
Published as a conference paper at ICLR 2023

TEMPORAL DISENTANGLEMENT OF REPRESENTATIONS
FOR IMPROVED GENERALISATION IN REINFORCEMENT
LEARNING

Mhairi Dunion
University of Edinburgh
mhairi.dunion@ed.ac.uk

Trevor McInroe
University of Edinburgh
t.mcinroe@ed.ac.uk

Kevin Sebastian Luck
Aalto University
kevin.s.luck@aalto.fi

Josiah P. Hanna
University of Wisconsin – Madison
jphanna@cs.wisc.edu

Stefano V. Albrecht
University of Edinburgh
s.albrecht@ed.ac.uk

ABSTRACT

Reinforcement Learning (RL) agents are often unable to generalise well to
environment variations in the state space that were not observed during training.
This issue is especially problematic for image-based RL, where a change in just one
variable, such as the background colour, can change many pixels in the image. The
changed pixels can lead to drastic changes in the agent’s latent representation of
the image, causing the learned policy to fail. To learn more robust representations,
we introduce TEmporal Disentanglement (TED), a self-supervised auxiliary task
that leads to disentangled image representations exploiting the sequential nature
of RL observations. We find empirically that RL algorithms utilising TED as
an auxiliary task adapt more quickly to changes in environment variables with
continued training compared to state-of-the-art representation learning methods.
Since TED enforces a disentangled structure of the representation, our experiments
also show that policies trained with TED generalise better to unseen values of
variables irrelevant to the task (e.g. background colour) as well as unseen values of
variables that affect the optimal policy (e.g. goal positions).

1 INTRODUCTION

Real-world environments are often not static and deterministic, but can be subject to changes, both
incremental or with sudden effects (Luck et al., 2017). Reinforcement Learning (RL) algorithms
need to be robust to these changes and adapt quickly. Moreover, since many real-world robotics
applications rely on images as inputs (Vecerik et al., 2021; Hämäläinen et al., 2019; Chebotar et al.,
2019), RL agents need to learn robust representations of images that remain useful after a change
in the environment. For example, a simple change in lighting conditions can change the perceived
colour of an object, but this should not affect the agent’s ability to perform a task.

One of the reasons RL agents fail to generalise to unseen values of environment variables, such as
colours and object positions, is that they overfit to variations seen in training (Zhang et al., 2018).
The issue is especially problematic for image-based RL, where a change in one environment variable
can mean the agent is presented with a very different set of pixels for which trained RL policies are
often no longer optimal. This failure to generalise occurs for both variables that are irrelevant to the
optimal policy, such as background colours, and relevant variables, such as goal positions (Kirk et al.,
2022). In practice, this often results in agents needing to adapt their policy after a change to only
one variable. We show experimentally that agents often cannot recover the optimal policy after the
environment changes because it is too difficult to ‘undo’ the overfitting.

One approach to tackle the generalisation issue is to use domain randomisation during training to
maximise the environment variations observed (Cobbe et al., 2019; Chebotar et al., 2019). However,
in practice, we may be unaware of what variations an agent might see in the future. Even if all
possible future variations are known, training on this full set is often sample inefficient and may

1

Published as a conference paper at ICLR 2023

result in a sub-optimal policy as the agent learns to compensate for many different values. It can also
be impractical to generate all variations during training due to limitations on laboratory setups or
in simulation suites. An alternative to domain randomisation is to learn robust representations that
generalise to unseen variations (Kirk et al., 2022), but learning such representations remains an open
problem (Lan et al., 2022). Some approaches aim to learn a representation that is invariant to image
distractors (Zhang et al., 2020; 2021) to improve generalisation to unseen values of only variables
irrelevant to the optimal policy. These approaches do not enforce a structure on the remaining
task-relevant variables in the representation for generalisation to unseen values of relevant variables.

A promising direction towards robust RL is to learn a disentangled representation of observations.
Disentanglement techniques aim to learn robust representations for both task relevant and irrelevant
variables by separating distinct, informative factors of variation in an image into the unknown
ground truth factors that generated the image (Bengio et al., 2013). When one factor of variation
changes to a previously unseen value, such as a new colour, changing many pixels in the image,
only a subset of features in a disentangled representation will change. The RL agent will still be
able to rely on the remaining unchanged features in the representation to adapt quickly, allowing
generalisation and performance recovery similar to state-based RL. Higgins et al. (2017b) show that a
disentangled representation improves generalisation in RL. However, this approach requires a trained
or hard-coded policy to collect independent and identically distributed (i.i.d.) data to pre-train a
β-VAE (Higgins et al., 2017a) offline, and it has since been proven that it is theoretically impossible
to learn a disentangled representation from i.i.d. data alone (Locatello et al., 2019).

We introduce a self-supervised auxiliary task for learning disentangled representations for the robust
encoding of images, which we call TEmporal Disentanglement (TED). Unlike previous work, TED
can be implemented with only minimal changes to existing RL algorithms and allows for lifelong
learning of disentangled representations. In contrast to Higgins et al. (2017b), our approach uses the
non-i.i.d. temporal data from consecutive timesteps in RL to learn the disentangled representation
online. Note that TED does not require a decoder which lessens computational costs. We provide
experimental results across a variety of tasks from the DeepMind Control Suite (Tunyasuvunakool
et al., 2020), Panda Gym (Gallouédec et al., 2021) and Procgen (Cobbe et al., 2020) environments.
For our experiments, we train on a subset of some of the environment variables (such as colours),
then evaluate generalisation on a test environment with unseen values of the variables and continue
training to demonstrate adaptation to the new environment. Our results demonstrate that TED
improves generalisation of a variety of base RL algorithms on unseen environment variables that are
relevant or irrelevant to the task, while state-of-the-art baselines that achieve equally good training
performance still fail to adapt and, in some cases, are unable to recover after overfitting to the training
environment. We also evaluate a disentanglement metric (Higgins et al., 2017a) to demonstrate that
our approach increases the extent to which the learned representation has disentangled the factors of
variation in the image observations compared to baselines.

2 RELATED WORK

2.1 GENERALISATION IN IMAGE-BASED REINFORCEMENT LEARNING

Image augmentation. Image augmentation artificially increases the size of the dataset by adding
image perturbations to improve robustness of representations. Laskin et al. (2020a) apply a variety
of image augmentation techniques such as translation, cutouts and cropping; Yarats et al. (2021)
average over multiple augmentations; Hansen & Wang (2021) maximise mutual information between
the representations of augmented and non-augmented images; and Hansen et al. (2021) use both
augmented and non-augmented images to stabilise Q-value estimation. However, image augmentation
approaches to generalisation can still fail when the agent experiences stronger types of variation after
training (Kirk et al., 2022). In our experiments, we show that TED can be used alongside image
augmentation techniques to further improve generalisation while benefiting from the augmentation.

Learning invariant representations. Invariance techniques aim to learn a representation that ignores
distractors in the image. Zhang et al. (2020) use causal inference techniques assuming a block MDP
structure; Zhang et al. (2021) use a bisimulation metric; and Li et al. (2021) use domain adversarial
optimisation to learn a representation invariant to distractors. These approaches all aim to generalise to
unseen values of irrelevant variables, e.g. background colours. In contrast, TED uses disentanglement
to enforce a structured representation that applies to both relevant and irrelevant variables.

2

Published as a conference paper at ICLR 2023

Encoding inductive biases. Some approaches use an auxiliary task to encode inductive biases. Laskin
et al. (2020b) learn a representation to maximise similarity between different augmentations of the
same observation; Mazoure et al. (2020) maximise similarity between observations at successive
timesteps; and Agarwal et al. (2021) enforce a structured representation for task relevant variables
using policy similarity metrics. These approaches are based on enforcing a similarity constraint
between pairs of observations to learn informative features but they do not enforce any structure
to the representation, whereas TED encourages a disentangled structure due to the form of the
classifier without a similarity constraint. van den Oord et al. (2018) learn representations that capture
information predictive of the future, Schwarzer et al. (2021) pretrain an encoder and fine-tune on
task specific data, and Jaderberg et al. (2017) uses a combination of multiple auxiliary tasks for
representation learning, but these approaches also do not require a disentangled structure. To encode
the inductive bias of disentanglement, Higgins et al. (2017b) train a β-VAE offline using data from a
pre-trained or hardcoded agent. In contrast, our approach uses the temporal structure of data available
in RL to learn a disentangled representation online with the RL policy.

2.2 DISENTANGLED REPRESENTATIONS

Unsupervised learning. Many variations of the Variational Autoencoder (VAE) (Kingma & Welling,
2014) aim to improve disentanglement of the learned representation, such as the β-VAE (Higgins
et al., 2017a) (Burgess et al., 2017) and the Factor-VAE (Kim & Mnih, 2018). Locatello et al. (2019)
prove that it is theoretically impossible to learn disentangled representations from i.i.d. data alone.
To bypass the impossibility result, many recent approaches extend the β-VAE to use some form of
supervision. Shu et al. (2020) provide weak supervision using a labelled grouping of images, while
Locatello et al. (2020) generate pairs of images with limited factors of variation between pairs. In
contrast, our approach exploits non-i.i.d. temporal observations available in RL to learn a disentangled
representation without labelling or artificially generating images.

Independent component analysis. Hyvärinen & Morioka (2016) introduce Time-Contrastive
Learning to learn a disentangled representation from time-series data with non-stationary
factors. Hyvärinen & Morioka (2017) disentangle time-series data with stationary factors, introducing
Permutation Contrastive Learning (PCL) to train a classifier to discriminate between temporal and
non-temporal inputs. We consider RL episodes back-to-back as a time-series. Features that are
randomised at the start of an episode are stationary, and due to the agent learning and adapting
behaviour over time, features controlled by the agent are non-stationary. The TED classification
objective is based on the PCL classifier structure to encourage disentanglement, but unlike PCL, TED
addresses the combination of stationary and non-stationary features in RL.

3 PRELIMINARIES

We assume the environment is a fully-observable Markov Decision Process (MDP), defined as the
tuple M = (S,A, P,R, γ), where S is a set of states, A is a set of actions, P : S × S ×A → [0, 1]
is the state-transition function, R : S ×A → R is the reward function, and γ ∈ [0, 1) is the discount
factor. An RL agent chooses an action at ∈ A at time t based on its current state st ∈ S and its policy
at ∼ π(st). The agent then transitions to the next state according to the state-transition probability
P (st+1|st,at), and receives a reward, rt = R(st,at). The goal of an RL agent is to learn a policy π
to maximise the expected discounted cumulative rewards, maxπ EP,π[

∑∞
t=0[γ

trt]].

In this work, the agent’s observation ot ∈ O at time t is image pixels, a high-dimensional
representation of the true underlying environment state st ∈ S. We assume the environment
has a factored state representation st, where each factor corresponds to an environment variable. The
components of the state vector st are the unobserved ground truth factors of variation. We consider
one observation to be a stack of consecutive frames to ensure all features of st, such as velocities,
can be extracted from ot. We assume ot is generated by an invertible, non-linear transformation
of the state factors st, h : S → O, such that ot = h(st). The aim of disentanglement is to learn a
representation zt ∈ Z that recovers the independent ground truth factors of st from the observations
ot by approximating the inverse of the transformation, such that zt = f(ot). To simplify notation, we
will usually denote zt = f(ot) as z(ot). We will use zi to denote the i-th component of the vector z.

3

Published as a conference paper at ICLR 2023

Classifier
TED loss

Encoder

Target encoder
Replay
buffer

Reinforcement
Learning RL loss

Temporal sample

Non-temporal different
episode sample

Non-temporal same
episode sample

Figure 1: TED architecture: The classifier is trained to discriminate between temporal and non-temporal samples
to encourage the encoder to disentangle the temporal structure in the image observations. The ‘//’ indicates that
the gradient flow is stopped, ẽ ∈ {e, e′} and t̃ ∈ {t+ 1, t′, t′′} depending on the observation being processed.

4 TEMPORAL DISENTANGLEMENT

We introduce TEmporal Disentanglement (TED) as an auxiliary task for representation learning with
RL algorithms. Our goal is to improve generalisation to both relevant and irrelevant features when
their testing variation is unknown a priori. TED aims to disentangle the factors of variation that
generate an observation ot, such as background colour and the trajectory of an object across the
frame stack. We will provide an overview of architecture in Section 4.1 then discuss the details of the
TED auxiliary task in Section 4.2.

4.1 ARCHITECTURE OVERVIEW

The high-level architecture for TED with a generic RL algorithm is depicted in Figure 1. TED is
designed to encourage the encoder fθ : O → Z to recover the temporal structure determined by
observations at consecutive timesteps, ot and ot+1, such that a classifier gϕ : Z × Z → R can
discriminate between temporal and non-temporal pairs of observation encodings. We structure the
classifier to compare each feature in the representation zt separately to encourage the encoder to
disentangle the temporal structure into the ground truth factors of st that generated the observation.
We simultaneously perform dimensionality reduction such that dim(S) ≤ dim(Z) ≪ dim(O).

TED requires a batch of N transitions B = {(ot, ot+1)i}Ni=1 originating from various episodes. The
classifier loss is applied as an auxiliary loss to any base RL algorithm. For off-policy algorithms,
the batch can be sampled from the replay buffer B ∼ D following the sampling procedure for the
base RL algorithm. For on-policy base algorithms, the batch can be created using multiple parallel
environments to ensure transitions from different episodes, which is common in practice, for which
B = D in the subsequent explanations. Image augmentations can be applied to the observations
where required by the base algorithm, i.e. TED uses the same augmented images as the base algorithm.
Both the TED classification loss and the relevant RL loss are used to learn the encoder parameters θ.
For training stability, we also use a target encoder (He et al., 2020; Laskin et al., 2020b) fθ′ : O → Z
for the next observation at a given timestep ot+1, where θ′ = τθ′ + (1 − τ)θ. Only temporal
transitions are used for RL, but non-temporal pairs (ot, ot̃) are created where t̃ ̸= t+ 1 to train the
classifier, which we describe in more detail in the next section.

4.2 TEMPORAL DISENTANGLEMENT CLASSIFIER

We use the TED auxiliary loss to train a classifier to discriminate between temporal and non-
temporal pairs of observation encodings. TED encourages the encoder to learn a representation
that uncovers the temporal structure in the data to enable distinguishing whether two observations
occurred consecutively or not.

Classifier inputs. For each batch of transitions B ∼ D, we create three types of observation-pair
batches for classifier input: 1) temporal samples X , 2) different episode, non-temporal samples
X ′, and 3) same episode, non-temporal samples X ′′. A single transition contains (oet ,o

e
t+1) ∈ B

where e is the episode index corresponding to transition. The temporal sample xt = (oet ,o
e
t+1)

4

Published as a conference paper at ICLR 2023

Algorithm 1 TED update step

Input: batch of transitions B = {..., (oe
t ,o

e
t+1), ...} ∼ D

Create batch Zobs of representations for each observation in B: zet = fθ(o
e
t)

Create batch Znext obs of representations for each next observation in B: zet+1 = fθ′(o
e
t+1)

for each transition in B do
Create temporal sample xt ← (zet , z

e
t+1), X ← X ∪ xt

Sample ze
′

t′ ∼ Znext obs such that e′ ̸= e

Create non-temporal different episode sample x′
t ← (zet , z

e′
t′), X

′ ← X ′ ∪ x′
t

Sample oe
t′′ ∼ D such that t′′ /∈ {t, t+ 1}, and get representation zet′′ = fθ′(o

e
t′′)

Create non-temporal same episode sample x′′
t ← (zet , z

e
t′′), X

′′ ← X ′′ ∪ x′′
t

end for
for each sample x ∈ {X,X ′, X ′′} do

Classifier prediction y = gϕ(x) (see Equation 1)
Calculate binary cross-entropy loss LTED(x, l) (see Equation 2)

end for
Calculate average loss for the batch LTED ← mean(LTED(x))
Backpropogate loss to update encoder parameters θ and classifier parameters ϕ
Update target encoder parameters θ′ = τθ′ + (1− τ)θ
Output: Loss LTED and updated parameters ϕ, θ, and θ′

consists of two consecutive observations within a given episode e. Due to the episodic nature of RL,
we use two types of non-temporal samples. The non-temporal sample x′

t = (oet ,o
e′

t′) consists of
non-consecutive timesteps from different episodes, where oe

′

t′ ∼ B such that e′ ̸= e. These samples
encourage the encoder, fθ, to learn a representation, z(oet), that disentangles episodic features that
are chosen randomly at the start of an episode, such as colours, as this is sufficient to distinguish
x′
t from the temporal sample xt. The second non-temporal sample x′′

t = (oet ,o
e
t′′) consists of

non-consecutive timesteps from the same episode where oet′′ ∼ D. These same episode non-temporal
samples encourage the encoder to disentangle features that change during the episode, such as agent
and object positions, because episodic features will be the same for both xt and x′′

t .

Classification objective. Given a batch of samples {X,X ′, X ′′}, a logistic regression classifier is
trained to discriminate between the corresponding representation of temporal samples, xt ∈ X , and
non-temporal samples, x′

t ∈ X ′ and x′′
t ∈ X ′′. To learn a disentangled representation, we use a

regression function of the form proposed by Hyvärinen & Morioka (2017):

y(xt) = gϕ(x
1
t ,x

2
t) =

n∑
i=1

|ki1zi(x1
t) + ki2z

i(x2
t) + bi| − (k̄izi(x1

t) + b̄i)2 + c (1)

for all xt ∈ {X,X ′, X ′′}, where n is the dimensionality of the representation z(oet), xt = (x1
t ,x

2
t),

and ϕ = {k1,k2,b, k̄, b̄, c} are the classifier parameters to be trained simultaneously with the
encoder parameters θ.

Temporal samples, xt ∈ X , are given a classification label l = 1, and non-temporal samples, x′
t ∈ X ′

and x′′
t ∈ X ′′, are given a classification label l = 0. The classifier is trained using the cross-entropy

loss for binary classification for all xt ∈ {X,X ′, X ′′}:

LTED(xt, l) = −α(2l log σ(y(xt))− (1− l) log(1− σ(y(xt))) (2)

where σ is the sigmoid function. Since there are two non-temporal samples, x′
t ∈ X ′ and x′′

t ∈ X ′′,
for each transition in the batch B but only one temporal, xt ∈ X , the positive temporal samples
are weighted by 2. The coefficient α is a hyperparameter to be tuned to the task. It is used to
scale up the classification auxiliary loss to ensure it is not dwarfed by the RL loss and to prioritise
representation learning over policy learning at the start of training while the factors of variation, st,
are independent. The structure of the classifier y = gϕ(x

1
t ,x

2
t) (Equation 1) ensures each feature

zi is considered separately to the other features zj ̸=i. This encourages the encoder to not only
uncover the temporal structure necessary for classification, but to do so by separating the factors of
variation into distinct features in the representation so that the temporal structure of each feature can
be determined independently of the other features. The second term of Equation 1 approximates the
marginal log-pdf. Due to this structure, we expect the encoder to learn a disentangled representation
and the classifier to approximate the distribution of the samples (Hyvärinen & Morioka, 2017). The

5

Published as a conference paper at ICLR 2023

pseudocode for an update step is provided in Algorithm 1, which is performed for every update of the
base RL algorithm. We train the encoder with both LTED and the RL loss. It is important to note that
the TED auxiliary loss requires only creating temporal and non-temporal pairs of representations to
train the classifier. The classifier is not required for execution so it can be discarded after training.

5 EXPERIMENTAL RESULTS

Our experiments are designed to evaluate whether TED allows zero-shot generalisation to unseen
values of an environment variable, and whether TED promotes faster adaptation of the base RL
algorithm after a change in environment variables if generalisation is not instant. We evaluate our
approach on settings where the agent must generalise to unseen values of both task relevant and
irrelevant distractor variables with continued learning on the test environment. We use a training
environment with a subset of some of the environment variables (such as colours), and evaluate
generalisation on a test environment with unseen values of the variables. Images of the train and
test environments are provided in Appendix C. We show results on a variety of different tasks with
RAD (Laskin et al., 2020a), SVEA (Hansen et al., 2021) and PPO (Schulman et al., 2017) as different
base algorithms utilising the TED loss, which covers on-policy and off-policy, continuous and discrete
control, and with and without image augmentations, demonstrating the flexibility of our approach.
Our results show that TED consistently improves the generalisation of the base RL algorithm in all
tasks. TED also shows lower variance across seeds compared to baselines, making it more reliable.

5.1 GENERALISATION TO TASK-IRRELEVANT VARIABLES

To demonstrate generalisation to unseen values of task-irrelevant environment variables, we use
continuous control tasks from the DeepMind Control Suite (DMC) (Tunyasuvunakool et al., 2020)
and Panda Gym (Gallouédec et al., 2021) as simulations of robotics tasks. We adapt DMC wrappers
from the Distracting Control Suite (Stone et al., 2021) to add colour distractors to the observations as
irrelevant factors of variation.

Experiment setup. We show results with RAD and SVEA as two different base algorithms for
continuous control. We use the cartpole swingup and walker walk tasks from DMC with SVEA as
the base algorithm. For RAD, we use the easier finger spin task instead of walker walk since RAD
was unable to learn an optimal policy on the walker walk task due to the difficulty of the task with the
colour distractors. We also use the Reach task with dense rewards from Panda Gym where the agent
receives a reward of the negative of its distance to the goal. We train each algorithm on a fixed set of
colours by varying the RGB colour values within a small bounded region of the original value. We
test on a set of colours of the same size that were not observed during training. Following the original
setup of the base RL algorithms, the encoder for SVEA has 11 convolutional layers and RAD has 4
convolutional layers. Full implementation details are described in Appendix B.

Baselines. We compare to the base RL algorithm for each task to demonstrate the performance
improvement achieved by TED. For further comparison, we also compare our method to representative
baselines from each category of RL generalisation method discussed in Section 2.1. Our data
augmentation baseline is DrQ (Yarats et al., 2021). We use DBC (Zhang et al., 2021) as a baseline
method that learns invariant representations. We also compare with CURL (Laskin et al., 2020b)
as a state-of-the-art contrastive auxiliary task. Finally, we include the base algorithm with domain
randomisation, shown as {base algorithm}-DR in the figures, as a privileged baseline that is trained
on both the ‘train’ and ‘test’ colours together, demonstrating that when the test variations are known a
priori, it is often less sample efficient to use domain randomisation and sometimes unable to learn the
optimal policy. All baselines use the same size encoder as the TED base algorithm on a given task, so
results for the same baseline differ slightly depending on the base algorithm it is being compared to.
For all baselines, we tuned hyperparameters by grid search and report the best performing ones.

Disentanglement metric. To evaluate the learned representations, we measure the disentanglement
using the disentanglement metric proposed by Higgins et al. (2017a). The metric measures
disentanglement using pairs of images with one factor of variation fixed to the same value in
both images and the other factors randomised. For example, the background colour could be held
fixed while all other colours and variables are randomly assigned. We use pairs of frame stacks
corresponding to ot instead of individual images to allow the policy to extract velocity information.

6

Published as a conference paper at ICLR 2023

0 1 2 3 4
Training timesteps 1e5

0

200

400

600

800

1000

M
ea

n
ev

al
 r

et
ur

ns

(a) cartpole swingup

0.0 0.5 1.0 1.5 2.0
Training timesteps 1e5

0

200

400

600

800

1000

M
ea

n
ev

al
 r

et
ur

ns

(b) finger spin

0.0 0.2 0.4 0.6 0.8 1.0
Training timesteps 1e5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

M
ea

n
ev

al
 r

et
ur

ns

(c) panda reach

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training timesteps 1e5

0

200

400

600

800

1000

M
ea

n
ev

al
 r

et
ur

ns

RADTED RAD RADDR CURL DBC DrQ

Figure 2: Generalisation to unseen colours at the vertical dotted line with RAD base algorithm. RAD-TED
(ours) recovers more quickly than baselines and achieves higher returns than domain randomisation (RAD-DR).
Returns are the average of 10 evaluation episodes, averaged over 5 seeds, shaded region shows standard deviation.

0 2 4 6 8
Training timesteps 1e5

0

200

400

600

800

1000

M
ea

n
ev

al
 r

et
ur

ns

(a) cartpole swingup

0.0 0.5 1.0 1.5
Training timesteps 1e6

0

200

400

600

800

1000

M
ea

n
ev

al
 r

et
ur

ns

(b) walker walk

0.0 0.2 0.4 0.6 0.8 1.0
Training timesteps 1e5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

M
ea

n
ev

al
 r

et
ur

ns

(c) panda reach

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training timesteps 1e5

0

200

400

600

800

1000

M
ea

n
ev

al
 r

et
ur

ns

SVEATED SVEA SVEADR CURL DBC DrQ

Figure 3: Generalisation to unseen colours at the vertical dotted line. SVEA-TED (ours) recovers more quickly
than baselines and achieves similar performance to domain randomisation but with fewer assumptions. Returns
are the average of 10 evaluation episodes, averaged over 5 seeds, shaded region shows standard deviation.

One sample for the classifier is calculated for a batch B of observation pairs, given by:

zdiff =

B∑
b=1

|z(o(b)
t)− z(o

(b)

t̃
)| (3)

where o
(b)
t and o

(b)

t̃
have the same fixed factor. We then train a linear classifier that takes zdiff as

one input and predicts which factor was held fixed across a batch of inputs. The accuracy of this
classifier is the disentanglement score. The intuition is that a there will be low variance in the
features corresponding to the fixed factor in a disentangled representation so the classifier will be
highly accurate. Although independence of the factors does not strictly hold in practice in many
RL environments, it does hold when generating the observations for the metric because the value of
each factor is assigned randomly, so we can fairly assess the disentanglement. A score of 1.0 is the
maximum for a fully disentangled representation.

Results. The results for RAD as the base algorithm are shown in Figure 2, and the results for SVEA
are shown in Figure 3. The figures show that TED improves the generalisation of both RAD and
SVEA across all tasks. In many tasks, TED achieves zero-shot generalisation. In other tasks, e.g.
Figure 2a, TED experiences some reduction in performance but is able to recover more quickly than
the base algorithm and other baselines. Surprisingly, the baselines that achieve equally good training
performance as TED fail to adapt and, in some cases, are unable to recover after overfitting to the
training colours. Even though TED increases the disentanglement score of the base algorithm, shown
in Table 1, there can still be an initial drop in performance on the test environment because the RL
policy may still unnecessarily put some weight on the colour features, but the disentangled structure
allows faster recovery. TED achieves higher returns than the privileged domain randomisation
baseline in many tasks (e.g. Figure 2), which assumes the test colours are known a priori, because

7

Published as a conference paper at ICLR 2023

cartpole finger panda
swingup spin reach

RAD-TED 0.99 0.79 0.95
RAD 0.88 0.56 0.83
RAD-DR 0.67 0.53 0.49
CURL 0.87 0.89 0.91
DBC 0.65 0.46 0.58
DrQ 0.73 0.59 0.91

(a) RAD base algorithm (Figure 2)

cartpole walker panda
swingup walk reach

SVEA-TED 0.64 0.79 0.90
SVEA 0.53 0.71 0.83
SVEA-DR 0.58 0.62 0.72
CURL 0.92 0.77 0.65
DBC 0.63 0.61 0.34
DrQ 0.86 0.66 0.60

(b) SVEA base algorithm (Figure 3)

Table 1: Disentanglement scores at the end of training before changing to the test environment.

it can be difficult to learn an optimal policy with such a large set of colour distractors. The poor
training performance of some of the baselines, particularly DBC, is due to the difficulty of learning
an optimal policy with the colour distractors as it increases the size of the state space. DBC aims to
maintain performance on difficult distractors resulting in reduced performance on ‘easy’ distractors.

5.2 GENERALISATION TO BOTH TASK-RELEVANT AND IRRELEVANT VARIABLES

We use the Procgen generalisation benchmark (Cobbe et al., 2020) to demonstrate generalisation to
unseen values of both task-relevant and irrelevant variables together. Procgen is a set of discrete-
control tasks that uses procedural generation to determine the layout, objects, entities, background,
colours and other game details for each level of a game. This produces many factors of variation
across the game levels, some of which are relevant to solving the game and others are irrelevant
distractors. Due to the nature of procedural task generation with Procgen, we are unable to fix the
factors of variation to calculate the disentanglement scores for these tasks.

Experiment setup. We use the coinrun and jumper Procgen environments. We train on 100 levels of
the hard difficulty, and test generalisation on 100 unseen hard levels. Following the setup of Cobbe
et al. (2020), we use PPO as the base algorithm for the Procgen tasks.

Results. The results are shown in Figure 4. The results show that PPO-TED (ours) recovers more
quickly than PPO on the unseen levels. PPO is unable to recover optimal performance on both tasks
after overfitting to the training levels, but PPO-TED converges to higher performance on the unseen
levels, similiar to that achieved in training. In the jumper environment, Figure 4b, PPO-TED also
demonstrates better zero-shot generalisation performance than PPO (at the vertical dotted line).

0.0 0.5 1.0 1.5 2.0
Training timesteps 1e8

0

2

4

6

8

10

M
ea

n
ev

al
 r

et
ur

ns

PPOTED
PPO

(a) coinrun

0.0 0.5 1.0 1.5 2.0
Training timesteps 1e8

0

2

4

6

8

10

M
ea

n
ev

al
 r

et
ur

ns

PPOTED
PPO

(b) jumper
Figure 4: Generalisation to unseen levels at the vertical dotted line. PPO-TED (ours) recovers more quickly
than PPO on the unseen levels. Returns are the average of 10 evaluation episodes, averaged over 5 seeds, shaded
region shows standard deviation. The graphs show the 10-point rolling average for readability.

5.3 ABLATION STUDIES

How does the loss coefficient affect performance? Figure 5a shows how the choice of the loss
coefficient α affects performance. We found α = 100 to be optimal for this task, and the results show
some robustness as α = 200 still achieves good performance. A lower coefficient α = 50 does not
prioritise disentanglement enough reducing generalisation performance. A higher coefficient reduces
performance because the agent is prioritising disentanglement too much over the optimal policy.

8

Published as a conference paper at ICLR 2023

0 1 2 3 4
Training timesteps 1e5

0

200

400

600

800

1000

M
ea

n
ev

al
 r

et
ur

ns

RAD
RADTEDcoef50
RADTEDcoef100

RADTEDcoef200
RADTEDcoef300
RADTEDcoef500

(a) Comparison of different TED
loss coefficients.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training timesteps 1e5

0

200

400

600

800

1000

M
ea

n
ev

al
 r

et
ur

ns

RADTED
RADTEDSameEp

RADTEDDiffEp
RAD

(b) TED using same episode or
different episode samples only.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training timesteps 1e5

0

200

400

600

800

1000

M
ea

n
ev

al
 r

et
ur

ns

RADTED
RAD
RADLinearClassifier

(c) Modified TED using a
standard linear classifier.

Figure 5: Ablations for RAD-TED on the cartpole swingup task with colour distractors, averaged over 5 seeds.

Is one type of non-temporal sample sufficient to improve generalisation? TED requires two
types of non-temporal samples: from the same episode, and from different episodes. We explored
two simplified versions of TED using non-temporal samples from the same episode only and non-
temporal samples from different episodes only. The results in Figure 5b show that using a single
type of non-temporal sample improves the generalisation of RAD to an extent, but RAD-TED further
improves the generalisation performance.

How important is the disentangled structure of the TED classifier? We compared TED to a
simplified version that uses a standard linear classifier instead of the disentangled structure of the TED
classifier. The results in Figure 5c show that while the linear classifier improves the generalisation
performance of RAD, it does not generalise as well as RAD-TED.

6 LIMITATIONS AND FUTURE WORK

Our approach has some limitations that could be addressed in future work. Guarantees of
disentanglement usually assume the factors of variation are independent and do not generalise
to correlated factors (Träuble et al., 2021). While we have shown that TED improves disentanglement
in practice, RL observations generated by a learning agent do not have independent factors of variation
in general. We leave further exploration of how to relax this assumption for future work.

We introduced two types of non-temporal samples to disentangle features controlled by the agent
(which form a non-stationary time-series) and episodic features (which form a stationary time-
series). While there exists a theoretical proof that disentanglement is possible with either non-
stationary (Hyvärinen & Morioka, 2016) or stationary (Hyvärinen & Morioka, 2017) factors, it is
still an open problem to identify an approach that guarantees disentanglement in a time-series that
contains both stationary and non-stationary factors.

Our approach introduces the TED loss coefficient α as a new hyperparameter which must be tuned to
the task. Future work could consider automatically tuning α based on the current disentanglement
score. Finally, our temporal samples are constructed from the current timestep t and next timestep
t+1 to allow TED to be easily be added to existing algorithms. Future work could explore extending
the horizon of the temporal sample to t+ k with k > 1.

7 CONCLUSION

In this work, we introduced TED, an auxiliary task for learning disentangled representations in
RL. Our approach is the first to consider an auxiliary task based on disentangled representation
learning for online RL. TED can be used with existing algorithms and does not require a decoder. We
demonstrated experimentally that TED improves generalisation of three different RL base algorithms
by adapting with continued learning to previously unseen values of environment variables that are
both task-relevant and irrelevant. We also adapted the notion of factors of variation to frame stacking
in RL and used a disentanglement metric to show that TED improves the disentanglement of learned
representations. TED is a step toward making RL algorithms more robust for real-world deployment
and life-long learning as the agent is able to quickly recover when presented with previously unseen
values of environment variables and continue learning while reducing catastrophic forgetting.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

This work was supported by the EPSRC Centre for Doctoral Training in Robotics and Autonomous
Systems, funded by the UK Engineering and Physical Sciences Research Council and the Edinburgh
Centre for Robotics. This work was also supported by the Academy of Finland Flagship programme:
Finnish Center for Artificial Intelligence FCAI. The authors wish to acknowledge the generous
computational resources provided by the Aalto Science-IT project and the CSC – IT Center for
Science, Finland.

REPRODUCIBILITY STATEMENT

A public and open-source implementation of TED can be found at github.com/uoe-agents/TED.
Full details of the architecture and hyperparameter settings for each of our experiments, including
implementation details of the disentanglement metric, can be found in Appendix B.

REFERENCES

Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. In International
Conference on Learning Representations, 2021.

Y. Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. In IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 35, pp.
1798–1828, 2013.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
and Alexander Lerchner. Understanding disentangling in β-vae. In 31st Conference on Neural
Information Processing Systems (NIPS 2017), 2017.

Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff, and
Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real world
experience. In 2019 International Conference on Robotics and Automation (ICRA), pp. 8973–8979.
IEEE, 2019.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In Proceedings of the 36th International Conference on Machine
Learning (ICML 2019), volume 97 of Proceedings of Machine Learning Research, pp. 1282–1289.
PMLR, 2019.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning (ICML 2020), volume 119 of Proceedings of Machine Learning Research, pp.
2048–2056. PMLR, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA: scalable
distributed deep-rl with importance weighted actor-learner architectures. In Proceedings of the
35th International Conference on Machine Learning (ICML 2018), volume 80 of Proceedings of
Machine Learning Research, pp. 1407–1416. PMLR, 2018.

Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. panda-gym: Open-
Source Goal-Conditioned Environments for Robotic Learning. 4th Robot Learning Workshop:
Self-Supervised and Lifelong Learning at NeurIPS, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Offpolicy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
35th International Conference on Machine Learning (ICML 2018), volume 80 of Proceedings of
Machine Learning Research, pp. 1861–1870. PMLR, 2018.

10

https://www.github.com/uoe-agents/TED

Published as a conference paper at ICLR 2023

Aleksi Hämäläinen, Karol Arndt, Ali Ghadirzadeh, and Ville Kyrki. Affordance learning for end-to-
end visuomotor robot control. In 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1781–1788. IEEE, 2019.

Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data
augmentation. In International Conference on Robotics and Automation, 2021.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep q-learning with convnets and vision
transformers under data augmentation. In Conference on Neural Information Processing Systems,
2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9726–9735, 2020.

Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick,
Shakir Mohamed, and Alexander Lerchner. β-vae: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017a.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel, Matthew
Botvinick, Charles Blundell, and Alexander Lerchner. DARLA: Improving zero-shot transfer in
reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning
(ICML 2017), volume 70 of Proceedings of Machine Learning Research, pp. 1480–1490. PMLR,
2017b.

Aapo Hyvärinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. In Advances in Neural Information Processing Systems (NIPS 2016), 2016.

Aapo Hyvärinen and Hiroshi Morioka. Nonlinear ica of temporally dependent stationary sources. In
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 54, 2017.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In Proceedings of the 35th International
Conference on Machine Learning (ICML 2018), volume 80 of Proceedings of Machine Learning
Research, pp. 2649–2658. PMLR, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of generalisation in
deep reinforcement learning. arXiv:2111.09794, 2022.

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G.Bellemare. On
the generalization of representations in reinforcement learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS22), 2022.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. In 34th Conference on Neural Information
Processing Systems (NeurIPS 2020), 2020a.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised
representations for reinforcement learning. In Proceedings of the 37th International Conference
on Machine Learning (ICML 2020), volume 119 of Proceedings of Machine Learning Research,
pp. 5639–5650. PMLR, 2020b.

Bonnie Li, Vincent François-Lavet, Thang Doan, and Joelle Pineau. Domain adversarial reinforcement
learning. arXiv:2102.07097, 2021.

11

Published as a conference paper at ICLR 2023

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of
disentangled representations. In Proceedings of the 36th International Conference on Machine
Learning (ICML 2019), Proceedings of Machine Learning Research. PMLR, 2019.

Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michaël
Tschannen. Weakly-supervised disentanglement without compromises. In Proceedings of the
37th International Conference on Machine Learning (ICML 2020), volume 119 of Proceedings of
Machine Learning Research, pp. 6348–6359. PMLR, 2020.

Kevin Sebastian Luck, Joseph Campbell, Michael Andrew Jansen, Daniel M. Aukes, and Heni
Ben Amor. From the lab to the desert: Fast prototyping and learning of robot locomotion. In
Robotics: Science and Systems, 2017.

Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, and R Devon
Hjelm. Deep reinforcement and infomax learning. In 34th Conference on Neural Information
Processing Systems (NeurIPS 2020), 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin,
R Devon Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-
efficient reinforcement learning. In 35th Conference on Neural Information Processing Systems
(NeurIPS 2021), 2021.

Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly supervised
disentanglement with guarantees. In International Conference on Learning Representations, 2020.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting control suite –
a challenging benchmark for reinforcement learning from pixels. arXiv:2101.02722, 2021.

Frederik Träuble, Elliot Creager, Niki Kilbertus, Anirudh Goyal, Francesco Locatello, Bernhard
Schölkopf, and Stefan Bauer. Is independence all you need? on the generalization of representations
learned from correlated data. In Proceedings of the 38 th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research. PMLR, 2021.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv:1807.03748, 2018.

Mel Vecerik, Jean-Baptiste Regli, Oleg Sushkov, David Barker, Rugile Pevceviciute, Thomas Rothörl,
Raia Hadsell, Lourdes Agapito, and Jonathan Scholz. S3k: Self-supervised semantic keypoints for
robotic manipulation via multi-view consistency. In Conference on Robot Learning, pp. 449–460.
PMLR, 2021.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations,
2021.

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin
Gal, and Doina Precup. Invariant causal prediction for block mdps. In Proceedings of the 37th
International Conference on Machine Learning (ICML 2020), volume 119 of Proceedings of
Machine Learning Research, pp. 11214–11224. PMLR, 2020.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning invariant
representations for reinforcement learning without reconstruction. In International Conference on
Learning Representations, 2021.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv: 1804.06893, 2018.

12

Published as a conference paper at ICLR 2023

A EXTENDED BACKGROUND

In this section, we provide details of the RL algorithms that we use as the base algorithms for TED
in our experiments. We use RAD (Laskin et al., 2020a) and SVEA (Hansen et al., 2021) for the
experiments in Section 5.1. Both base algorithms are extensions of the Soft Actor-Critic (SAC)
algorithm (Haarnoja et al., 2018). We use PPO (Schulman et al., 2017) as the base algorithm in
Section 5.2.

SAC. Soft-Actor Critic (SAC) is an off-policy, actor-critic RL algorithm that learns a policy π to
maximise the expected discounted future rewards and the entropy of the policy. SAC uses transitions
from the replay buffer D to train the critic Q : O ×A → R by minimising the loss:

LQ = E(ot,at,ot+1,rt)∼D

[(
Q(ot,at)− rt − γV̄ (ot+1))

)2]
(4)

The target value function V̄ is estimated by:

V̄ (ot+1) = Eat+1∼π

[
min
i=1,2

Q̄i(ot+1, π(ot+1))− αSAC log π(at+1|ot+1)

]
(5)

where Q̄ is the target Q network whose parameters are an exponential moving average of the
corresponding Q network parameters. We maintain two Q networks, Q1 and Q2, and use the
minimum of the two networks for the updates. The actor π is trained by minimising the loss:

Lπ = Eot∼D

[
Eat∼π

[
αSAC log(π(at|ot))− min

i=1,2
Q̄i(ot,at)

]]
(6)

RAD. RAD adds data augmentations to the observations before the SAC network updates. We use
image padding and random crop augmentations for the observations in each transition sampled from
the replay buffer (ot,ot+1) ∼ D.

SVEA. SVEA stabilises Q-learning using a combination of augmented and unaugmented images
with the updated loss:

LSVEA
Q = αSVEALQ(ot, at, ot+1) + βSVEALQ(o

aug
t , at, ot+1) (7)

The policy π is trained using only unaugmented images, using the standard loss in Equation 6.

PPO. Proximal Policy Optimisation (PPO) is an on-policy, actor-critic RL algorithm for continuous
or discrete action spaces. We use a discrete policy πψ for the Procgen environments. PPO learns a
policy by minimising a clipped loss over minibatches of transitions:

LCLIP
π = −E(ot,at,ot+1,rt)∼π [min(ρtAt, clip(ρt(ψ), 1− ϵ1 + ϵ)At)] (8)

where ρt(ψ) is the ratio of the action probability under the new and old policies, and At is the action
advantage given by: At = Qπ(ot, at)− V π(ot).

B IMPLEMENTATION DETAILS

In this section, we provide the implementation details for TED. Our codebase is built on top of
the publicly released DrQ PyTorch implementation by Yarats et al. (2021), and uses the official
implementation of SVEA (Hansen et al., 2021). We adapt the codebase to implement the base RL
algorithms as well as the TED auxiliary task. A public and open-source implementation of TED is
available at github.com/uoe-agents/TED.

B.1 RAD AND SVEA IMPLEMENTATION DETAILS

Encoder architecture. We use the same encoder architecture as Yarats et al. (2021). The encoder
weights are shared between the actor π and critic Q. For the RAD experiments, the encoder consists
of 4 convolutional layers following the original RAD implementation (Laskin et al., 2020a). For
SVEA experiments, we use 11 convolution layers following the original SVEA paper (Hansen et al.,

13

https://www.github.com/uoe-agents/TED

Published as a conference paper at ICLR 2023

2021). Baselines follow the same encoder size as the base RL algorithm for TED in each experiment.
Each convolutional layer has a 3× 3 kernel size and 32 channels. The first layer has a stride of 2, all
other layers have a stride of 1. There is a ReLU activation between each convolutional layer. The
convolutional layers are followed by a trunk network with a linear layer, layer normalisation, and
finally a tanh activation.

Both RAD and SVEA use the critic loss LQ to update the encoder parameters. So our implementation
of TED requires both the critic loss LQ and TED loss LTED to update the encoder together. In practice,
this can be done by adding the two losses LENC = LQ + LTED and backpropagating the encoder loss
LENC to update the encoder parameters.

Actor and critic architecture. The actor π and critic Q networks are both 2-layer MLPs with a
hidden dimension of 1024. We apply ReLU activations after each layer except the last layer.

TED architecture. The TED classifier is implemented with the following parameters: k1, k2, k̄,
b, and b̄ are vectors of the same size as the latent representation; and c is a scalar. The output of the
classifier is defined in Equation 1.

Hyperparameters. Table 2 shows the value of the TED loss coefficient α for each task. All other
hyperparameters are provided in Table 3. Unless specified otherwise, we use the same hyperparameter
settings for both RAD-TED and SVEA-TED algorithms.

Environment Base algorithm Value of α
cartpole swingup RAD 100
cartpole swingup SVEA 0.5

finger spin RAD 25
walker walk SVEA 1
panda reach RAD 200
panda reach SVEA 0.5

Table 2: TED loss coefficient α.

Hyperparameter name Value
Replay buffer capacity 100000

Initial steps 1000
Stacked frames 3
Action repeat 2 for finger spin, 4 otherwise

Batch size 128
Discount factor 0.99

Optimizer Adam
Learning rate (actor, critic and encoder) 1e-3

Target soft-update rate τ 0.01
Actor update frequency 2
Actor log stddev bounds [−10, 2]

Latent representation dimension 50 for RAD, 100 for SVEA
Image size (84, 84)
Image pad 4

Initial temperature 0.1

Table 3: Hyperparameter values for both RAD-TED and SVEA-TED.

Disentanglement metric. To calculate the disentanglement metric described in Section 5.1, we
collect a batch of 10,000 samples. To create each sample, we use 32 pairs of observations with the
same fixed factor to evaluate Equation 3 with B = 32. The batch of samples is split into 8,000
training samples to train the classifier, and 2,000 testing samples to calculate the accuracy of the
classifier as the disentanglement score. We use a Scikit-learn logistic regression classifier with L1
regularisation and the saga solver.

14

Published as a conference paper at ICLR 2023

B.2 PPO IMPLEMENTATION DETAILS

We follow the PPO architecture and hyperparameters used in the Procgen benchmark (Cobbe et al.,
2020). The encoder uses the IMPALA (Espeholt et al., 2018) architecture. PPO is augmented with
TED by adding the loss terms L = LPPO + LTED and backpropagating the total loss L with a shared
optimiser. The hyperparameters are shown in Table 4.

Hyperparameter name Value
Image size (64, 64)

Discount factor γ 0.999
GAE λ 0.95

Timesteps per rollout 250
Epochs per rollout 3

Minibatches per rollout 8
Entropy bonus 0.01
PPO clip range 0.2
Learning rate 5e-4

Workers 1
Environments per worker 64

LSTM? No
Frame stack? No

TED coefficient α 1 for coinrun, 0.25 for jumper

Table 4: Hyperparameter values for PPO-TED

C ENVIRONMENT IMAGES

In Figure 6, we provide images of example observations for each of the DMC and Panda Gym training
and testing environments used in our experiments to visualise the generalisation challenge.

In Figure 7, we provide images of example observations for each of the Procgen environments used
in our experiments.

15

Published as a conference paper at ICLR 2023

(a) cartpole swingup

(b) finger spin

(c) walker walk

(d) panda reach

Figure 6: Example observations for each task with colour distractors used in our experiments (before image
pre-processing to reduce the size). The images on the left are examples from the training environment, and the
images on the right are examples from the testing environment.

(a) coinrun

(b) jumper

Figure 7: Example observations for each Procgen environment used in our experiments. The images on the
left are examples from the training environment, and the images on the right are examples from the testing
environment.

16

	Introduction
	Related Work
	Generalisation in Image-based Reinforcement Learning
	Disentangled Representations

	Preliminaries
	Temporal Disentanglement
	Architecture Overview
	Temporal Disentanglement Classifier

	Experimental Results
	Generalisation to Task-Irrelevant Variables
	Generalisation to both Task-Relevant and Irrelevant Variables
	Ablation Studies

	Limitations and Future Work
	Conclusion
	Extended Background
	Implementation Details
	RAD and SVEA Implementation Details
	PPO Implementation Details

	Environment Images

