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Abstract

Federated learning (FL) enables collaborative model training across distributed
clients without sharing sensitive data. However, communication overhead remains
a significant bottleneck, particularly for large-scale models. Low-rank decomposi-
tion techniques address this by approximating each layer’s weights or gradients
with a product of low-rank matrices, thereby reducing the communication cost in
FL. While effective, these methods are constrained by the layer’s architecture and
shapes, limiting their flexibility and performance. We propose Model-Agnostic
Projection Optimization (MAPQO), a novel method that reshapes and factorizes the
full model gradient into a fixed reconstruction matrix and a trainable projection
vector, avoiding layer-wise decomposition and architecture constraints. MAPO
directly optimizes the projection in a randomly sampled subspace, with all clients
generating the reconstruction matrix via a shared random seed, incurring no addi-
tional communication overhead for synchronization. By decoupling the gradient
from architectural constraints through reshaping and enabling communication-
free exploration of dynamic subspaces via seed sharing, MAPO provides a more
flexible and efficient low-rank representation. Empirical results demonstrate the
effectiveness of MAPO in various FL settings.

1 Introduction

Federated Learning (FL) is a distributed framework that enables model training across many clients
without centralizing data. In each communication round, clients download a global model, update it
using local data, and send modifications back to the server, which aggregates them (e.g., via FedAvg
[L). While this iterative process enables collaborative learning, frequent transmission of model
updates incurs significant communication overhead, limiting FL application, particularly with large
models or resource-constrained clients.

Communication-Efficient Federated Learning (CEFL) literature [2] proposes a vast range of strategies
to reduce communication load. These methods are typically categorized into sketched updates,
which compress the total model update after optimization (e.g., subsampling, quantization, random
projection), and structured updates, which restrict the trainable parameters to a lower-dimensional
subspace before optimization (e.g., random masks, weight-sharing, and low-rank decomposition) [3].

Low-rank decomposition is a widely used approximation technique that expresses model gradients
or parameters as the product of low-rank matrices [4]]. Parameter decomposition is particularly
effective for Parameter-Efficient Fine-Tuning (PEFT), where auxiliary low-rank adaptation (LoRA)
modules are added to each layer to reduce computation and storage overhead of full-model fine-
tuning [3]]. Although LoRA alleviates communication burdens in FL, constraining model parameters
to a low-rank subspace can degrade performance. In contrast, gradient decomposition preserves
full-rank model representations during inference and restricts only the gradients to a low-rank form
during backpropagation [6-H10]]. A visual comparison is shown in Figure
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Figure 1: Comparison of various decomposition methods, from left: no decomposition, low-rank parameter
decomposition, frozen model with low-rank adapter (LoRA), low-rank gradient decomposition, and MAPO.

Challenges. While CEFL methods for gradient decomposition [11H15], parameter decomposi-
tion [16H20], or LoRA variants [21H25] offer notable benefits, they face several key challenges:
1) The layer-wise decomposition that adheres to the structural constraints (e.g., fully connected
or convolutional), requiring architecture-dependent implementation for each layer decomposition.
2) Given a decomposition AW; € R4 > ~ B; A;, where A; € IR"*? and B; € IR %", the number
of transmitted parameters is C = |A;| +|B;| = r(dy + d2) for r € IN, restricting the communication
rate to multiples of (dy + dg), imposing a rigid communication granularity as C € (d; + d3)IN.
3) Given M number of clients and (A7, B/) denoting the low-rank decomposition of layer i from
client j, averaging these low-rank matrices is not equivalent to full-rank aggregation as:

1 1 1
—(BfA; + B}A? + -+ BMAM) £ — (Bl + B} + -+ BM)—(A] + A7 +--- + AM).
M M M
4) Although fixing all { A7 j]‘il matrices to the same values can mitigate the aggregation problem and

improve the communication granularity to C € dy IV, as shown in FA-LoRA [21] and EvoFed [26],
it restricts the model’s ability to explore richer subspaces, often leading to suboptimal solutions [23]].
Thus, we aim to answer the following key question:

How can we develop an architecture-independent model-wide decomposition that offers flexibility on
communication rate, address the low-rank averaging problem, and suboptimality of freezing A?

Key Ideas. We propose a novel Model-Agnostic Projection Optimization (MAPO) that streamlines
gradient projection and addresses its challenges while being computationally lighter than layer-wise
methods. Our key ideas are described as follows:

(i) Firstly, MAPO reimagines low-rank gradient projection by treating the entire model gradient as a
single matrix rather than layer-by-layer decomposition. It eliminates architecture-specific constraints
by merging the flattened gradients of all layers, constructing the universal gradient vector AW € IR?.

(ii) Secondly, given any communication budget £, MAPO pads AW with zeros so the length becomes
divisible by k. Afterwards, padded AW will be reshaped to AW’ € IR¥*[4/F1 which further can be
decomposed itintoa A € R™14/k1 and B € IRF*! matrices, as AW’ = BA.

(iii) Lastly, instead of relying on a fixed A, MAPO explores new subspaces in each federated round
through reinitialization of A, mitigating the risk of suboptimal convergence. Synchronization of A is
achieved efficiently via a shared seed, removing the need to transmit A.

Summary of Contributions. By integrating (i) model-level decomposition, (ii) flexible communica-
tion rate, and (iii) subspace exploration, MAPO offers a flexible trade-off between communication
cost and performance while remaining more efficient than low-rank decomposition methods. Figure[3]
illustrates the distinction between MAPO and other paradigms. Our main contributions are:

* We introduce model-agnostic optimization of gradient projections that enhances communication
and computation efficiency, boosts performance through exploration, and offers more flexibility
in balancing communication and error rate.

* We provide theoretical analysis for MAPO convergence behavior, and establish its computation
efficiency compared to layer-wise factorization with the same communication and error rates.

* We conduct extensive experiments across diverse datasets, model architectures, and baselines,
demonstrating that MAPO surpasses existing methods in full training and fine-tuning scenarios.

2 Background and Related Works

In this section, we review key CEFL approaches in relation to MAPO. We begin with sketched update
techniques that project model updates into subspaces, outlining their limitations. Then, we examine
structured update methods, particularly projection optimization, highlighting the unique opportunities
and challenges introduced by operating within a fixed subspace.
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2.1 Sketched update vs. Structured update A IST Accuracy with 128-Parameter

Sketched update includes techniques such as sparsification [3]], e
quantization [27H33]], gradient subspace projection [34H36], and
random subspace projection [26l 37]]. They aim to compress the
information in the update vector AW € IR? defined as the difference
between the locally optimized and the global model AW = W* — 2
Wy, where W™ can be the result of multiple local epochs. 07Fs 50 e, Lo 1251507 175 200

—— MAPO
FedLoRU
—— Fact. FL
—— EvoFed
—— Sparse
—— BP (Full)

Accuracy

. . . MNIST A ith 16-P: te
The subspace projection process [37-40] defines a random matrix 10 ek ek

A € IRP*? and finds the projection vector B € IRP, which mini-

mizes the reconstruction error [|AW — BA||,, where d denotes the 7
total number of model parameters and p < d is compressed length: 3 T ok
g —— Fact. FL |
B* = arg min |AW — BA|, ; B*~AWAT(AAT)™L ol i
BelRrr — BP (Full)
o 25 50 75 100 125 150 175 200
As the matrix A is considerably large (p x d), various methods pro- oun

pose novel designs for A to adapt it for large-scale models. Notably, 10| eoraccuracy with 3-Parameter

defining A as a subset of seen gradient vectors results in a signifi-

cantly lower rank of A suffices for an effective projection [34-36]. 3

More recently, EvoFed [26] utilizes evolutionary strategies to evolve g ® T e
A, improving its representation and efficiency. a® T
Sketching Limitations. Although sketched methods benefit froma e ]
full-rank training, their shortcoming is blindness to the loss surface 07735 50 s 100 125150 175 200
L(W;D) and alternative solutions besides AW that can be recon- MNIST Accuracy with 2-Parameter
structed from the projection subspace. They typically perform well,  **

given a sufficient communication budget, but as the compression ~_*

rate increases, the reconstruction of the projection vector ends up far g (Eirrrerrss
off from AW. In contrast, subspace optimization directly finds the § a0 ey Eedbony
steepest direction within the subspace, leading to a more effective re- i [ et |
duction in loss. Figure 2] presents an example of centralized MNIST . M= 50 (rulh |
training, illustrating the performance degradation of sketched up- 0773 50 7s 100 i35 150 175 200

date techniques such as EvoFed [26] and Top-k Sparsification [3]]
compared to MAPO. As sparsity increases, MAPO continues to
converge, even having 2 or 4 trainable parameters out of 11,274.

Figure 2: MNIST performance
for varying trainable parameters.

Structured update techniques reduce the number of trainable parameters and communication cost
by constraining the weights or gradients to a low-rank subspace by structural modification such as
pruning [41-44], weight—sharing [45H47], low-rank gradient [11H135]], and parameter decomposition
[L6H20], including LoRA and its variants [5,21H24]]. Although parameter decomposition techniques
reduce the model size and representation, resulting in subpar performance for general training, as
shown in Figure[Z|for Factorized-FL [18]. Therefore, CEFL generally adopts a gradient decomposition
direction. In particular, gradient decomposition methods with freezing A, also known as projection
optimization, remain popular owing to strong theoretical foundations, reduced communication, and
hardware friendliness [[6-10]].

Prior works on gradient decomposition relied on each layer’s shape and architecture, producing a
unique A; and B; matrices for each layer, limiting the feasibility of sharing a projection matrix A
across layers. MAPO overcomes this limitation by evenly partitioning the whole model gradient
vector AW € IR? into k segments {AW/}F_, € IRF*14/F1 allowing the use of a shared random
reconstruction matrix A € IR'*[%/*1 across all partitions, maintaining the benefits of model-wide
projection while substantially reducing memory costs.

2.2 Parameter-efficiency vs. Communication-efficiency

Despite their apparent similarities, parameter decomposition and gradient decomposition methods
differ fundamentally in assumptions and objectives. Parameter decomposition directly imposes a low-
rank structure on the model parameters, effectively replacing the original model with a compressed
version. Although this reduces the total number of parameters and computational overhead, it still
requires transmitting all parameters at each communication round, resulting in no relative reduction
in communication per parameter. In contrast, gradient decomposition methods maintain the original
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Figure 3: Step-by-Step illustration of methodology based on propositions, demonstrating how each step will
contribute to designing MAPO factorization and differing from LoRA architecture.

model architecture and computational complexity but substantially reduce communication overhead
by transmitting compressed updates that are significantly smaller than the full model.

In this work, to ensure a fair assessment of communication efficiency, we evaluate MAPO against
gradient-based compression baselines under consistent model architectures. Additional experiments
with parameter decomposition and LoRA-based methods are provided in Appendices |B|and [C|for
completeness. Key methodological distinctions among related works are summarized in Tablela

Table 1: Summary of CEFL methods and objectives. The column “Comm. Flex” indicates support
for arbitrary bitrates, and “Agg. Eq.” denotes equivalence between low-rank and full-rank averaging.

Full-rank Agg. Fixed Arch- Comm  Personalized

Method Scope Target o terence Eq. PEFT  guhspace Agnostic  Flex F

Sparsification [3] Model Update v v X X v v X
Quantization Model ~ Update v v X X v v/ X
EvoFed Model  Update v/ v X v v v X
Factorized-FL Layer  Parameter X X X X X X v
LoRA [3] Layer  Adapter X X v X X X X
FA-LoRA [21] Layer  Adapter X v v v X X X
SA-LoRA [23] Layer  Adapter X X v X X X v
FedLoRU [13] Layer  Gradient v v X v X X X
MAPO (Ours) Model  Gradient v v X v v v X

3 Proposed Method

In this section, we introduce MAPO and its application in FL. We first present the MAPO factor-
ization technique and discuss its key properties regarding communication efficiency and error rate.
Subsequently, we detail how MAPO can be effectively integrated into the FL training process.

3.1 Model-Agnostic Projection Optimization (MAPO)

MAPO Description. MAPO performs a black-box, model-agnostic factorization of the global
model gradient AW € IR?, avoiding architecture-specific constraints and enabling continuous
subspace exploration during optimization. Specifically, MAPO partitions AW into k& segments
{AW!}E_ | € RF*[4/F] and employs a shared random reconstruction matrix A € IR**[4/k1 across
all partitions. This design preserves model-wide projection benefits while substantially reducing
memory overhead. As illustrated in Figure MAPO reshapes the universal gradient AW € R4
into AW’ € IRF*[4/¥1 which is then decomposed into a reconstruction vector A and a projection
vector B € IRF*1, Figure shows a step-by-step visualization analogous to Theorems to

MAPO Properties. MAPO aims to construct an expressive subspace, enabling a small B to
encode sufficient information for updating the model efficiently. First, we formally define the
concepts of communication overhead rate and reconstruction error rate in the context of matrix
factorization in Theorems[3.2]and[3:3] Using these definitions, Theorem [3.4]establishes that reshaping
a single layer preserves both the factorization error and communication rates. Extending this,
Theorem [3.5|demonstrates that vectorizing multiple layers into a single matrix similarly maintains
these properties. Finally, this leads to the proof of Theorem 3.6} which introduces a computationally
and communication-efficient, model-agnostic factorization method as an alternative to traditional
layer-wise gradient projection techniques. Appendix [G|presents the formal proofs.
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Figure 4: Application of MAPO to communication-efficient FL.

Assumption 3.1 (Gaussian Matrices are Full Rank). Let A € IR™*" be a random matrix with
entries drawn independently from a Gaussian distribution A/(0, o). Then, A is almost surely of full
rank, i.e., rank(A) = min(m,n), as the probability of A being rank deficient is zero. This result
follows from standard properties of random matrices [48, |49].

Definition 3.2 (Communication Overhead Rate). Let AT; € IR% *%2 be the update matrix of a
model. Suppose the factorization of AW; as AW; = B; A;, where A; € IR7*% is a fixed random
matrix and B; € IR% %4 is a trainable matrix with g < min(dy, d2) being the factorization rank. The
communication overhead rate CO,.,;. is defined as the ratio of the size of B; to the size of AW

size(B;) ¢

size(AW;)  dy’
Definition 3.3 (Reconstruction Error Rate). Using the same factorization as Theorem the
reconstruction error rate is the expected ratio of the reconstruction error to the original model update.
Given full-rank random reconstruction (Theorem[3.)), it is expressed as:

Ea [IAW: - BiAil] | q

|AW;][3 dy’

Proposition 3.4 (Single-Vector Factorization). Ler AW;, A;, and B; be factorizations of a single
layer of the network as in Theorem By reshaping AW, into AW] € IRV %192 the factorization
of AW/! = Bl Al where A; € IRP*“1%2 and B} € IR'*P can achieve the same reconstruction error
and communication overhead to the conventional factorization of AW; when p = qd;.

COrate =

Proposition 3.5 (Multi-Layer Factorization). Let AW;, A;, and B; be single-vector factorization
of i-th layer of the N -layered network as in Theorem[3.4} By concatenating the reshaped weights AW
into AW’ € IR*?, where d = Zil didy. The factorization of AW' = B’ A" where A’ € IRP*?
and B' € IRY? can achieve the same reconstruction error and communication overhead to the
single-vector factorization applied to each AW; when p = Ngq.

Proposition 3.6 (MAPO Factorization). Let AW, A, B, and rank p be a multi-layer factorization
of a network as defined in Theorem By reshaping AW € IR"% into AW’ € IR**14/*1 and
the factorization of AW’ = B’ A’ where A’ € R"*[¥/*1 and B' € IR¥*', we can achieve the same
reconstruction error and communication overhead to the multi-layer factorization of AW when
k = p, while reducing the memory by a factor of k>.

3.2 Application to Communication-Efficient Federated Learning

This subsection explains how our method, outlined in Section[3.1] is utilized in FL. The procedure
pseudo-code is provided in Algorithm [I] and visualized in Figure 4]

Matrix Construction and Broadcasting. To ensure consistency across the network, the server and
all clients start from an identical condition at each round. We guarantee identical model parameters
W, and reconstruction matrix A; by broadcasting a random seed 7, and the aggregated projection
vector B; at the beginning of round ¢. The initial aggregated projection vector is set to By = 0.

In the first round (¢t = 0), all clients and the server initialize the model WW° using the same seed.
The reconstruction matrix A° € IR'*[?/*1 is drawn from Gaussian A ~ A/(0, I), and the client 5’s
projection vector B%7 € IR**! is set to 0 for all 1 < j < M, where M is the total number of clients.

In subsequent rounds (¢ > 1), clients update their local model W* using the previous round’s matrix
A'~!, the model parameters W*~!, and the broadcasted projection vector B' as follows:

W =W 4 vee(B A" V)., (1)

where vec(:) and (-)[o.q denotes vectorization and truncating to the first d elements. Clients then
regenerate A* ~ N (0, I) using the seed r¢ and reset B! <— 0, ensuring A* and W synchronization.
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Algorithm 1: Federated Learning with MAPO

Input :Initial random seed 7°, global model W°, reconstruction matrix A, projection vector B’
Output :Final global model W7

Initialize all clients and server with the same seed r°;

Initialize W° € R%, A € R™*[¥/¥1 B® « 0 € RF*1;

for each communicationroundt =1,..., 7 — 1do

Server: Broadcast §t71 and seed ™! to all clients;
for each Client j = 1,..., M (in parallel) do

Receive B’ and rt=t

Update local model: W* + W' + Vec(EtAt_l)[O 2 dl;

Re-generate A" = N(0,0%14)|r" ™

Initialize B/ «+ 0 € R**;

for each local epoche =1,..., EF do
Compute gradient: VB"/ < V. ; L7 (W' + vee(B" A™™1)[0 : d], D?);
Update projection vector: B*/ « B% — nV B%;
Set B «+ B';

end

Send B*7 to the Server;

end
Server:

Re-generate A" = N(0,0%I4)|r' ™"

Aggregate: B' + £ b; BY9, where S = >, bi
Update global model: W't < W' + vec(B A*1)[0 : dJ;
Generate new seed 7' (e.g., r* = hash(r'™1));

end
T.
return W~ ;

Local Projection Optimization. This step optimizes the projection B"J to minimizes the client loss
L(W? 4 vee(B" A"~ 1) 1.9, D7), where D7 denotes client j’s local dataset, and model weights are

derived as W*+vec(B"7 A') (.4 given the random matrix A®.

At each communication round ¢ > 1, after initializing A, and B, clients perform local training to
optimize B* using their local data D’. The gradient of the projection vector is computed as:

- - - - 1

VB" = Vg, L(W' + vee(B" A" 1) .q) for LI(W)= ] Z (W.z). (2
z€DI
where ((W,z) is the loss function (e.g., cross-entropy loss) given model W and data point z.
Therefore, given the learning rate 7, only the projection B is updated using gradient descent as:

B « BY — nV B, 3)
After optimization, clients send their optimized projection vector B to the server. The low

dimensionality of B%J compared to W* results in communication efficiency.
Server-Side Aggregation and Global Model Update. Upon receiving the projection vectors 3%

and their corresponding weights b’ = | D[ (e.g., batch sizes or number of local samples) from the
clients, the server aggregates them to form the global projection vector:

1 M ) M
B' = EZNBW, for S=>b 4)
j=1 j=1

This weighted averaging captures the collective contribution of all clients, proportional to their data
sizes. The server then broadcasts the aggregated projection vector B' to all clients. After receiving
Et, the server and all clients update their local models using the reconstruction matrix A? and the
aggregated projection vector B as:

W = W 4 vee(B A" ) g.q)- 5)

This update integrates the clients’ optimized directions into their local models and ensures synchro-
nization across the network. This process is repeated until the global model converges.
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Table 2: Summary of datasets and models used in our experiments.

Dataset Client Distribution Train/Test # Classes Model # Parameters
MNIST [50] Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
FMNIST [51] Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
CIFAR-10 [52] Non-IID (2 classes) 50K/ 10K 10 CNN - 4 Layers 1,146,634
CIFAR-100 [52] Non-IID (10 classes) 50K/ 10K 100 WideResNet 16d4w 2,854,420
TinyImageNet [53] Non-IID (10 classes) 100K / 10K 200 WideResNet 16d4w 2,880,120
Shakespeare [54] Distributed by Roles 14K / 2K 65 LSTM 814,957
Sentiment140 [54] Distributed by Users 1.4M /200K 2 Transformer 2,221,570
GLUE Tasks [55] Non-IID differ per task  differ per task RoBERTa-Large 357,199,876

4 Convergence Analysis
We analyze the convergence behavior of FL with MAPO.
VLI (u)— VLI (v)]| < Bllu—v]| for any u, v.
Assumption 4.2. Variance of the stochastic gradient of D7 is bounded for each client 7, 1.e.,
, . 2
E[HVU(W) - Vﬁ(W)H } < o?

Assumption 4.1. For each j, £/ (v) is S-smooth, i.e.,

Theorem 4.3. Let the learning rate satisfy n, < ﬁ. Then, the algorithm achieves the bound.:

1« 2 E[LWO)] - £* | Tl
pyi ; nE [[[VLWV)|*] £ ==+ 2(c + 8+ B0 77 > 2,

where Hp = ZtT;Ol M, € is JL Lemma distortion parameter, and L* is the minimum value of L(W).
With a decreasing learning rate satisfying Y2, n: — 00, >..2 17 < 00 (; = 72 for some
constants 779 > 0, ¢ > 0), the term Hy = EtT:_Ol 7¢ grows unbounded, while the weighted sum

ZtT;Ol n? remains finite. Therefore, the right-hand side of Theorem s bound satisfies:
T-1

E[L(W9)] — L* 1 9
2 — 0, —E —0 as T — oo.
Hy Hy 2 Mt
Thus, confirming convergence to a stationary point, as the gradient norm average satisfies:

T-1

1
— E[|VLWYH|?] — 0,
HT;W [Ivewh)|?] —

As shown above, the convergence bound is influenced by the factor e+ 5+ Se. In particular, the bound
becomes tightest and achieves the highest communication efficiency when there is no reconstruction
error, i.e., when € = 0. The complete proof of Theorem 4.3]is located in Appendix [H]

5 Experimental Setup

We evaluate MAPO across diverse model architectures, tasks, and baselines. The benchmarks span
five image classification datasets—MNIST [50]], FMNIST [51]], CIFAR-10, CIFAR-100 [52]], and
TinyImageNet [53]—as well as sequential tasks, including next-character prediction on Shakespeare
and sentiment analysis on Sentiment140, both drawn from the LEAF benchmark suite [54], tailored for
FL. Additionally, we evaluate MAPO as a fine-tuning method, alongside LoRA baselines on various
GLUE [55] tasks, highlighting the communication and computation efficiency in Appendix [B] The
dataset specifications and corresponding model architectures are summarized in Table [2] highlighting
MAPQO’s adaptability across varying data modalities, model scales, and application domains.

Non-IID Distribution. To simulate realistic FL conditions, we partition the training datasets in a
non-IID manner across 100 clients. For image classification and GLUE tasks, each client is assigned
a distinct subset of classes. For LEAF tasks, we follow the natural user-based partitioning, where
individual Shakespearean roles and Twitter users correspond to separate clients.

Model Architectures. We evaluate MAPO across diverse architectures of varying complexity,
including CNNs (2-layer for MNIST and FMNIST; 4-layer for CIFAR-10), WideResNet (width
4, depth 16) for CIFAR-100 and TinyImageNet, LSTM for next-character prediction, Transformer
for sentiment analysis, and RoBERTa for GLUE tasks. Detailed architecture specifications and
hyperparameters are in Appendix D]
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Figure 5: Performance comparison of all methods on MNIST, FMNIST, CIFAR-10, and Shakespeare datasets.
The top row shows the accuracy, while the bottom row illustrates the communication cost per accuracy.

Table 3: Summary of maximum accuracy (%) and communication cost (% relative to FedAvg).
Accuracy values report mean (£std) over 3 runs, estimated from observed variance.

MNIST FMNIST CIFAR-10 CIFAR-100 Shakespeare Sent140 TinyImageNet
Method Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc.
FedAvg 100 98.9 0.1) 100 89.2 02) 100 69.0 (20.2) 100 43.47 x03) 100 41.86 (z0.3) 100 74.90 z0.3) 100 36.48 (x0.4)
Sparse 153 921 @04 241 8lLl@o4 2.7 37.15@05 120 337205 1.73  348604) 1.93 742103 132 253405

Quantize 31.3 97.6 (20.2) 24.1 87.1 (20.3) 15.2 6740 (x03)  6.10  40.05x04) 10.11 354504 1385 73.70 (z0.3) 8.75 34.47 (+0.4)
EvoFed 940 98502 7.60 84703 34 395004 204 37.62z04) 023 367603 040 70.50 z03) 1.85  15.40 (0.5
FedLoRU 302 938 @04) 179 74.1 205) 1.7 23.52 05 120 19.10 0.5 1.67  28.07 (z0.5) 130  66.61 (x04) 1.27 7.31 (20.5)
MAPO 295 98.6x01) 310 88.0x02 120 68.3 (20.2) 091  40.16 x03) 013  39.96 x03) 0.19 7450 x02) 0.97 3522 (x03)

Baselines. We compare MAPO against multiple baselines, including standard compression methods
with Top=Fk subsampling (Sparse) [3]], and quantization (Quant) [32]. Additionally, we evaluate
MAPO against EvoFed [26]], a state-of-the-art gradient compression, and FedLoRU [13], a represen-
tative gradient projection approach. Subsampling and quantization serve as references to establish
MAPO’s performance compared to conventional compression techniques. EvoFed provides a strong
comparison to demonstrate the effectiveness of MAPQO’s subspace optimization relative to methods
applying compression post-optimization. FedLoRU allows us to highlight MAPO’s dynamic subspace
exploration and its benefits over static layer-wise gradient projections. Results comparing MAPO
with additional parameter-factorization (Factorized-FL [18]]) and adapter-based fine-tuning baselines
(LoRA [5], FA-LoRA [21]], and SA-LoRA [25])) are included in Appendicesand@

Federated Learning Setting. In each training round, 10% of the clients are randomly selected to
participate. Selected clients train locally in parallel and transmit their updates to the central server,
which aggregates these updates and redistributes the resulting global model back to the clients. Model
performance is evaluated centrally using the test dataset at the server.

6 Results and Discussions

We now discuss our experimental results in detail and provide insights into MAPO’s performance.
Figure 5] (top row) shows the accuracy of MAPO compared to multiple baseline methods across vari-
ous datasets. MAPO consistently outperforms all other methods and achieves accuracy comparable
to FedAvg, despite transmitting only a fraction of the parameters. This improvement results from
MAPO’s dynamic subspace optimization, which promotes effective exploration and efficient use of
the communication budget to minimize the loss function directly. Additionally, Figure 5] (bottom row)
illustrates the minimal communication cost required by each method to reach a given accuracy level,
highlighting MAPO’s significantly lower communication demands (logarithmic scale on the y-axis).
Additional results on CIFAR-100, TinyImageNet, and Sentiment140 are presented in Appendix

Table [3] summarizes experimental results by comparing the maximum accuracy of each baseline
and their communication cost relative to FedAvg. To ensure fair comparison, communication costs
are reported as the percentage required to reach the accuracy of the worst-performing baseline.
MAPO consistently achieves competitive accuracy with significantly lower communication overhead.
Specifically, on MNIST and FMNIST, MAPO achieves 99.6% and 98.6% of FedAvg’s accuracy,
respectively, using only 3% of FedAvg’s communication cost. For CIFAR-10, CIFAR-100, and
TinyImageNet, MAPO attains 98.9%, 92.4%, and 96.5% of FedAvg accuracy, respectively, while
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Figure 6: Accuracy and communication cost per accuracy level for FMNIST and Shakespeare datasets.
Demonstrating the effect of a number of trainable parameters (k) on the communication efficiency of MAPO.

consuming approximately 1% of the communication. Finally, in sequential tasks (Shakespeare and
Sentiment140), MAPO retains up to 95.5% and 99.5% of FedAvg’s accuracy, respectively, while
dramatically reducing communication to less than 0.2%.

MAPO Hyperparameter. MAPO simplifies gradient projection by applying a single factorization
across all model parameters, thus replacing per-layer rank selection with a single hyperparameter,
k, directly controlling communication cost and model accuracy. Figure [6]illustrates the effect of
varying k on performance and communication efficiency for the FMNIST and Shakespeare datasets.
While a smaller % significantly reduces communication overhead, it slows the convergence, requiring
more training rounds. Conversely, increasing k improves convergence speed and accuracy but rapidly
raises communication costs, often with diminishing returns. Therefore, the optimal k£ achieves
a target accuracy with minimal total communication. Figure [(b) and (c) show communication
costs associated with specific accuracy levels, guiding the selection of optimal k. We use the same

guidelines for all baselines to fairly tune hyperparameters. Accuracy vs Parameters

Fresh Reconstruction Matrix. A key factor in MAPO’s perfor-
mance is using a dynamically generated reconstruction matrix A
rather than a fixed one. This approach promotes the exploration of
new subspaces throughout training. Figure|/|illustrates the benefits
of using a fresh A on the FMNIST and Shakespeare datasets. We
evaluate MAPO across varying numbers of trainable parameters, PIVLLL LR VISTTY
ranging from 2° to 2!3, For FMNIST, this corresponds to 0.009% Trainable Parameters (k)
to 72.27% of the total model parameters, while for Shakespeare, it (A) FMNIST

spans from 0.0001% to nearly 1%. In both cases, MAPO with a Accuracy vs Parameters _
fresh A achieves superior convergence with fewer parameters, ef-
fectively leveraging the search space. In contrast, when A is frozen,
performance follows a logarithmic correlation with the number of
trainable parameters, requiring an exponentially larger parameter
count to match the results obtained with a fresh A.
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Additional Results. Comparisons with LoRA-based methods and Trainable Parameters (k)
Factorized-FL are provided in Appendices[B]and[C] Appendix [E]sup-

plements our main experiments with evaluations under IID distribu- (B) Shakespeare
tions and without client sampling. Additionally, Appendix[[|presents Figure 7: Comparison of having
a detailed memory complexity analysis, emphasizing MAPO’s com- @ fresh Avs. frozen A.
putational efficiency and flexibility compared to layer-wise low-rank factorization.

Limitations. MAPO’s improved communication efficiency comes with additional computational
overhead from gradient projection optimization. While significantly reduced compared to prior
methods, MAPO still requires [d/r ] +r memory and computation (instead of dr +7; see Appendix.
MAPO complements, but does not replace, PEFT methods like LoRA, as it reduces communication
overhead without decreasing the trainable parameters or storage requirements (see Appendix [B).

7 Conclusion

We introduced Model-Agnostic Projection Optimization (MAPO), a novel approach for CEFL. Unlike
layer-wise decomposition, MAPO factorizes the entire gradient using a projection vector and a
random reconstruction matrix, regenerated at each round. MAPO balances communication efficiency
and accuracy without imposing architecture-specific constraints or fixed-subspace limitations. Our
theoretical analysis establishes convergence guarantees, and empirical results demonstrate superior
performance and scalability across diverse datasets, confirming its practical value for FL.
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A Accuracy and Communication Learning curves

This appendix provides extended experimental results that complement the main findings discussed
in Section El We include detailed evaluations of MAPO and baseline methods on CIFAR-100,
TinyImageNet, and Sentiment140 datasets. Similar to the main results, Figure [§] reports both
maximum test accuracy and the communication cost required to reach a given accuracy threshold.
These additional experiments further demonstrate MAPQO’s superior communication efficiency and
consistent performance gains across more challenging and large-scale tasks.
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Figure 8: Performance comparison of MAPO and baseline methods on CIFAR100, Tinylmagenet, and
Sentiment140 datasets. The top row shows the accuracy achieved by each method on the respective datasets,
while the bottom row illustrates the communication cost associated with each method.

B Comparison with Low-Rank Adaptation in Fine-tuning

We conduct fine-tuning experiments using RoOBERTa-large on five GLUE tasks to evaluate MAPO
alongside LoRA, FA-LoRA, and SA-LoRA. Table[d]compares the number of trainable parameters
and the communication load per round for each method. Table [5] summarizes fine-tuning results
under federated settings, reporting communication efficiency based on the number of rounds and total
communication required to reach 80% accuracy. Overall, the results indicate that MAPO improves
communication efficiency without compromising performance.

Table 4: Number of trainable and communication parameters per round for different methods.

Method Number of trainable parameters ~ Number of cc ication par ters per round
LoRA 1.83M 0.78M

FA-LoRA 1.44M 0.39M

SA-LoRA 1.83M 0.39M

MAPOgy /1 35TM 0.36M

MAPOg 10k 357TM 35.70K

MAPOg 100k 357M 3.57K

MAPOg/1m 35TM 357

Table 5: Comparison of model accuracies, communication rounds, and total communication cost.

Model SST2 QNLI RTE MNLIm MNLImm
Acc  Round Total Acc  Round Total Acc  Round Total Acc  Round Total Acc  Round Total

LoRA 84.86 36 28.08M  91.72 85 66.30M  86.62 180 140.40M  87.41 86 67.08M  87.34 82 63.96M
FA-LoRA 94.15 44 17.16M  91.63 76 29.64M  57.28 — — 85.92 76 29.64M  86.46 213 83.07M
SA-LoRA 95.41 19 7.41M 91.04 55 21.45M  70.01 — — 89.44 29 11.31IM 8549 126 49.14M
MAPO 1k 96.79 5 1.78M 93.14 11 3.93M 87.91 23 8.21IM 88.90 17 6.07TM 88.26 22 7.85M
MAPO, 10k 96.10 5 178.50K  92.57 8 285.60K  89.57 23 821.10K  88.81 18 642.60K 87.43 25 892.50K
MAPOg 1006 95.53 5 17.85K  89.24 7 2499K  84.38 24 85.68K  85.04 20 71.40K  84.60 29 103.53K
MAPO4/1m 90.37 7 2.50K 80.09 34 12.14K  57.04 — — 72.46 — — 37.76 — —
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C Comparison with Factorized-FL

In this section, we present a detailed comparison between MAPO and Factorized-FL as a represen-
tative of the parameter decomposition methods. Factorized-FL can be interpreted as a variant of
rank-1 LoRA, where a sparse bias matrix substitutes for LoORA’s frozen fine-tuned weights, initialized
to zero. Table[6|reports the communication efficiency of MAPO and Factorized-FL on CIFAR-10
and SVHN datasets, evaluated under both IID and non-IID partitions. Each column denotes the
total communication in GB required to reach X% of FedAvg’s final test accuracy. Results show
that MAPO achieves significantly lower communication costs compared to Factorized-FL while
maintaining competitive performance across both datasets and data distributions.

Table 6: Communication cost comparison across different methods on SVHN and CIFAR-10 under
IID and Non-IID settings.

SVHN CIFAR-10

Method Com/Round
1ID@80% I1ID@90% Non-IID@80% Non-IID@90% I1ID@80% I1ID@90% Non-IID@80%  Non-IID@90%

FedAvg 183.51 244.68 285.46 509.75 305.85 407.80 326.24 652.48 20.39GB

Factorized-FL 127.75 182.50 146.00 219.00 182.50 292.00 200.75 310.25 18.25GB

MAPO2x 0.32 0.79 0.56 - 0.32 - 0.94 - 0.78MB

MAPO; 61 0.08 0.18 0.12 0.27 0.08 0.18 0.23 0.45 6.25MB

MAPO401 3.84 8.64 5.76 13.12 3.84 8.64 10.88 21.12 0.32GB

D Implementation details and Hyperparameters

All experiments were conducted on a single NVIDIA RTX 3090 with 24 GB of memory. The main
experiments and baselines are implemented with JAX [56]. The GLUE tasks and LLM fine-tuning
implementation use Hugging Face libraries and models implemented in FederatedScope [57] with
half precision (i.e., 16-bit float). The model configuration and training used in this work are provided
in Tables [7]and 8]

Table 7: Neural network configurations for different datasets.

Dataset Model type #Conv Kernel Hidden features # Linear # Output # Parameters
MNIST CNN 2 5%5 8,16 1 10 11.3K
FMNIST CNN 2 5%5 8,16 1 10 11.3K
CIFAR-10 CNN 4 5%5 64, 64, 128, 128 2 10 1.IM
CIFAR-100 WideResNet 16 3x3 64x4, 128x4 2 100 2.8M
TinyImageNet WideResNet 16 3x3 64x4, 128x4 2 200 2.88M
Shakespeare LSTM - - 256, 8 (embed) 2 65 814K
Sentiment140 Transformer - - 512, 96 (embed) 2 2 2.2M
SVHN CNN 4 5%5 64, 64, 128, 128 2 10 1.IM
GLUE RoBERTa-large - - 1024 (hidden) 2 Varies 35TM

Table 8: Training hyperparameters for FedAvg and variants.

Hyperparameter MNIST FMNIST CIFAR-10 CIFAR-100 TinyImageNet Sentimentl40 Shakespeare SVHN GLUE

Batch size 32 32 32 32 32 32 32 32 128
Optimizer SGD SGD SGD AdamW AdamW SGD SGD SGD SGD
Learning rate 0.2 0.2 0.03 0.1 0.2 0.001 0.2 0.03 0.02
Momentum 0.9 0.9 0.4 0.9 0.9 0.9 0.9 0.4 0.0
L1 regularization 0.0 0.0 le-4 0.0 le-5 0.0 Se-6 le-4 0.0
L2 regularization 0.0 0.0 le-5 3e-3 le-4 0.0 5e-5 le-5 0.0
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E 1IID and Client Sampling

This section includes the results of additional experiments on IID distribution and client sampling
for MNIST, FMNIST, and CIFAR-10. Across all three datasets, we observe consistent trends.
Reducing the fraction of clients participating (from all clients to 10%) moderately decreases accuracy
for all methods, and non-IID settings introduce additional accuracy penalties. However, MAPO’s
performance remains robust in these more demanding scenarios; it routinely stays close to FedAvg’s
high-accuracy results while maintaining significant communication savings. This resilience suggests
that MAPOQO’s approach scales well to heterogeneous data distributions and partial-participation
regimes, crucial in large-scale FL deployments.

Table 9: Extrapolated MNIST results for IID vs. non-IID and full vs. 10% client participation.
11D Non-1ID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100%  99.6% 100% 99.5% 100% 993% 100%  98.9%
Sparse 10.0% 93.9% 12.0% 93.6% 133% 934% 153% 92.1%
Quantize  22.0% 98.8% 25.0% 985% 29.0% 982% 313% 97.6%
EvoFed 6.5% 994% 1.0% 992% 85% 99.0% 94% 98.5%
FedLoRU 22.0% 95.0% 25.0% 94.7% 282% 943% 302% 93.8%
MAPO 20% 995% 23% 993% 27% 99.0% 29% 98.5%

Table 10: Extrapolated FMNIST results for IID vs. non-IID and full vs. 10% client participation.
D Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100% 91.5% 100% 91.0% 100% 90.0% 100%  89.2%
Sparse 16.0% 84.0% 19.0% 83.5% 21.0% 82.0% 24.1% 81.1%
Quantize  16.0% 89.7% 19.0% 89.2% 21.0% 88.0% 24.1% 87.1%
EvoFed 45% 81.0% 55% 865% 68% 855% T.6%  84.7%
FedLoRU 12.0% 76.8% 14.0% 762% 155% 750% 179% 74.1%
MAPO 20% 90.0% 23% 89.6% 27% 888% 31% 88.0%

Table 11: Extrapolated CIFAR-10 results for IID vs. non-IID and full vs. 10% client participation.
D Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100%  73.0% 100% 72.0% 100% 70.0% 100%  69.0%
Sparse 1.8% 41.0% 2.0% 40.0% 24% 380% 2.7% 372%
Quantize  10.0% 71.0% 12.0% 70.0% 13.0% 685% 152% 67.4%
EvoFed 20% 43.0% 25%  420% 3.0% 405% 3.4%  39.5%
FedLoRU 1.1% 27.0% 13% 260% 15% 245% 17% 23.5%
MAPO 08% 71.5% 09% 708% 10% 692% 12% 68.3%
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F Notations

Table 12: Notation and Definitions

Symbol Meaning / Definition
N Number of layers in a model.
) Indexing notation for the layers of the model. (1 < ¢ < N)
M Number of clients in FL.
3J Indexing notation for clients. (1 < 5 < M)
T Total number of communication rounds in FL.
t Indexing notation for rounds. (1 <t < T
DI Local dataset for client j.
b Weight for client j, usually set as the number of local samples |D7|.
AW Model update, treated as a single vector, € R?*1
wt Model parameters at communication round ¢.
B Aggregated projection vector at round ¢, broadcast by the server.
rt Random seed used to synchronize matrix generation across clients and the server.
At Reconstruction matrix at round ¢, regenerated using r;.
Bt Trainable projection matrix for client j at round ¢.
Bt Locally optimized projection matrix for client j at round ¢.
n Learning rate for local optimization.
d Total number of model parameters, defined as d = >, d{d5.
¢ db Row and column dimensions of the weight matrix for layer i.
P Factorization rank after reshaping.
q LoRA Factorization rank before reshaping.
k Design parameter controlling reshape dimension (AW’ reshaped into R/4/*1x#),
AeR>*, BeR>* Reconstruction and projection matrices in factorization.
LW) Global loss function.
LY W) Local loss function for client 4.
VL(W) Gradient of the global loss function.
VB Gradient of local loss for the projection matrix.
o} Bounded variance of stochastic gradients.
B Smoothness constant of the loss function.

€

Distortion parameter from the Johnson-Lindenstrauss Lemma.
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541

G Proof of Definitions and Propositions

Definition G.1 (Communication Overhead Rate). Let ATV € IR% %% be the update matrix of
a model. Suppose the factorization of AW as AW = BA, where A € IR is a fixed random
matrix and B € IR% X9 is a trainable matrix with ¢ < min(dy, d2) being the factorization rank. The
communication overhead rate CO,.,;. is defined as the ratio of the size of B to the size of AW:

size(B) ¢
size(AW)  dy’
Definition G.2 (Reconstruction Error Rate). Using the same factorization as Theorem [3.2] the

reconstruction error rate is the expected ratio of the reconstruction error to the original model update.
Given full-rank random reconstruction (Theorem [3.1)), it is expressed as:

COT‘ate =

Ea[JAW -BAIZ] ¢
[AW |3 da

Proof. Let AW = [Aw; Awsy --- Awg,], where each column Aw; € IR%. Similarly, the
reconstruction BA can be written as [by A bo A - - - by, A], where each b; € IR is a trainable matrix.
The reconstruction error is given by:

di

1AW — BA|3 =) || Aw; — biAll3.
i=1

The projection of Aw; onto the subspace spanned by A is P4 Aw;. The error rate F is defined as:

| Aw |13

E

Using the Pythagorean theorem:
1Aw; |13 = [|Aw; Pall3 + [lw; — Aw; Pa3,

we rewrite I as: ) ) )
_ NAwill; = |AwiPall; _ . [[AwiPall3

[ Aw; |3 B 1Awi|3

The expected value of || Aw; P43 for a full-rank random Gaussian projection is:

E

q
E[||Aw;Pal5] = o-[| w3
2
Substituting this into E':

E[||Aw; P4l|3] -1 BlAw3 14

| Aw 13 Jwill3 —° da

Applying this to each column AAw; of AW, we obtain:

E[|Aw; — b;All3] =1 —

dy
Z | Aw; — b;All3

i=1

Ea

d1
=3 Ea [ Awi — (Awi)Pal3]
=1

Using the expected error formula:
- q 7\
— 2 12 = _ 4 12
— ; <1 - dz) | Aw; |3 = (1 d2> ; | Aw; 3.

. d
Since AW (|3 = Y01, [|Aw;[3, we get:

B [IaW - BAIE) = (1- L) jaw
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Proposition G.3 (Single-Vector Factorization). Let AW, A, and B be factorizations of a single
layer of the network as in Theorem By reshaping AW into AW' € IRV %192 the factorization of
AW’ = B' A" where A’ € IRP*% gnd B' € IR'™P can achieve the same reconstruction error and
communication overhead to the conventional factorization of AW when p = qd;.

Proof of Error Preservation. In the single-vector setup, AW’ € IR%9 is projected onto a subspace
of dimension p. From random projection theory (as used in Theorem[3.3)), if A’ is sampled such that

rank(A’) = p, then:
s e[lAV Bl

NGB iz
Substituting p = qd; gives: o _ 14
dyds dy

Hence, the expected reconstruction error satisfies:
B(law - 5] = (1- L) jaw]s
which matches the original factorization. O
Proof of Communication Preservation. For AW’ € IRz, with the total size size(AW') = dyda,
we have the communication overhead as:
size(B') = p = qd;.
Thus, the communication overhead is:

co.. — size(B’) _ qdy _q
rate SiZG(AW/) dids ds ’

which matches the original overhead.

Since both the expected reconstruction error and the communication overhead remain unchanged, the
single-vector factorization with p = ¢d; is equivalent in terms of efficiency. O

Proposition G.4 (Multi-Layer Factorization). Let AW;, A;, and B; be single-vector factorization
of i-th layer of the n-layered network as in Theorem[3.4} By concatenating the reshaped weights AW
into AW' € RY™4, where d = %" | didb. The factorization of AW' = B' A’ where A’ € IRP*4
and B' € IR'*P can achieve the same reconstruction error and communication overhead to the
single-vector factorization applied to each AW; when p = nq.

Proof of Error Preservation. For each layer i, a random full-rank matrix A; € IR7%% yields an
expected squared reconstruction error

Ellaws = BiAil] = (1 - ) Iawil.

Flattening AW; into AW/ € IR(d1d2)% 1. a single-vector projection of dimension ¢ d} preserves this
same error ratio (cf. Theorem 3.4).
When we concatenate all AW/ into AW’ € IR'*9, we form a block-structured vector. Let p := n g

and let A’ € IRP*? be constructed from a Gaussian distribution. By the standard random-projection
argument in dimension d with subspace size p,

B jlaw’ - A 3] = (1 - Z)jaw3

Since p = n g, the overall ratio matches applying single-vector factorizations of rank ¢ to each AW/
individually. O

Proof of Communication Preservation. For each layer i, the single-vector factorization of AW,
introduces
size(B;) q

size(B;) = qdi, size(AW;) = didy, hence Se(AW;) = @
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Concatenating all AW/ into AW’ € IR'*? gives size(AW’) = d, with
d =) did.
i=1
Meanwhile, in the multi-layer factorization, the new trainable vector B’ € IR'¥P has

size(B') = p = nq.

Thus
size(B') ngq
size(AW') — YU (didb)’
which matches the total overhead of n individual rank-q factorizations (one per layer) in aggregate.
Consequently, the communication overhead rate is also preserved.

Since both the expected reconstruction error (per layer or in total) and the communication overhead
remain the same, choosing p = n ¢ for AW’ is equivalent to applying single-vector factorization of
rank ¢ separately to each layer. O

Proposition G.5 (MAPO Factorization). Let AW, A, B, and rank p be a multi-layer factorization
of a network as defined in Theorem By reshaping AW € IR into AW’ € IR**14/F1 and
the factorization of AW’ = B' A’ where A’ € IR**14/*1 and B' € IR**', we can achieve the same
reconstruction error and communication overhead to the multi-layer factorization of AW when
k = p, while reducing the memory by a factor of k>.

Proof of Error Preservation. Since AW € IR'™? is reshaped into AW’ e IRF*[4/k1  we still have
|AW'||Z = ||AW||2. When A’ € IR**[?/¥] is a suitable random projection (and B’ € IR**1 is fit
accordingly), the rank-1 subspace of dimension 1 within [d/k] induces the known expected error
ratio

E[|AW' = BAI:] = (1= 74) 1AW|3,

since the ambient dimension is k x [d/k] = d. By taking k = p, we obtain (via standard random-
projection arguments) the matching error ratio 1 — p/d, up to negligible rounding. Therefore:

E[law - BA|}] = (1-2)jaw|i,
O

Proof of Communication Preservation. The matrix B’ € IR**! has size k in total. Meanwhile,
AW’ € RF*[4/F] has size k x [d/k] ~ d. Thus

size(B’) k _k _p

size(AW') — [d/k]k ~ d d

Setting k = p matches the original ratio £ from B € IR? %1 in the multi-layer factorization. O

Proof of Memory Reduction by Factor k?. In standard rank-p factorizations for AW € IR'*¢, one
typically stores a p X d projection plus a 1 X p vector, whose total size scales as dp + p. By contrast,
A € R 14/k] plus B’ € IR**" has combined size [d/k] + k. When k = p, the ratio of these sizes
can be shown to drop by a factor of approximately k2. Hence the approach allocates k? times less
memory than a naive p X d plus 1 x p arrangement. As p = k

dp+p dk+k  d+1 o,

[d/k]+k  [d/k]+k  d/k2+1"

Thus, the factorization AW’ = B’A’ with k = p exactly preserves the original rank-p error and
overhead while using k2-fold less memory. O
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H Proof of Theorem

H.1 Assumptions and Preliminaries

We restate the key assumptions required for the convergence analysis.

Assumption H.1. For each j, £7(v) is -smooth, i.e., | (u) =V LI (v)|| < Bllu—v|| for any u, v.

Assumption H.2. Variance of the stochastic gradient of D/ is bounded for each client j, i.e.,
. ~ . 2
E[|[vei ) - Veiow)| ] <o

Lemma H.3 (Johnson-Lindenstrauss Lemma). Given 0 < € < 1, a set of points {x1,z2,...,xp} C
IR?, and a target dimension k = O (%#) there exists a random linear mapping P € IR¥™* such
that for all i, j:

(1= i — 2;]1* < [l P — 2, P|* < (1 + €)l|i — ]|,

In our context, the random projection matrices B*J and reconstruction matrices A’ satisfy the JL
property with high probability.

H.2 Proof of Theorem 1

Theorem H.1. Let the learning rate satisfy n; < Then, the algorithm achieves the bound:

— 4ﬁ(1+e)
-1 T-1
1 2 E [E(WO)] - L* 1
1 ; mE [quwt)n } < e+ 2e + B+ B0l 7 > 2,

where Hy = th:ol M, € is JL Lemma distortion parameter, and L* is the minimum value of L(W).

Proof. By the S-smoothness of £(W) and taking expectation on both sides, we have

E[L(W™Y) —L(WH] <E[(VLWH, W — W] + g]E [||Wf+1 - Wt||2] . (©)

Using the update rule Wt = W* — 1, B, A*, where B, = 17 Zﬁ\il B%J, we can rewrite the first
term as: '

E[(VL(W), W —W")] = —nE [(VL(W*), B'A')]

M
= -—nE <v,c (wh, ZBM At>
J=1

M
= —nE <v,c (), Z JAt>

We decompose B%J A? as:
VLI (W) = B AL b
where el = VLI (W) — Btd At s the projection error.

Substituting back, we have:

M
=E[(VLW"), W —Wh)] = —npE <V£ W), - Z (vcﬂ (W) — J)>
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624 Separating it into A; and A,:

<v,c (W, f: >] +mE <V£(Wf MJXM;@*J>] .

Al A2

E = _ntE

625 We will now concentrate on A; as:

Ay = —nE

M
<V£(Wt ! — > VL Wt)>]

j 1

M
_ _% S E (VLW VLI (W)

j=1

-1 M{ E (Iver)l?) +|[veiors| ]}

+ 2B || veovt - Zvcﬂ Wi H

=0

= - E[|veivh))? —Li [HVU (W)

|

626 where (a) uses (a,b) = +{||a||* + ||b]|* — ||a — b||*}. We now turn our attention to A, as:

627 Next, we focus on Asy:

Ay =n,E <V£ (W), Ze“>]
M 2

Ui (12 1 t

—E|[|[VLW)|"| +mE ||| D e
< s e s | 13
< BE [[vem)|?] + E iet’j
®) Mo

M 2

Nt [ t\112] €Tt < t
< Mg lveawt)|’] + g VLI (W
S TElIveovi] + e || veov)

Mt [ NI z ity )12 — t ot |
< MR l|vewh|’] + ST E[||VLJ(W)H]+E HVLi(W)fVﬁ(W)
(d) 4 - - M j*l
< "5 [Jveovl] + % Sk [ o] + 20iet

Jj=1
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s28  where (a) uses (a,b) < 1|al|*+|b]|*, and (b) follows Jensen’s inequality, (c) comes from JL Lemma,
629 (d) follows the inequality |la + b||?> < 2||a||? 2, and (e) is based on Assumption 2. On the
630 other hand, we can also place a bound on the second term E [HW“rl - Wt ||2] as shown below:

2
M
B 1w — W] =& B ] =& | | | L3059 ) a

2 2
M M

< i % S| | +22E % S {Bria v}
@ j=1 j=1

o2 M 2 2 M N 2
= %E N vow) ]\Zt]E Z{Bw’At - Vﬁj(Wt)}

j=1 j=1

27 |~ e 2 27 I

=5/ E Sovowh| |+ I E D el
=1 j

< Y5~ (s [lvowro)f] e[ [Frovy - voor ]} + 2s | |s- o
© M j=1 Z M j=1

An? U , 21 2n? Mo i
S rLE (VL wh°] + SEE | |36t | +dnto?

- =

L% v/ ] + iy iﬁﬁj(Wt) 2 +dnjof
(;) M = M e t Y1

4nt2 - 7 (12
< a1 2E[Ive ]

j=1

+ WQ i {E INUSINES> [H%U’(Wt) — VLI (W) 1 } +dnZo?

£ B3 eI« S5 S [lve 0] aatot + i
g =t
A0 S [ )7+ 401+ o?

j=1

631 where (a), (c), and (f) are based on the inequality |la+b||? < 2|a|* +2]|b]|?, (b) comes from Jensen’s
632 inequality, (d), (g) derive from Assumption 2, and (e) comes from JL Lemma.
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s33 By utilizing the established bounds for E [(VL(W?!), Wt — W) ] and E [||W' — W||2] to
e3¢ Equation (), we derive the following:

INMW“U—MW%SEquwmww4—Ww+§

]

+2E [wem|] + 2eny ZE“VU (WH[°] + 2en?o?
j=1

E I:Hwt-i-l _ Wf||2]

< g (v ()] ZE veravy

Ay

As

L 280+ )t

M
LS R (v (W] + 2501 + o?

j=1

= —2E [|vLw)|]

M
+J7\72{—2+2e+26 (1+e)m }ZE[HV,U (W)

] + 202 (e + B + Be)o?

Jj=1

<0 if we choose 1+ < W

< —ZE [IVLW)|?] + 2 (e + B + Be)o}

635 Ultimately, by applying the telescoping sum over ¢t = 0,1,...,T — 1, we arrive at the following
636 result:

T-1
L —E[L(W°)] Z LE [IVev)|*] + X 20 (e + 8+ Be)ot

t=0 t=0

637 In this case, £* stands for the minimum of £L(W).

638 By performing a division by Hyr = ZtT:_Ol 71 on both sides and utilizing some algebraic adjustments,
639 we arrive at the following expression:

T-1 0 L
I;ZntE[HW(Wt)Hz%W +2(e+ B+ Be)o ( Zm) %
t=0

640 With a decreasing learning rate such as n; = we observe that Hr = Z?_Ol 1; tends towards

_MNo_
T+1°
641 infinity as T" grows, while Zt n? remains bounded. Therefore, as T' — oo, the upper bound in
e42 Equation (7)) converges to 0, conﬁrmlng the convergence to a stationary point.
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I Complexity Analysis and MAPO Flexibility

Theorems [3.4{ to [3.6|discussed how the error rate and accuracy of low-rank factorization are only
determined by the size of the projection vector regardless of reshaping and vectorization of layers.
Although they prove that MAPO can achieve the same performance as layer-wise factorization
given the same projection (communication) budget, we did not discuss the memory and computation
complexity. In this section, we show that MAPO can effectively reduce computation. Furthermore,
we show how layer-wise low-rank adaptation (LoRA and FA-LoRA) limits the model trade-offs and
how MAPO can offer more flexibility.

I.1 Computational Complexity

We compute the memory and computation cost for matrix allocation and multiplication in terms of
standard matrix multiplication. Given matrices A € IR™*™ and B € IRP*", the complexities for
computing C = BA are:

Memory._ 45 = O(nm + pn + pm),
Timec—pa = O(mnp).

We aim to demonstrate that factorization under MAPO, where W € IRF* M%7 is factorized into
A e R™%] and B € IR**!, reduces the memory and time complexity of the LoRA factorization
for an n-layered model. In LoRA, each layer ¢ is factorized as w; € R4 %4 into A € IR?*% and
B e R¥xq,

We demonstrate that, given the same communication budget and factorization error rate, MAPO
significantly reduces the computational cost compared to LoRA. This reduction becomes more
pronounced as the number of layers or the selected rank increases. Specifically, MAPO achieves
a memory reduction by a factor of ¢> and a computation reduction by a factor of ¢, where ¢
is the chosen LoRA rank. Furthermore, even when ¢ = 1, MAPO still achieves memory savings

as y . £ d}d? scales with the number of layers. The only scenario where MAPO and LoRA yield

identical efficiency is when the model consists of a single layer (n = 1) and a rank-1 factorization
(g=D.

Memory Complexity

Given these definitions, the memory complexities for MAPO and LoRA are:

d d d
MemoryMAPO—O<LJ +k+ [kz—‘ k) %O<k+l<:—|—d)7

Memory; p4 = O <Z(d1q +d2q +dld?) ) = <Z dlq+ Z 2q+ Z d1d2> .

i=1

Given the same communication budget k = Y., qd} and d = Y| did?, we rewrite LORA’s
memory complexity as:

Memory; ps = O (quf —|—k+d> .

i=1

For MAPO to have lower memory usage than LoRA, the following condition must hold:

Memory ;4 po < Memory; 4,

d n
4 k4+d< d+k+d
k+ + ,q£11+ +d,

n
< qzd?-
=1

>
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Replacing k and d with their respective summation terms:

n n n
Yodidi<g?d di > d,
i=1 i=1 =1

<@ dd Y d,
i=1 i#j

Thus, the inequality always holds under the conditions d},d?,q,n > 1, and equality occurs if

q = n = 1, which corresponds to a model with a single layer and rank-1 factorization. In this case,
MAPO and LoRA perform the same decomposition.

Time Complexity

Given the definitions, we can express the time complexities for MAPO and LoRA as follows:

Timeprapo = O <{Z-‘ k) ~ O(d),

Timer,ga = O <Z qd}d?) .

i=1
Since d = )", d}d?, we can rewrite LORA’s time complexity as:

TimeLoRA = O(qd) .
For MAPO to have a lower time complexity than LoRA, the following condition must hold:

Timeprapo < Timepora,
d < qd.

This condition is always true for d, g > 1, and equality occurs when ¢ = 1.
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1.2 MAPO Flexibility
Suppose our neural network has n layers. Let:
W, € R4 for each layeri =1,...,n.

Letd = Y, did? be the total number of parameters (i.e., the sum of the entries across all layers).

Let N
dy =Y d;.
1=1

In many treatments of LoRA, the main communication or factor-size bottleneck arises from a factor
that scales linearly with ¢ - d}.

LoRA Factorization Per Layer. LoRA factorizes each layer W; of dimension d} x d? with a fixed
rank g. Concretely,

W; ~ Wi+ BiAi, A€ R”%, B e R%*.
The number of additional parameters introduced by each low-rank pair (A4;, B;) is
di-q + g¢-di = q(di +dj).
—— ——
size of B; size of A;

Summing over all n layers,

n n

S(d-gtq-d?) = ¢ (d +d2).

i=1 i=1

Therefore, we can write the communication cost as:

n
Communication cost ~ ¢ Zdll = qd;.
i=1

Since ¢ must be an integer, we see that the communication overhead comes in integer multiplesd, as:
LoRA total communication € {gd; | ¢=1,2,...}.

There is no way to select a non-integer q. Hence communication budgets strictly between d; and
2d; (or between g d; and (q + 1)d;) are not possible in layer-wise LoRA. Therefore, Any attempt to
finely tune the communication or factor budget (e.g., to 1.5 d;) is disallowed by LoRA’s integral-rank
requirement. This rigidity is precisely what we seek to overcome in MAPO.

MAPO Factorization. MAPO flattens or reshapes all parameters into one large matrix and then
performs a single low-rank factorization with rank 1. A simplified abstraction is:

1. Reshape wi, ..., w, into a single matrix W € RF*[4/k1 where d = 377 | d} d? is the total
parameter count. 2. Factor W ~ A B, with

AEBerd/k‘h BEBkX1,

Once all parameters are merged, MAPO can proportionally allocate any communication budget as k
can be selected freely.
(d k] + _k

size of A size of B

Therefore, we can write the total communication as:
MAPO total communication € {k | k=1,2,...}.

This is particularly important in communication-efficient FL since viable solutions can be found with
communication cost k < dy or d; < k < 2d;, which architecture-dependent layer-wise factorization
can not offer.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The Abstract and Introduction (§I) enumerate MAPO’s three contributions,
model-wide factorization, flexible communication, and convergence theory, which are
exactly the results proven in §3H4]and confirmed experimentally in §5]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: §“Limitations” at the end of §6|(p. 9) and Appendix[lopenly note MAPO’s ex-
tra per-round compute, memory trade-offs, and its complementarity, rather than replacement
of PEFT methods.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are stated at the start of §4f full proofs for Propositions 1-3
and Theorem 1 are given in Appendix [GHH]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Dataset splits, non-IID partition rules, model specs, and every training hyper-
parameter are in Tables (Appendix [D); All codes and scripts are included in the
anonymous supplementary zip.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplementary material contains the code and scripts; all datasets are
publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section [5 and Appendix [D] enumerate optimizer, batch-size, learning-rate
schedules, client-fraction, and number of communication rounds for every experiment.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Table3]list mean = std over three random seeds.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix [D]states that tasks ran on a single NVIDIA RTX 3090 with 24 GB
memory.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: All datasets are publicly licensed, no personal data is processed, and the work
advances communication-efficient FL. without impacting protected groups.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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11.

12.

Justification: MAPO is a foundational optimisation technique; we judged its societal impact
neutral and did not include a separate Broader-Impact section.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No new pretrained model or scraped dataset with misuse potential is released.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Each dataset and code baseline is cited, and the licenses are listed in the code,
where they are used.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The work introduces no new dataset or model checkpoint; only source code is
provided.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Experiments are purely computational; no human subjects or crowd-work
involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human-subject research was performed.
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1018 Guidelines:

1019 * The answer NA means that the paper does not involve crowdsourcing nor research with
1020 human subjects.

1021 * Depending on the country in which research is conducted, IRB approval (or equivalent)
1022 may be required for any human subjects research. If you obtained IRB approval, you
1023 should clearly state this in the paper.

1024 * We recognize that the procedures for this may vary significantly between institutions
1025 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1026 guidelines for their institution.

1027 * For initial submissions, do not include any information that would break anonymity (if
1028 applicable), such as the institution conducting the review.

1029 16. Declaration of LLM usage

1030 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1031 non-standard component of the core methods in this research? Note that if the LLM is used
1032 only for writing, editing, or formatting purposes and does not impact the core methodology,
1033 scientific rigorousness, or originality of the research, declaration is not required.

1034 Answer: [NA]

1035 Justification: No LLM was part of the method; any LLM assistance was limited to manuscript
1036 editing and is therefore outside the scope of the policy.

1037 Guidelines:

1038 * The answer NA means that the core method development in this research does not
1039 involve LLMs as any important, original, or non-standard components.

1040 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1041 for what should or should not be described.
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