the aforementioned limitations, we instead generate 360° dynamic 3D object from a
single-view uncalibrated video captured by a static camera, streamlining data acquisition while
maintaining high fidelity outputs. To tackle the challenging problem of 4D scene recovery from
a single video, we harness visual priors from pre-trained large vision models (LVMs), casting 4D
reconstruction as a generative process. This is inspired by human cognitive abilities, which intu-
itively interpret 3D shape, appearance, and motion from a video clip using knowledge accumulated
through life.

Inspired by recent advancements in 3D generation techniques (Poole et al., 2023; Wang et al., 2022;
Chen et al., 2023; Wang et al., 2023; Deng et al., 2022; Tang et al., 2023; Melas-Kyriazi et al.,
2023), we introduce multi-view diffusion model (Liu et al., 2023) to provide spatially consistent
supervision signal to the generation of dynamic 3D object. However, this supervision signal is time-
discrete, posing challenges for maintaining temporal coherence in dynamic 3D object generation
and consequently compromising the spatiotemporal consistency in overall 4D optimization.

In this work, we present Consistent4D, a novel video-to-4D generation approach with focus on spa-
tial and temporal consistency. Our approach features a Cascade DyNeRF tailored for 4D scene rep-
resentation in generation tasks, which facilitates temporal coherence under time-discrete supervison
singal from a pre-trained multi-view diffusion model. To further improve both spatial and tempo-
ral consistency, an Interpolation-driven Consistency Loss (ICL) is introduced, which minimizes the
discrepancy between frames rendered by DyNeRF and frames interpolated by a pre-trained video
interpolation model. The ICL loss not only enhances consistency in 4D generation but also mitigates
multi-face issues in 3D generation. Finally, an optional video enhancer refines occasional noise in
4D renderings.

We have extensively evaluated our approach on both synthetic videos rendered from animated 3D
models and in-the-wild videos collected from the Internet. To summarize, contributions of this work
include:

• We propose a video-to-4D framework for dynamic object generation from a statically cap-
tured monocular video. A Cascade DyNeRF, inherently inclined to temporally consistent
outputs, is optimized by a multi-view image diffusion model, with the option to refine its
renderings using a video enhancer.

• We introduce a novel Interpolation-driven consistency loss to improve the spatial and tem-
poral consistency of the 4D generation, which also alleviates multi-face Janus problem in
3D generation.

• We extensively evaluate our method on both synthetic and in-the-wild videos collected
from the Internet, showing promising results for the new task of video-to-4D generation.

2 RELATED WORK

3D Generation Recently, general-purpose 3D generation has been enabled by text-to-image dif-
fusion models pre-trained on Internet-scale data. DreamFusion (Poole et al., 2023) stands for the
pioneering work of text-to-3D by using a 2D diffusion model, where the Score Distillation Sampling
(SDS) loss is proposed to leverage the denoise diffusion process for Neural Radiance Field (NeRF)
training. The follow-up works (Lin et al., 2023; Chen et al., 2023; Wang et al., 2023) further en-
hance the visual quality of the generated object by using mesh representation, Variational Score
Distillation(VSD), etc.

Alongside text-to-3D, image-to-3D is a popular alternative for 3D generation. Different from 3D
reconstruction, which focuses on recovering 3D information from overlapped multi-view images,
image-to-3D generation usually takes only one single image as input and relies on data priors (e.g.,
2D diffusion) to generate invisible regions of the object (Melas-Kyriazi et al., 2023; Tang et al.,
2023; Liu et al., 2023). Most approaches in this domain simply convert input image to texts by
using a large vision-language models and then reused the text-to-3D model for image-to-3D gener-
ation (Melas-Kyriazi et al., 2023; Tang et al., 2023; Seo et al., 2023). One of the biggest challenges
in 3D generation is multi-face Janus problem, arising from the lack of 3D awareness in the original
2D diffusion model. However, the recent image-to-3D work Zero123 (Liu et al., 2023) mitigates
this issue by fine-tuning a 3D-aware image-to-image model on a large-scale multi-view dataset, en-
abling the novel view synthesis of the object from the input image. Our work employs Zero123
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and we propose an Interpolation-driven consistency Loss to further enhance spatial and temporal
consistency.

4D Reconstruction Early works in 4D reconstruction, aka dynamic 3D reconstruction, are mainly
object-level and adopt parametric shape models (Matthew Loper & Black, 2015; Vo et al., 2020)
as representation. In recent years, Dynamic Neural Radiance Field(DyNeRF) become popular, and
convenient dynamic scene reconstruction is enabled. These works can be classified into two cate-
gories: a deformed scene is directly modeled as a NeRF in canonical space with a time-dependent
deformation (Pumarola et al., 2021; Park et al., 2021a;b; Wu et al., 2022b; Tretschk et al., 2021) or
time-varying NeRF in the world space (Gao et al., 2021; Li et al., 2021; Xian et al., 2021; Fridovich-
Keil et al., 2023; Cao & Johnson, 2023). These methods usually require multi-view, synchronized,
and calibrated videos as input to the reconstruction algorithms, which is tedious to collect Li et al.
(2022); Shao et al. (2023). In other scenarios, a monocular video is accepted as input, but still
requires accurate per-frame calibration and a moving trajectory for effective dynamic information
recovery (Pumarola et al., 2021; Park et al., 2021a;b). In contrast, our approach utilizes a single-
view, uncalibrated video as input, significantly streamlining the data collection.

4D Generation 4D generation extends 3D generation to the space+time domain and thus is more
challenging. Early attempts focus on category-specific generation and parametric shape models is
employed as scene representation (Zuffi et al., 2017; 2018; Vo et al., 2020; Kocabas et al., 2020)
. They usually take images or videos as conditions and need category-specific 3D templates or
per-category training from a collection of images or videos (Ren et al., 2021; Wu et al., 2021;
Yang et al., 2022; Wu et al., 2022a). Recently, MAV3D (Singer et al., 2023) has achieved general-
purpose dynamic scene generation based on textual descriptions. It follows the paradigm of Dream-
Fusion (Poole et al., 2023) and extends it to the time domain by proposing a three-stage training
strategy. However, the quality of generated scenes is limited due to low-quality video diffusion
models. Instead, we propose the task of video-to-4D generation, leveraging the high-quality input
video as a guiding constraint to enhance fidelity and ensure consistent rendering in the 4D output.

3 PRELIMINARIES

3.1 SCORE DISTILLATION SAMPLING FOR IMAGE-TO-3D

Score Distillation Sampling (SDS) is first proposed in DreamFusion (Poole et al., 2023) for text-to-
3D task. It enables the use of a 2D text-to-image diffusion model as a prior for optimization of a
NeRF. We denote the NeRF parameters as θ, text-to-image diffusion model as ϕ, text prompt as ρ,
the rendering image and the noisy image as x and z, the SDS loss is defined as:

∇θLSDS (ϕ,x) = Eτ,ϵ

[
ω(t) (ϵ̂θ (zt; ρ, τ)− ϵ)

∂x

∂θ

]
, (1)

where τ is timestamps in diffusion process, ϵ denotes noise, and ω is a weighted function. Intuitively,
this loss perturbs x with a random amount of noise corresponding to the timestep τ , and estimates
an update direction that follows the score function of the diffusion model to move to a higher density
region.

Besides text-to-3D, SDS is also widely used in image-to-3D tasks. Zero123 (Liu et al., 2023) is one
prominent representative. It proposes a viewpoint-conditioned image-to-image translation diffusion
model fine-tuned from Stable Diffusion (Rombach et al., 2022), and exploits this 3D-aware image
diffusion model to optimize a NeRF using SDS loss. This image diffusion model takes one image,
denoted by Iin, and relative camera extrinsic between target view and input view, denoted by (R,T),
as the input, and outputs the target view image Iout. Compared with the original text-to-image
diffusion model, text prompt in Equation 1 is not required in this model cause the CLIP embedding
of the input image and the relative viewpoint change replace the text prompt. Then Equation 1 could
be re-written as:

∇θLSDS (ϕ,x) = Eτ,ϵ

[
ω(t) (ϵ̂θ (zt; Iin,R,T, τ)− ϵ)

∂x

∂θ

]
, (2)
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Figure 2: Schematic illustration of Consistent4D. We introduce Cascade DyNeRF as our 4D repre-
sentation, specially tailored to favor temporal continuity, ensuring stable training under time-discrete
SDS from a multi-view diffusion model. To compensate for temporal inconsistency arising from
SDS, we propose a novel Interpolation Consistency Loss, leveraging a pre-trained video interpola-
tion model, to enhance both spatial and temporal consistency of 4D outputs. Additionally, we offer
an optional video enhancer as post-processing step to refine any potential noise in 4D renderings.

3.2 K-PLANES

K-planes (Fridovich-Keil et al., 2023) is a simple and effective dynamic NeRF method which fac-
torizes a dynamic 3D volume into six feature planes (i.e., hex-plane), denoted as P = {Po}, where
o ∈ {xy, yz, xz, xt, yt, zt}. The first three planes correspond to spatial dimensions, while the last
three planes capture spatiotemporal variations. Each of the planes is structured as a M ×M × F
tensor in the memory, where M represents the size of the plane and F is the feature size that en-
codes scene density and color information. Let t denote the timestamp of a video clip, given a point
p = (x, y, z, t) in the 4D space, we normalize the coordinate to the range [0,M) and subsequently
project it onto the six planes using the equation f(p)o = Po(ιo(p)), where ιo is the projection from
a space point p to a pixel on the o’th plane. The plane feature f(p)o is extracted via bilinear in-
terpolation. The six plane features are combined using the Hadamard product (i.e., element-wise
multiplication), to produce a final feature vector as follows:

f(p) =
∏

o∈{xy,yz,xz,xt,yt,zt}

f(p)o, (3)

Then, the color and density of p is calculated as c(p) = c(f(p)) and d(p) = d(f(p)), where c and d
denotes mlps for color and density.

4 METHOD

In this work, we target to generate a 360◦ dynamic object from a statically captured monocular
video. To achieve this goal, we develop a framework consisting of a DyNeRF and an optional
video enhancer, supervised by the pre-trained multi-view diffusion model and a GAN, respectively.
As shown in Figure 2, we design a Cascade DyNeRF which naturally favors temporal continuity,
facilitating stable training under the time-discrete SDS loss from 2D diffusion model. To further
guarantee spatial and temporal consistency, we propose a novel Interpolation-driven Consistency
Loss as the extra regularization for the DyNeRF. Inspired by pix2pix (Isola et al., 2017), we apply
GAN to train a lightweight video enhancer as an optional post processing step to refine the occa-
sional noise in 4D renderings. In such a way, we obtain a DyNeRF from which we can render 360°
view of the dynamic object, and the rendered results can be further enhanced by the video enhancer.
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In the following sections, we will first introduce our design of the Cascade DyNeRF, and then
illustrate the Interpolation-driven Consistency loss. Video enhancer is described in the third section.
At last, we detail the training loss.

4.1 CASCADE DYNERF

Existing DyNeRF methods mainly assume the supervision signals are temporally coherent, however,
this assumption does not hold in our pipeline due to the use of the image diffusion models with no
time notion. In order to minimize the impact of temporal discontinuity in the supervision signals,
we are prone to 4D representations which naturally guarantee a certain level of temporal continuity.
Therefore, we build our DyNeRF based on K-planes (Fridovich-Keil et al., 2023) which exploits
temporal interpolation, an operator naturally inclined to temporal smoothing. Empirically, main-
taining temporal coherence is possible when the time resolution of spatiotemporal planes is small,
however, this results in over-smoothed images where finer details are lost. In contrast, when the
time resolution is large, the quality of the images is enhanced, but the continuity of images within
the same time series diminishes. To achieve both temporal continuity and high image quality, we
adjust the multi-scale technique from the original paper and introduced Cascade DyNeRF.

Let us denote the scale index by s. In original K-planes, multi-scale features are exploited by
concatenation along feature dimension, then the color and density could be calculated as:

c(p) = c(concat({f(p)s)}Ss=1), d(p) = d(concat({f(p)s)}Ss=1), (4)

where S is the number of scales. In our setting, simple concatenation is hard to balance between
image quality and temporal consistency. So we propose to leverage the cascade architecture and let
the low-resolution planes learn temporally coherent dynamic objects with a certain degree of over-
smoothing, and let the high-resolution planes learn the residual between the above results and the
target ones. The final color and density are the addition of results from planes across the scale. That
is,

c(p)s =

s∑
k=1

c(f(p)k), d(p)s =

s∑
k=1

d(f(p)k), (5)

where k indicates the scale index. Note that SDS loss and other losses are applied to the rendering
results of each scale to guarantee that planes with higher resolution only learn the residual between
results from previous scales and the target object. In this way, we can improve temporal consistency
without sacrificing much object quality.

4.2 INTERPOLATION-DRIVEN CONSISTENCY LOSS

Video generation methods usually train an inter-frame interpolationi module to enhance the tem-
poral consistency between keyframes (Ho et al., 2022; Zhou et al., 2022; Blattmann et al., 2023).
Inspired by this, we exploit a pre-trained light-weighted video interpolation model and propose an
Interpolation-driven Consistency Loss to enhance the spatiotemporal consistency of the 4D genera-
tion.

The interpolation model adopted in this work is RIFE (Huang et al., 2022), which takes a pair of
consecutive images as well as the interpolation ratio γ (0 < γ < 1) as the input, and outputs the
interpolated image. In our case, we first render a batch of images that are either spatially continuous
or temporally continuous, denoted by {x}Jj=1, where J is the number of images in a batch. Let
us denote the video interpolation model as ψ, the interpolated image as x̂, then we calculate the
Interpolation-driven Consistency Loss as:

x̂j = ψ(x1,xJ , γj),

LICL =

J−1∑
j=2

∥xj − x̂j∥2,
(6)

where γj = j−1
J−1 , and 2 ≤ j ≤ J − 1.

This simple yet effective loss enhances the continuity between frames thus improving the spatiotem-
poral consistency in dynamic object generation by a large margin. Moreover, we find the spatial ver-
sion of this loss alleviates the multi-face problem in 3D generation tasks as well. Please refer to the
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experiment sections to see quantitative and qualitative results. The Interpolation-driven Consistency
Loss and some other regularization losses are added with SDS loss in Equation 2, details of which
can be found in the experiment section.

4.3 CROSS-FRAME VIDEO ENHANCER

Sometimes image sequence rendered from the optimized DyNeRF suffers from artifacts, such as
blurry edges, small floaters, and insufficient smoothness, especially when the object motion is abrupt
or complex. To further improve the quality of rendered videos, we design a lightweight video en-
hancer and optimize it via GAN, following pix2pix (Isola et al., 2017). The real images are obtained
with image-to-image technique (Meng et al., 2021) using a super-resolution diffusion model, and
the fake images are the rendered ones.

To better exploit video information, We add cross-frame attention to the UNet architecture in
pix2pix, i.e., each frame will query information from two adjacent frames. We believe this could
enable better consistency and image quality. Denote the feature map before and after cross-frame-
attention as F and F′

j , we have:

F ′
j = Attention(Qj ,Kj ,Vj),

Qj = flatten(Fj), Kj = Vj = flatten(concat(Fj−1, Fj+1),
(7)

where Q, K and V denotes query, key, and value in attention mechanism, and concat denotes the
concatenation along the width dimension.

4.4 OPIMIZATION

We optimize the dynamic NeRF using SDS loss LSDS in Eq. 2 and ICL loss LICL in Eq. 6. Besides,
we apply reconstruction loss Lrec and foreground mask loss Lm for the input view following Guo
et al. (2023). 3D normal smooth loss Ln (Guo et al., 2023) and orientation loss Lori (Verbin et al.,
2022) are utilized to achieve better geometry. Therefore, the final optimization objective for dynamic
NeRF is calculated as:

L = λ1LSDS + λ2LICL + λ3Lrec + λ4Lm + λ5Ln + λ6Lori (8)

For video enhancer in optional post-processing step, the loss function is the same as pix2pix (Isola
et al., 2017).

5 EXPERIMENT

We have conducted extensive experiments to evaluate the proposed Consistent4D generator using
both synthetic data and in-the-wild data. The experimental setup, comparison with dynamic NeRF
baselines, and ablations are provided in the following sections.

5.1 IMPLEMENTATION DETAILS

Data Preparation For qualitative experiments, we collect in-the-wild and synthetic videos from
Internet. For quantitative evaluation, we select and download seven animated models, namely Pistol,
Guppie, Crocodie, Monster, Skull, Trump, Aurorus, from Sketchfab (ske, 2023) and render the multi-
view videos by ourselves, as shown in Figure 3 and appendix A.3. We render one input view for
scene generation and 4 testing views for our evaluation. For each input video, we initially segment
the foreground object utilizing SAM (Kirillov et al., 2023) and subsequently sample 32 frames
uniformly. The majority of the input videos span approximately 2 seconds, with some variations
extending to around 1 second or exceeding 5 seconds.

Training During SDS and interpolation consistency optimization, we utilize zero123-xl trained by
Deitke et al. (2023) as the diffusion model for SDS loss. For Cascade DyNeRF, we set s = 2 in most
experiments except for the last row in Table 1a, i.e., we have coarse-level and fine-level DyNeRFs.
The spatial and temporal resolution of Cascade DyNeRF are configured to 50 and 8 for coarse-level,
and 100 and 16 for fine-level, respectively. We first train DyNeRF with batch size 4 and resolution
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image-level video-level
LPIPS ↓ CLIP ↑ FVD ↓

D-NeRF 0.51 0.68 2327.83
K-planes 0.38 0.72 2295.68
Zero123 0.15 0.90 1571.60

Ours (s=2) 0.16 0.87 1133.44
Ours (s=4) 0.12 0.91 992.61

(a) Comparison with other methods.

image-level video-level
Cas-DyNeRF ICL Video enhancer LPIPS ↓ CLIP ↑ FVD ↓

0.16 0.86 1303.31
✓ 0.16 0.87 1226.92

✓ 0.15 0.88 1205.80
✓ ✓ 0.16 0.87 1133.44
✓ ✓ ✓ 0.16 0.87 1114.85

(b) Ablations.

Table 1: Quantitative results on synthetic dataset.

64 for 5000 iterations. Then we decrease the batch size to 1 and increase the resolution to 256 for
the next 5000 iteration training. ICL is employed in the initial 5000 iterations with a probability of
25%. The optimization of dynamic NeRF and video enhancer cost about 2.5 hours and 15 minutes
on a single V100 GPU. For more details, please refer to the appendix A.5.
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Figure 3: Comparison with dynamic NeRF methods and generative method. We render each dy-
namic object from a novel view at two timestamps. The temporal inconsistency in Zero123 is high-
lighted by the red box, but it’s recommended to watch the video in supplementary material.

5.2 COMPARISONS WITH OTHER METHODS

To date, few methods have been developed for 4D generation utilizing video obtained from a
static camera, so we compare our method with approaches with 4D modeling capabilities, i.e., D-
NeRF (Pumarola et al., 2021) and K-planes (Fridovich-Keil et al., 2023), as well as approaches with
3d generation ability, i.e. Zero123 (Liu et al., 2023). For a fair comparison, video enhancer is not
applied here.
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Quantitative Results To quantitatively evaluate the proposed video-4D generation method, we pro-
vide image-level metrics, LPIPS (Zhang et al., 2018) and CLIP (Radford et al., 2021), as well as
video-level metric, Frechet Video Distance (FVD) (Unterthiner et al., 2018). LPIPS and CLIP are
computed between testing and rendered videos in a per-frame way, reflecting single-frame quality.
FVD is computed between video pairs, taking both single-frame quality and temporal coherence in
the entire video into consideration. We report the scores averaged over the four testing views of
seven objects in Table. 1a (detailed metrics on each object can be found in the appendix). As shown
in Table 1a, our dynamic 3D generation produces the best quantitative results over the other two
dynamic NeRF methods on all metrics, which well aligns with the qualitative comparisons shown in
Figure 3. Zero123 (per-frame reconstruction) has advantages over our method in terms of image-
level metric, however, it lags behind the proposed method by a clear margin in terms of video-level
metric FVD, which indicates severe temporal incoherence in Zero123 outputs.

Qualitative Results The outcomes of our method and those of other baselines are illustrated in
Figure 3. Both D-NeRF and K-planes methods struggle to achieve satisfactory results in novel
views, owing to the absence of multi-view information in the training data. Zero123, although
outperforms ours in terms of image quality, suffers from severe temporal inconsistency, which could
be observed via the video attached in the supplementary material. In contrast, our method manage to
generate spatially and temporally coherent 4D object. Please refer to the appendix A.1 for additional
results.

5.3 ABLATIONS

We perform ablation studies for every component within our framework. For clarity, the video en-
hancer is excluded when conducting all ablations except for its own. Quantitative results averaged
on seven objects in the synthetic dataset are provided in Table 1b. Considering that the primary ob-
jective of introducing Cascade DyNeRF and ICL loss is to enhance spatial and temporal coherence,
we advise readers to prioritize the video-level metric (FVD) over image-level metrics (LPIPS and
CLIP) in evaluating this ablation study. The notable improvements observed in FVD scores under-
score the efficacy of the proposed Cascade DyNeRF and ICL loss (as shown in the first four rows).
The optional video enhancer improves the results slightly. Below, we present a qualitative analysis
of Cascade DyNeRF and ICL loss on in-the-wild monocular videos, deferring the video enhancer
results to the appendix due to limited space.

w/o ICL w/ ICL

preference rate(%) 24.5 75.5

(a) Video-to-4D.

w/o ICL w/ ICL

success rate(%) 19.3 28.6

(b) Text-to-3D.

Table 2: User study of Interpolation-driven Consistency Loss.

Cascade DyNeRF In Figure 10 (see in appendix), we conduct an ablation study for Cascade DyN-
eRF. Specifically, we substitute Cascade DyNeRF with the original K-planes architecture, maintain-
ing all other settings unchanged. In the absence of the cascade architecture, the training proves to be
unstable, occasionally yielding incomplete or blurry objects, as demonstrated by the first and second
objects in Figure 10. In some cases, while the model manages to generate a complete object, the
moving parts of the object lack clarity, exemplified by the leg and beak of the bird. Conversely,
the proposed Cascade DyNeRF exhibits stable training, leading to relatively satisfactory generation
results.

Interpolation-driven Consistency Loss The introduction of Interpolation-driven Consistency Loss
(ICL) stands as a significant contribution of our work. Therefore, we conduct extensive experiments
to investigate both its advantages and potential limitations. Figure 4a illustrates the ablation of both
spatial and temporal Interpolation-driven Consistency Loss (ICL) in the video-to-4D task. Without
ICL, the objects generated exhibit spatial and temporal inconsistency, as evidenced by the multi-
face/foot issue in the blue jay and T-rex, and the unnatural pose of the seagull. Additionally, color
discrepancies, such as the black backside of the corgi, are also noticeable. Employing either spatial
or temporal ICL mitigates the multi-face issue, and notably, the use of spatial ICL also alleviates the
color defect problem. Utilizing both spatial and temporal ICL concurrently yields superior results.
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Figure 4: Ablation of Interpolation-driven Consistency Loss.

In the user study shown in Figure 2a, which averages the choices of 20 participants for 20 generated
objects w/ and w/o ICL, 75% prefer the results w/ ICL.

We also test ICL loss on text-to-3D tasks. We collect all prompts related to animals from the official
DreamFusion project page, totaling 230, and compare the success rate of DreamFusion implemented
w/ and w/o the proposed ICL loss. The success rate comparison in Table 2b indicates results w/ ICL
always outperform results w/o it. Qualitative comparisons are presented in Figure 4b which indicates
the proposed technique effectively alleviates the multi-face Janus problem and thus promotes the
success rate. Details could be found in the appendix.

6 CONCLUSION

We introduce a novel video-to-4d framework, named Consistent4D, aimed at generating 360° 4D
objects from a single-view uncalibrated video. We first develop a Cascade DyNeRF to facilitate sta-
ble training under the discrete supervisory signals provided by an image-to-image diffusion model.
More crucially, we introduce an Interpolation-driven Consistency Loss to enhance spatial and tem-
poral consistency in 4D generation tasks. At last, a lightweight video enhancer is provided as an
optional post-processing step. Comprehensive experiments conducted on both synthetic and in-the-
wild data demonstrate the effectiveness of our method.
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A APPENDIX

A.1 ADDITIONAL VISUALIZATION RESULTS

In Figure 5, we present the result of our method on four in-the-wild videos. For clarity, we describe
the input videos as follows: robot dancing, squirrel feeding, toy-spiderman dancing, toy-rabbit
deforming. Due to limited space, the reviewers are strongly recommended to watch the video in the
attached files to see various visualization results.

A.2 ABLATION ON CROSS-FRAME VIDEO ENHANCER

In Figure 11, we show the proposed cross-frame video enhancer could improve uneven color distri-
bution and smooth out the rough edges, as shown in almost all figures, and remove some floaters, as
indicated by the cat in the red and green box.

A.3 DATA USED IN VIDEO-TO-4D QUANTITATIVE EVALUATION

Pistol Guppie Croco. Monst. Skull Trump Aurorus Average
LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓

D-NeRF 0.52 0.66 1342.82 0.32 0.76 2244.47 0.54 0.61 2628.77 0.52 0.79 2720.27 0.53 0.72 3344.38 0.55 0.60 2145.56 0.56 0.66 1868.54 0.51 0.68 2327.83
K-planes 0.40 0.74 2060.83 0.29 0.75 2077.25 0.19 0.75 1823.25 0.47 0.73 2738.59 0.41 0.72 3338.74 0.51 0.66 3338.74 0.37 0.67 1304.83 0.38 0.72 2295.68
Zero123 0.10 0.92 647.08 0.12 0.88 931.23 0.11 0.85 2038.22 0.16 0.93 2288.40 0.15 0.95 2490.25 0.23 0.88 1630.89 0.17 0.87 975.11 0.15 0.90 1571.60

ours (s=2) 0.10 0.90 853.89 0.12 0.90 811.23 0.12 0.82 1237.29 0.18 0.90 1307.53 0.17 0.88 2000.20 0.23 0.85 704.13 0.17 0.85 1019.81 0.16 0.87 1133.44
ours (s=4) 0.08 0.91 618.23 0.11 0.92 697.89 0.10 0.88 1069.90 0.15 0.94 964.73 0.13 0.94 2086.76 0.16 0.91 670.00 0.12 0.88 840.74 0.12 0.91 992.61

Table 3: Details of video-to-4D quantitative comparison.

Sin three dynamic objects are shown in Figure 3, we only visualize the rest four here, as shown in
Figure 6. The observation is similar to the results in the main paper. Additionally, we provide the
details of quantitative comparison in Table 3.

A.4 THE NUMBER OF FRAMES

For simplicity, we sample each input video to 32 frames in all experiments. However, we find input
videos without sampling sometimes give slightly better results, as shown in Figure 7.

A.5 IMPLEMENTATION DETAILS

A.5.1 CASCADE DYNERF

Initialization We follow Maigc3D (Lin et al., 2023) to initialize the dynamic NeRF. Specifically,
the blob scale and standard deviation of the density are set as 10.0 and 0.5. The activation function
is softplus.

Optimization We optimize the Dynamic NeRF using Equation 8, where λ1 = 0.1, λ2 = 2500,
λ3 = 500, λ4 = 50, 5 = 2.0, and λ6 is initially 1 and increased to 20 linearly until 5000 iterations.
When applying ICL loss, we sample consecutive temporal frames at intervals of one frame and
sample consecutive spatial frames at angular intervals of 5◦-15◦ in azimuth. Reconstruction loss and
foreground mask, alternate with ICL loss and SDS loss to optimize the model. When calculating
SDS loss, the guidance scale of the diffusion model is set as 5, and the maximum/minimum percent
of noise added to the rendering images decreases linearly from 0.98/0.8 at the beginning of the
training to 0.25/0.2 at the medium of the training, and then kept unchanged.

A.5.2 VIDEO ENHANCER

For video enhancer architecture, we follow pix2pix (Isola et al., 2017) except for that we modify
the unet256 architecture to a light-weighted version, with only three up/down layers and one cross-
frame attention layer. Our codebase for video enhancer is 1the official GitHub repository of pix2pix,
and we adopt all the default settings in their code except for Unet architecture, the learning rate
and the training epochs, with the last two already mentioned in the main paper. For Unet(our video
enhancer), the feature dimensions for the unet layers are set as 64, 128, and 256. Besides, we inject

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Input video Novel view 1

t = t1

t = t2

t = t3

t = t1

t = t2

t = t3

t = t1

t = t2

t = t3

Novel view 2

t = t1

t = t2

t = t3

Figure 5: Visualization results of our method. All four input videos are in-the-wild videos. The
novel views presented are 22.5◦ and 112.5◦ away from the input view, respectively. The results of
our methods include RGB, normal map and depth map (from left to right).
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Figure 6: Data and comparison results for video-to-4D quantitative evaluation.
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Figure 7: Ablation of video frame sampling. Videos w/ sampling contain 32 frames. Videos w/o
sampling contain 72 and 39 frames for Aurorus and minions, respectively. The results of our methods
include RGB and normal map (from left to right).
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Figure 8: Video-to-4D failure cases.
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Figure 9: Text-to-3D failure cases.

a cross-attention layer in the inner layer of the unet to enable the current frame to query information
from adjacent frames. For generating real images, we use DeepFloyd-IF stage II (dee, 2023) in an
image-to-image way (Meng et al., 2021) with denoising strength set as 0.35. Since this model is a
diffusion model designed for single-image super-resolution, its outputs are images with improved
quality yet in lack of temporal coherence. The input image, i.e., the rendered image, is resized
to 64 × 64 and the output resolution is 256 × 256. The prompt needed by the diffusion model is
manually set, i.e., we use the ”a ∗” as the prompt, in which ∗ is the category of the dynamic object.
For example, the prompts for dynamic objects in Figure 11 are a bird, a cat, a minions. The prompt
cloud also be obtained from image or video caption models, or large language models.

A.5.3 TEXT-TO-3D DETAILS

We choose Threestudio built by (Guo et al., 2023) as the codebase since it is the best public im-
plementation we could find. DeepFloy-IF (dee, 2023) is employed as the diffusion model, and all
default tricks in Threestudio are utilized. The hyper-parameters for results w/ and w/o ICL, such
as batch size and learning rate, are kept consistent between the implementations w/ and w/o ICL,
except for those related to ICL. We train the model for 5000 iterations, the first 1000 iterations with
batch size 8 and resolution 64, and the rest 4000 with batch size 2 and resolution 256. The learning
rate is 0.01 and the optimizer is Adam, the same as the default setting in Threestudio. The ICL loss
is applied in the first 1000 iterations with probability 30% and weight 2000.

A.6 FAILURE CASES

Video-to-4D Since the video-to-4D task in this paper is very challenging, our method actually has
many failure cases. For example, we fail to generate the dynamic object when the motion is complex
or abrupt, as shown in Figure 8. In Figure 8, the dog’s tail disappears in the second image because
the tail is occluded in the input image when t = t2. The frog, which is jumping up and down fast,
gets blurry when t = t1.

Text-to-3D When applying ICL in text-to-3D, we find some multi-face cases that could not be
alleviated, and we show them in Figure 9.

A.7 LIMITATIONS

Although the proposed method achieves promising results for 360◦ dynamic object generation, our
method has the following limitations: 1) Our method relies on a pre-trained diffusion model, and
this limits the generalization ability of our method. Particularly, since the diffusion model adopted
in this work is trained on synthetic dataset, our model might have worse performance when the input
image/video is from the real-world. 2) The performance of our model relies on the quality of input
video. We find when the input video is noisy, our model might not be able to generate the dynamic
object in the video. 3) The training of our model costs more than 2 hours per object, and the long
training time might present a challenge for practical deployment.
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Figure 10: Ablation of Cascade DyNeRF.
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Figure 11: Ablation of Video enhancer. Please zoom in to view the details.
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