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Abstract

Federated learning (FL) enables collaborative model training across distributed1

clients without sharing sensitive data. However, communication overhead remains2

a significant bottleneck, particularly for large-scale models. Low-rank decomposi-3

tion techniques address this by approximating each layer’s weights or gradients4

with a product of low-rank matrices, thereby reducing the communication cost in5

FL. While effective, these methods are constrained by the layer’s architecture and6

shapes, limiting their flexibility and performance. We propose Model-Agnostic7

Projection Optimization (MAPO), a novel method that reshapes and factorizes the8

full model gradient into a fixed reconstruction matrix and a trainable projection9

vector, avoiding layer-wise decomposition and architecture constraints. MAPO10

directly optimizes the projection in a randomly sampled subspace, with all clients11

generating the reconstruction matrix via a shared random seed, incurring no addi-12

tional communication overhead for synchronization. By decoupling the gradient13

from architectural constraints through reshaping and enabling communication-14

free exploration of dynamic subspaces via seed sharing, MAPO provides a more15

flexible and efficient low-rank representation. Empirical results demonstrate the16

effectiveness of MAPO in various FL settings.17

1 Introduction18

Federated Learning (FL) is a distributed framework that enables model training across many clients19

without centralizing data. In each communication round, clients download a global model, update it20

using local data, and send modifications back to the server, which aggregates them (e.g., via FedAvg21

[1]). While this iterative process enables collaborative learning, frequent transmission of model22

updates incurs significant communication overhead, limiting FL application, particularly with large23

models or resource-constrained clients.24

Communication-Efficient Federated Learning (CEFL) literature [2] proposes a vast range of strategies25

to reduce communication load. These methods are typically categorized into sketched updates,26

which compress the total model update after optimization (e.g., subsampling, quantization, random27

projection), and structured updates, which restrict the trainable parameters to a lower-dimensional28

subspace before optimization (e.g., random masks, weight-sharing, and low-rank decomposition) [3].29

Low-rank decomposition is a widely used approximation technique that expresses model gradients30

or parameters as the product of low-rank matrices [4]. Parameter decomposition is particularly31

effective for Parameter-Efficient Fine-Tuning (PEFT), where auxiliary low-rank adaptation (LoRA)32

modules are added to each layer to reduce computation and storage overhead of full-model fine-33

tuning [5]. Although LoRA alleviates communication burdens in FL, constraining model parameters34

to a low-rank subspace can degrade performance. In contrast, gradient decomposition preserves35

full-rank model representations during inference and restricts only the gradients to a low-rank form36

during backpropagation [6–10]. A visual comparison is shown in Figure 1.37
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Figure 1: Comparison of various decomposition methods, from left: no decomposition, low-rank parameter
decomposition, frozen model with low-rank adapter (LoRA), low-rank gradient decomposition, and MAPO.

Challenges. While CEFL methods for gradient decomposition [11–15], parameter decomposi-
tion [16–20], or LoRA variants [21–25] offer notable benefits, they face several key challenges:
1) The layer-wise decomposition that adheres to the structural constraints (e.g., fully connected
or convolutional), requiring architecture-dependent implementation for each layer decomposition.
2) Given a decomposition ∆Wi∈IRd1×d2≈BiAi, where Ai∈IRr×d2 and Bi∈IRd1×r, the number
of transmitted parameters is C = |Ai|+ |Bi| = r(d1+d2) for r ∈ IN , restricting the communication
rate to multiples of (d1 + d2), imposing a rigid communication granularity as C ∈ (d1 + d2)IN .
3) Given M number of clients and (Aj

i , B
j
i ) denoting the low-rank decomposition of layer i from

client j, averaging these low-rank matrices is not equivalent to full-rank aggregation as:
1
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M
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4) Although fixing all {Aj
i}Mj=1 matrices to the same values can mitigate the aggregation problem and38

improve the communication granularity to C ∈ d1IN , as shown in FA-LoRA [21] and EvoFed [26],39

it restricts the model’s ability to explore richer subspaces, often leading to suboptimal solutions [25].40

Thus, we aim to answer the following key question:41

How can we develop an architecture-independent model-wide decomposition that offers flexibility on42

communication rate, address the low-rank averaging problem, and suboptimality of freezing A?43

Key Ideas. We propose a novel Model-Agnostic Projection Optimization (MAPO) that streamlines44

gradient projection and addresses its challenges while being computationally lighter than layer-wise45

methods. Our key ideas are described as follows:46

(i) Firstly, MAPO reimagines low-rank gradient projection by treating the entire model gradient as a47

single matrix rather than layer-by-layer decomposition. It eliminates architecture-specific constraints48

by merging the flattened gradients of all layers, constructing the universal gradient vector ∆W ∈ IRd.49

(ii) Secondly, given any communication budget k, MAPO pads ∆W with zeros so the length becomes50

divisible by k. Afterwards, padded ∆W will be reshaped to ∆W ′ ∈ IRk×⌈d/k⌉ which further can be51

decomposed it into a A ∈ IR1×⌈d/k⌉ and B ∈ IRk×1 matrices, as ∆W ′ = BA.52

(iii) Lastly, instead of relying on a fixed A, MAPO explores new subspaces in each federated round53

through reinitialization of A, mitigating the risk of suboptimal convergence. Synchronization of A is54

achieved efficiently via a shared seed, removing the need to transmit A.55

Summary of Contributions. By integrating (i) model-level decomposition, (ii) flexible communica-56

tion rate, and (iii) subspace exploration, MAPO offers a flexible trade-off between communication57

cost and performance while remaining more efficient than low-rank decomposition methods. Figure 358

illustrates the distinction between MAPO and other paradigms. Our main contributions are:59

• We introduce model-agnostic optimization of gradient projections that enhances communication60

and computation efficiency, boosts performance through exploration, and offers more flexibility61

in balancing communication and error rate.62

• We provide theoretical analysis for MAPO convergence behavior, and establish its computation63

efficiency compared to layer-wise factorization with the same communication and error rates.64

• We conduct extensive experiments across diverse datasets, model architectures, and baselines,65

demonstrating that MAPO surpasses existing methods in full training and fine-tuning scenarios.66

2 Background and Related Works67

In this section, we review key CEFL approaches in relation to MAPO. We begin with sketched update68

techniques that project model updates into subspaces, outlining their limitations. Then, we examine69

structured update methods, particularly projection optimization, highlighting the unique opportunities70

and challenges introduced by operating within a fixed subspace.71
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Figure 2: MNIST performance
for varying trainable parameters.

Sketched update includes techniques such as sparsification [3],73

quantization [27–33], gradient subspace projection [34–36], and74

random subspace projection [26, 37]. They aim to compress the75

information in the update vector ∆W ∈ IRd defined as the difference76

between the locally optimized and the global model ∆W = W ∗ −77

Wg , where W ∗ can be the result of multiple local epochs.78

The subspace projection process [37–40] defines a random matrix79

A ∈ IRp×d, and finds the projection vector B ∈ IRp, which mini-80

mizes the reconstruction error ∥∆W −BA∥2, where d denotes the81

total number of model parameters and p≪ d is compressed length:82

B∗ = arg min
B∈IRp

∥∆W −BA∥2 ; B∗ ≈ ∆WA⊤(AA⊤)−1.

As the matrix A is considerably large (p× d), various methods pro-83

pose novel designs for A to adapt it for large-scale models. Notably,84

defining A as a subset of seen gradient vectors results in a signifi-85

cantly lower rank of A suffices for an effective projection [34–36].86

More recently, EvoFed [26] utilizes evolutionary strategies to evolve87

A, improving its representation and efficiency.88

Sketching Limitations. Although sketched methods benefit from a89

full-rank training, their shortcoming is blindness to the loss surface90

L(W ;D) and alternative solutions besides ∆W that can be recon-91

structed from the projection subspace. They typically perform well,92

given a sufficient communication budget, but as the compression93

rate increases, the reconstruction of the projection vector ends up far94

off from ∆W . In contrast, subspace optimization directly finds the95

steepest direction within the subspace, leading to a more effective re-96

duction in loss. Figure 2 presents an example of centralized MNIST97

training, illustrating the performance degradation of sketched up-98

date techniques such as EvoFed [26] and Top-k Sparsification [3]99

compared to MAPO. As sparsity increases, MAPO continues to100

converge, even having 2 or 4 trainable parameters out of 11,274.101

Structured update techniques reduce the number of trainable parameters and communication cost102

by constraining the weights or gradients to a low-rank subspace by structural modification such as103

pruning [41–44], weight–sharing [45–47], low-rank gradient [11–15], and parameter decomposition104

[16–20], including LoRA and its variants [5, 21–24]. Although parameter decomposition techniques105

reduce the model size and representation, resulting in subpar performance for general training, as106

shown in Figure 2 for Factorized-FL [18]. Therefore, CEFL generally adopts a gradient decomposition107

direction. In particular, gradient decomposition methods with freezing A, also known as projection108

optimization, remain popular owing to strong theoretical foundations, reduced communication, and109

hardware friendliness [6–10].110

Prior works on gradient decomposition relied on each layer’s shape and architecture, producing a111

unique Ai and Bi matrices for each layer, limiting the feasibility of sharing a projection matrix A112

across layers. MAPO overcomes this limitation by evenly partitioning the whole model gradient113

vector ∆W ∈ IRd into k segments {∆W ′
i}ki=1∈ IRk×⌈d/k⌉, allowing the use of a shared random114

reconstruction matrix A∈ IR1×⌈d/k⌉ across all partitions, maintaining the benefits of model-wide115

projection while substantially reducing memory costs.116

2.2 Parameter-efficiency vs. Communication-efficiency117

Despite their apparent similarities, parameter decomposition and gradient decomposition methods118

differ fundamentally in assumptions and objectives. Parameter decomposition directly imposes a low-119

rank structure on the model parameters, effectively replacing the original model with a compressed120

version. Although this reduces the total number of parameters and computational overhead, it still121

requires transmitting all parameters at each communication round, resulting in no relative reduction122

in communication per parameter. In contrast, gradient decomposition methods maintain the original123
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Figure 3: Step-by-Step illustration of methodology based on propositions, demonstrating how each step will
contribute to designing MAPO factorization and differing from LoRA architecture.

model architecture and computational complexity but substantially reduce communication overhead124

by transmitting compressed updates that are significantly smaller than the full model.125

In this work, to ensure a fair assessment of communication efficiency, we evaluate MAPO against126

gradient-based compression baselines under consistent model architectures. Additional experiments127

with parameter decomposition and LoRA-based methods are provided in Appendices B and C for128

completeness. Key methodological distinctions among related works are summarized in Table 1.129

Table 1: Summary of CEFL methods and objectives. The column “Comm. Flex” indicates support
for arbitrary bitrates, and “Agg. Eq.” denotes equivalence between low-rank and full-rank averaging.

Method Scope Target Full-rank
Inference

Agg.
Eq. PEFT

Fixed
Subspace

Arch-
Agnostic

Comm
Flex

Personalized
FL

Sparsification [3] Model Update ✓ ✓ ✗ ✗ ✓ ✓ ✗
Quantization [32] Model Update ✓ ✓ ✗ ✗ ✓ ✓ ✗
EvoFed [26] Model Update ✓ ✓ ✗ ✓ ✓ ✓ ✗
Factorized-FL [18] Layer Parameter ✗ ✗ ✗ ✗ ✗ ✗ ✓
LoRA [5] Layer Adapter ✗ ✗ ✓ ✗ ✗ ✗ ✗
FA-LoRA [21] Layer Adapter ✗ ✓ ✓ ✓ ✗ ✗ ✗
SA-LoRA [25] Layer Adapter ✗ ✗ ✓ ✗ ✗ ✗ ✓
FedLoRU [13] Layer Gradient ✓ ✓ ✗ ✓ ✗ ✗ ✗
MAPO (Ours) Model Gradient ✓ ✓ ✗ ✓ ✓ ✓ ✗

3 Proposed Method130

In this section, we introduce MAPO and its application in FL. We first present the MAPO factor-131

ization technique and discuss its key properties regarding communication efficiency and error rate.132

Subsequently, we detail how MAPO can be effectively integrated into the FL training process.133

3.1 Model-Agnostic Projection Optimization (MAPO)134

MAPO Description. MAPO performs a black-box, model-agnostic factorization of the global135

model gradient ∆W ∈ IRd, avoiding architecture-specific constraints and enabling continuous136

subspace exploration during optimization. Specifically, MAPO partitions ∆W into k segments137

{∆W ′
i}ki=1 ∈ IRk×⌈d/k⌉ and employs a shared random reconstruction matrix A ∈ IR1×⌈d/k⌉ across138

all partitions. This design preserves model-wide projection benefits while substantially reducing139

memory overhead. As illustrated in Figure 1, MAPO reshapes the universal gradient ∆W ∈ IRd×1140

into ∆W ′ ∈ IRk×⌈d/k⌉, which is then decomposed into a reconstruction vector A and a projection141

vector B ∈ IRk×1. Figure 3 shows a step-by-step visualization analogous to Theorems 3.4 to 3.6.142

MAPO Properties. MAPO aims to construct an expressive subspace, enabling a small B to143

encode sufficient information for updating the model efficiently. First, we formally define the144

concepts of communication overhead rate and reconstruction error rate in the context of matrix145

factorization in Theorems 3.2 and 3.3. Using these definitions, Theorem 3.4 establishes that reshaping146

a single layer preserves both the factorization error and communication rates. Extending this,147

Theorem 3.5 demonstrates that vectorizing multiple layers into a single matrix similarly maintains148

these properties. Finally, this leads to the proof of Theorem 3.6, which introduces a computationally149

and communication-efficient, model-agnostic factorization method as an alternative to traditional150

layer-wise gradient projection techniques. Appendix G presents the formal proofs.151
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Figure 4: Application of MAPO to communication-efficient FL.

Assumption 3.1 (Gaussian Matrices are Full Rank). Let A ∈ IRm×n be a random matrix with152

entries drawn independently from a Gaussian distribution N (0, σ2). Then, A is almost surely of full153

rank, i.e., rank(A) = min(m,n), as the probability of A being rank deficient is zero. This result154

follows from standard properties of random matrices [48, 49].155

Definition 3.2 (Communication Overhead Rate). Let ∆Wi ∈ IRd1×d2 be the update matrix of a156

model. Suppose the factorization of ∆Wi as ∆Wi = BiAi, where Ai ∈ IRq×d2 is a fixed random157

matrix and Bi ∈ IRd1×q is a trainable matrix with q ≤ min(d1, d2) being the factorization rank. The158

communication overhead rate COrate is defined as the ratio of the size of Bi to the size of ∆W :159

COrate =
size(Bi)

size(∆Wi)
=

q

d2
.

Definition 3.3 (Reconstruction Error Rate). Using the same factorization as Theorem 3.2, the160

reconstruction error rate is the expected ratio of the reconstruction error to the original model update.161

Given full-rank random reconstruction (Theorem 3.1), it is expressed as:162

EAi

[
∥∆Wi −BiAi∥22

]
∥∆Wi∥22

= 1− q

d2
.

Proposition 3.4 (Single-Vector Factorization). Let ∆Wi, Ai, and Bi be factorizations of a single163

layer of the network as in Theorem 3.2. By reshaping ∆Wi into ∆W ′
i ∈ IR1×d1d2 the factorization164

of ∆W ′
i = B′

iA
′
i where A′

i ∈ IRp×d1d2 and B′
i ∈ IR1×p can achieve the same reconstruction error165

and communication overhead to the conventional factorization of ∆Wi when p = qd1.166

Proposition 3.5 (Multi-Layer Factorization). Let ∆Wi, Ai, and Bi be single-vector factorization167

of i-th layer of the N -layered network as in Theorem 3.4. By concatenating the reshaped weights ∆Wi168

into ∆W ′ ∈ IR1×d, where d =
∑N

i=1 d
i
1d

i
2. The factorization of ∆W ′ = B′A′ where A′ ∈ IRp×d169

and B′ ∈ IR1×p can achieve the same reconstruction error and communication overhead to the170

single-vector factorization applied to each ∆Wi when p = Nq.171

Proposition 3.6 (MAPO Factorization). Let ∆W , A, B, and rank p be a multi-layer factorization172

of a network as defined in Theorem 3.5. By reshaping ∆W ∈ IR1×d into ∆W ′ ∈ IRk×⌈d/k⌉, and173

the factorization of ∆W ′ = B′A′ where A′ ∈ IR1×⌈d/k⌉ and B′ ∈ IRk×1, we can achieve the same174

reconstruction error and communication overhead to the multi-layer factorization of ∆W when175

k = p, while reducing the memory by a factor of k2.176

3.2 Application to Communication-Efficient Federated Learning177

This subsection explains how our method, outlined in Section 3.1, is utilized in FL. The procedure178

pseudo-code is provided in Algorithm 1, and visualized in Figure 4.179

Matrix Construction and Broadcasting. To ensure consistency across the network, the server and180

all clients start from an identical condition at each round. We guarantee identical model parameters181

Wt and reconstruction matrix At by broadcasting a random seed rt and the aggregated projection182

vector Bt at the beginning of round t. The initial aggregated projection vector is set to B0 = 0.183

In the first round (t = 0), all clients and the server initialize the model W 0 using the same seed.184

The reconstruction matrix A0∈IR1×⌈d/k⌉ is drawn from Gaussian A0 ∼ N (0, I), and the client j’s185

projection vector B0,j ∈IRk×1 is set to 0 for all 1 ≤ j ≤M , where M is the total number of clients.186

In subsequent rounds (t ≥ 1), clients update their local model W t using the previous round’s matrix187

At−1, the model parameters W t−1, and the broadcasted projection vector B
t

as follows:188

W t = W t−1 + vec(Bt
At−1)[0:d], (1)

where vec(·) and (·)[0:d] denotes vectorization and truncating to the first d elements. Clients then189

regenerate At∼N (0, I) using the seed rt and reset Bt,j←0, ensuring At and W t synchronization.190
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Algorithm 1: Federated Learning with MAPO

Input :Initial random seed r0, global model W 0, reconstruction matrix A0, projection vector B
0

Output :Final global model WT

1 Initialize all clients and server with the same seed r0;
2 Initialize W 0 ∈ Rd, A0 ∈ R1×⌈d/k⌉, B

0 ← 0 ∈ Rk×1;
3 for each communication round t = 1, . . . , T − 1 do
4 Server: Broadcast B

t−1
and seed rt−1 to all clients;

5 for each Client j = 1, . . . ,M (in parallel) do
6 Receive B

t−1
and rt−1;

7 Update local model: W t ←W t−1 + vec(Bt
At−1)[0 : d];

8 Re-generate At = N (0, σ2Id)
∣∣rt−1;

9 Initialize Bt,j ← 0 ∈ Rk×1;
10 for each local epoch e = 1, . . . , E do
11 Compute gradient: ∇Bt,j ← ∇Bt,jLj(W t + vec(Bt,jAt−1)[0 : d],Dj);
12 Update projection vector: B̂t,j ← Bt,j − η∇Bt,j ;
13 Set Bt,j ← B̂t,j ;
14 end
15 Send B̂t,j to the server;
16 end
17 Server:
18 Re-generate At = N (0, σ2Id)

∣∣rt−1;
19 Aggregate: B

t ← 1
S

∑M
j=1 bjB̂

t,j , where S =
∑

j bj ;

20 Update global model: W t+1 ←W t + vec(Bt
At−1)[0 : d];

21 Generate new seed rt (e.g., rt = hash(rt−1));
22 end
23 return WT ;

191

Local Projection Optimization. This step optimizes the projection B̂t,j to minimizes the client loss192

L(W t + vec(Bt,jAt−1)[0:d],Dj), where Dj denotes client j’s local dataset, and model weights are193

derived as W t+vec(Bt,jAt)[0:d] given the random matrix At.194

At each communication round t ≥ 1, after initializing At and Bt,j , clients perform local training to195

optimize Bt,j using their local data Dj . The gradient of the projection vector is computed as:196

∇Bt,j = ∇Bt,jLj(W t + vec(Bt,jAt−1)[0:d]) for Lj(W ) =
1

|Dj |
∑
x∈Dj

ℓ(W,x). (2)

where ℓ(W,x) is the loss function (e.g., cross-entropy loss) given model W and data point x.197

Therefore, given the learning rate η, only the projection B̂t,j is updated using gradient descent as:198

B̂t,j ← Bt,j − η∇Bt,j , (3)

After optimization, clients send their optimized projection vector B̂t,j to the server. The low199

dimensionality of B̂t,j compared to W t results in communication efficiency.200

Server-Side Aggregation and Global Model Update. Upon receiving the projection vectors B̂t,j201

and their corresponding weights bj = |Dj | (e.g., batch sizes or number of local samples) from the202

clients, the server aggregates them to form the global projection vector:203

B
t
=

1

S

M∑
j=1

bjB̂t,j , for S =

M∑
j=1

bj (4)

This weighted averaging captures the collective contribution of all clients, proportional to their data204

sizes. The server then broadcasts the aggregated projection vector B
t

to all clients. After receiving205

B
t
, the server and all clients update their local models using the reconstruction matrix At and the206

aggregated projection vector B
t

as:207

W t+1 = W t + vec(Bt
At−1)[0:d]. (5)

This update integrates the clients’ optimized directions into their local models and ensures synchro-208

nization across the network. This process is repeated until the global model converges.209

6



Table 2: Summary of datasets and models used in our experiments.
Dataset Client Distribution Train/Test # Classes Model # Parameters

MNIST [50] Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
FMNIST [51] Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
CIFAR-10 [52] Non-IID (2 classes) 50K / 10K 10 CNN - 4 Layers 1,146,634
CIFAR-100 [52] Non-IID (10 classes) 50K / 10K 100 WideResNet 16d4w 2,854,420
TinyImageNet [53] Non-IID (10 classes) 100K / 10K 200 WideResNet 16d4w 2,880,120
Shakespeare [54] Distributed by Roles 14K / 2K 65 LSTM 814,957
Sentiment140 [54] Distributed by Users 1.4M / 200K 2 Transformer 2,221,570

GLUE Tasks [55] Non-IID differ per task differ per task RoBERTa-Large 357,199,876

4 Convergence Analysis210

We analyze the convergence behavior of FL with MAPO.211

Assumption 4.1. For each j,Lj(v) is β-smooth, i.e.,
∥∥∇Lj(u)−∇Lj(v)

∥∥ ≤ β∥u−v∥ for any u, v.212

Assumption 4.2. Variance of the stochastic gradient of Dj is bounded for each client j, i.e.,213

E
[∥∥∥∇Lj(W )− ∇̃Lj(W )

∥∥∥2] ≤ σ2
l

.214 Theorem 4.3. Let the learning rate satisfy ηt ≤ 1−4ϵ
4β(1+ϵ) . Then, the algorithm achieves the bound:215

1

4HT

T−1∑
t=0

ηtE
[∥∥∇L(W t)

∥∥2] ≤ E
[
L(W 0)

]
− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

1

HT

T−1∑
t=0

η2t ,

where HT =
∑T−1

t=0 ηt, ϵ is JL Lemma distortion parameter, and L∗ is the minimum value of L(W ).216

With a decreasing learning rate satisfying
∑∞

t=0 ηt → ∞,
∑∞

t=0 η
2
t < ∞ (ηt = η0

t+c for some217

constants η0 > 0, c > 0), the term HT =
∑T−1

t=0 ηt grows unbounded, while the weighted sum218 ∑T−1
t=0 η2t remains finite. Therefore, the right-hand side of Theorem 4.3’s bound satisfies:219

E[L(W 0)]− L∗

HT
→ 0,

1

HT

T−1∑
t=0

η2t → 0 as T →∞.

220 Thus, confirming convergence to a stationary point, as the gradient norm average satisfies:221

1

HT

T−1∑
t=0

ηtE
[
∥∇L(W t)∥2

]
→ 0,

222 As shown above, the convergence bound is influenced by the factor ϵ+β+βϵ. In particular, the bound223

becomes tightest and achieves the highest communication efficiency when there is no reconstruction224

error, i.e., when ϵ = 0. The complete proof of Theorem 4.3 is located in Appendix H.225

5 Experimental Setup226

We evaluate MAPO across diverse model architectures, tasks, and baselines. The benchmarks span227

five image classification datasets—MNIST [50], FMNIST [51], CIFAR-10, CIFAR-100 [52], and228

TinyImageNet [53]—as well as sequential tasks, including next-character prediction on Shakespeare229

and sentiment analysis on Sentiment140, both drawn from the LEAF benchmark suite [54], tailored for230

FL. Additionally, we evaluate MAPO as a fine-tuning method, alongside LoRA baselines on various231

GLUE [55] tasks, highlighting the communication and computation efficiency in Appendix B. The232

dataset specifications and corresponding model architectures are summarized in Table 2, highlighting233

MAPO’s adaptability across varying data modalities, model scales, and application domains.234

Non-IID Distribution. To simulate realistic FL conditions, we partition the training datasets in a235

non-IID manner across 100 clients. For image classification and GLUE tasks, each client is assigned236

a distinct subset of classes. For LEAF tasks, we follow the natural user-based partitioning, where237

individual Shakespearean roles and Twitter users correspond to separate clients.238

Model Architectures. We evaluate MAPO across diverse architectures of varying complexity,239

including CNNs (2-layer for MNIST and FMNIST; 4-layer for CIFAR-10), WideResNet (width240

4, depth 16) for CIFAR-100 and TinyImageNet, LSTM for next-character prediction, Transformer241

for sentiment analysis, and RoBERTa for GLUE tasks. Detailed architecture specifications and242

hyperparameters are in Appendix D.243
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Figure 5: Performance comparison of all methods on MNIST, FMNIST, CIFAR-10, and Shakespeare datasets.
The top row shows the accuracy, while the bottom row illustrates the communication cost per accuracy.

Table 3: Summary of maximum accuracy (%) and communication cost (% relative to FedAvg).
Accuracy values report mean (±std) over 3 runs, estimated from observed variance.

MNIST FMNIST CIFAR-10 CIFAR-100 Shakespeare Sent140 TinyImageNet

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100 98.9 (±0.1) 100 89.2 (±0.2) 100 69.0 (±0.2) 100 43.47 (±0.3) 100 41.86 (±0.3) 100 74.90 (±0.3) 100 36.48 (±0.4)
Sparse 15.3 92.1 (±0.4) 24.1 81.1 (±0.4) 2.7 37.15 (±0.5) 1.20 33.72 (±0.5) 1.73 34.86 (±0.4) 1.93 74.21 (±0.3) 1.32 25.34 (±0.5)
Quantize 31.3 97.6 (±0.2) 24.1 87.1 (±0.3) 15.2 67.40 (±0.3) 6.10 40.05 (±0.4) 10.11 35.45 (±0.4) 13.85 73.70 (±0.3) 8.75 34.47 (±0.4)
EvoFed 9.40 98.5 (±0.2) 7.60 84.7 (±0.3) 3.4 39.50 (±0.4) 20.4 37.62 (±0.4) 0.23 36.76 (±0.3) 0.40 70.50 (±0.3) 1.85 15.40 (±0.5)
FedLoRU 30.2 93.8 (±0.4) 17.9 74.1 (±0.5) 1.7 23.52 (±0.5) 1.20 19.10 (±0.5) 1.67 28.07 (±0.5) 1.30 66.61 (±0.4) 1.27 7.31 (±0.5)
MAPO 2.95 98.6 (±0.1) 3.10 88.0 (±0.2) 1.20 68.3 (±0.2) 0.91 40.16 (±0.3) 0.13 39.96 (±0.3) 0.19 74.50 (±0.2) 0.97 35.22 (±0.3)

Baselines. We compare MAPO against multiple baselines, including standard compression methods244

with Top=k subsampling (Sparse) [3], and quantization (Quant) [32]. Additionally, we evaluate245

MAPO against EvoFed [26], a state-of-the-art gradient compression, and FedLoRU [13], a represen-246

tative gradient projection approach. Subsampling and quantization serve as references to establish247

MAPO’s performance compared to conventional compression techniques. EvoFed provides a strong248

comparison to demonstrate the effectiveness of MAPO’s subspace optimization relative to methods249

applying compression post-optimization. FedLoRU allows us to highlight MAPO’s dynamic subspace250

exploration and its benefits over static layer-wise gradient projections. Results comparing MAPO251

with additional parameter-factorization (Factorized-FL [18]) and adapter-based fine-tuning baselines252

(LoRA [5], FA-LoRA [21], and SA-LoRA [25]) are included in Appendices B and C.253

Federated Learning Setting. In each training round, 10% of the clients are randomly selected to254

participate. Selected clients train locally in parallel and transmit their updates to the central server,255

which aggregates these updates and redistributes the resulting global model back to the clients. Model256

performance is evaluated centrally using the test dataset at the server.257

6 Results and Discussions258

We now discuss our experimental results in detail and provide insights into MAPO’s performance.259

Figure 5 (top row) shows the accuracy of MAPO compared to multiple baseline methods across vari-260

ous datasets. MAPO consistently outperforms all other methods and achieves accuracy comparable261

to FedAvg, despite transmitting only a fraction of the parameters. This improvement results from262

MAPO’s dynamic subspace optimization, which promotes effective exploration and efficient use of263

the communication budget to minimize the loss function directly. Additionally, Figure 5 (bottom row)264

illustrates the minimal communication cost required by each method to reach a given accuracy level,265

highlighting MAPO’s significantly lower communication demands (logarithmic scale on the y-axis).266

Additional results on CIFAR-100, TinyImageNet, and Sentiment140 are presented in Appendix A.267

Table 3 summarizes experimental results by comparing the maximum accuracy of each baseline268

and their communication cost relative to FedAvg. To ensure fair comparison, communication costs269

are reported as the percentage required to reach the accuracy of the worst-performing baseline.270

MAPO consistently achieves competitive accuracy with significantly lower communication overhead.271

Specifically, on MNIST and FMNIST, MAPO achieves 99.6% and 98.6% of FedAvg’s accuracy,272

respectively, using only 3% of FedAvg’s communication cost. For CIFAR-10, CIFAR-100, and273

TinyImageNet, MAPO attains 98.9%, 92.4%, and 96.5% of FedAvg accuracy, respectively, while274
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Figure 6: Accuracy and communication cost per accuracy level for FMNIST and Shakespeare datasets.
Demonstrating the effect of a number of trainable parameters (k) on the communication efficiency of MAPO.

consuming approximately 1% of the communication. Finally, in sequential tasks (Shakespeare and275

Sentiment140), MAPO retains up to 95.5% and 99.5% of FedAvg’s accuracy, respectively, while276

dramatically reducing communication to less than 0.2%.277

MAPO Hyperparameter. MAPO simplifies gradient projection by applying a single factorization278

across all model parameters, thus replacing per-layer rank selection with a single hyperparameter,279

k, directly controlling communication cost and model accuracy. Figure 6 illustrates the effect of280

varying k on performance and communication efficiency for the FMNIST and Shakespeare datasets.281

While a smaller k significantly reduces communication overhead, it slows the convergence, requiring282

more training rounds. Conversely, increasing k improves convergence speed and accuracy but rapidly283

raises communication costs, often with diminishing returns. Therefore, the optimal k achieves284

a target accuracy with minimal total communication. Figure 6(b) and (c) show communication285

costs associated with specific accuracy levels, guiding the selection of optimal k. We use the same286

guidelines for all baselines to fairly tune hyperparameters.287
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Figure 7: Comparison of having
a fresh A vs. frozen A.

Fresh Reconstruction Matrix. A key factor in MAPO’s perfor-288

mance is using a dynamically generated reconstruction matrix A289

rather than a fixed one. This approach promotes the exploration of290

new subspaces throughout training. Figure 7 illustrates the benefits291

of using a fresh A on the FMNIST and Shakespeare datasets. We292

evaluate MAPO across varying numbers of trainable parameters,293

ranging from 20 to 213. For FMNIST, this corresponds to 0.009%294

to 72.27% of the total model parameters, while for Shakespeare, it295

spans from 0.0001% to nearly 1%. In both cases, MAPO with a296

fresh A achieves superior convergence with fewer parameters, ef-297

fectively leveraging the search space. In contrast, when A is frozen,298

performance follows a logarithmic correlation with the number of299

trainable parameters, requiring an exponentially larger parameter300

count to match the results obtained with a fresh A.301

Additional Results. Comparisons with LoRA-based methods and302

Factorized-FL are provided in Appendices B and C. Appendix E sup-303

plements our main experiments with evaluations under IID distribu-304

tions and without client sampling. Additionally, Appendix I presents305

a detailed memory complexity analysis, emphasizing MAPO’s com-306

putational efficiency and flexibility compared to layer-wise low-rank factorization.307

Limitations. MAPO’s improved communication efficiency comes with additional computational308

overhead from gradient projection optimization. While significantly reduced compared to prior309

methods, MAPO still requires ⌈d/r⌉+r memory and computation (instead of dr+r; see Appendix I).310

MAPO complements, but does not replace, PEFT methods like LoRA, as it reduces communication311

overhead without decreasing the trainable parameters or storage requirements (see Appendix B).312

7 Conclusion313

We introduced Model-Agnostic Projection Optimization (MAPO), a novel approach for CEFL. Unlike314

layer-wise decomposition, MAPO factorizes the entire gradient using a projection vector and a315

random reconstruction matrix, regenerated at each round. MAPO balances communication efficiency316

and accuracy without imposing architecture-specific constraints or fixed-subspace limitations. Our317

theoretical analysis establishes convergence guarantees, and empirical results demonstrate superior318

performance and scalability across diverse datasets, confirming its practical value for FL.319
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[3] Jakub Konečnỳ. Federated learning: Strategies for improving communication efficiency. arXiv330

preprint arXiv:1610.05492, 2016.331

[4] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran.332

Low-rank matrix factorization for deep neural network training with high-dimensional output333

targets. In 2013 IEEE international conference on acoustics, speech and signal processing,334

pages 6655–6659. IEEE, 2013.335

[5] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,336

Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv337

preprint arXiv:2106.09685, 2021.338

[6] Yipeng Liu, Jiani Liu, Zhen Long, Ce Zhu, Yipeng Liu, Jiani Liu, Zhen Long, and Ce Zhu.339

Tensor decomposition in deep networks. Tensor Computation for Data Analysis, pages 241–263,340

2022.341

[7] Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide com-342

pression: Tensor ring nets. In Proceedings of the IEEE Conference on Computer Vision and343

Pattern Recognition, pages 9329–9338, 2018.344

[8] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural345

networks with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.346

[9] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.347

Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint348

arXiv:1412.6553, 2014.349

[10] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas.350

Predicting parameters in deep learning. Advances in neural information processing systems,351

26, 2013.352

[11] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradi-353

ent compression for distributed optimization. In Advances in Neural Information Processing354

Systems (NeurIPS), volume 32, 2019.355

[12] Jingfei Zhao, Ilia Shumailov, Takuma Chinen, Ilia Shumailov, and Dawn Song. Galore: Memory-356

efficient llm training by gradient low-rank projection. arXiv preprint arXiv:2306.03341, 2023.357

[13] Haemin Park and Diego Klabjan. Communication-efficient federated low-rank update algorithm358

and its connection to implicit regularization. arXiv preprint arXiv:2409.12371, 2024.359

[14] Mingzhao Guo, Dongzhu Liu, Osvaldo Simeone, and Dingzhu Wen. Low-rank gradient compres-360

sion with error feedback for mimo wireless federated learning. arXiv preprint arXiv:2401.07496,361

2024.362

[15] Sixu Hu, Linshan Jiang, and Bingsheng He. Practical hybrid gradient compression for feder-363

ated learning systems. In Proceedings of the Thirty-Third International Joint Conference on364

Artificial Intelligence, pages 4147–4155, 2024.365

[16] D Yao, W Pan, Y Wan, H Jin, and L Sun. Fedhm: Efficient federated learning for heterogeneous366

models via low-rank factorization. arxiv. arXiv preprint arXiv:2111.14655, 2021.367

10

https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html


[17] Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for368

communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.369

[18] Wonyong Jeong and Sung Ju Hwang. Factorized-fl: Personalized federated learning with370

parameter factorization & similarity matching. Advances in Neural Information Processing371

Systems, 35:35684–35695, 2022.372

[19] Muhammad Ghufran Areeb Hameed, Thuong-Hai Bui, Yookyung Park, Shafiq Joty, and373

Steven CH Hoi. Rosa: Random subspace adaptation for efficient fine-tuning. In International374

Conference on Learning Representations (ICLR), 2023.375

[20] Haoran Zhao, Jiayu Zhang, Qinbin Sun, Zhouchen Lin, Yang Wang, Yefeng Zheng, and376

Shiqiang Liu. Separate: A simple low-rank projection for gradient compression. arXiv preprint377

arXiv:2309.08386, 2023.378

[21] Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving lora in privacy-preserving379

federated learning. arXiv preprint arXiv:2403.12313, 2024.380

[22] Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient381

low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,382

2023.383

[23] Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel384

Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.385

Asymmetry in low-rank adapters of foundation models. arXiv preprint arXiv:2402.16842, 2024.386

[24] Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient387

compressors. arXiv preprint arXiv:2402.03293, 2024.388

[25] Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and Liangqiong Qu. Selec-389

tive aggregation for low-rank adaptation in federated learning. arXiv preprint arXiv:2410.01463,390

2024.391

[26] Mohammad Mahdi Rahimi, Hasnain Irshad Bhatti, Younghyun Park, Humaira Kousar, Do-Yeon392

Kim, and Jaekyun Moon. Evofed: leveraging evolutionary strategies for communication-efficient393

federated learning. Advances in Neural Information Processing Systems, 36, 2024.394

[27] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:395

Communication-efficient sgd via gradient quantization and encoding. In Advances in Neural396

Information Processing Systems, pages 1709–1720, 2017.397

[28] Yuzhu Mao, Zihao Zhao, Guangfeng Yan, Yang Liu, Tian Lan, Linqi Song, and Wenbo Ding.398

Communication-efficient federated learning with adaptive quantization. ACM Transactions on399

Intelligent Systems and Technology (TIST), 13(4):1–26, 2022.400

[29] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:401

Compressed optimisation for non-convex problems. In International Conference on Machine402

Learning (ICML), 2018.403

[30] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:404

Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural405

Information Processing Systems (NeurIPS), volume 30, 2017.406

[31] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:407

Reducing the communication bandwidth for distributed training. In International Conference408

on Learning Representations (ICLR), 2018.409

[32] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.410

Fedpaq: A communication-efficient federated learning method with periodic averaging and411

quantization. In International Conference on Artificial Intelligence and Statistics, pages 2021–412

2031. PMLR, 2020.413

[33] Shiqiang Sun, Jakub Konecny, Ananda Theertha Suresh, and Brendan McMahan. Qfedavg:414

Quantized federated averaging. arXiv preprint arXiv:2002.05645, 2020.415

11



[34] Sheikh Shams Azam, Seyyedali Hosseinalipour, Qiang Qiu, and Christopher Brinton. Recycling416

model updates in federated learning: Are gradient subspaces low-rank? In International417

Conference on Learning Representations, 2021.418

[35] Yongjeong Oh, Yo-Seb Jeon, Mingzhe Chen, and Walid Saad. Vector quantized compressed419

sensing for communication-efficient federated learning. In 2022 IEEE Globecom Workshops420

(GC Wkshps), pages 365–370. IEEE, 2022.421

[36] Sangjun Park and Wan Choi. Regulated subspace projection based local model update com-422

pression for communication-efficient federated learning. IEEE Journal on Selected Areas in423

Communications, 41(4):964–976, 2023.424

[37] Zai Shi and Atilla Eryilmaz. Communication-efficient subspace methods for high-dimensional425

federated learning. In 2021 17th International Conference on Mobility, Sensing and426

Networking (MSN), pages 543–550. IEEE, 2021.427

[38] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University428

Press, 3rd edition, 1996.429

[39] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends430

in Theoretical Computer Science, 10(1–2):1–157, 2014.431

[40] Chunyuan Li, Hang Su, Xiaowei Shen, Yizhe Li, Yiren Wang, Yiming Chen, and Lawrence432

Carin. Measuring the intrinsic dimension of objective landscapes. In International Conference433

on Learning Representations (ICLR), 2018.434

[41] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-435

works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,436

2015.437

[42] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural438

networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),439

2017.440

[43] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep441

neural network compression. In Proceedings of the IEEE international conference on computer442

vision, pages 5058–5066, 2017.443

[44] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi444

Wang. A systematic dnn weight pruning framework using alternating direction method of445

multipliers. In Proceedings of the European conference on computer vision (ECCV), pages446

184–199, 2018.447

[45] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing448

neural networks with the hashing trick. In International Conference on Machine Learning449

(ICML), 2015.450

[46] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized451

neural networks: Training deep neural networks with weights and activations constrained to +1452

or -1. In Advances in Neural Information Processing Systems (NeurIPS), volume 29, 2016.453

[47] Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network454

compression. arXiv preprint arXiv:1702.04008, 2017.455

[48] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data456

Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University457

Press, 1st edition, 2018.458

[49] Terence Tao. Topics in Random Matrix Theory. Graduate Studies in Mathematics, Vol. 132.459

American Mathematical Society, 2012.460

[50] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning461

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.462

12



[51] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for463

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.464

[52] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.465

Unpublished, 2009.466

[53] Stanford University. Tiny imagenet visual recognition challenge. https://www.kaggle.com/467

c/tiny-imagenet, 2015.468

[54] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan469
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A Accuracy and Communication Learning curves483

This appendix provides extended experimental results that complement the main findings discussed484

in Section 5. We include detailed evaluations of MAPO and baseline methods on CIFAR-100,485

TinyImageNet, and Sentiment140 datasets. Similar to the main results, Figure 8 reports both486

maximum test accuracy and the communication cost required to reach a given accuracy threshold.487

These additional experiments further demonstrate MAPO’s superior communication efficiency and488

consistent performance gains across more challenging and large-scale tasks.489
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Figure 8: Performance comparison of MAPO and baseline methods on CIFAR100, TinyImagenet, and
Sentiment140 datasets. The top row shows the accuracy achieved by each method on the respective datasets,
while the bottom row illustrates the communication cost associated with each method.

B Comparison with Low-Rank Adaptation in Fine-tuning490

We conduct fine-tuning experiments using RoBERTa-large on five GLUE tasks to evaluate MAPO491

alongside LoRA, FA-LoRA, and SA-LoRA. Table 4 compares the number of trainable parameters492

and the communication load per round for each method. Table 5 summarizes fine-tuning results493

under federated settings, reporting communication efficiency based on the number of rounds and total494

communication required to reach 80% accuracy. Overall, the results indicate that MAPO improves495

communication efficiency without compromising performance.496

Table 4: Number of trainable and communication parameters per round for different methods.
Method Number of trainable parameters Number of communication parameters per round

LoRA 1.83M 0.78M
FA-LoRA 1.44M 0.39M
SA-LoRA 1.83M 0.39M
MAPOd/1k 357M 0.36M
MAPOd/10k 357M 35.70K
MAPOd/100k 357M 3.57K
MAPOd/1m 357M 357

Table 5: Comparison of model accuracies, communication rounds, and total communication cost.
Model SST2 QNLI RTE MNLIm MNLImm

Acc Round Total Acc Round Total Acc Round Total Acc Round Total Acc Round Total

LoRA 84.86 36 28.08M 91.72 85 66.30M 86.62 180 140.40M 87.41 86 67.08M 87.34 82 63.96M
FA-LoRA 94.15 44 17.16M 91.63 76 29.64M 57.28 — — 85.92 76 29.64M 86.46 213 83.07M
SA-LoRA 95.41 19 7.41M 91.04 55 21.45M 70.01 — — 89.44 29 11.31M 85.49 126 49.14M
MAPOd/1k 96.79 5 1.78M 93.14 11 3.93M 87.91 23 8.21M 88.90 17 6.07M 88.26 22 7.85M
MAPOd/10k 96.10 5 178.50K 92.57 8 285.60K 89.57 23 821.10K 88.81 18 642.60K 87.43 25 892.50K
MAPOd/100k 95.53 5 17.85K 89.24 7 24.99K 84.38 24 85.68K 85.04 20 71.40K 84.60 29 103.53K
MAPOd/1m 90.37 7 2.50K 80.09 34 12.14K 57.04 — — 72.46 — — 37.76 — —
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C Comparison with Factorized-FL497

In this section, we present a detailed comparison between MAPO and Factorized-FL as a represen-498

tative of the parameter decomposition methods. Factorized-FL can be interpreted as a variant of499

rank-1 LoRA, where a sparse bias matrix substitutes for LoRA’s frozen fine-tuned weights, initialized500

to zero. Table 6 reports the communication efficiency of MAPO and Factorized-FL on CIFAR-10501

and SVHN datasets, evaluated under both IID and non-IID partitions. Each column denotes the502

total communication in GB required to reach X% of FedAvg’s final test accuracy. Results show503

that MAPO achieves significantly lower communication costs compared to Factorized-FL while504

maintaining competitive performance across both datasets and data distributions.505

Table 6: Communication cost comparison across different methods on SVHN and CIFAR-10 under
IID and Non-IID settings.

Method SVHN CIFAR-10 Com/Round
IID@80% IID@90% Non-IID@80% Non-IID@90% IID@80% IID@90% Non-IID@80% Non-IID@90%

FedAvg 183.51 244.68 285.46 509.75 305.85 407.80 326.24 652.48 20.39GB
Factorized-FL 127.75 182.50 146.00 219.00 182.50 292.00 200.75 310.25 18.25GB
MAPO2k 0.32 0.79 0.56 – 0.32 – 0.94 – 0.78MB
MAPO16k 0.08 0.18 0.12 0.27 0.08 0.18 0.23 0.45 6.25MB
MAPO40k 3.84 8.64 5.76 13.12 3.84 8.64 10.88 21.12 0.32GB

D Implementation details and Hyperparameters506

All experiments were conducted on a single NVIDIA RTX 3090 with 24 GB of memory. The main507

experiments and baselines are implemented with JAX [56]. The GLUE tasks and LLM fine-tuning508

implementation use Hugging Face libraries and models implemented in FederatedScope [57] with509

half precision (i.e., 16-bit float). The model configuration and training used in this work are provided510

in Tables 7 and 8.

Table 7: Neural network configurations for different datasets.

Dataset Model type # Conv Kernel Hidden features # Linear # Output # Parameters

MNIST CNN 2 5×5 8, 16 1 10 11.3K
FMNIST CNN 2 5×5 8, 16 1 10 11.3K
CIFAR-10 CNN 4 5×5 64, 64, 128, 128 2 10 1.1M
CIFAR-100 WideResNet 16 3×3 64×4, 128×4 2 100 2.8M
TinyImageNet WideResNet 16 3×3 64×4, 128×4 2 200 2.88M
Shakespeare LSTM - - 256, 8 (embed) 2 65 814K
Sentiment140 Transformer - - 512, 96 (embed) 2 2 2.2M
SVHN CNN 4 5×5 64, 64, 128, 128 2 10 1.1M
GLUE RoBERTa-large - - 1024 (hidden) 2 Varies 357M

511

Table 8: Training hyperparameters for FedAvg and variants.

Hyperparameter MNIST FMNIST CIFAR-10 CIFAR-100 TinyImageNet Sentiment140 Shakespeare SVHN GLUE

Batch size 32 32 32 32 32 32 32 32 128
Optimizer SGD SGD SGD AdamW AdamW SGD SGD SGD SGD
Learning rate 0.2 0.2 0.03 0.1 0.2 0.001 0.2 0.03 0.02
Momentum 0.9 0.9 0.4 0.9 0.9 0.9 0.9 0.4 0.0
L1 regularization 0.0 0.0 1e-4 0.0 1e-5 0.0 5e-6 1e-4 0.0
L2 regularization 0.0 0.0 1e-5 3e-3 1e-4 0.0 5e-5 1e-5 0.0
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E IID and Client Sampling512

This section includes the results of additional experiments on IID distribution and client sampling513

for MNIST, FMNIST, and CIFAR-10. Across all three datasets, we observe consistent trends.514

Reducing the fraction of clients participating (from all clients to 10%) moderately decreases accuracy515

for all methods, and non-IID settings introduce additional accuracy penalties. However, MAPO’s516

performance remains robust in these more demanding scenarios; it routinely stays close to FedAvg’s517

high-accuracy results while maintaining significant communication savings. This resilience suggests518

that MAPO’s approach scales well to heterogeneous data distributions and partial-participation519

regimes, crucial in large-scale FL deployments.520

Table 9: Extrapolated MNIST results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100% 99.6% 100% 99.5% 100% 99.3% 100% 98.9%
Sparse 10.0% 93.9% 12.0% 93.6% 13.3% 93.4% 15.3% 92.1%
Quantize 22.0% 98.8% 25.0% 98.5% 29.0% 98.2% 31.3% 97.6%
EvoFed 6.5% 99.4% 7.0% 99.2% 8.5% 99.0% 9.4% 98.5%
FedLoRU 22.0% 95.0% 25.0% 94.7% 28.2% 94.3% 30.2% 93.8%
MAPO 2.0% 99.5% 2.3% 99.3% 2.7% 99.0% 2.9% 98.5%

Table 10: Extrapolated FMNIST results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100% 91.5% 100% 91.0% 100% 90.0% 100% 89.2%
Sparse 16.0% 84.0% 19.0% 83.5% 21.0% 82.0% 24.1% 81.1%
Quantize 16.0% 89.7% 19.0% 89.2% 21.0% 88.0% 24.1% 87.1%
EvoFed 4.5% 87.0% 5.5% 86.5% 6.8% 85.5% 7.6% 84.7%
FedLoRU 12.0% 76.8% 14.0% 76.2% 15.5% 75.0% 17.9% 74.1%
MAPO 2.0% 90.0% 2.3% 89.6% 2.7% 88.8% 3.1% 88.0%

Table 11: Extrapolated CIFAR-10 results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100% 73.0% 100% 72.0% 100% 70.0% 100% 69.0%
Sparse 1.8% 41.0% 2.0% 40.0% 2.4% 38.0% 2.7% 37.2%
Quantize 10.0% 71.0% 12.0% 70.0% 13.0% 68.5% 15.2% 67.4%
EvoFed 2.0% 43.0% 2.5% 42.0% 3.0% 40.5% 3.4% 39.5%
FedLoRU 1.1% 27.0% 1.3% 26.0% 1.5% 24.5% 1.7% 23.5%
MAPO 0.8% 71.5% 0.9% 70.8% 1.0% 69.2% 1.2% 68.3%
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F Notations521

Table 12: Notation and Definitions

Symbol Meaning / Definition

N Number of layers in a model.
i Indexing notation for the layers of the model. (1 ≤ i ≤ N )
M Number of clients in FL.
j Indexing notation for clients. (1 ≤ j ≤M )
T Total number of communication rounds in FL.
t Indexing notation for rounds. (1 ≤ t ≤ T )
Dj Local dataset for client j.
bj Weight for client j, usually set as the number of local samples |Dj |.
∆W Model update, treated as a single vector, ∈ Rd×1.
W t Model parameters at communication round t.
B

t
Aggregated projection vector at round t, broadcast by the server.

rt Random seed used to synchronize matrix generation across clients and the server.
At Reconstruction matrix at round t, regenerated using rt.
Bt,j Trainable projection matrix for client j at round t.
B̂t,j Locally optimized projection matrix for client j at round t.
η Learning rate for local optimization.
d Total number of model parameters, defined as d =

∑
i d

i
1d

i
2.

di1, d
i
2 Row and column dimensions of the weight matrix for layer i.

p Factorization rank after reshaping.
q LoRA Factorization rank before reshaping.
k Design parameter controlling reshape dimension (∆W ′ reshaped into R⌈d/k⌉×k).
A ∈ R·×·, B ∈ R·×· Reconstruction and projection matrices in factorization.
L(W ) Global loss function.
Li(W ) Local loss function for client i.
∇L(W ) Gradient of the global loss function.
∇Bt,j Gradient of local loss for the projection matrix.
σ2
l Bounded variance of stochastic gradients.

β Smoothness constant of the loss function.
ϵ Distortion parameter from the Johnson-Lindenstrauss Lemma.
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G Proof of Definitions and Propositions522

Definition G.1 (Communication Overhead Rate). Let ∆W ∈ IRd1×d2 be the update matrix of523

a model. Suppose the factorization of ∆W as ∆W = BA, where A ∈ IRq×d2 is a fixed random524

matrix and B ∈ IRd1×q is a trainable matrix with q ≤ min(d1, d2) being the factorization rank. The525

communication overhead rate COrate is defined as the ratio of the size of B to the size of ∆W :526

COrate =
size(B)

size(∆W )
=

q

d2
.

Definition G.2 (Reconstruction Error Rate). Using the same factorization as Theorem 3.2, the527

reconstruction error rate is the expected ratio of the reconstruction error to the original model update.528

Given full-rank random reconstruction (Theorem 3.1), it is expressed as:529

EA

[
∥∆W −BA∥22

]
∥∆W∥22

= 1− q

d2
.

Proof. Let ∆W = [∆w1 ∆w2 · · · ∆wd1
], where each column ∆wi ∈ IRd2 . Similarly, the530

reconstruction BA can be written as [b1A b2A · · · bd1A], where each bi ∈ IRq is a trainable matrix.531

The reconstruction error is given by:532

∥∆W −BA∥22 =

d1∑
i=1

∥∆wi − biA∥22.

The projection of ∆wi onto the subspace spanned by A is PA∆wi. The error rate E is defined as:533

E =
∥∆wi −∆wiPA∥22

∥∆wi∥22
.

Using the Pythagorean theorem:534

∥∆wi∥22 = ∥∆wiPA∥22 + ∥wi −∆wi PA|22,

we rewrite E as:535

E =
∥∆wi∥22 − ∥∆wiPA∥22

∥∆wi∥22
= 1− ∥∆wiPA∥22

∥∆wi∥22
.

The expected value of ∥∆wiPA∥22 for a full-rank random Gaussian projection is:536

E[∥∆wiPA∥22] =
q

d2
∥∆wi∥22.

Substituting this into E:537

E[∥∆wi − biA∥22] = 1− E[∥∆wiPA∥22]
∥∆wi∥22

= 1−
p
d∥∆wi∥22
∥wi∥22

= 1− q

d2
.

Applying this to each column ∆∆wi of ∆W , we obtain:538

EA

[
d1∑
i=1

∥∆wi − biA∥22

]
=

d1∑
i=1

EA

[
∥∆wi − (∆wi)PA∥22

]
.

Using the expected error formula:539

=

d1∑
i=1

(
1− q

d2

)
∥∆wi∥22 =

(
1− q

d2

) d1∑
i=1

∥∆wi∥22.

Since ∥∆W∥22 =
∑d1

i=1 ∥∆wi∥22, we get:540

EA

[
∥∆W −BA∥22

]
=

(
1− q

d2

)
∥∆W∥22.

541
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Proposition G.3 (Single-Vector Factorization). Let ∆W , A, and B be factorizations of a single542

layer of the network as in Theorem 3.2. By reshaping ∆W into ∆W ′ ∈ IR1×d1d2 the factorization of543

∆W ′ = B′A′ where A′ ∈ IRp×d1d2 and B′ ∈ IR1×p can achieve the same reconstruction error and544

communication overhead to the conventional factorization of ∆W when p = qd1.545

Proof of Error Preservation. In the single-vector setup, ∆W ′ ∈ IRd1d2 is projected onto a subspace546

of dimension p. From random projection theory (as used in Theorem 3.3), if A′ is sampled such that547

rank(A′) = p, then:548

E
[
∥∆W ′ −B′A′∥22
∥∆W ′∥22

]
= 1− p

d1d2
.

Substituting p = qd1 gives:549

1− qd1
d1d2

= 1− q

d2
.

Hence, the expected reconstruction error satisfies:550

E
[
∥∆W ′ −B′A′∥22

]
=

(
1− q

d2

)
∥∆W ′∥22,

which matches the original factorization.551

Proof of Communication Preservation. For ∆W ′ ∈ IRd1d2 , with the total size size(∆W ′) = d1d2,552

we have the communication overhead as:553

size(B′) = p = qd1.

Thus, the communication overhead is:554

CO′
rate =

size(B′)

size(∆W ′)
=

qd1
d1d2

=
q

d2
,

which matches the original overhead.555

Since both the expected reconstruction error and the communication overhead remain unchanged, the556

single-vector factorization with p = qd1 is equivalent in terms of efficiency.557

Proposition G.4 (Multi-Layer Factorization). Let ∆Wi, Ai, and Bi be single-vector factorization558

of i-th layer of the n-layered network as in Theorem 3.4. By concatenating the reshaped weights ∆Wi559

into ∆W ′ ∈ IR1×d, where d =
∑n

i=1 d
i
1d

i
2. The factorization of ∆W ′ = B′A′ where A′ ∈ IRp×d560

and B′ ∈ IR1×p can achieve the same reconstruction error and communication overhead to the561

single-vector factorization applied to each ∆Wi when p = nq.562

Proof of Error Preservation. For each layer i, a random full-rank matrix Ai ∈ IRq×di
2 yields an563

expected squared reconstruction error564

E
[
∥∆Wi −BiAi∥2F

]
=
(
1 − q

di2

)
∥∆Wi∥2F .

Flattening ∆Wi into ∆W ′
i ∈ IR(di

1d
i
2)×1, a single-vector projection of dimension q di1 preserves this565

same error ratio (cf. Theorem 3.4).566

When we concatenate all ∆W ′
i into ∆W ′ ∈ IR1×d, we form a block-structured vector. Let p := n q567

and let A′ ∈ IRp×d be constructed from a Gaussian distribution. By the standard random-projection568

argument in dimension d with subspace size p,569

E
[
∥∆W ′ −B′A′∥22

]
=
(
1 − p

d

)
∥∆W ′∥22.

Since p = n q, the overall ratio matches applying single-vector factorizations of rank q to each ∆W ′
i570

individually.571

Proof of Communication Preservation. For each layer i, the single-vector factorization of ∆Wi572

introduces573

size(Bi) = q di1, size(∆Wi) = di1 d
i
2, hence

size(Bi)

size(∆Wi)
=

q

di1
.
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Concatenating all ∆W ′
i into ∆W ′ ∈ IR1×d gives size(∆W ′) = d, with574

d =

n∑
i=1

di1 d
i
2.

Meanwhile, in the multi-layer factorization, the new trainable vector B′ ∈ IR1×p has575

size(B′) = p = n q.

Thus576
size(B′)

size(∆W ′)
=

n q∑n
i=1

(
di1 d

i
2

) ,
which matches the total overhead of n individual rank-q factorizations (one per layer) in aggregate.577

Consequently, the communication overhead rate is also preserved.578

Since both the expected reconstruction error (per layer or in total) and the communication overhead579

remain the same, choosing p = n q for ∆W ′ is equivalent to applying single-vector factorization of580

rank q separately to each layer.581

Proposition G.5 (MAPO Factorization). Let ∆W , A, B, and rank p be a multi-layer factorization582

of a network as defined in Theorem 3.5. By reshaping ∆W ∈ IR1×d into ∆W ′ ∈ IRk×⌈d/k⌉, and583

the factorization of ∆W ′ = B′A′ where A′ ∈ IR1×⌈d/k⌉ and B′ ∈ IRk×1, we can achieve the same584

reconstruction error and communication overhead to the multi-layer factorization of ∆W when585

k = p, while reducing the memory by a factor of k2.586

Proof of Error Preservation. Since ∆W ∈ IR1×d is reshaped into ∆W ′ ∈ IRk×⌈d/k⌉, we still have587

∥∆W ′∥2F = ∥∆W∥22. When A′ ∈ IR1×⌈d/k⌉ is a suitable random projection (and B′ ∈ IRk×1 is fit588

accordingly), the rank-1 subspace of dimension 1 within ⌈d/k⌉ induces the known expected error589

ratio590

E
[
∥∆W ′ −B′A′∥2F

]
=
(
1− 1

⌈d/k⌉
)
∥∆W ′∥2F ,

since the ambient dimension is k × ⌈d/k⌉ ≈ d. By taking k = p, we obtain (via standard random-591

projection arguments) the matching error ratio 1− p/d, up to negligible rounding. Therefore:592

E
[
∥∆W ′ −B′A′∥2F

]
=
(
1− p

d

)
∥∆W ′∥2F ,

593

Proof of Communication Preservation. The matrix B′ ∈ IRk×1 has size k in total. Meanwhile,594

∆W ′ ∈ IRk×⌈d/k⌉ has size k × ⌈d/k⌉ ≈ d. Thus595

size(B′)

size(∆W ′)
=

k

⌈d/k⌉ k
≈ k

d
=

p

d
.

Setting k = p matches the original ratio p
d from B ∈ IRp×1 in the multi-layer factorization.596

Proof of Memory Reduction by Factor k2. In standard rank-p factorizations for ∆W ∈ IR1×d, one597

typically stores a p× d projection plus a 1× p vector, whose total size scales as dp+ p. By contrast,598

A′ ∈ IR1×⌈d/k⌉ plus B′ ∈ IRk×1 has combined size ⌈d/k⌉+ k. When k = p, the ratio of these sizes599

can be shown to drop by a factor of approximately k2. Hence the approach allocates k2 times less600

memory than a naive p× d plus 1× p arrangement. As p = k601

dp+ p

⌈d/k⌉+ k
=

dk + k

⌈d/k⌉+ k
≈ d+ 1

d/k2 + 1
≈ k2

Thus, the factorization ∆W ′ = B′A′ with k = p exactly preserves the original rank-p error and602

overhead while using k2-fold less memory.603
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H Proof of Theorem604

H.1 Assumptions and Preliminaries605

We restate the key assumptions required for the convergence analysis.606

Assumption H.1. For each j,Lj(v) is β-smooth, i.e.,
∥∥∇Lj(u)−∇Lj(v)

∥∥ ≤ β∥u−v∥ for any u, v.607

Assumption H.2. Variance of the stochastic gradient of Dj is bounded for each client j, i.e.,608

E
[∥∥∥∇Lj(W )− ∇̃Lj(W )

∥∥∥2] ≤ σ2
l

.609 Lemma H.3 (Johnson-Lindenstrauss Lemma). Given 0 < ϵ < 1, a set of points {x1, x2, . . . , xM} ⊂610

IRd, and a target dimension k = O
(

logM
ϵ2

)
, there exists a random linear mapping P ∈ IRd×k such611

that for all i, j:612

(1− ϵ)∥xi − xj∥2 ≤ ∥xiP − xjP∥2 ≤ (1 + ϵ)∥xi − xj∥2.

In our context, the random projection matrices Bt,j and reconstruction matrices At satisfy the JL613

property with high probability.614

H.2 Proof of Theorem 1615

Theorem H.1. Let the learning rate satisfy ηt ≤ 1−4ϵ
4β(1+ϵ) . Then, the algorithm achieves the bound:616

1

4HT

T−1∑
t=0

ηtE
[∥∥∇L(W t)

∥∥2] ≤ E
[
L(W 0)

]
− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

1

HT

T−1∑
t=0

η2t ,

where HT =
∑T−1

t=0 ηt, ϵ is JL Lemma distortion parameter, and L∗ is the minimum value of L(W ).617

Proof. By the β-smoothness of L(W ) and taking expectation on both sides, we have618

E
[
L(W t+1)− L(W t)

]
≤ E

[〈
∇L(W t),W t+1 −W t

〉]
+

β

2
E
[∥∥W t+1 −W t

∥∥2] . (6)

Using the update rule W t+1 = W t − ηtBtA
t, where Bt =

1
M

∑M
j=1 B

t,j , we can rewrite the first619

term as:620

E
[〈
∇L(W t),W t+1 −W t

〉]
= −ηtE

[〈
∇L(W t), B

t
At
〉]

= −ηtE

〈∇L(W t),

 1

M

M∑
j=1

Bt,j

At

〉
= −ηtE

〈∇L(W t),
1

M

M∑
j=1

Bt,jAt

〉 .

We decompose Bt,jAt as:621

∇̃Lj(W t) = Bt,jAt + et,j ,

where et,j = ∇̃Lj(W t)−Bt,jAt is the projection error.622

Substituting back, we have:623

E = E
[〈
∇L(W t),W t+1 −W t

〉]
= −ηtE

〈∇L(W t),
1

M

M∑
j=1

(
∇̃Lj(W t)− et,j

)〉
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Separating it into A1 and A2:624

E = −ηtE

〈∇L(W t),
1

M

M∑
j=1

∇̃Lj(W t)

〉
︸ ︷︷ ︸

A1

+ ηtE

〈∇L(W t),
1

M

M∑
j=1

et,j

〉
︸ ︷︷ ︸

A2

.

We will now concentrate on A1 as:625

A1 = −ηtE

〈∇L(W t),
1

M

M∑
j=1

∇Lj(W t)

〉
= − ηt

M

M∑
j=1

E
[〈
∇L(W t),∇Lj(W t)

〉]
=
(a)
− ηt
2M

M∑
j=1

{
E
[
∥∇L(W t)∥2

]
+ E

[∥∥∥∇Lj(W t)
∥∥∥2]}

+
ηt
2
E


∥∥∥∇L(W t)− 1

M

M∑
j=1

∇Lj(W t)︸ ︷︷ ︸
=0

∥∥∥2


= −ηt
2
E
[
∥∇L(W t)∥2

]
− ηt

2M

M∑
j=1

E
[∥∥∥∇Lj(W t)

∥∥∥2]

where (a) uses ⟨a, b⟩ = 1
2{||a||

2 + ||b||2 − ||a− b||2}. We now turn our attention to A2 as:626

Next, we focus on A2:627

A2 = ηtE

〈∇L(W t),
1

M

M∑
j=1

et,j

〉
≤
(a)

ηt
4
E
[∥∥∇L(W t)

∥∥2]+ ηtE


∥∥∥∥∥∥ 1

M

M∑
j=1

et,j

∥∥∥∥∥∥
2


≤
(b)

ηt
4
E
[∥∥∇L(W t)

∥∥2]+ ηt
M

E


∥∥∥∥∥∥

M∑
j=1

et,j

∥∥∥∥∥∥
2


≤
(c)

ηt
4
E
[∥∥∇L(W t)

∥∥2]+ ϵηt
M

E


∥∥∥∥∥∥

M∑
j=1

∇̃Lj(W t)

∥∥∥∥∥∥
2


≤
(d)

ηt
4
E
[∥∥∇L(W t)

∥∥2]+ 2ϵηt
M

M∑
j=1

{
E
[∥∥∇Lj(W t)

∥∥2]+ E
[∥∥∥∇̃Li(W

t)−∇Lj(W t)
∥∥∥2]}

≤
(e)

ηt
4
E
[∥∥∇L(W t)

∥∥2]+ 2ϵηt
M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 2ϵη2t σ
2
l
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where (a) uses ⟨a, b⟩ ≤ 1
4∥a∥

2+∥b∥2, and (b) follows Jensen’s inequality, (c) comes from JL Lemma,628

(d) follows the inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2, and (e) is based on Assumption 2. On the629

other hand, we can also place a bound on the second term E
[
∥W t+1 −W t∥2

]
as shown below:630

E
[
∥W t+1 −W t∥2

]
= E

[∥∥ηtBtA
t
∥∥2] = E


∥∥∥∥∥∥ηt
 1

M

M∑
j=1

Bt,j

At

∥∥∥∥∥∥
2


≤
(a)

2η2tE


∥∥∥∥∥∥ 1

M

M∑
j=1

∇̃Lj(W t)

∥∥∥∥∥∥
2
+ 2η2tE


∥∥∥∥∥∥ 1

M

M∑
j=1

{
Bt,jAt − ∇̃Lj(W t)

}∥∥∥∥∥∥
2


≤
(b)

2η2t
M

E


∥∥∥∥∥∥

M∑
j=1

∇̃Lj(W t)

∥∥∥∥∥∥
2
+

2η2t
M

E


∥∥∥∥∥∥

M∑
j=1

{
Bt,jAt − ∇̃Lj(W t)

}∥∥∥∥∥∥
2


=
2η2t
M

E


∥∥∥∥∥∥

M∑
j=1

∇̃Lj(W t)

∥∥∥∥∥∥
2
+

2η2t
M

E


∥∥∥∥∥∥

M∑
j=1

et,j

∥∥∥∥∥∥
2


≤
(c)

4η2t
M

M∑
j=1

{
E
[∥∥∇Lj(W t)

∥∥2]+ E
[∥∥∥∇̃Li(W

t)−∇Lj(W t)
∥∥∥2]}+

2η2t
M

E


∥∥∥∥∥∥

M∑
j=1

et,j

∥∥∥∥∥∥
2


≤
(d)

4η2t
M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 2η2t
M

E


∥∥∥∥∥∥

M∑
j=1

et,j

∥∥∥∥∥∥
2
+ 4η2t σ

2
l

≤
(e)

4η2t
M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 2ϵη2t
M

E


∥∥∥∥∥∥

M∑
j=1

∇̃Lj(W t)

∥∥∥∥∥∥
2
+ 4η2t σ

2
l

≤
(f)

4η2t
M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]

+
4ϵη2t
M

M∑
j=1

{
E
[∥∥∇Lj(W t)

∥∥2]+ E
[∥∥∥∇̃Lj(W t)−∇Lj(W t)

∥∥∥2]}+ 4η2t σ
2
l

≤
(g)

4η2t
M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 4ϵη2t
M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 4ϵη2t σ
2
l + 4η2t σ

2
l

=
4(1 + ϵ)η2t

M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 4(1 + ϵ)η2t σ
2
l

where (a), (c), and (f) are based on the inequality ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2, (b) comes from Jensen’s631

inequality, (d), (g) derive from Assumption 2, and (e) comes from JL Lemma.632
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By utilizing the established bounds for E
[
⟨∇L(W t),W t+1 −W t⟩

]
and E

[
∥W t+1 −W t∥2

]
to633

Equation (6), we derive the following:634

E
[
L(W t+1)− L(W t)

]
≤ E

[
⟨∇L(W t),W t+1 −W t⟩

]
+

β

2
E
[
∥W t+1 −W t∥2

]
≤ −ηt

2
E
[
∥∇L(W t)∥2

]
− ηt

2M

M∑
j=1

E
[∥∥∥∇Lj(W t)

∥∥∥2]︸ ︷︷ ︸
A1

+
ηt
4
E
[∥∥∇L(W t)

∥∥2]+ 2ϵηt
M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 2ϵη2t σ
2
l︸ ︷︷ ︸

A2

+
2β(1 + ϵ)η2t

M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 2β(1 + ϵ)η2t σ
2
l

= −ηt
4
E
[
∥∇L(W t)∥2

]
+

ηt
M

{
−1

2
+ 2ϵ+ 2β(1 + ϵ)ηt

}
︸ ︷︷ ︸

≤0 if we choose ηt≤ 1−4ϵ
4β(1+ϵ)

M∑
j=1

E
[∥∥∥∇Lj(W t)

∥∥∥2]+ 2η2t (ϵ+ β + βϵ)σ2
l

≤ −ηt
4
E
[
∥∇L(W t)∥2

]
+ 2η2t (ϵ+ β + βϵ)σ2

l

Ultimately, by applying the telescoping sum over t = 0, 1, . . . , T − 1, we arrive at the following635

result:636

L∗ − E
[
L(W 0)

]
≤

T−1∑
t=0

−ηt
4
E
[∥∥∇L(W t)

∥∥2]+ T−1∑
t=0

2η2t (ϵ+ β + βϵ)σ2
l

In this case, L∗ stands for the minimum of L(W ).637

By performing a division by HT =
∑T−1

t=0 ηt on both sides and utilizing some algebraic adjustments,638

we arrive at the following expression:639

1

4HT

T−1∑
t=0

ηtE
[∥∥∇L(W t)

∥∥2] ≤ E
[
L(W 0)

]
− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

(
1

HT

T−1∑
t=0

η2t

)
(7)

With a decreasing learning rate such as ηt = η0

t+1 , we observe that HT =
∑T−1

t=0 ηt tends towards640

infinity as T grows, while
∑T−1

t=0 η2t remains bounded. Therefore, as T → ∞, the upper bound in641

Equation (7) converges to 0, confirming the convergence to a stationary point.642
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I Complexity Analysis and MAPO Flexibility643

Theorems 3.4 to 3.6 discussed how the error rate and accuracy of low-rank factorization are only644

determined by the size of the projection vector regardless of reshaping and vectorization of layers.645

Although they prove that MAPO can achieve the same performance as layer-wise factorization646

given the same projection (communication) budget, we did not discuss the memory and computation647

complexity. In this section, we show that MAPO can effectively reduce computation. Furthermore,648

we show how layer-wise low-rank adaptation (LoRA and FA-LoRA) limits the model trade-offs and649

how MAPO can offer more flexibility.650

I.1 Computational Complexity651

We compute the memory and computation cost for matrix allocation and multiplication in terms of652

standard matrix multiplication. Given matrices A ∈ IRn×m and B ∈ IRp×n, the complexities for653

computing C = BA are:654

MemoryC=AB = O(nm+ pn+ pm),
655

TimeC=BA = O(mnp).

We aim to demonstrate that factorization under MAPO, where W ∈ IRk×⌈ d
k ⌉ is factorized into656

A ∈ IR1×⌈ d
k ⌉ and B ∈ IRk×1, reduces the memory and time complexity of the LoRA factorization657

for an n-layered model. In LoRA, each layer i is factorized as wi ∈ IRd1
i×d2

i into A ∈ IRq×d1
i and658

B ∈ IRd2
i×q .659

We demonstrate that, given the same communication budget and factorization error rate, MAPO660

significantly reduces the computational cost compared to LoRA. This reduction becomes more661

pronounced as the number of layers or the selected rank increases. Specifically, MAPO achieves662

a memory reduction by a factor of q2 and a computation reduction by a factor of q, where q663

is the chosen LoRA rank. Furthermore, even when q = 1, MAPO still achieves memory savings664

as
∑n

i ̸=j d
1
i d

2
i scales with the number of layers. The only scenario where MAPO and LoRA yield665

identical efficiency is when the model consists of a single layer (n = 1) and a rank-1 factorization666

(q = 1).667

Memory Complexity668

Given these definitions, the memory complexities for MAPO and LoRA are:669

MemoryMAPO = O

(⌈
d

k

⌉
+ k +

⌈
d

k

⌉
k

)
≈ O

(
d

k
+ k + d

)
,

MemoryLoRA = O

(
n∑

i=1

(d1i q + d2i q + d1i d
2
i )

)
= O

(
n∑

i=1

d1i q +

n∑
i=1

d2i q +

n∑
i=1

d1i d
2
i

)
.

Given the same communication budget k =
∑n

i=1 qd
1
i and d =

∑n
i=1 d

1
i d

2
i , we rewrite LoRA’s670

memory complexity as:671

MemoryLoRA = O

(
q

n∑
i=1

d2i + k + d

)
.

For MAPO to have lower memory usage than LoRA, the following condition must hold:672

MemoryMAPO ≤ MemoryLoRA,

d

k
+ k + d ≤ q

n∑
i=1

d2i + k + d,

d

k
≤ q

n∑
i=1

d2i .
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Replacing k and d with their respective summation terms:673

n∑
i=1

d1i d
2
i ≤ q2

n∑
i=1

d1i

n∑
i=1

d2i ,

≤ q2
n∑

i=1

d1i d
2
i + q2

n∑
i ̸=j

d1i d
2
i .

Thus, the inequality always holds under the conditions d1i , d
2
i , q, n ≥ 1, and equality occurs if674

q = n = 1, which corresponds to a model with a single layer and rank-1 factorization. In this case,675

MAPO and LoRA perform the same decomposition.676

Time Complexity677

Given the definitions, we can express the time complexities for MAPO and LoRA as follows:678

TimeMAPO = O

(⌈
d

k

⌉
k

)
≈ O(d),

TimeLoRA = O

(
n∑

i=1

qd1i d
2
i

)
.

Since d =
∑n

i=1 d
1
i d

2
i , we can rewrite LoRA’s time complexity as:679

TimeLoRA = O(qd).

For MAPO to have a lower time complexity than LoRA, the following condition must hold:680

TimeMAPO ≤ TimeLoRA,

d ≤ qd.

This condition is always true for d, q ≥ 1, and equality occurs when q = 1.681
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I.2 MAPO Flexibility682

Suppose our neural network has n layers. Let:683

Wi ∈ IRd1
i×d2

i for each layer i = 1, . . . , n.

Let d =
∑n

i=1 d
1
i d

2
i be the total number of parameters (i.e., the sum of the entries across all layers).684

Let685

d1 =

n∑
i=1

d1i .

In many treatments of LoRA, the main communication or factor-size bottleneck arises from a factor686

that scales linearly with q · d1i .687

LoRA Factorization Per Layer. LoRA factorizes each layer Wi of dimension d1i × d2i with a fixed688

rank q. Concretely,689

Wi ≈ Wi +BiAi, Ai ∈ IRq×d2
i , Bi ∈ IRd1

i×q.

The number of additional parameters introduced by each low-rank pair (Ai, Bi) is690

d1i · q︸ ︷︷ ︸
size of Bi

+ q · d2i︸ ︷︷ ︸
size of Ai

= q ( d1i + d2i ).

Summing over all n layers,691

n∑
i=1

(
d1i · q + q · d2i

)
= q

n∑
i=1

(
d1i + d2i

)
.

Therefore, we can write the communication cost as:692

Communication cost ≈ q

n∑
i=1

d1i = q d1.

Since q must be an integer, we see that the communication overhead comes in integer multiplesd1, as:693

LoRA total communication ∈ { q d1 | q = 1, 2, . . . }.

There is no way to select a non-integer q. Hence communication budgets strictly between d1 and694

2 d1 (or between q d1 and (q + 1)d1) are not possible in layer-wise LoRA. Therefore, Any attempt to695

finely tune the communication or factor budget (e.g., to 1.5 d1) is disallowed by LoRA’s integral-rank696

requirement. This rigidity is precisely what we seek to overcome in MAPO.697

MAPO Factorization. MAPO flattens or reshapes all parameters into one large matrix and then698

performs a single low-rank factorization with rank 1. A simplified abstraction is:699

1. Reshape w1, . . . , wn into a single matrix W ∈ IRk×⌈d/k⌉, where d =
∑n

i=1 d
1
i d

2
i is the total700

parameter count. 2. Factor W ≈ AB, with701

A ∈ IR1×⌈d/k⌉, B ∈ IRk×1,

Once all parameters are merged, MAPO can proportionally allocate any communication budget as k702

can be selected freely.703 ⌈
d/k⌉︸ ︷︷ ︸

size of A

+ k︸︷︷︸
size of B

.

Therefore, we can write the total communication as:704

MAPO total communication ∈ { k | k = 1, 2, . . . }.

This is particularly important in communication-efficient FL since viable solutions can be found with705

communication cost k < d1 or d1 < k < 2d1, which architecture-dependent layer-wise factorization706

can not offer.707
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Question: Do the main claims made in the abstract and introduction accurately reflect the710

paper’s contributions and scope?711

Answer: [Yes]712
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• The claims made should match theoretical and experimental results, and reflect how722

much the results can be expected to generalize to other settings.723

• It is fine to include aspirational goals as motivation as long as it is clear that these goals724

are not attained by the paper.725

2. Limitations726

Question: Does the paper discuss the limitations of the work performed by the authors?727

Answer: [Yes]728
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implications would be.740
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For example, a facial recognition algorithm may perform poorly when image resolution745

is low or images are taken in low lighting. Or a speech-to-text system might not be746

used reliably to provide closed captions for online lectures because it fails to handle747

technical jargon.748

• The authors should discuss the computational efficiency of the proposed algorithms749

and how they scale with dataset size.750

• If applicable, the authors should discuss possible limitations of their approach to751

address problems of privacy and fairness.752

• While the authors might fear that complete honesty about limitations might be used by753

reviewers as grounds for rejection, a worse outcome might be that reviewers discover754

limitations that aren’t acknowledged in the paper. The authors should use their best755

judgment and recognize that individual actions in favor of transparency play an impor-756

tant role in developing norms that preserve the integrity of the community. Reviewers757

will be specifically instructed to not penalize honesty concerning limitations.758
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3. Theory assumptions and proofs759

Question: For each theoretical result, does the paper provide the full set of assumptions and760

a complete (and correct) proof?761

Answer: [Yes]762

Justification: All assumptions are stated at the start of §4; full proofs for Propositions 1–3763

and Theorem 1 are given in Appendix G–H.764

Guidelines:765

• The answer NA means that the paper does not include theoretical results.766

• All the theorems, formulas, and proofs in the paper should be numbered and cross-767

referenced.768

• All assumptions should be clearly stated or referenced in the statement of any theorems.769

• The proofs can either appear in the main paper or the supplemental material, but if770

they appear in the supplemental material, the authors are encouraged to provide a short771

proof sketch to provide intuition.772

• Inversely, any informal proof provided in the core of the paper should be complemented773

by formal proofs provided in appendix or supplemental material.774

• Theorems and Lemmas that the proof relies upon should be properly referenced.775

4. Experimental result reproducibility776

Question: Does the paper fully disclose all the information needed to reproduce the main ex-777

perimental results of the paper to the extent that it affects the main claims and/or conclusions778

of the paper (regardless of whether the code and data are provided or not)?779

Answer: [Yes]780

Justification: Dataset splits, non-IID partition rules, model specs, and every training hyper-781

parameter are in Tables 2, 7, 8 (Appendix D); All codes and scripts are included in the782

anonymous supplementary zip.783

Guidelines:784

• The answer NA means that the paper does not include experiments.785

• If the paper includes experiments, a No answer to this question will not be perceived786

well by the reviewers: Making the paper reproducible is important, regardless of787

whether the code and data are provided or not.788

• If the contribution is a dataset and/or model, the authors should describe the steps taken789

to make their results reproducible or verifiable.790

• Depending on the contribution, reproducibility can be accomplished in various ways.791

For example, if the contribution is a novel architecture, describing the architecture fully792

might suffice, or if the contribution is a specific model and empirical evaluation, it may793

be necessary to either make it possible for others to replicate the model with the same794

dataset, or provide access to the model. In general. releasing code and data is often795

one good way to accomplish this, but reproducibility can also be provided via detailed796

instructions for how to replicate the results, access to a hosted model (e.g., in the case797

of a large language model), releasing of a model checkpoint, or other means that are798

appropriate to the research performed.799

• While NeurIPS does not require releasing code, the conference does require all submis-800

sions to provide some reasonable avenue for reproducibility, which may depend on the801

nature of the contribution. For example802

(a) If the contribution is primarily a new algorithm, the paper should make it clear how803

to reproduce that algorithm.804

(b) If the contribution is primarily a new model architecture, the paper should describe805

the architecture clearly and fully.806

(c) If the contribution is a new model (e.g., a large language model), then there should807

either be a way to access this model for reproducing the results or a way to reproduce808

the model (e.g., with an open-source dataset or instructions for how to construct809

the dataset).810
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(d) We recognize that reproducibility may be tricky in some cases, in which case811

authors are welcome to describe the particular way they provide for reproducibility.812

In the case of closed-source models, it may be that access to the model is limited in813

some way (e.g., to registered users), but it should be possible for other researchers814

to have some path to reproducing or verifying the results.815

5. Open access to data and code816

Question: Does the paper provide open access to the data and code, with sufficient instruc-817

tions to faithfully reproduce the main experimental results, as described in supplemental818

material?819

Answer: [Yes]820

Justification: The supplementary material contains the code and scripts; all datasets are821

publicly available.822

Guidelines:823

• The answer NA means that paper does not include experiments requiring code.824

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/825

public/guides/CodeSubmissionPolicy) for more details.826

• While we encourage the release of code and data, we understand that this might not be827

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not828

including code, unless this is central to the contribution (e.g., for a new open-source829

benchmark).830

• The instructions should contain the exact command and environment needed to run to831

reproduce the results. See the NeurIPS code and data submission guidelines (https:832

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.833

• The authors should provide instructions on data access and preparation, including how834

to access the raw data, preprocessed data, intermediate data, and generated data, etc.835

• The authors should provide scripts to reproduce all experimental results for the new836

proposed method and baselines. If only a subset of experiments are reproducible, they837

should state which ones are omitted from the script and why.838

• At submission time, to preserve anonymity, the authors should release anonymized839

versions (if applicable).840

• Providing as much information as possible in supplemental material (appended to the841

paper) is recommended, but including URLs to data and code is permitted.842

6. Experimental setting/details843

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-844

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the845

results?846

Answer: [Yes]847

Justification: Section 5 and Appendix D enumerate optimizer, batch-size, learning-rate848

schedules, client-fraction, and number of communication rounds for every experiment.849

Guidelines:850

• The answer NA means that the paper does not include experiments.851

• The experimental setting should be presented in the core of the paper to a level of detail852

that is necessary to appreciate the results and make sense of them.853

• The full details can be provided either with the code, in appendix, or as supplemental854

material.855

7. Experiment statistical significance856

Question: Does the paper report error bars suitably and correctly defined or other appropriate857

information about the statistical significance of the experiments?858

Answer: [Yes]859

Justification: Table 3 list mean ± std over three random seeds.860

Guidelines:861
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• The answer NA means that the paper does not include experiments.862

• The authors should answer "Yes" if the results are accompanied by error bars, confi-863

dence intervals, or statistical significance tests, at least for the experiments that support864

the main claims of the paper.865

• The factors of variability that the error bars are capturing should be clearly stated (for866

example, train/test split, initialization, random drawing of some parameter, or overall867

run with given experimental conditions).868

• The method for calculating the error bars should be explained (closed form formula,869

call to a library function, bootstrap, etc.)870

• The assumptions made should be given (e.g., Normally distributed errors).871

• It should be clear whether the error bar is the standard deviation or the standard error872

of the mean.873

• It is OK to report 1-sigma error bars, but one should state it. The authors should874

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis875

of Normality of errors is not verified.876

• For asymmetric distributions, the authors should be careful not to show in tables or877

figures symmetric error bars that would yield results that are out of range (e.g. negative878

error rates).879

• If error bars are reported in tables or plots, The authors should explain in the text how880

they were calculated and reference the corresponding figures or tables in the text.881

8. Experiments compute resources882

Question: For each experiment, does the paper provide sufficient information on the com-883

puter resources (type of compute workers, memory, time of execution) needed to reproduce884

the experiments?885

Answer: [Yes]886

Justification: Appendix D states that tasks ran on a single NVIDIA RTX 3090 with 24 GB887

memory.888

Guidelines:889

• The answer NA means that the paper does not include experiments.890

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,891

or cloud provider, including relevant memory and storage.892

• The paper should provide the amount of compute required for each of the individual893

experimental runs as well as estimate the total compute.894

• The paper should disclose whether the full research project required more compute895

than the experiments reported in the paper (e.g., preliminary or failed experiments that896

didn’t make it into the paper).897

9. Code of ethics898

Question: Does the research conducted in the paper conform, in every respect, with the899

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?900

Answer: [Yes]901

Justification: All datasets are publicly licensed, no personal data is processed, and the work902

advances communication-efficient FL without impacting protected groups.903

Guidelines:904

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.905

• If the authors answer No, they should explain the special circumstances that require a906

deviation from the Code of Ethics.907

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-908

eration due to laws or regulations in their jurisdiction).909

10. Broader impacts910

Question: Does the paper discuss both potential positive societal impacts and negative911

societal impacts of the work performed?912

Answer: [NA]913
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Justification: MAPO is a foundational optimisation technique; we judged its societal impact914

neutral and did not include a separate Broader-Impact section.915

Guidelines:916

• The answer NA means that there is no societal impact of the work performed.917

• If the authors answer NA or No, they should explain why their work has no societal918

impact or why the paper does not address societal impact.919

• Examples of negative societal impacts include potential malicious or unintended uses920

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations921

(e.g., deployment of technologies that could make decisions that unfairly impact specific922

groups), privacy considerations, and security considerations.923

• The conference expects that many papers will be foundational research and not tied924

to particular applications, let alone deployments. However, if there is a direct path to925

any negative applications, the authors should point it out. For example, it is legitimate926

to point out that an improvement in the quality of generative models could be used to927

generate deepfakes for disinformation. On the other hand, it is not needed to point out928

that a generic algorithm for optimizing neural networks could enable people to train929

models that generate Deepfakes faster.930

• The authors should consider possible harms that could arise when the technology is931

being used as intended and functioning correctly, harms that could arise when the932

technology is being used as intended but gives incorrect results, and harms following933

from (intentional or unintentional) misuse of the technology.934

• If there are negative societal impacts, the authors could also discuss possible mitigation935

strategies (e.g., gated release of models, providing defenses in addition to attacks,936

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from937

feedback over time, improving the efficiency and accessibility of ML).938

11. Safeguards939

Question: Does the paper describe safeguards that have been put in place for responsible940

release of data or models that have a high risk for misuse (e.g., pretrained language models,941

image generators, or scraped datasets)?942

Answer: [NA]943

Justification: No new pretrained model or scraped dataset with misuse potential is released.944

Guidelines:945

• The answer NA means that the paper poses no such risks.946

• Released models that have a high risk for misuse or dual-use should be released with947

necessary safeguards to allow for controlled use of the model, for example by requiring948

that users adhere to usage guidelines or restrictions to access the model or implementing949

safety filters.950

• Datasets that have been scraped from the Internet could pose safety risks. The authors951

should describe how they avoided releasing unsafe images.952

• We recognize that providing effective safeguards is challenging, and many papers do953

not require this, but we encourage authors to take this into account and make a best954

faith effort.955

12. Licenses for existing assets956

Question: Are the creators or original owners of assets (e.g., code, data, models), used in957

the paper, properly credited and are the license and terms of use explicitly mentioned and958

properly respected?959

Answer: [Yes]960

Justification: Each dataset and code baseline is cited, and the licenses are listed in the code,961

where they are used.962

Guidelines:963

• The answer NA means that the paper does not use existing assets.964

• The authors should cite the original paper that produced the code package or dataset.965
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• The authors should state which version of the asset is used and, if possible, include a966

URL.967

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.968

• For scraped data from a particular source (e.g., website), the copyright and terms of969

service of that source should be provided.970

• If assets are released, the license, copyright information, and terms of use in the971

package should be provided. For popular datasets, paperswithcode.com/datasets972

has curated licenses for some datasets. Their licensing guide can help determine the973

license of a dataset.974

• For existing datasets that are re-packaged, both the original license and the license of975

the derived asset (if it has changed) should be provided.976

• If this information is not available online, the authors are encouraged to reach out to977

the asset’s creators.978

13. New assets979

Question: Are new assets introduced in the paper well documented and is the documentation980

provided alongside the assets?981

Answer: [NA]982

Justification: The work introduces no new dataset or model checkpoint; only source code is983

provided.984

Guidelines:985

• The answer NA means that the paper does not release new assets.986

• Researchers should communicate the details of the dataset/code/model as part of their987

submissions via structured templates. This includes details about training, license,988

limitations, etc.989

• The paper should discuss whether and how consent was obtained from people whose990

asset is used.991

• At submission time, remember to anonymize your assets (if applicable). You can either992

create an anonymized URL or include an anonymized zip file.993

14. Crowdsourcing and research with human subjects994

Question: For crowdsourcing experiments and research with human subjects, does the paper995

include the full text of instructions given to participants and screenshots, if applicable, as996

well as details about compensation (if any)?997

Answer: [NA]998

Justification: Experiments are purely computational; no human subjects or crowd-work999

involved.1000

Guidelines:1001

• The answer NA means that the paper does not involve crowdsourcing nor research with1002

human subjects.1003

• Including this information in the supplemental material is fine, but if the main contribu-1004

tion of the paper involves human subjects, then as much detail as possible should be1005

included in the main paper.1006

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1007

or other labor should be paid at least the minimum wage in the country of the data1008

collector.1009

15. Institutional review board (IRB) approvals or equivalent for research with human1010

subjects1011

Question: Does the paper describe potential risks incurred by study participants, whether1012

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1013

approvals (or an equivalent approval/review based on the requirements of your country or1014

institution) were obtained?1015

Answer: [NA]1016

Justification: No human-subject research was performed.1017
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Guidelines:1018

• The answer NA means that the paper does not involve crowdsourcing nor research with1019

human subjects.1020

• Depending on the country in which research is conducted, IRB approval (or equivalent)1021

may be required for any human subjects research. If you obtained IRB approval, you1022

should clearly state this in the paper.1023

• We recognize that the procedures for this may vary significantly between institutions1024

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1025

guidelines for their institution.1026

• For initial submissions, do not include any information that would break anonymity (if1027

applicable), such as the institution conducting the review.1028

16. Declaration of LLM usage1029

Question: Does the paper describe the usage of LLMs if it is an important, original, or1030

non-standard component of the core methods in this research? Note that if the LLM is used1031

only for writing, editing, or formatting purposes and does not impact the core methodology,1032

scientific rigorousness, or originality of the research, declaration is not required.1033

Answer: [NA]1034

Justification: No LLM was part of the method; any LLM assistance was limited to manuscript1035

editing and is therefore outside the scope of the policy.1036

Guidelines:1037

• The answer NA means that the core method development in this research does not1038

involve LLMs as any important, original, or non-standard components.1039

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1040

for what should or should not be described.1041
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