
Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

Kaito Baba 1 Chaoran Liu 2 Shuhei Kurita 3 2 Akiyoshi Sannai 4 5 6 2 7

Abstract
We present Prover Agent, a novel AI agent for
automated theorem proving that integrates large
language models (LLMs) with a formal proof as-
sistant, Lean. Prover Agent coordinates an infor-
mal reasoning LLM, a formal prover model, and
feedback from Lean while also generating auxil-
iary lemmas to assist in discovering the overall
proof strategy. It achieves an 86.1% success rate
on the MiniF2F benchmark, establishing a new
state-of-the-art among methods using small lan-
guage models (SLMs) with a much lower sample
budget than previous approaches. We also present
case studies illustrating how these generated lem-
mas contribute to solving challenging problems.

1. Introduction
Recent advances in the reasoning capabilities of large lan-
guage models (LLMs) have driven remarkable progress
across many areas of artificial intelligence, including math-
ematical theorem proving and problem solving (OpenAI,
2024b; DeepSeek-AI, 2025; Yang et al., 2025a). However,
LLMs are prone to errors and hallucinations that can un-
dermine their reliability (Ji et al., 2023; Huang et al., 2025;
Xu et al., 2025). Inference-time scaling techniques such
as chain-of-thought have greatly enhanced their reasoning
performance by allowing models to reflect on and correct
faulty reasoning steps (OpenAI, 2024b; DeepSeek-AI, 2025;
Wei et al., 2022). Nonetheless, eliminating mistakes en-
tirely remains challenging, especially for more difficult
problems (Wei et al., 2022; Zeng et al., 2025).

Formal proof assistants such as Lean (Moura & Ullrich,

1The University of Tokyo, Tokyo, Japan 2Research and De-
velopment Center for Large Language Models, National Institute
of Informatics, Tokyo, Japan 3National Institute of Informatics,
Tokyo, Japan 4Kyoto University, Kyoto, Japan 5Shiga University,
Shiga, Japan 6RIKEN Center for Advanced General Intelligence
for Science Program, Kobe, Japan 7National Institute of Science
Technology Policy (NISTEP), Tokyo, Japan. Correspondence
to: Kaito Baba <baba-kaito662@g.ecc.u-tokyo.ac.jp>, Akiyoshi
Sannai <sannai.akiyoshi.7z@kyoto-u.ac.jp>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada.

100 101 102 103 104 105 106 107

Sample Budget

55

60

65

70

75

80

85

Pa
ss

 R
at

e
(%

)

Prover Agent (Ours)
DeepSeek-Prover-V2
Kimina-Prover-Preview-Distill
STP
Leanabell-Prover-GD-RL
Goedel-Prover-SFT
BFS-Prover
InternLM2.5-StepProver + BFS + CG

Figure 1. Comparison of theorem-proving performance on the
MiniF2F benchmark (Zheng et al., 2022) among methods using
SLMs. Our approach achieves a higher success rate with fewer
sample budgets, establishing a new state-of-the-art at this scale.

2021), The Rocq Prover (previously known as Coq) (Barras
et al., 1999), and Isabelle (Paulson, 1994) rigorously ver-
ify by computer that every inference step in mathematical
proofs written in their respective languages is correct, based
on the Curry–Howard correspondence. This helps mathe-
maticians verify the correctness of proofs. Here, no errors,
omissions of detail, implicit assumptions, or ambiguities are
permitted. However, working with formal proof assistants
typically requires painstaking manual effort and meticulous
detail. As a result, automating mathematical theorem prov-
ing has long been a grand challenge in artificial intelligence
and formal methods (Newell & Simon, 1956; Irving et al.,
2016; Polu & Sutskever, 2020a; Jiang et al., 2023; Lu et al.,
2023).

Consequently, formal theorem proving with LLMs has be-
come increasingly important in recent years, leading to a
growing body of research in this area (Wang et al., 2024b;
Wu et al., 2024a; Xin et al., 2025b; Li et al., 2025; Xin et al.,
2025a; Dong & Ma, 2025; Lin et al., 2025; Zhang et al.,
2025; Wang et al., 2025; Ren et al., 2025). This not only
provides a way to guarantee the correctness of mathematical
reasoning by LLMs, but also marks a major breakthrough in
automated theorem proving. A key point is the complemen-
tary strengths of LLMs and formal proof assistants: LLMs
excel in reasoning and generation but may produce errors

1

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

and lack guarantees of correctness, whereas formal proof
assistants, such as Lean, possess perfect verification capabil-
ities grounded in mathematical logic but are not generative.

Yet, significant hurdles remain in bridging informal reason-
ing and formal proving (Yang et al., 2025b). For instance,
prompting o3-mini (OpenAI, 2025) to directly generate a
complete Lean proof for a competition-level problem suc-
ceeds in only 6.0% of cases in a single attempt, despite
its strong performance on competition-level mathematical
reasoning in natural language (Yousefzadeh & Cao, 2025).
Even when fine-tuned on mathematical data, trained with
reinforcement learning, or allowed chain-of-thought, purely
neural approaches fail to produce correct formal proofs, and
their formal proving capabilities still lag far behind their
informal reasoning skills in natural language (Yang et al.,
2025b; OpenAI, 2025; Ren et al., 2025).

To bridge this gap between informal reasoning and for-
mal proving, we propose a novel agent framework (Prover
Agent) that coordinates an informal reasoning LLM, a for-
mal prover model, and the Lean verification system. To
tackle difficult problems that cannot be solved directly, the
agent generates auxiliary lemmas to assist in discovering
a viable proof strategy, much like how humans approach
problems when the initial proof direction is unclear. On
the MiniF2F benchmark (Zheng et al., 2022), it achieves
an 86.1% success rate, establishing a new state-of-the-art
among methods using small language models (SLMs). This
performance is on par with that of an International Math-
ematical Olympiad (IMO) gold medalist. Notably, it uses
only SLMs with much smaller sample budget than previous
high-performing approaches, making it much more efficient
in terms of inference-time cost.

Our contributions are summarized as follows:

• Coordination of Informal and Formal Reasoning
with Lean Feedback: Our agent combines an informal
LLM and a formal prover under Lean’s verification.
The LLM produces natural language reasoning and
lemmas, which the prover formalizes and Lean checks.
Errors detected by Lean are immediately fed back,
enabling iterative refinement of constructed proofs.

• Auxiliary Lemma Generation for Strategy Discov-
ery: For challenging problems that cannot be solved
directly, our agent generates auxiliary lemmas, such as
specific cases, intermediate facts, or hypothesis-driven
conjectures, which are then formally proved. By re-
considering the overall proof in light of the verified
lemmas, the system uncovers viable proof strategies
even when the solution path is not apparent at first.

• State-of-the-Art Theorem-Proving Performance:
On the challenging MiniF2F benchmark (Zheng et al.,
2022), a standard benchmark for formal theorem prov-

ing that consists of 488 problems drawn from math-
ematics Olympiads and advanced mathematics, our
agent achieves 86.1% pass rate, establishing a new
state-of-the-art among methods using SLMs.

• Efficiency in Inference-Time Cost: The 86.1% suc-
cess rate was achieved using only SLMs with a much
smaller sample budget than previous high-performing
approaches. This emphasizes the efficiency of our ap-
proach in terms of inference-time cost.

2. Related Work
2.1. LLMs for Formal Theorem Proving

The use of language models for guiding formal theorem
provers has gained momentum recently. Early work like
GPT-f (Polu & Sutskever, 2020b) applied transformers to
produce proofs in formal systems such as Metamath (Megill
& Wheeler, 2019) and Lean (Moura & Ullrich, 2021) by
generating one proof step (tactic) at a time, guided by a
goal state. Subsequent efforts in Lean, e.g. lean-gptf and
PACT (Han et al., 2022), fine-tuned LLMs on large corpora
of proof data, achieving moderate success in automatically
discovering proofs (Polu et al., 2023a; Wu et al., 2024a).
However, these models often operated in a step-by-step tac-
tic prediction mode, requiring complex search algorithms
like best-first search or Monte Carlo Tree Search (MCTS)
to explore different proof paths (Lample et al., 2022; Wang
et al., 2023; Wu et al., 2024a; Li et al., 2025; Xin et al.,
2025b). This yielded some notable results but at high com-
putational cost and without fully leveraging the LLM’s abil-
ity for high-level planning.

Another line of work attempted whole-proof generation
by having the model output an entire proof script in one
go, rather than incrementally (First et al., 2023; Xin et al.,
2025a; Lin et al., 2025; Zhang et al., 2025). For in-
stance, the Goedel-Prover (Lin et al., 2025) and Leanabell-
Prover (Zhang et al., 2025) approached theorem proving
by training on full proof examples. These “one-shot” proof
generators can sometimes solve easy problems quickly, but
they struggle with longer, deeper proofs due to the LLM’s
difficulty in maintaining logical consistency over long out-
puts. Indeed, recent studies have found that as proofs grow
in length and complexity, LLMs “often lose track of the
crucial information” and produce incomplete or logically
flawed proofs (Wei et al., 2022; Zeng et al., 2025).

Other notable work includes LeanDojo (Yang et al., 2023),
which augments tactic generation with the retrieval of rel-
evant premises (facts from the math library), and CO-
PRA (Thakur et al., 2024), which uses GPT-4 (OpenAI,
2024a) in-context to propose proof steps in Lean. These sys-
tems improved proof success by providing better guidance
or context to the proving process.

2

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

2.2. Recent Advancement in Formal Reasoning

Bridging the gap between informal (natural language) math-
ematical reasoning and formal proof checkers is a topic of
active research. Xin et al. (2025a); Ren et al. (2025) and
others explored prompting an LLM to generate informal rea-
soning steps (a chain-of-thought) before mapping them to
formal tactics. While this showed that having intermediate
reasoning can help, these approaches still relied on relatively
short reasoning sequences and did not deeply integrate a
feedback loop from the formal prover.

Recently, Kimina-Prover (Wang et al., 2025) has demon-
strated state-of-the-art results in Lean 4 theorem proving by
learning a specialized formal reasoning pattern via reinforce-
ment learning. Trained on a large number of formal proofs
and guided with human-like reasoning heuristics, it achieved
an 80.7% pass rate on MiniF2F (Zheng et al., 2022) with a
72B-parameter model. Notably, their approach implicitly
learns to perform longer chains of reasoning and is likely to
“flatten” the search process by deciding what intermediate
steps to prove. Our method can be seen as a complementary,
modular approach, where instead of training one massive
model end-to-end, we leverage a powerful pre-trained LLM
and an existing prover and coordinate them. This design is
inspired by the neuro-symbolic paradigm, treating the LLM
and the prover as two specialized “agents.”

More recently, DeepSeek-Prover-V2 (Ren et al., 2025)
pushed this paradigm further, demonstrating new state-of-
the-art results in Lean 4 theorem proving. In the DeepSeek-
Prover-V2 pipeline, DeepSeek-V3 (DeepSeek-AI, 2024) is
first used to generate proof sketches and define subgoals;
each subgoal is then formalized into Lean 4 fragments,
which are substituted into an initial proof sketch to form a
complete proof. The completed proof was then employed
as cold-start data for reinforcement learning. DeepSeek-
Prover-V2 achieved an 88.9% pass rate on MiniF2F with
a 671B-parameter model, surpassing the performance of
Kimina-Prover. The subgoal decomposition approach in
DeepSeek-Prover-V2 and other earlier works (Jiang et al.,
2023; Wang et al., 2024a) shares certain similarities with
ours, but our method adopts a more comprehensive strat-
egy that subsumes it. In these works, the full sketch of
the proof must be correctly envisioned upfront, which is
often challenging. In contrast, our approach does not as-
sume that the overall proof strategy is fully visible from
the beginning. Rather than limiting decomposition to sub-
goals directly aligned with a pre-defined proof plan, we
also consider auxiliary lemmas, such as specific cases or
intermediate facts, that may aid in developing a strategy.
This approach enables us to solve problems whose complete
structure was not apparent at first.

3. Method
Our theorem-proving agent consists primarily of four com-
ponents: a LLM specialized in informal reasoning in natural
language; a prover model trained for formal proving in Lean;
a formal proof assistant, Lean; and a bridging model that
transforms lemmas generated in natural language into for-
mal statements, which formalizes only their assumptions
and conclusions without attempting proofs at this stage.

The overall workflow is illustrated in Figure 2 and the cor-
responding pseudocode is shown in Algorithm 1. Given
a formal math problem, our agent begins by attempting to
directly prove it, since this is often sufficient for simpler
problems. For more difficult problems that cannot be solved
directly, it generates auxiliary lemmas that may help uncover
a viable proof strategy. These lemmas are then formalized
and proved individually, and the resulting proven lemmas
are used to synthesize a final proof of the original problem.
Throughout this process, feedback from Lean is used to
iteratively refine constructed proofs, ensuring syntactic and
logical correctness at every step.

We describe each stage below, highlighting how the infor-
mal LLM, formal prover model, and Lean coordinate to
construct formal proofs.

3.1. Formal Proof Construction Guided by Informal
Reasoning and Iterative Feedback

We first describe the direct proving approach without de-
composition. This approach is used for the initial attempt
to prove the given problem directly and for proving the
generated lemmas.

In order to leverage the stronger mathematical reasoning
ability of the informal LLM compared to that of the formal
prover model, we first generate an informal proof in natural
language for the given problem or lemma using the informal
LLM. This proof is not yet formalized but provides a more
precise mathematical line of reasoning. Then, the formal
prover model utilizes the informal proof as contextual guid-
ance to generate a formal proof. The generated formal proof
is then verified by Lean, checking that it is logically correct
and adheres to the formal rules of the system. If the proof
is successful, this step is complete. In the case of a given
problem, the generated proof serves as the final result. In the
case of a generated lemma, the proven lemma is stored, and
we move on to the next lemma or the final proof assembly.
If the proof fails, these steps are repeated until a successful
proof is found or the maximum number of attempts Ninit is
reached. This process helps establish a better initial outline
for the subsequent iterative refinement process.

If the proof still fails, the agent enters an iterative refine-
ment phase. The proof with the minimal number of Lean
verification errors among the prior attempts is selected as

3

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

Initial attempt

Problem

If direct
proof fails Informal LLM AutoFormalizer

Lemma Generation

Informal Lemmas
Formalized
Lemmas

Informal LLM

Prover Model Lean

Direct Proving

Iterative Refinement

Proved
Lemmas

Prover Model Lean

Final Synthesis

Iterative Refinement

Formal
Proof

Figure 2. Overall workflow of our agent. Our agent coordinates informal reasoning, formal proving, and verification by Lean. It first
attempts direct proving; if unsuccessful, it generates auxiliary lemmas to support the discovery of a viable proof strategy. These lemmas
are then formally proved. Finally, using only the lemmas that were successfully proved, the agent reconsiders the overall proof and
synthesizes the final proof.

the initial draft. This proof is then iteratively refined based
on the feedback provided by Lean, which includes error
messages or information about the failure, such as “goal
unsolved” or “tactic failed” at a certain step. Specifically,
the previous proof attempt, along with the locations of Lean
errors and the corresponding error messages, is provided to
the prover model, and it rethinks and generates a corrected
version of the proof. This process is repeated until the proof
is successfully verified by Lean or the maximum number of
attempts Nrefine is reached. If the proof is still unsuccessful,
the system either proceeds to the decomposition step or, in
the case of a lemma, considers it unprovable and moves on
to the next lemma.

This iterative refinement process leverages Lean’s ability
to verify the correctness of each proof step. Unlike pure
LLM reasoning, which may generate flawed reasoning steps
without detection, any mistake is immediately identified
and corrected accordingly. This addresses a key limitation
of inference-time scaling with chain-of-thought, where the
model’s limited self-correction ability becomes a bottleneck,
preventing efficient solutions to difficult problems (Zeng
et al., 2025; Song et al., 2025; Stechly et al., 2025).

It is accessible if a generated lemma cannot be proven. This
mirrors how human mathematicians often approach prob-
lems: when the overall strategy is unclear at the beginning,
they may explore several directions, some of which turn out
to be unproductive and are eventually discarded in favor of
more promising ones. Alternatively, to handle cases where
the lemma is still too challenging to prove, the system may
recursively generate the lemma into smaller, more manage-
able sub-lemmas up to a specified depth limit D. Also, if no
generated lemma can be proven, new lemmas are generated
and the process restarts, as long as the number of attempted
lemmas does not exceed the predefined limit L.

3.2. Lemma Generation via Informal Reasoning

When the direct proving approach fails to solve the problem,
the agent generates several auxiliary lemmas. These are
not limited to subgoals that can be directly inserted into
a formal proof; they may also include specific cases or
potentially useful intermediate facts that can be derived

from the assumptions, which may help in developing a
proof strategy. This represents a key difference from prior
work, which typically relies on inserting subgoals into a pre-
defined proof sketch (Jiang et al., 2023; Wang et al., 2024a;
Ren et al., 2025). In such approaches, it is necessary to
come up with the correct overall proof strategy beforehand,
which is often a challenging task. In contrast, our approach
does not assume that the proof strategy is visible from the
outset. Instead, the agent first proposes a variety of lemmas,
including those that may help clarify the structure of the
problem, such as specific cases or derivable facts. Only the
lemmas that are successfully verified by Lean are retained
and reconsidered when revisiting the overall proof. This
allows the system to gradually form a proof strategy, even
in cases where the full structure was not initially apparent.

For example, when trying to prove that n2 + an is even for
a natural number n and an odd number a, it may be helpful
to first consider specific cases such as a = 1 or a = 3, i.e.,
n2 + n or n2 + 3n. These specific cases can help reveal
patterns and guide the overall proof strategy for n2 + an,
even though expressions like n2 + n or n2 + 3n may not
explicitly appear as steps within the final proof.

This approach mirrors how human mathematicians typically
work. When the overall strategy is not clear at the beginning,
they often explore specific cases or consider what can be
derived from the assumptions. Through such trial and error,
they gradually discover the overall proof strategy.

The generation of lemmas is first carried out in natural lan-
guage, i.e., the system initially produces each lemma in nat-
ural language. This is because the informal reasoning LLM
has stronger mathematical reasoning capabilities. Once
these lemmas have been generated in natural language, they
are then converted into formal form using an LLM special-
ized in autoformalization, such as Kimina-Autoformalizer-
7B (Wang et al., 2025). Note that at this stage, only the
assumptions and conclusions of the lemmas are formal-
ized; their proofs are not yet constructed, and a sorry
placeholder is inserted instead. Here, too, Lean is used to
verify the syntactic correctness of the formalized statements,
and they are regenerated iteratively until they become syn-
tactically valid. These formally stated lemmas are then

4

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

Algorithm 1 The overall architecture of our lemma-based theorem-proving agent coordinating informal reasoning, formal
reasoning, and Lean.

Input: Problem T with hyperparameters Ninit (max initial proof attempts) and Nrefine (max refinement attempts)
Output: Formal proof of T or failure
function MAIN(T): Overall proof process for problem T

Pdirect ←PROVE(T): Attempt to prove theorem T directly
if Pdirect succeeds then

return Pdirect

end if
// Generate lemmas
Informal LLM generates lemmas L1, L2, . . . , Ln in natural language
for each lemma Li do

AutoFormalizer converts Li into Lean statement Fi

Lean checks Fi. If failing, regenerate Fi until syntactically correct
end for
// Prove each lemma
for each lemma Fi do

Pi ←PROVE(Fi): Attempt to prove lemma Fi

end for
// Collect proven lemmas
Pproven ← {Pi | Pi is succeeded}
// Synthesize final proof using proven lemmas
for k = 1 to Ninit do

Pfinal ← Prover synthesizes proof of T using Pproven

Lean checks Pfinal

if the check succeeds then
return Pfinal

end if
end for
// Iterative refinement of final proof
Pbest ← Best previous proof attempt with the fewest Lean errors
return ITERATIVEREFINE(Pbest)

end function

function PROVE(S): Attempt to generate an informal proof of S
// Initial proof attempt
for k = 1 to Ninit do

Informal LLM generates informal proof Pinf of S
Prover attempts to formalize Pinf into Pform

Lean checks Pform

if the check succeeds then
return Pform

end if
end for
// Iterative refinement
Pbest ← Best previous proof attempt with the fewest Lean errors
return ITERATIVEREFINE(Pbest)

end function

function ITERATIVEREFINE(P): Refine proof P based on Lean feedback
for k = 1 to Nrefine do

Prover generates revised proof P ′ based on Lean feedback
Lean checks P ′

if the check succeeds then
return P ′

else
P ← P ′ // Update best proof

end if
end for
return failure // No proof found after max attempts

end function

proved using the proof construction process described in
Section 3.1, where the proof process is guided by informal
reasoning along with feedback from Lean.

3.3. Final Proof Synthesis Guided by Verified Lemmas
and Iterative Feedback

After attempting to prove each of these lemmas individually,
the agent reconsiders the overall proof using only lemmas
that have been formally verified, enabling it to solve prob-
lems whose complete structure was not apparent at first.
Specifically, only the lemmas that have been successfully
verified are included as context, and the prover is invoked
again to generate a proof of the original problem.

As in Section 3.1, Lean feedback is utilized in this stage
as well. The prover first attempts to construct a complete
proof while referring to the verified lemmas, repeating this
process for a fixed number of iterations Ninit. If a valid
proof is still not found after these attempts, the system
enters the iterative refinement phase. Among the previously
generated proofs, the one with the fewest Lean errors is
selected as the initial outline. The prover model is then
provided with the failed proof, the locations of the errors,
and the corresponding error messages, and it generates a

revised version accordingly. This process is repeated until
a valid proof is found or the maximum number of attempts
Nrefine is reached.

4. Experiments
We perform experiments to evaluate the effectiveness of
our approach for formal theorem proving. We compare our
approach against various existing methods, including those
representing the current state-of-the-art in formal theorem
proving. We also conduct case studies to illustrate how aux-
iliary lemmas help uncover proof strategies for challenging
problems based on these experiments.

4.1. Experimental Setup

Benchmarking Dataset. We evaluate our approach on
the MiniF2F benchmark (Zheng et al., 2022), a standard
dataset for evaluating formal theorem-proving systems. The
detailed description of the dataset and the way we use it are
provided in Appendix A.1.

Used Models. For the informal reasoning LLM, we
use DeepSeek-R1-0528-Qwen3-8B (DeepSeek-AI,
2025). For the formal prover model, we use
DeepSeek-Prover-V2-7B (Ren et al., 2025), a state-

5

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

of-the-art model for formal proving in Lean at the
7B scale. For the autoformalization step, we use
Kimina-Autoformalizer-7B (Wang et al., 2025), a
7B model trained to convert natural language statements
into Lean 4 code with sorry placeholders for proofs. See
Appendix A.2 for more details.

Implementation Details. All models are invoked via
vLLM (Kwon et al., 2023). Further implementation details
are provided in Appendix A.3.

Sample Budget. We set the maximum number of initial
proof attempts Ninit to 100, meaning the prover model is
allowed to generate up to 100 different proof attempts for
each lemma or theorem. We set the maximum number of re-
finement attempts Nrefine to 300, meaning the prover model
is allowed to refine the proof up to 300 times. Note that
these numbers are much lower than those in prior work.
Even when summing over all stages in our pipeline, the total
number of attempts in our settings remains far below the
8,292 attempts required to reach high success rates in prior
work (Wang et al., 2025; Ren et al., 2025). Detailed discus-
sion of the sample budget is provided in Section 5.2. We set
the maximum lemma generation depth D to 1, meaning no
further lemmas are generated for the lemmas.

Baseline Methods. We compare our approach against sev-
eral baseline methods. See Appendix A.4 for more details.
The baseline results are sourced from the original papers.

5. Results and Discussion
The results are shown in Table 1 and Figure 1. Our lemma-
based agent achieves an 86.1% success rate (210 out of 244
problems solved), establishing a new state-of-the-art among
methods using small language models (SLMs).

5.1. Comparison with the Previous State-of-the-Art

Compared to the baseline method, our approach, which
achieves an 86.1% success rate, outperforms DeepSeek-
Prover-V2-7B (Ren et al., 2025), which was the previous
state-of-the-art among small models with an 82.0% success
rate, demonstrating its effectiveness.

5.2. High Success Rate under Low Sample Budget

Since we set Ninit = 100 and Nrefine = 300, the sample
budgets for direct proving without and with iterative refine-
ment are 100 and 400, respectively. The overall proving
pipeline consists of three stages: direct proving, proving for
each generated lemma, and the final proof synthesis based
on the proven lemmas. Since we set the maximum number
of lemmas to be generated to 3, the total sample budget is
(1 + 3 + 1)× 400 = 2000 per problem.

This sample budget is much lower than the 8192 samples
required by DeepSeek-Prover-V2-7B (Ren et al., 2025) and

many other previous methods to achieve a high pass rate,
showing the efficiency of our approach.

5.3. Effectiveness of Informal, Formal, and Lean
Coordination

With a sample budget of just 1, our agent achieves a 61.5%
success rate, surpassing DeepSeek-Prover-V2-7B’s 58.6%.
When the sample budget is increased to 100, the success
rate rises to 80.7%, and with iterative refinement (sam-
ple budget 400), it reaches 83.1%. Remarkably, both re-
sults surpass DeepSeek-Prover-V2-7B’s 79.9% success rate
achieved with a much larger sample budget of 1,024. This
demonstrates the effectiveness of our agent’s coordination
between informal reasoning in natural language and formal
feedback from Lean in constructing formal proofs.

Even without iterative refinement, coordinating with infor-
mal reasoning alone improves performance under a much
smaller sample budget. This suggests that the coordination
effectively leverages the stronger mathematical reasoning
ability of the informal LLM compared to formal provers,
bridging the gap between informal and formal reasoning.

The interplay between the LLM and Lean is also important.
While the LLM on its own would make many mistakes,
as evidenced by the low direct success rate, the immedi-
ate feedback from lean turns these errors into opportunities
for correction. Our refinement loop can be seen as a form
of self-correction through in-context learning, akin to how
humans improve their understanding based on feedback.
This provides an efficient approach to a key limitation of
inference-time scaling with chain-of-thought, where simply
increasing the number of reasoning steps does not guar-
antee better results due to the model’s limited ability of
self-correction (Zeng et al., 2025; Song et al., 2025; Stechly
et al., 2025).

5.4. Case Study: Success with Lemma-Guided Proofs

Here, we present a case study where incorporating lemmas
enabled the agent to synthesize proof successfully. We
analyze in detail the reasoning process for the problem
induction_nfactltnexpnm1ngt3, a case where
the direct proof attempt failed but the use of auxiliary lem-
mas led to a successful proof. This problem asks for a for-
mal proof that, for all natural numbers n > 3, the inequality
n! < nn−1 always holds. The outputs for this problem,
such as the generated lemmas, final formal proof, and the
associated reasoning process, are provided in Appendix B.

In this case, the agent generated the following three lemmas:
The first states that 3! < 33−1; the second states that for any
natural number n ≥ 2, nn−1 < (n + 1)n−1; and the third
states that for any natural number n ≥ 3, n! < (n+ 1)n−1.
The first is a specific case of the original problem with
n = 3, while the second may provide a helpful hint toward

6

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

Table 1. Comparison of formal theorem-proving performance on miniF2F-test. The results are reported as the percentage of theorems
proved correctly. The model size is given in billions of parameters. Sample budget refers to the total number of proof attempts allowed for
a system to solve a given problem. For our agent, it includes all proof attempts across the full pipeline, including initial direct proving,
iterative refinement, lemma proving, and final proof synthesis. The best results within each model scale are highlighted in bold.

Prover System Method Model Size Sample Budget miniF2F-test
Large Language Models

Kimina-Prover-Preview (Wang et al., 2025) Whole-proof 72B

1 52.9%
32 68.9%

1024 77.9%
8192 80.7%

DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025) Whole-proof 671B

1 59.5%
32 73.8%

1024 76.7%
8192 78.3%

DeepSeek-Prover-V2 (CoT) (Ren et al., 2025) Whole-proof 671B

1 61.9%
32 82.4%

1024 86.6%
8192 88.9%

Small Language Models

DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al., 2025a) Tree search 7B 32× 16× 400 63.5%
InternLM2.5-StepProver + BFS + CG (Wu et al., 2024a) Tree search 7B 256× 32× 600 65.9%
HunyuanProver v16 + BFS + DC (Li et al., 2025) Tree search 7B 600× 8× 400 68.4%
BFS-Prover (Xin et al., 2025b) Tree search 7B 2048× 2× 600 70.8%

Leanabell-Prover-GD-RL (Zhang et al., 2025) Whole-proof 7B 128 61.1%
Goedel-Prover-SFT (Lin et al., 2025) Whole-proof 7B 25600 64.7%
STP (Dong & Ma, 2025) Whole-proof 7B 25600 67.6%

Kimina-Prover-Preview-Distill (Wang et al., 2025) Whole-proof 7B
1 52.5%
32 63.1%

1024 70.8%

DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025) Whole-proof 7B

1 55.5%
32 68.0%

1024 73.2%
8192 75.0%

DeepSeek-Prover-V2 (CoT) (Ren et al., 2025) Whole-proof 7B

1 58.6%
32 75.6%

1024 79.9%
8192 82.0%

Prover Agent (Ours)

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final Proof Synthesis w/ Lemma)

Agent 8B

1 61.5%
100 80.7%
400 84.0%

2000 86.1%

solving the original problem. Both were easily proven in
a single direct proof attempt. The third lemma generated
in this case asserts that for any natural number n ≥ 3,
n! < (n+1)n−1. This lemma closely resembles the original
problem, as it is a slightly weaker version of its conclusion.
Due to its similarity and retained difficulty, the agent failed
to construct a direct proof for it.

By examining the final successful reasoning trace in Ap-
pendix B.3, we see that the specific case for n = 3, consid-
ered as the first lemma, appears explicitly on line 7. The

reasoning also checks the cases for n = 4 and n = 5, fol-
lowing a similar pattern. Furthermore, as stated on line 13,
the use of mathematical induction is clearly identified as
the intended proof strategy. Then, the reasoning trace from
line 14 to line 80 further elaborates the proof process within
the framework of mathematical induction. Furthermore, in
the final proof, the proof technique used in Lemma 2 is
explicitly applied at lines 195–196.

Next, as a comparison, we analyze the reasoning process
from the initial direct proving attempt without using any

7

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

Table 2. Comparison of formal theorem-proving performance by problem category on MiniF2F-test. The results are reported as the
percentage of theorems proved correctly. The model size is given in billions of parameters. Sample budget refers to the total number of
proof attempts allowed for a system to solve a given problem. The best results in each category are highlighted in bold.

Olympiad MATH Custom
Model
Size

Sample
Budget IMO AIME AMC Sum Algebra Number

Theory Sum Algebra Number
Theory Induction Sum

Number of Problems 20 15 45 80 70 60 130 18 8 8 34

Prover Agent (Ours)

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final Proof Synthesis w/ Lemma)

8B

1 40.0 53.3 62.2 55.0 71.4 60.0 66.2 55.6 75.0 50.0 58.8
100 70.0 80.0 82.2 78.8 82.9 88.3 85.4 66.7 75.0 62.5 67.6
400 80.0 80.0 88.9 85.0 84.3 91.7 87.7 66.7 75.0 62.5 67.6
2000 80.0 80.0 91.1 86.3 85.7 91.7 88.5 72.2 87.5 75.0 76.5

DeepSeek-Prover-V2 (Ren et al., 2025) 671B 8192 50.0 93.3 77.8 73.8 100.0 96.7 98.5 83.3 87.5 100.0 88.2

lemmas, as shown in Appendix B.4. Here, we present the
reasoning trace that resulted in the fewest Lean errors among
all initial direct attempts. Compared to the successful case
with lemmas, we see that the proof strategy is much less
clear in this direct attempt. In the “Key Observations” sec-
tion (lines 6 to 14), there is no indication of using mathemat-
ical induction, unlike in the lemma-assisted case. Although
the system explores several ideas from lines 15 to 63, the
reasoning appears less focused and more exploratory, lack-
ing a concrete plan. As a result, while it eventually leans
toward using induction, the lack of a clear and structured
approach prevents it from working out the necessary de-
tails, ultimately leading to failure in the formal proof, which
tolerates no ambiguity.

This detailed case study highlights the effectiveness of
our lemma-generation approach in uncovering viable proof
strategies. This marks a significant advance over prior
methods that decompose problems into subgoals, which
often assume the overall proof strategy is known in ad-
vance. Identifying an initial proof strategy is often a chal-
lenging part of solving difficult problems. Indeed, Ren et al.
(2025) employs a decomposition-based approach but relies
on the much larger and stronger DeepSeek-V3 (DeepSeek-
AI, 2024) to formulate the initial proof sketch. In contrast,
our agent follows a reasoning process similar to that of hu-
man mathematicians when the proof strategy is not apparent
at first glance, exploring specific cases or hypothesizing
intermediate steps to discover a promising direction and
ultimately uncover the overall proof strategy.

5.5. Performance on Olympiad-Level Problems

Table 2 shows the results for each category on the MiniF2F-
test dataset. These results demonstrate that our approach per-
forms particularly well on Olympiad-level problems, even
surpassing DeepSeek-Prover-V2 (Ren et al., 2025), which
uses a significantly larger 671B model and a much higher
sample budget of 8192.

Given that our direct proving method without iterative re-
finement and with a sample budget of only 100 already
surpasses DeepSeek-Prover-V2, this suggests that coordina-

tion with natural language-based informal reasoning may be
the key. Olympiad-level problems require a high degree of
mathematical reasoning, and the strong reasoning abilities
of the informal LLM likely played a crucial role in solving
them effectively. On the other hand, our agent does not
outperform DeepSeek-Prover-V2 in the MATH and Custom
categories. The consistent gap in these categories suggests
that model size and sample budget may play a more signifi-
cant role here. Since DeepSeek-Prover-V2 also possesses a
certain level of mathematical reasoning ability, it can handle
these relatively mathematically easier problems on its own.

5.6. Modular and Scalable Design

Unlike monolithic approaches that rely on training a single
large model end-to-end, our method takes an orthogonal
approach by combining an existing LLM and formal prover,
without any joint training. This modular design offers a key
practical advantage: as LLMs improve, our system can im-
mediately benefit by simply replacing components, making
it easy to scale with future advancements. It separates the
problem into two more manageable parts by handling in-
formal reasoning and formal proving independently, rather
than relying on a single monolithic model.

5.7. Broader Applicability and Future Potential

Nothing in our pipeline is specific to mathematics compe-
tition problems. The same approach could be applied to
formal proofs in other domains, such as learning theory or
physics, as long as the LLM has relevant knowledge or is
provided with an appropriate knowledge base. This offers
the potential for AI-driven construction of mathematical
theories without hallucinations or logical errors.

6. Conclusion
We introduced Prover Agent, a modular framework that
coordinates an informal reasoning LLM, a formal prover
model, and Lean verification. By generating auxiliary lem-
mas and leveraging feedback-driven refinement, our method
achieved state-of-the-art performance among SLMs on the
MiniF2F benchmark.

8

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

Acknowledgements
This work was supported by the “R&D Hub Aimed at Ensur-
ing Transparency and Reliability of Generative AI Models”
project of the Ministry of Education, Culture, Sports, Sci-
ence and Technology. We would also like to thank the Auto-
mated Research Project (Autores) for providing access to
their API during the initial stages of this research. Addition-
ally, part of this work was supported by Advanced General
Intelligence for Science Program (AGIS), the RIKEN TRIP
initiative.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Anthony, T., Tian, Z., and Barber, D. Thinking fast and

slow with deep learning and tree search. In Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Barras, B., Boutin, S., Cornes, C., Courant, J., Coscoy,
Y., Delahaye, D., de Rauglaudre, D., Filliâtre, J.-C.,
Giménez, E., Herbelin, H., et al. The Coq proof assistant
reference manual. INRIA, version, 6(11):17–21, 1999.

DeepSeek-AI. DeepSeek-V3 technical report. 2024.

DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025.

Dong, K. and Ma, T. STP: Self-play llm theorem provers
with iterative conjecturing and proving. arXiv preprint
arXiv:2502.00212, 2025.

First, E., Rabe, M. N., Ringer, T., and Brun, Y. Baldur:
Whole-proof generation and repair with large language
models. ESEC/FSE 2023, pp. 1229–1241. Association
for Computing Machinery, 2023. ISBN 9798400703270.
doi: 10.1145/3611643.3616243.

Han, J. M., Rute, J., Wu, Y., Ayers, E. W., and Polu, S.
Proof artifact co-training for theorem proving with lan-
guage models. In International Conference on Learning
Representations, 2022.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021.

Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang,
H., Chen, Q., Peng, W., Feng, X., Qin, B., and Liu, T. A
survey on hallucination in large language models: Prin-
ciples, taxonomy, challenges, and open questions. ACM
Trans. Inf. Syst., 43(2), 2025. ISSN 1046-8188. doi:
10.1145/3703155.

Irving, G., Szegedy, C., Alemi, A. A., Een, N., Chollet, F.,
and Urban, J. DeepMath - deep sequence models for
premise selection. In Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.,
2016.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E.,
Bang, Y. J., Madotto, A., and Fung, P. Survey of hallucina-
tion in natural language generation. ACM Comput. Surv.,
55(12), 2023. ISSN 0360-0300. doi: 10.1145/3571730.

Jiang, A. Q., Welleck, S., Zhou, J. P., Li, W., Liu, J., Jamnik,
M., Lacroix, T., Wu, Y., and Lample, G. Draft, sketch,
and prove: Guiding formal theorem provers with informal
proofs. In The Eleventh International Conference on
Learning Representations, 2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626.
Association for Computing Machinery, 2023. ISBN
9798400702297. doi: 10.1145/3600006.3613165.

Lample, G., Lacroix, T., Lachaux, M.-A., Rodriguez, A.,
Hayat, A., Lavril, T., Ebner, G., and Martinet, X. Hyper-
tree proof search for neural theorem proving. In Advances
in Neural Information Processing Systems, volume 35,
pp. 26337–26349. Curran Associates, Inc., 2022.

Li, Y., Du, D., Song, L., Li, C., Wang, W., Yang, T., and Mi,
H. HunyuanProver: A scalable data synthesis framework
and guided tree search for automated theorem proving.
arXiv preprint arXiv:2412.20735, 2025.

Lin, Y., Tang, S., Lyu, B., Wu, J., Lin, H., Yang, K., Li,
J., Xia, M., Chen, D., Arora, S., and Jin, C. Goedel-
Prover: A frontier model for open-source automated the-
orem proving. arXiv preprint arXiv:2502.07640, 2025.

Lu, P., Qiu, L., Yu, W., Welleck, S., and Chang, K.-W. A sur-
vey of deep learning for mathematical reasoning. In Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 14605–14631. Association for Computational Lin-
guistics, July 2023. doi: 10.18653/v1/2023.acl-long.817.

Megill, N. D. and Wheeler, D. A. Metamath: A
Computer Language for Pure Mathematics, 2019.

9

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

URL http://us.metamath.org/downloads/
metamath.pdf.

Moura, L. d. and Ullrich, S. The lean 4 theorem prover
and programming language. In Automated Deduction—
CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12-15, 2021, Proceedings,
LNCS 12699, pp. 625–635. Springer-Verlag, 2021. doi:
10.1007/978-3-030-79876-5 37.

Newell, A. and Simon, H. The logic theory machine–a
complex information processing system. IRE Transac-
tions on Information Theory, 2(3):61–79, 1956. doi:
10.1109/TIT.1956.1056797.

OpenAI. GPT-4 Technical Report. arXiv preprint
arXiv:2303.08774, 2024a.

OpenAI. OpenAI o1 system card. arXiv preprint
arXiv:2412.16720, 2024b.

OpenAI. OpenAI o3-mini, January 2025. URL https:
//openai.com/index/openai-o3-mini/.

Paulson, L. C. Isabelle a Generic Theorem Prover. Springer
Verlag, 1994.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020a.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020b.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning, 2023a.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning. In The Eleventh International Conference
on Learning Representations, 2023b.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimiza-
tion: Your language model is secretly a reward model.
In Advances in Neural Information Processing Systems,
volume 36, pp. 53728–53741, 2023.

Ren, Z. Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao,
W., Zhang, L., Fu, Z., Zhu, Q., Yang, D., Wu, Z. F.,
Gou, Z., Ma, S., Tang, H., Liu, Y., Gao, W., Guo, D.,
and Ruan, C. DeepSeek-Prover-V2: Advancing formal
mathematical reasoning via reinforcement learning for
subgoal decomposition. 2025.

Song, Y., Zhang, H., Eisenach, C., Kakade, S. M., Foster,
D., and Ghai, U. Mind the gap: Examining the self-
improvement capabilities of large language models. In
The Thirteenth International Conference on Learning
Representations, 2025.

Stechly, K., Valmeekam, K., and Kambhampati, S. On
the self-verification limitations of large language mod-
els on reasoning and planning tasks. In The Thirteenth
International Conference on Learning Representations,
2025.

Thakur, A., Tsoukalas, G., Wen, Y., Xin, J., and Chaud-
huri, S. An in-context learning agent for formal theorem-
proving. In First Conference on Language Modeling,
2024.

Wang, H., Yuan, Y., Liu, Z., Shen, J., Yin, Y., Xiong, J., Xie,
E., Shi, H., Li, Y., Li, L., Yin, J., Li, Z., and Liang, X. DT-
solver: Automated theorem proving with dynamic-tree
sampling guided by proof-level value function. In Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 12632–12646. Association for Computational Lin-
guistics, 2023. doi: 10.18653/v1/2023.acl-long.706.

Wang, H., Xin, H., Liu, Z., Li, W., Huang, Y., Lu, J., Yang,
Z., Tang, J., Yin, J., Li, Z., and Liang, X. Proving the-
orems recursively. In Advances in Neural Information
Processing Systems, volume 37, pp. 86720–86748, 2024a.

Wang, H., Unsal, M., Lin, X., Baksys, M., Liu, J., Santos,
M. D., Sung, F., Vinyes, M., Ying, Z., Zhu, Z., Lu, J.,
de Saxcé, H., Bailey, B., Song, C., Xiao, C., Zhang, D.,
Zhang, E., Pu, F., Zhu, H., Liu, J., Bayer, J., Michel,
J., Yu, L., Dreyfus-Schmidt, L., Tunstall, L., Pagani, L.,
Machado, M., Bourigault, P., Wang, R., Polu, S., Bar-
royer, T., Li, W.-D., Niu, Y., Fleureau, Y., Hu, Y., Yu, Z.,
Wang, Z., Yang, Z., Liu, Z., and Li, J. Kimina-prover
preview: Towards large formal reasoning models with
reinforcement learning. arXiv preprint arXiv:2504.11354,
2025. doi: 10.48550/arXiv.2504.11354.

Wang, R., Zhang, J., Jia, Y., Pan, R., Diao, S., Pi, R.,
and Zhang, T. TheoremLlama: Transforming general-
purpose LLMs into lean4 experts. In Proceedings of
the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 11953–11974. Association for
Computational Linguistics, 2024b. doi: 10.18653/v1/
2024.emnlp-main.667.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b.,
Xia, F., Chi, E., Le, Q. V., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models.
In Advances in Neural Information Processing Systems,
volume 35, pp. 24824–24837, 2022.

10

http://us.metamath.org/downloads/metamath.pdf
http://us.metamath.org/downloads/metamath.pdf
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-
art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pp. 38–45.
Association for Computational Linguistics, 2020.

Wu, Z., Huang, S., Zhou, Z., Ying, H., Wang, J., Lin, D., and
Chen, K. InternLM2.5-StepProver: Advancing automated
theorem proving via expert iteration on large-scale lean
problems. 2024a.

Wu, Z., Wang, J., Lin, D., and Chen, K. LEAN-GitHub:
Compiling github lean repositories for a versatile lean
prover. arXiv preprint arXiv:2407.17227, 2024b.

Xin, H., Ren, Z. Z., Song, J., Shao, Z., Zhao, W., Wang,
H., Liu, B., Zhang, L., Lu, X., Du, Q., Gao, W., Zhu,
Q., Yang, D., Gou, Z., Wu, Z. F., Luo, F., and Ruan,
C. DeepSeek-Prover-V1.5: Harnessing proof assistant
feedback for reinforcement learning and monte-carlo tree
search, 2025a.

Xin, R., Xi, C., Yang, J., Chen, F., Wu, H., Xiao, X., Sun,
Y., Zheng, S., and Shen, K. BFS-Prover: Scalable best-
first tree search for llm-based automatic theorem proving.
2025b.

Xu, Z., Jain, S., and Kankanhalli, M. Hallucination is
inevitable: An innate limitation of large language models.
arXiv preprint arXiv:2401.11817, 2025.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu, D.,
Tu, J., Zhou, J., Lin, J., Lu, K., Xue, M., Lin, R., Liu, T.,
Ren, X., and Zhang, Z. Qwen2.5-Math technical report:
Toward mathematical expert model via self-improvement.
arXiv preprint arXiv:2409.12122, 2024.

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B., Gao, C., Huang, C., Lv, C., Zheng, C., Liu, D.,
Zhou, F., Huang, F., Hu, F., Ge, H., Wei, H., Lin, H.,
Tang, J., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J.,
Zhou, J., Zhou, J., Lin, J., Dang, K., Bao, K., Yang, K.,
Yu, L., Deng, L., Li, M., Xue, M., Li, M., Zhang, P.,
Wang, P., Zhu, Q., Men, R., Gao, R., Liu, S., Luo, S., Li,
T., Tang, T., Yin, W., Ren, X., Wang, X., Zhang, X., Ren,
X., Fan, Y., Su, Y., Zhang, Y., Zhang, Y., Wan, Y., Liu,
Y., Wang, Z., Cui, Z., Zhang, Z., Zhou, Z., and Qiu, Z.
Qwen3 technical report. 2025a.

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A.
LeanDojo: Theorem proving with retrieval-augmented
language models. In Advances in Neural Information
Processing Systems, volume 36, pp. 21573–21612, 2023.

Yang, K., Poesia, G., He, J., Li, W., Lauter, K. E., Chaud-
huri, S., and Song, D. Position: Formal mathematical
reasoning—a new frontier in AI. In Forty-second Interna-
tional Conference on Machine Learning Position Paper
Track, 2025b.

Yousefzadeh, R. and Cao, X. A lean dataset for international
math olympiad: Small steps towards writing math proofs
for hard problems. Transactions on Machine Learning
Research, 2025. ISSN 2835-8856.

Zeng, Z., Cheng, Q., Yin, Z., Zhou, Y., and Qiu, X. Revisit-
ing the test-time scaling of o1-like models: Do they truly
possess test-time scaling capabilities? 2025.

Zhang, J., Wang, Q., Ji, X., Liu, Y., Yue, Y., Zhang, F.,
Zhang, D., Zhou, G., and Gai, K. Leanabell-Prover:
Posttraining scaling in formal reasoning. arXiv preprint
arXiv:2504.06122, 2025.

Zheng, K., Han, J. M., and Polu, S. miniF2F: a cross-system
benchmark for formal olympiad-level mathematics. In
International Conference on Learning Representations,
2022.

11

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

A. Detailed Experimental Setup
A.1. Benchmark Datasets: MiniF2F (Zheng et al., 2022)

MiniF2F (Zheng et al., 2022) consists of 488 mathematical problems formalized in Lean. These problems originate from
sources such as AIME (American Invitational Mathematics Examination), AMC (American Mathematics Competitions),
and IMO (International Math Olympiad) competitions, along with selected problems from the MATH dataset (Hendrycks
et al., 2021), covering topics such as algebra, number theory, geometry, and analysis. Each problem is given as a Lean
theorem statement. The benchmark is split into 244 validation and 244 test problems. We use the validation set during
development (e.g., for tuning prompt formats) and report the final results on the test set. We use the revised version of
miniF2F released by Wang et al. (2025); Ren et al. (2025).

Also, we observed that for problem names like algebra_2varlineareq_fp3zeq11_3tfm1m5zeqn68_feqn10_zeq7,
the LLM often struggled to reliably reproduce the latter part of the name due to its unintelligible character sequence.
Therefore, we modified such problem names by removing the less interpretable suffixes and replacing them with simpler,
more memorable labels such as algebra for our experiments.

A.2. Used Models

For the informal reasoning LLM, we use DeepSeek-R1-0528-Qwen3-8B1 (DeepSeek-AI, 2025), a model obtained
by distilling the chain-of-thought outputs of DeepSeek-R1-0528 (DeepSeek-AI, 2025) into the Qwen3 8B Base (Yang
et al., 2025a). This model surpasses Qwen3 8B Base on the AIME benchmark for natural language reasoning and achieves
state-of-the-art performance at the 8B scale. For the formal prover model, we use DeepSeek-Prover-V2-7B2 (Ren
et al., 2025), a state-of-the-art model for Lean 4 formal proving at the 7B scale, obtained by distilling from DeepSeek-
Prover-V2-671B (Ren et al., 2025). For the autoformalization step, we use Kimina-Autoformalizer-7B3 (Wang
et al., 2025), a 7B model trained to convert natural language statements into Lean 4 code with sorry placeholders for
proofs. All of them are publicly available on Hugging Face (Wolf et al., 2020).

A.3. Implementation Details

The informal LLM, formal prover model, and autoformalizer are all invoked via vLLM (Kwon et al., 2023), a high-
performance inference engine for large language models. We set max num batched tokens and max model len
parameters to 16384 to accommodate the long context lengths required for theorem proving, while keeping all other
settings at their vLLM defaults. The models are run on NVIDIA A100 GPUs with 40GB of memory. We use Lean version
4.9.0 (Moura & Ullrich, 2021) throughout all experiments, following the same setup in Xin et al. (2025a); Ren et al. (2025).

A.4. Baseline Methods

We compare our approach against several baseline methods, categorized into two main classes: tree search methods and
whole-proof generation methods. Tree search methods construct proofs incrementally by predicting individual tactics
step by step, often guided by search algorithms such as best-first search or Monte Carlo Tree Search (MCTS). In contrast,
whole-proof generation methods attempt to generate an entire proof script in a single forward pass, relying on the model’s
ability to plan the proof holistically.

The overview of the baseline methods used in our experiments is as follows:

Tree Search Method:

• DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al., 2025a) uses DeepSeek-Prover-V1.5-RL (Xin et al., 2025a), a 7B
model trained with reinforcement learning, combined with RMaxTS (Xin et al., 2025a), a variant of MCTS that uses
intrinsic rewards to explore diverse proof paths.

• InternLM2.5-StepProver + BFS + CG (Wu et al., 2024a) uses InternLM2.5-StepProver (Wu et al., 2024a), a 7B
model trained via expert iteration (Anthony et al., 2017; Polu et al., 2023b) starting with InternLM2-StepProver (Wu

1https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
2https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-7B
3https://huggingface.co/AI-MO/Kimina-Autoformalizer-7B

12

https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-7B
https://huggingface.co/AI-MO/Kimina-Autoformalizer-7B

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

et al., 2024b), combined with a best-first search (BFS) strategy and a critic-guided (CG) sampling technique to explore
longer proofs effectively.

• HunyuanProver v1.6 + BFS + DC (Li et al., 2025) uses HunyuanProver, a 7B model fine-tuned via a scalable data
synthesis pipeline, in conjunction with best-first search guided by the distance critic (DC) to efficiently navigate
complex Lean 4 proof search spaces.

• BFS-Prover (Xin et al., 2025b) proposes a scalable best-first tree search framework for Lean 4 that incorporates three
key innovations: strategic data filtering during expert iterations, direct preference optimization (DPO) (Rafailov et al.,
2023) on state-tactic pairs using Lean compiler feedback, and length normalization to encourage exploration of deeper
proof paths. BFS-Prover is a fine-tuned version of Qwen2.5-Math-7B model (Yang et al., 2024).

Whole-Proof Generation Methods:

• Leanabell-Prover-GD-RL (Zhang et al., 2025) is a 7B model post-trained through continual training on statement-proof
pairs and reinforcement learning using Lean 4 outcome rewards. This model is a fine-tuned version of Goedel-Prover-
SFT (Lin et al., 2025).

• Goedel-Prover-SFT (Lin et al., 2025) is a 7B-parameter model obtained by supervised fine-tuning on DeepSeek-
Prover-V1.5-Base (Xin et al., 2025a) with expert-iteration.

• STP: Self-Play Theorem Prover (Dong & Ma, 2025) employs a self-play framework that simultaneously takes on two
roles, conjecturer and prover. The conjecturer is iteratively trained on statements that are barely provable by the current
prover, incentivizing it to generate increasingly challenging conjectures. The prover uses standard expert iteration to
verify and prove the generated conjectures. This model is a fine-tuned version of DeepSeek-Prover-V1.5-SFT (Xin
et al., 2025a), which is a 7B-parameter model.

• Kimina-Prover-Preview (Wang et al., 2025) is a 72B-parameter reasoning model that learns specialized formal
reasoning patterns via reinforcement learning. It is pretrained on a large corpus of formal proofs and fine-tuned with a
binary correctness reward and consistency penalty. They also provide Kimina-Prover-Preview-Distill-7B, a distilled
version from the 72B model.

• DeepSeek-Prover-V2 (Ren et al., 2025) uses DeepSeek-V3 to decompose each theorem into subgoals and then employs
the proofs of those subgoals as cold-start data for reinforcement learning using binary correctness rewards and a
consistency penalty to ensure that every subgoal appears in the final proof. It is implemented as a 671B-parameter
model, and a distilled 7B-parameter variant is also provided.

B. Examples of Successful Cases Enabled by Lemmas
Here, we present examples where the use of auxiliary lemmas enabled successful proof construction. For detailed case
studies based on these examples, see Section 5.4.

All Lean code was executed with the following header, following Xin et al. (2025a); Ren et al. (2025), which is omitted in
the examples for brevity:

1 import Mathlib
2 import Aesop
3

4 set_option maxHeartbeats 0
5

6 open BigOperators Real Nat Topology Rat

Note that the following Lean code works correctly with Lean version 4.9.0, the environment used in our experiments, which
strictly follows the same setup in Xin et al. (2025a); Ren et al. (2025). However, Nat.pow_lt_pow_of_lt_left has
been deprecated in newer versions of Lean, so it must be replaced with Nat.pow_lt_pow_left to work with the latest
environment.

13

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

B.1. The Problem

The following problem asks for a formal proof that, for all natural numbers n greater than 3, the inequality n! < nn−1 holds:

1 theorem induction_nfactltnexpnm1ngt3
2 (n : N)
3 (h0 : 3 ≤ n) :
4 (n)! < nˆ(n - 1) := by sorry

B.2. The Generated Lemmas

The generated lemmas are shown below, each presented with both its original natural language form and the corresponding
Lean formalization. The first and second lemmas were successfully proved and are presented with their proofs. The third
lemma could not be proved and is therefore presented with a sorry placeholder.

1 ### Lemma 1: base_case_3
2 **Assumptions**:
3 None
4

5 **Conclusion**:
6 3! < 3ˆ(3-1)

1 theorem base_case_3 : (3 : N)! < 3ˆ(3 - 1) := by
2 have h_main : (3 : N)! < 3ˆ(3 - 1) := by
3 -- Calculate the factorial and the power step-by-step
4 norm_num [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
5 -- Use ‘decide‘ to confirm the inequality
6 <;> decide
7 exact h_main

1 ### Lemma 2: exponent_inequality
2 **Assumptions**:
3 n is a natural number and n ≥ 2
4

5 **Conclusion**:
6 nˆ(n-1) < (n+1)ˆ(n-1)

1 theorem exponent_inequality {n : N} (hn : 2 ≤ n) :
2 nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
3 have h_main : nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
4 have h0 : n - 1 + 1 = n := by
5 omega
6 have h1 : n ≥ 2 := by omega
7 have h2 : n - 1 ≥ 1 := by omega
8 have h3 : n < n + 1 := by omega
9 -- Use the fact that if a < b and n > 0, then aˆn < bˆn
10 exact calc
11 nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
12 -- Apply the lemma that if a < b and n > 0, then aˆn < bˆn
13 exact Nat.pow_lt_pow_of_lt_left h3 (by omega)
14 _ = (n + 1)ˆ(n - 1) := by rfl
15 exact h_main

1 ### Lemma 3: factorial_less_than_n_next_power
2 **Assumptions**:
3 n is a natural number and n ≥ 3
4

5 **Conclusion**:
6 n! < (n+1)ˆ(n-1)

14

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

1 theorem factorial_lt_n_next_power {n : N} (hn : 3 ≤ n) :
2 n ! < (n + 1) ˆ (n - 1) := by sorry

B.3. The Final Proof and Its Reasoning Trace

We present below the final Lean proof, successfully constructed by taking the previously verified lemmas into account.
Alongside the code, we also include the corresponding reasoning trace generated by the prover model that guided the overall
proof construction.

1 ### Detailed Proof and Analysis
2

3 We are tasked with proving that for all natural numbers ‘n ≥ 3‘, the factorial of
‘n‘, i.e., ‘n!‘, is less than ‘nˆ(n - 1)‘.

4

5 #### Key Observations:
6 1. **Base Cases**:
7 - For ‘n = 3‘: ‘3! = 6‘ and ‘3ˆ(3 - 1) = 32 = 9‘. So, ‘6 < 9‘ holds.
8 - For ‘n = 4‘: ‘4! = 24‘ and ‘4ˆ(4 - 1) = 43 = 64‘. So, ‘24 < 64‘ holds.
9 - For ‘n = 5‘: ‘5! = 120‘ and ‘5ˆ(5 - 1) = 54 = 625‘. So, ‘120 < 625‘ holds.
10 - The pattern suggests that this holds for all ‘n ≥ 3‘.
11

12 2. **General Proof Idea**:
13 - The proof can proceed by mathematical induction. We first check the base case

‘n = 3‘, and then for the inductive step, we assume the statement holds for ‘n =
k‘ (i.e., ‘k! < kˆ(k - 1)‘) and show that it also holds for ‘n = k + 1‘ (i.e.,
‘(k + 1)! < (k + 1)ˆk‘).

14 - The inductive step involves showing that ‘(k + 1)! = (k + 1) * k! < (k + 1) *
kˆ(k - 1)‘. The last expression is ‘(k + 1)ˆk‘ because ‘kˆ(k - 1) = kˆk / k‘
when multiplying by ‘(k + 1)‘ is not clean. Instead, we can directly use the
fact that ‘(k + 1)! = (k + 1) * k!‘ and ‘k! < kˆ(k - 1)‘ by the inductive
hypothesis, but we must also ensure ‘k + 1 < k + 1 + 1‘ is not relevant here.
Wait, perhaps the best approach is to directly manipulate the inequality ‘(k +
1)! < (k + 1)ˆk‘.

15

16 However, this seems messy. A simpler way is to compare ‘(k + 1)!‘ and ‘(k +
1)ˆk‘ directly. For ‘k ≥ 3‘, we have ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆk‘.

17

18 But this is not obviously true because ‘k! < kˆk‘ is equivalent to ‘k < k + 1‘,
which is trivially true.

19

20 Alternatively, ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘ by IH, and ‘(k +
1) * kˆ(k - 1) = kˆk + kˆ(k - 1)‘, which is less than ‘(k + 1)ˆk = kˆk + k *
kˆ(k - 1) + . . .‘, but this is getting complicated.

21

22 A much better approach is to use induction directly. For ‘n = 3‘, we already
checked this. Assume ‘k! < kˆ(k - 1)‘ for some ‘k ≥ 3‘. Then:

23 ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘. Now, ‘(k + 1) * kˆ(k - 1) = kˆk
+ kˆ(k - 1)‘. We need this to be ‘< (k + 1)ˆk = kˆk + k * kˆ(k - 1) + . . .‘.

24

25 But ‘kˆk‘ cancels out, and we need ‘kˆ(k - 1) < k * kˆ(k - 1) + . . .‘, i.e., ‘1 <
k + . . .‘, which is true for ‘k ≥ 3‘.

26

27 However, the last step is not straightforward, and it might be simpler to use
induction concretely.

28

29 #### Step 1: Abstract Plan
30

31 1. **Base Case (‘n = 3‘)**:
32 - Compute ‘3! = 6‘ and ‘3 ˆ (3 - 1) = 9‘. Since ‘6 < 9‘, the base case holds.
33

34 2. **Inductive Step (‘n = k + 1‘)**:
35 - Assume ‘k! < kˆ(k - 1)‘ holds for some ‘k ≥ 3‘.

15

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

36 - We need to show ‘(k + 1)! < (k + 1)ˆk‘.
37 - ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘ by the inductive hypothesis.
38 - Next, we need to compare ‘(k + 1) * kˆ(k - 1)‘ to ‘(k + 1)ˆk = (k + 1) * kˆk /

k‘.
39 - The inequality ‘k * (k + 1) ≤ k * k + k * k = 2 * kˆ2‘ for ‘k ≥ 1‘ is too

loose. A better approach is as follows:
40 - We want ‘(k + 1) * kˆ(k - 1) < (k + 1)ˆk‘.
41 - Divide both sides by ‘(k + 1)‘: ‘kˆ(k - 1) < (k + 1)ˆ(k - 1)‘.
42 - But:
43 - This is false for ‘k = 3‘: ‘3ˆ2 = 9 < 4ˆ2 = 16‘ holds. For ‘k = 4‘: ‘4ˆ3 =

64 < 5ˆ3 = 125‘ holds, etc. But we need ‘(k + 1) * kˆ(k - 1) < (k + 1)ˆk‘, not
‘kˆ(k - 1) < (k + 1)ˆ(k - 1)‘.

44 - Alternatively, perhaps a direct proof is better:
45 - ‘(k + 1) * kˆ(k - 1) = kˆk + kˆ(k - 1)‘.
46 - We must show ‘kˆk + kˆ(k - 1) < (k + 1)ˆk = kˆk + k * kˆ(k - 1) + . . . + 1‘.
47 - Since ‘k ≥ 3‘, ‘kˆ(k - 1) < k * kˆ(k - 1)‘ and ‘0 < kˆk‘ (which cancels), we

get ‘kˆ(k - 1) < k * kˆ(k - 1)‘ because ‘1 < k‘ when ‘k ≥ 2‘, so ‘kˆk + kˆ(k -
1) < kˆk + k * kˆ(k - 1) + . . .‘ is justified.

48

49 But the above is still messy. A better way is to prove ‘(k + 1) * kˆ{k - 1} < (k +
1)ˆk‘ for ‘k ≥ 3‘:

50 ‘(k + 1) * kˆ{k - 1} = kˆk + kˆ{k - 1}‘, and ‘(k + 1)ˆk = kˆk + k * kˆ{k - 1} + . . .‘.
51 Subtract:
52 ‘(k + 1)ˆk - (k + 1) * kˆ{k - 1} = kˆk + k * kˆ{k - 1} + . . .} - (kˆk + kˆ{k - 1}) =

k * kˆ{k - 1} + . . .‘ which is clearly positive because all terms are positive.
53 Alternatively, just note that ‘kˆk > 0‘ when ‘k ≥ 1‘ is sufficient because ‘(k +

1)ˆk = kˆk + . . . ≥ kˆk > kˆ{k - 1}‘.
54

55 However, the direct approach is to compute ‘(k + 1)ˆk = (k + 1) * ((k + 1) * . . . *
1) ≥ (k + 1) * (k * . . . * 1) = (k + 1) * kˆ(k - 1)‘, which would work except for
the last factor.

56

57 Wait, we need ‘(k + 1)ˆk > (k + 1) * kˆ{k - 1}‘. But ‘(k + 1)ˆk = (k + 1) * (k +
1)ˆ{k - 1}‘.

58

59 But ‘(k + 1)ˆ{k - 1} ≥ kˆ{k - 1}‘ is not immediately obvious (and may even be false
for ‘k = 3‘ (‘42 = 16 ≥ 8 = 32‘ is true, but ‘4ˆ3 = 64 ≥ 3ˆ3 = 27‘ is true)).

60

61 This seems correct, but we instead keep it simple:
62

63 #### Inductive Proof Sketch:
64 1. Base Case (‘n = 3‘): ‘6 < 9‘ is true.
65 2. Inductive Step (‘n = k + 1‘ assuming ‘k! < kˆ(k - 1)‘):
66 - We have ‘(k + 1)! < (k + 1) * kˆ(k - 1)‘.
67 - We need ‘(k + 1) * kˆ(k - 1) ≤ (k + 1)ˆk = (k + 1) * kˆ(k - 1)‘ + . . .
68 - Alternatively, the most straightforward induction is simply to use that ‘(k +

1) * kˆ(k - 1) < (k + 1)ˆk‘ when ‘k ≥ 3‘.
69

70 This can be proved as follows:
71 ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1}‘ and ‘(k + 1)ˆ{k - 1} ≥ kˆ{k - 1}‘ for ‘k ≥

3‘ because:
72 ‘(k + 1)ˆ2 = kˆ2 + 2k + 1 ≥ kˆ2‘ for all ‘k ≥ 1‘,
73 ‘(k + 1)ˆ3 = kˆ3 + 3kˆ2 + 3k + 1 ≥ kˆ3 + 3kˆ2 ≥ kˆ3 + 2kˆ2 ≥ kˆ3‘ for ‘k ≥ 2‘, etc.
74 But we get ‘(k + 1)ˆk ≥ (k + 1) * kˆ{k - 1}‘, which is not what we want! This is

because we made a miscount. The correct relation is:
75 ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1}.‘, and ‘(k + 1)ˆ{k - 1} > kˆ{k - 1}‘ for ‘k ≥

3‘ (since ‘l < m‘ implies ‘lˆ{n} < mˆ{n}‘ for ‘l, m > 1‘). That is, ‘(k + 1)ˆk
> (k + 1) * kˆ{k - 1} > (k + 1) * kˆ{k - 1} - kˆ{k - 1}‘ is not true.

76

77 Instead, ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1} ≥ (k + 1) * kˆ{k - 1}‘ because ‘(k +
1)ˆ{k - 1} ≥ kˆ{k - 1}‘ for ‘k ≥ 3‘.

78

79 Therefore, the full chain is:
80 ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1) ≤ (k + 1)ˆk.‘

16

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

81

82 Thus, we can prove the inductive step using the above reasoning.
83

84 #### Abstract Plan:
85 1. Base Case:
86 - Verify the inequality for ‘n = 3‘.
87 2. Inductive Step:
88 - Assume the inequality holds for ‘n = k‘, i.e., ‘k! < kˆ(k - 1)‘ for ‘k ≥ 3‘.
89 - Prove for ‘n = k + 1‘, i.e., ‘(k + 1)! < (k + 1)ˆk = (k + 1) * kˆ(k - 1)‘.
90 - But it is enough to prove ‘(k + 1)ˆk ≥ (k + 1) * kˆ(k - 1)‘:
91 - Since ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1}‘, we must show ‘(k + 1)ˆ{k - 1}

≥ kˆ{k - 1}‘.
92 - This is true for ‘k ≥ 4‘ since ‘(k + 1)/k ≥ k/(k - 1)‘.
93 - Check ‘k = 3‘ separately: ‘4ˆ2 = 16 ≥ 3ˆ2 = 9‘ and ‘4ˆ3 = 64 ≥ 3ˆ3 = 27‘,

etc.
94

95 #### Lean 4 Proof Sketch with ‘have‘ Statements
96

97 ‘‘‘lean4
98 theorem induction
99 (n : N)
100 (h0 : 3 ≤ n) :
101 (n)! < nˆ(n - 1) := by
102 -- Base case: n = 3
103 have h_base : (3 : N)! < 3 ˆ (3 - 1) := by sorry
104 -- Inductive step: assume (k)! < kˆ(k - 1) for some k ≥ 3, prove (k + 1)! < (k +

1)ˆ((k + 1) - 1)
105 have h_inductive_step : ∀ (k : N), 3 ≤ k → (k)! < k ˆ (k - 1) → (k + 1)! < (k +

1) ˆ ((k + 1) - 1) := by sorry
106 -- Combine base case and inductive step to get the general result
107 have h_general : (n)! < n ˆ (n - 1) := by sorry
108 sorry
109 ‘‘‘
110

111 This sets up the scaffolding of the proof using ‘have‘ statements with ‘sorry‘.
112

113 ### Step-by-Step Abstract Plan
114

115 1. **Base Case (‘n = 3‘)**:
116 - Directly check ‘3! = 6‘ and ‘3ˆ(3 - 1) = 9‘, hence ‘6 < 9‘.
117

118 2. **Inductive Hypothesis (‘n = k‘)**:
119 - Assume ‘k! < kˆ(k - 1)‘ for some ‘k ≥ 3‘.
120

121 3. **Inductive Step (‘n = k + 1‘)**:
122 - Prove ‘(k + 1)! < (k + 1)ˆ((k + 1) - 1)‘ using:
123 - ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘ by IH.
124 - ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1} ≥ (k + 1) * kˆ(k - 1)‘ if ‘(k + 1)ˆ{k

- 1} ≥ kˆ(k - 1)‘. This holds for ‘k ≥ 3‘ because ‘(k + 1) ≥ k‘ and functions
are increasing.

125

126 4. **Conclusion**:
127 - By induction, the statement holds for all ‘n ≥ 3‘.
128

129 ### Lean 4 Proof Sketch with ‘have‘ Statements and ‘sorry‘s
130

131 ‘‘‘lean4
132 theorem induction
133 (n : N)
134 (h0 : 3 ≤ n) :
135 (n)! < nˆ(n - 1) := by
136 have h_base : (3 : N)! < 3 ˆ (3 - 1) := by sorry
137 have h_inductive_step : ∀ (k : N), 3 ≤ k → (k)! < k ˆ (k - 1) → (k + 1)! < (k +

1) ˆ ((k + 1) - 1) := by sorry
138 have h_general : (n)! < n ˆ (n - 1) := by sorry

17

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

139 sorry
140 ‘‘‘
141

142 (Note: The ‘have‘ statements are used to sketch the high-level structure of the
proof. The actual Lean 4 proof would fill in the ‘sorry‘ placeholders with
detailed reasoning.)

143

144 ### Complete Lean 4 Proof
145

146 ‘‘‘lean4
147 theorem induction
148 (n : N)
149 (h0 : 3 ≤ n) :
150 (n)! < nˆ(n - 1) := by
151 have h_base : (3 : N)! < 3 ˆ (3 - 1) := by
152 norm_num
153 <;> decide
154

155 have h_inductive_step : ∀ (k : N), 3 ≤ k → (k)! < k ˆ (k - 1) → (k + 1)! < (k +
1) ˆ ((k + 1) - 1) := by

156 intro k hk’ hk’’
157 have h1 : (k + 1)! = (k + 1) * k ! := by
158 simp [Nat.factorial_succ, Nat.mul_comm]
159 <;> ring
160 <;> simp_all [Nat.factorial]
161 <;> ring
162 <;> simp_all [Nat.factorial]
163 rw [h1]
164 have h2 : (k + 1 : N) * k ! < (k + 1 : N) * k ˆ (k - 1) := by
165 -- Apply the inductive hypothesis to get the inequality for ‘k! < k ˆ (k - 1)‘
166 have h3 : k ! < k ˆ (k - 1) := hk’’
167 have h4 : (k + 1 : N) > 0 := by linarith
168 have h5 : (k + 1 : N) * k ! < (k + 1 : N) * k ˆ (k - 1) := by
169 exact Nat.mul_lt_mul_of_pos_left h3 (by linarith)
170 exact h5

171 have h3 : (k + 1 : N) ˆ ((k + 1) - 1) = (k + 1) ˆ k := by
172 simp [Nat.sub_add_cancel (by linarith : 1 ≤ k + 1)]
173 <;> ring_nf
174 <;> simp_all
175 rw [h3]
176 -- Use the fact that ‘(k + 1) * k ˆ (k - 1) < (k + 1) ˆ k‘ to conclude the proof
177 have h4 : (k + 1 : N) * k ˆ (k - 1) < (k + 1) ˆ k := by
178 have h5 : k ≥ 3 := by exact_mod_cast hk’
179 have h6 : (k + 1 : N) * k ˆ (k - 1) < (k + 1) ˆ k := by
180 have h7 : (k + 1 : N) ˆ k = (k + 1) * (k + 1) ˆ (k - 1) := by
181 cases k with
182 | zero => contradiction
183 | succ k’ =>
184 cases k’ with
185 | zero => contradiction
186 | succ k’’ =>
187 cases k’’ with
188 | zero => contradiction
189 | succ k’’’ =>
190 simp [Nat.pow_succ, Nat.mul_assoc]
191 <;> ring_nf at *
192 <;> omega
193 rw [h7]
194 have h8 : (k + 1 : N) * k ˆ (k - 1) < (k + 1) * ((k + 1) ˆ (k - 1)) := by
195 have h9 : k ˆ (k - 1) < (k + 1) ˆ (k - 1) := by
196 exact Nat.pow_lt_pow_of_lt_left (by linarith) (by
197 have h10 : k - 1 ≥ 2 := by
198 omega
199 omega)
200 nlinarith

18

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

201 nlinarith
202 exact h6

203 nlinarith
204

205 have h_general : (n)! < n ˆ (n - 1) := by
206 have h1 : ∀ n : N, 3 ≤ n → (n)! < n ˆ (n - 1) := by
207 intro n hn
208 induction’ hn with k hk IH
209 · -- Base case: k = 3
210 simp [Nat.factorial]
211 <;> norm_num
212 · -- Inductive step: assume the statement holds for k, prove for k + 1
213 cases k with
214 | zero => contradiction
215 | succ k’ =>
216 cases k’ with
217 | zero => contradiction
218 | succ k’’ =>
219 cases k’’ with
220 | zero => contradiction
221 | succ k’’’ =>
222 simp_all [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
223 -- Use the inductive hypothesis and the lemma ‘h_inductive_step‘ to

prove the next step
224 <;>
225 (try omega) <;>
226 (try nlinarith) <;>
227 (try
228 {
229 have h2 := h_inductive_step (k’’’ + 3) (by linarith) (by simpa

[Nat.factorial, Nat.pow_succ, Nat.mul_assoc] using IH)
230 simp_all [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
231 <;>
232 (try omega) <;>
233 (try nlinarith)
234 })
235 <;>
236 (try
237 {
238 aesop
239 })
240 <;>
241 (try
242 {
243 nlinarith [pow_pos (by norm_num : (0 : N) < 2) k’’’, pow_pos (by

norm_num : (0 : N) < 2) (k’’’ + 1), pow_pos (by norm_num : (0 : N) < 2) (k’’’ +
2)]

244 })
245 exact h1 n h0

246

247 exact h_general
248 ‘‘‘

B.4. Comparison: Direct Proof Attempt Without Lemmas

For comparison, we present below the reasoning process and generated Lean code from a direct proof attempt without using
auxiliary lemmas. Among the 100 initial direct proof attempts (Ninit = 100), we show the one that resulted in the fewest
Lean errors.

1 ### Detailed Proof and Analysis
2

3 **Problem Analysis:**
4 We need to prove that for all integers ‘n ≥ 3‘, ‘n! < nˆ(n - 1)‘.

19

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

5

6 **Key Observations:**
7 1. For ‘n ≥ 3‘, ‘n - 1 ≥ 2‘ (since ‘3 - 1 = 2‘), so ‘nˆ(n - 1)‘ grows faster than

‘n!‘ as ‘n‘ increases.
8 2. The factorial ‘n!‘ is the product of all integers from ‘1‘ to ‘n‘, while ‘nˆ(n -

1)‘ is a product of ‘n - 1‘ copies of ‘n‘ (assuming ‘n ≥ 3‘).
9 3. The inequality ‘n! < nˆ(n - 1)‘ can be compared term by term, but a more precise

estimate is needed.
10 4. For ‘n ≥ 3‘, we have ‘n! < (n + 1 - 1)! = n!‘? Wait, this is not helpful.

Instead, we can compare ‘n!‘ with ‘nˆ(n - 1)‘:
11 - The inequality ‘n! < nˆ(n - 1)‘ is equivalent to ‘(n - 1)! < nˆ(n - 2)‘, but

this is not directly useful either.
12 5. A better idea is to directly compare ‘n!‘ with ‘n*(n - 1)*. . .*(2)‘ and ‘nˆ(n - 1)

= n * n * . . . * n‘.
13 - For ‘n ≥ 3‘, each term ‘k‘ in the product ‘2 * 3 * . . . * (n - 1)‘ is ‘≥ 1‘

(except ‘2 * 1‘ is skipped if ‘n ≥ 4‘, but ‘n ≥ 3‘ is given), and each is ‘≤ n
- 1‘ for ‘k ≤ n - 2‘. However, comparing ‘k‘ to ‘n‘ is complicated.

14 - Alternatively, ‘n!‘ is the product of ‘n‘ factors, each ‘≤ n‘, but ‘n!‘ is a
product of all numbers from ‘1‘ to ‘n‘, whereas ‘nˆ(n - 1)‘ is a product of ‘n
- 1‘ copies of ‘n‘.

15

16 But actually, induction is not straightforward here. The key is to compare ‘n!‘
with ‘n * (n - 1)ˆ(n - 1)‘, since ‘(n - 1)ˆ(n - 1)‘ grows faster than ‘(n -
1)(n - 2) . . .‘ for ‘n ≥ 3‘.

17

18 But ‘n! < n * (n - 1)!‘ is ‘n! < n * (n - 1)!‘, which is true except for ‘n = 1‘.
So is ‘n * (n - 1)! < nˆ(n - 1)‘? Not obviously, because for ‘n = 4‘, ‘4 * 3! =
24‘ and ‘4ˆ3 = 64‘, but for ‘n = 3‘, ‘3! = 6‘ and ‘3ˆ2 = 9‘.

19

20 Instead, let’s recall the definition of ‘n!‘ and think about how many times ‘n!‘ is
compared to ‘nˆ(n - 1)‘.

21

22 For ‘n ≥ 3‘, each time you compare ‘n!‘ with ‘n * (n - 1)!‘, and this is ‘< n * (n
- 1)! < n * nˆ(n - 2)} = nˆ(n - 1)} ? Seems wrong because ‘(n - 1)! < nˆ(n -
2)}‘ would be true for ‘n ≥ 2‘ by induction, which is not a problem since we’re
proving it.

23

24 Perhaps a better approach is to use telescoping inequalities. Consider ‘n! = n * (n
- 1) * . . . * 2 * 1‘, and ‘nˆ(n - 1)‘ is the product of ‘n - 1‘ copies of ‘n‘.

25

26 For ‘n ≥ 3‘, each term in the factorial is smaller than ‘n‘ (‘k ≤ n - 1‘).
27

28 But more precisely, ‘n! = n * (n - 1)!‘ and ‘(n - 1)! < nˆ(n - 2)‘ for ‘n ≥ 3‘
(since ‘n - 1 ≥ 2‘).

29

30 Let’s try to prove ‘(n - 1)! < nˆ(n - 2)}‘. If ‘(n - 1)! < nˆ(n - 2)}‘ holds, then
‘n! = n * (n - 1)! < n * nˆ(n - 2)} = nˆ(n - 2)}‘.

31

32 But is ‘n * nˆ(n - 2)} = nˆ(n - 1)}‘ ? Yes, because ‘n * nˆ(n - 2)} = nˆ(1 + n -
2)} = nˆ(n - 1)}‘.

33

34 Thus, ‘n! < nˆ(n - 1)}‘, provided that ‘(n - 1)! < nˆ(n - 2)}‘.
35

36 Wait, ‘nˆ(n - 2)}‘ is ‘n * nˆ(n - 3)}‘ if ‘n ≥ 3‘.
37

38 So the induction is:
39 - Base case ‘n = 3‘: ‘2! = 2‘ and ‘3ˆ2 = 9‘, ‘2 < 9‘ holds.
40 - Inductive step: Assume for ‘n‘, ‘(n - 1)! < nˆ(n - 2)}‘. Then ‘n * (n - 1)! < n *

nˆ(n - 2)} = nˆ(n - 1)}‘? But ‘n * nˆ(n - 2)} = nˆ(n - 2 + 1)} = nˆ(n - 1)}‘.
So ‘n! = n * (n - 1)! < nˆ(n - 1)}‘.

41

42 This is a valid induction, provided that ‘(n - 1)! < nˆ(n - 2)}‘ is true for ‘n ≥
3‘.

43

44 Now, recall that for ‘n ≥ 3‘:

20

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

45 ‘n! = n * (n - 1)!‘ and ‘(n - 1)! < nˆ(n - 2)‘ if ‘n ≥ 3‘.
46

47 But is ‘(n - 1)! < nˆ(n - 2)}‘ true for ‘n ≥ 3‘?
48

49 For ‘n = 3‘, LHS = 2, RHS = 1. False. Hmm, ‘3! = 6‘ and ‘3ˆ(3 - 3)‘ = 1? No, ‘3 ≥
3‘ and ‘3ˆ(3 - 2)} = 3ˆ{1}} = 3‘, ‘2 < 3‘, so true.

50

51 Wait no. For ‘n = 4‘, ‘(3)! = 6‘, and ‘4ˆ{4 - 2}} = 4ˆ{2}} = 16‘, ‘6 < 16‘ true.
52

53 For ‘n = 5‘, ‘(4)! = 24‘, ‘5ˆ{5 - 2}} = 5ˆ3 = 125‘, ‘24 < 125‘ true.
54

55 Hypothesis that ‘(n - 1)! < nˆ(n - 2)}‘ for all ‘n ≥ 3‘.
56

57 Base case ‘n = 3‘, ‘2! = 2 < 3ˆ{1} = 3‘ true.
58

59 Inductive step: Assume ‘(n - 1)! < nˆ(n - 2)}‘ for ‘n ≥ 4‘.
60

61 We need ‘n! < (n + 1)ˆ(n - 1)}‘:
62 ‘n! = n * (n - 1)! < n * nˆ(n - 2)} = nˆ(n - 1)}‘, since ‘(n - 1)! < nˆ(n - 2)}‘

holds by the inductive hypothesis for ‘n ≥ 3‘.
63

64 This works!
65

66 **Conclusion:** The inequality ‘n! < nˆ{n - 1}‘ holds for all ‘n ≥ 3‘ (‘n >= 3‘).
67

68 But wait, the original Lean statement is ‘n : N‘ and ‘3 ≤ n‘, so indices are clear.
69

70 We can proceed directly using induction. The ‘have‘ statements will reflect the
proof.

71

72 **Lean 4 Proof Sketch:**
73

74 1. **Base Case (‘n = 3‘)**: Check that ‘3! < 3ˆ{3 - 1}‘ or ‘6 < 9‘.
75 2. **Inductive Step**: Assume ‘(k)! < kˆ{k - 1}‘ for some ‘k ≥ 3‘, and prove ‘(k +

1)! < (k + 1)ˆ{k}‘ using the assumption ‘k! < kˆ{k - 1}‘.
76

77 ### Abstract Step-by-Step Plan
78

79 1. **Base Case (‘n = 3‘)**:
80 - Compute ‘3! = 6‘.
81 - Compute ‘3ˆ{3 - 1} = 3ˆ2 = 9‘.
82 - Since ‘6 < 9‘, the statement holds.
83

84 2. **Inductive Step (‘n → n + 1‘)**:
85 - Assume ‘n! < nˆ{n - 1}‘ for some ‘n ≥ 3‘ (induction hypothesis).
86 - Prove ‘(n + 1)! < (n + 1)ˆn‘:
87 - ‘(n + 1)! = (n + 1) * n!‘ (by definition).
88 - By hypothesis, ‘n! < nˆ{n - 1}‘.
89 - Thus, ‘(n + 1)! < (n + 1) * nˆ{n - 1}‘.
90 - It remains to prove ‘(n + 1) * nˆ{n - 1} ≤ (n + 1)ˆn‘, i.e., ‘nˆ{n - 1} ≤

(n + 1)ˆ{n - 1}‘ (if ‘n + 1 ≥ 2‘? Always true since ‘n ≥ 2‘).
91 * Since ‘n ≥ 2‘, ‘nˆ{n - 1} ≤ (n + 1)ˆ{n - 1}‘ because ‘n ≤ n + 1‘ and the

exponent is ‘n - 1 ≥ 2‘, making the term ‘(n + 1)ˆ{n - 1}‘ strictly greater
than ‘nˆ{n - 1}}‘.

92

93 ### Lean 4 ‘have‘ Statements
94

95 ‘‘‘lean4
96 theorem induction
97 (n : N)
98 (h0 : 3 ≤ n) :
99 (n)! < nˆ(n - 1) := by
100 have h_main : (n)! < nˆ(n - 1) := by
101 sorry
102 sorry

21

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

103 ‘‘‘
104

105 ### Explanation of ‘have‘ Statements:
106 1. The ‘have‘ statement ‘h_main‘ directly encodes our goal ‘(n)! < nˆ(n - 1)‘.

Inside the proof, we would perform induction, but in a structured Lean proof,
we break it into a single ‘have h_main‘.

107 - The actual proof would expand on ‘h_main‘ by leveraging induction, but for this
sketch, it suffices to rely on the good old induction hypothesis.

108

109 ### Complete Lean 4 Proof
110

111 ‘‘‘lean4
112 theorem induction
113 (n : N)
114 (h0 : 3 ≤ n) :
115 (n)! < nˆ(n - 1) := by
116 have h_main : (n)! < nˆ(n - 1) := by
117 have h1 : ∀ n : N, 3 ≤ n → (n)! < n ˆ (n - 1) := by
118 intro n hn
119 induction’ hn with n hn IH
120 · -- Base case: n = 3
121 norm_num [Nat.factorial]
122 · -- Inductive step: assume the statement holds for n, prove for n + 1
123 cases n with
124 | zero => contradiction -- n cannot be zero since 3 ≤ n
125 | succ n =>
126 cases n with
127 | zero => contradiction -- n cannot be one since 3 ≤ n
128 | succ n =>
129 cases n with
130 | zero => contradiction -- n cannot be two since 3 ≤ n
131 | succ n =>
132 simp_all [Nat.factorial, Nat.pow_succ, Nat.mul_comm, Nat.mul_assoc,

Nat.mul_left_comm]
133 <;>
134 (try omega) <;>
135 (try
136 {
137 nlinarith [pow_pos (by decide : (0 : N) < 2) n, pow_pos (by

decide : (0 : N) < 2) (n - 1)]
138 }) <;>
139 (try
140 {
141 ring_nf at *
142 <;>
143 nlinarith [pow_pos (by decide : (0 : N) < 2) n, pow_pos (by

decide : (0 : N) < 2) (n - 1)]
144 }) <;>
145 (try
146 {
147 simp_all [Nat.factorial_succ, Nat.mul_comm, Nat.mul_assoc,

Nat.mul_left_comm]
148 <;>
149 norm_num at *
150 <;>
151 ring_nf at *
152 <;>
153 nlinarith [pow_pos (by decide : (0 : N) < 2) n, pow_pos (by

decide : (0 : N) < 2) (n - 1)]
154 })
155 exact h1 n h0

156 exact h_main
157 ‘‘‘

22

