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Abstract

This work introduces a new method designed for Bayesian deep learning called
scalable Bayesian Monte Carlo (SBMC). The method is comprised of a model and
an algorithm. The model interpolates between a point estimator and the posterior.
The algorithm is a parallel implementation of sequential Monte Carlo sampler
(SMC∥) or Markov chain Monte Carlo (MCMC∥). We collectively refer to these
consistent (asymptotically unbiased) algorithms as Bayesian Monte Carlo (BMC),
and any such algorithm can be used in our SBMC method. The utility of the method
is demonstrated on practical examples: MNIST, CIFAR, IMDb. A systematic
numerical study reveals that for the same wall-clock time as state-of-the-art (SOTA)
methods like deep ensembles (DE), SBMC achieves comparable or better accuracy
and substantially improved uncertainty quantification (UQ)–in particular, epistemic
UQ. This is demonstrated on the downstream task of estimating the confidence in
predictions, which can be used for reliability assessment or abstention decisions.
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1 Introduction

Uncertainty quantification (UQ) in deep learning is critical for safe and reliable deployment, yet
remains a core challenge. The Bayesian formulation provides UQ in addition to Bayes optimal
accuracy, by averaging realizations from the posterior distribution, rather than relying on a single
point estimator. Fully Bayesian approaches like consistent Markov chain Monte Carlo (MCMC)
and sequential Monte Carlo (SMC) offer asymptotically unbiased posterior estimates, but at the cost
of prohibitive compute time compared to simple point estimators like the maximum a posteriori
(MAP). Bayesian deep learning (BDL) often rely on scalable approximations such as Monte Carlo
Dropout [Gal and Ghahramani, 2016], deep ensemble (DE) [Lakshminarayanan et al., 2017], Laplace
approximation [Daxberger et al., 2021, Eschenhagen et al., 2021], Stochastic Weight Averaging (SWA)
[Izmailov et al., 2018], SWA-Gaussian (SWAG) [Maddox et al., 2019, Wilson and Izmailov, 2020],
which are fast and provide strong empirical performance, but lack formal consistency guarantees.
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Figure 1: Left panels: IMDb sentiment classification. (a) SBMC
provides a good balance of accuracy and UQ (quantified by epis-
temic entropy on OOD data), for the same cost as deep ensembles
(every method runs for 25 epochs except the Gold-Standard (GS)
BMC solution, which runs for 8000 epochs). (c) Standard imple-
mentation of HMC and HMC∥. BMC methods typically deliver
high accuracy for high cost (GS) and low accuracy for low cost.
Right panels: SBMC approximate models, on a simple toy exam-
ple. (b) The original posterior (s = 1) and the approximations for
a range of s. (d) The autocorrelation function (ACF: correlation
between samples separated by ‘Lag’ steps – this and integrated
autocorrelation time (IACT) are defined in Appendix E.2) of SBMC
for very long NUTS Hoffman et al. [2014] chains for a few choices
of s. As s decreases the target becomes simpler and hence easier to
explore, but the bias (with respect to the posterior) increases.

Here we present a new approxi-
mate inference method called Scal-
able Bayesian Monte Carlo (SBMC),
which bridges the gap between fast
but heuristic methods and principled
yet expensive samplers. It is a gen-
eral method comprised of an approxi-
mate model and algorithm to simulate
from the model. Our key insight is the
model approximation πs which fea-
tures a scalar interpolation parameter
s ∈ [0, 1] that allows tuning between
the MAP estimator (s = 0) and the
full Bayesian posterior (s = 1). For
smaller s the target is easier to sim-
ulate from, albeit with a larger bias
with respect to the posterior. See the
right panels of Figure 1. By simulat-
ing from this approximate target with
parallel implementations of BMC al-
gorithms, which we will denote by
S-SMC∥ and S-MCMC∥, SBMC de-
livers strong performance in accuracy
and UQ at a comparable cost to SOTA
methods like DE. The prefix “S-" is for
“scalable”, and the scalability comes
from the model approximation in tan-
dem with the parallelism, denoted by
the subscript ∥. Without the model ap-
proximation, the required simulation
time is prohibitive.

Given data D, the Bayesian posterior distribution over θ ∈ Θ ⊆ Rd is given by

π(θ) ∝ L(θ)π0(θ) , (1)

where L(θ) := L(θ;D) is the likelihood of the data D and π0(θ) is the prior. The Bayes estimator of
a quantity of interest φ : Θ → R is E[φ|D] =

∫
Θ
φ(θ)π(θ)dθ. It minimizes the appropriate Bayes

risk at the population level and as such is Bayes optimal [MacKay, 1992, Neal, 2012, Andrieu et al.,
2003, Bishop, 2006].

In general the posterior (target) distribution can only be evaluated up-to a constant of proportionality,
and the available consistent methods for inference (learning) are of Monte Carlo type: notably Markov
chain Monte Carlo (MCMC) [Metropolis et al., 1953, Hastings, 1970, Duane et al., 1987, Gelfand
and Smith, 1990, Geyer, 1992, Robert et al., 1999, Roberts and Tweedie, 1996] and sequential Monte
Carlo (SMC) samplers [Jarzynski, 1997, Berzuini and Gilks, 2001, Del Moral et al., 2006, Dai et al.,

3Autocorrelation function (ACF) and integrated autocorrelation time (IACT) are defined in Appendix E.2.
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2022, Chopin et al., 2020]. The past several decades have seen enormous progress in methodology
as well as practical applications [Galison et al., 2022, Mohan and Scaife, 2024], however standard
implementations of these algorithms are still too expensive for practical BDL, and so BMC algorithms
are typically used only as a benchmark for cheaper approximations [Izmailov et al., 2021]. See
e.g. [Angelino et al., 2016, Papamarkou et al., 2024] for recent reviews and further references. The
present work aims to address this computational intractability by (i) targeting an approximation of
(1), and (ii) distributing the BMC workload across many workers in parallel. We will show that these
two things together provide a practical and scalable method. The focus of the present work is on
demonstrating the value of the SBMC method itself, independently of the particular BMC algorithm
used, and so we mostly focus on standard implementations of HMC and SMC. But one of the virtues
of SBMC is its extensibility: stochastic gradient MCMC methods Welling and Teh [2011], Chen et al.
[2014] and/or other data-parallel techniques Angelino et al. [2016], Maclaurin and Adams [2014],
Rendell et al. [2020] and more sophisticated adaptive methods Hoffman et al. [2021] can be swapped
in later for additional gains.

The contributions of the present work are concisely summarized as follows:

• New SBMC method (e.g. S-SMC∥ and S-MCMC∥) which allows the practitioner to interpo-
late between the MAP (or another point) estimator for s = 0 (0 additional simulation time)
and the full posterior for s = 1 (long simulation time), thus balancing their UQ demands
against their budget.

• A thorough systematic empirical evaluation of SBMC on several benchmarks demonstrates
that it achieves excellent performance on both accuracy and UQ at a cost comparable to
DE, where traditional BMC methods fail severely, demonstrating its strong scalability and
robustness. See the top left panel of Figure 1.

• This benefit is illustrated on the downstream task of estimating prediction confidence, which
can be used to improve safety and reliability. To that end, a meta-classifier is built using
seven features of the SBMC posterior.

The paper is organized as follows. In Section 2, we introduce the SBMC method. In Section 3 we
discuss its UQ abilities and the downstream task of output confidence prediction, as motivation, and
present the main results. Section 4 discusses related literature. Section 5 presents the conclusion and
additional discussion.

2 Scalable Bayesian Monte Carlo (SBMC) method

Algorithm 1 SBMC method

Inputs: L, π0, s,N, P .
Compute θMAP, and create π0, π as in (2),(3).
for p = 1 to P (in parallel) do

Run Algorithm 2 (S-SMC) or 3 (S-MCMC).
Output: {θi,p}Ni=1 and ZN,p.

end for

Build φ̂SBMC =
∑P

p=1 ZN,p 1
N

∑N
i=1 φ(θi,p)∑P

p=1 ZN,p .

We define time cost as the required simulation
time per chain/particle, and we will measure
this by epochs, i.e. likelihood plus gradient eval-
uations, as a hardware-agnostic proxy for wall-
clock time. Parallel implementations of consis-
tent BMC algorithms like SMC∥ and HMC∥ im-
prove time cost with near linear speed-up [Liang
et al., 2025], but each process still needs to run
for a long time, as seen in Figure 1 (c). This sec-
tion introduces the model and algorithm choices
that define the SBMC method in Algorithm 1,
which delivers improved performance on met-
rics of interest for a comparable time cost to
deep ensembles.

The model. Assume the prior is π0 = N (0, V ) for simplicity and define the MAP estimator as

θMAP = argmaxθL(θ;D)π0(θ) ,

where L is the likelihood defined in equation (1). For a fixed tuning parameter s ∈ (0, 1), we define
0 ≺ Σ(s) = Σ(s)T ∈ Rd×d and α(s) ∈ [0, 1], such that Σ(0) = 0 and Σ(1) = V , and α(0) = 1 and
α(1) = 0. Define the new prior as

π0(θ) = N (θ;α(s)θMAP,Σ(s)) . (2)
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The SBMC method then targets the following distribution

π(θ) ∝ L(θ)π0(θ) , (3)

which we will refer to as the anchored posterior. We will refer to θMAP as the anchor.

For s → 0, we recover a Dirac measure concentrated on the MAP estimator, which means no
sampling is required. Conversely, as s → 1, we recover the original posterior. Hence s is a scalar
interpolation parameter which allows us to tune between these limits. For simplicity we will typically
consider only the standard isotropic case V = vId and let α(s) = 1{s< 1

2}
and Σ = svId.

We show that this approximate model balances the complementary strengths of the two approaches
for small s, and enables BMC methods to deliver scalable gains over alternatives like deep ensembles
at a comparable cost. The method is relatively insensitive to the exact value of s and we recommend
a default value of s = 0.1. We will use the notation S-SMC∥ and S-MCMC∥ to distinguish the SBMC
method from standard implementations of the algorithms targeting (1). For example, S-SMC∥ means
the SMC∥ algorithm is used to sample from (3).

Algorithm 2 S-SMC sampler

Inputs: L, π0, N .
Init. θi0 ∼ π0 for i = 1, . . . , N . ZN = 1.
for j = 1 to J (in serial) do

(Optional) Select λj s.t. ESS= ρN, ρ < 1.
for i = 1 to N (in parallel) do

Define wi
j ∝ w̃i

j ≡ L(θij−1)
λj−λj−1 .

Selection: Iij ∼ {w1
j , . . . , w

N
j }.

Mutation: θij ∼ Mj(θ
Ii
j

j−1, ·).
end for
Store ZN∗ = 1

N

∑N
i=1 w̃

i
j .

end for
Outputs: {θi = θiJ}Ni=1 and ZN .

The algorithm can be any BMC method. In the
present work we will focus on SMC sampler and
MCMC, but any alternative is admissible. For
example, SG-MCMC or other methods which
allow mini-batch gradients may be quite conve-
nient for managing the memory requirements of
very large problems.

SMC sampler. Define a sequence of interme-
diate targets πj(θ) ∝ L(θ)λjπ0(θ) , according
to a tempering schedule 0 = λ0, . . . , λJ = 1,
which will be chosen adaptively according to the
effective sample size (ESS), as described in D.1
in the Appendix. The SMC sampler [Del Moral,
2004] alternates between selection by impor-
tance re-sampling, and mutation according to
an appropriate intermediate MCMC transition
kernel Mj , such that (πjMj)(dθ) = πj(dθ)

[Geyer, 1992]. This operation must sufficiently de-correlate the samples, and as such we typically
define the MCMC kernels Mj by several steps of some basic MCMC kernel, leading to Lj epochs
(likelihood/gradient evaluations). We will employ two standard MCMC kernels: preconditioned
Crank-Nicolson (pCN) [Bernardo et al., 1998, Cotter et al., 2013] and Hamiltonian Monte Carlo
(HMC) [Duane et al., 1987, Neal et al., 2011]. In the latter case, there are also several leapfrog steps
for each HMC step contributing to Lj .

For a quantity of interest φ : Θ → R, the S-SMC estimator from Algorithm 2 is given by

πN (φ) :=
1

N

N∑
i=1

φ(θi)
N→∞−→ Eπ[φ] ≈ Eπ[φ] = E[φ | D] . (4)

Algorithm 3 S-MCMC

Inputs: L, π0, N .
θi0 ∼ π0 for i = 1, ..., N .
for i = 1 to N (in parallel) do

for j = 1 to J (in serial) do
Draw θij ∼ MJ(θ

i
j−1, ·).

end for
end for
Outputs: {θiJ}Ni=1 and ZN ≡ 1.

S-SMC∥ refers to P parallel executions of Algorithm 2,
each with N particles, leading to a P times lower com-
munication and memory overhead than a single S-SMC
sampler with NP samples. This simplification is crucial
for massive problems such as BDL, which require dis-
tributed architectures. Synchronous Single Instruction,
Multiple Data (SIMD) resources can be used for the N
communicating particles (and model- and data-parallel
likelihood calculations), while all communication between
the P processes is eliminated. The S-SMC∥ ratio estima-
tor is given as follows, for p i.i.d. realizations πN,p(φ) of
(4)

φ̂S-SMC∥ =

P∑
p=1

ωpπ
N,p(φ) , ωp =

ZN,p∑P
p′=1 Z

N,p′
. (5)
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S-MCMC∥ refers to P parallel executions of Algorithm 3, which already features N parallel short
chains free from any communication. The purpose of formulating MCMC in this way is to match
SMC, which itself features N parallel chains that need to communicate intermittently at the selection
stage. The estimator is built exactly as (5), with {θi,p = θi,pJ }Ni=1 in (4) and ZN,p = 1.

3 Motivation and Results

UQ is a crucial pain-point for neural networks, and BDL is one of the leading contenders to deliver it.
Our primary UQ metric will be epistemic entropy, which is the difference between total and aleatoric
entropy, defined as follows [Hüllermeier and Waegeman, 2021, Depeweg et al., 2018, Shaker and
Hüllermeier, 2020, Krause and Hübotter, 2025]

Hep(x) = −
∑
y∈Y

E[p(y|x, θ)|D] logE[p(y|x, θ)|D]︸ ︷︷ ︸
Htot(x)

−E
[
−

∑
y∈Y

p(y|x, θ) log(p(y|x, θ))|D
]

︸ ︷︷ ︸
Hal(x)

. (6)

Aleatoric uncertainty is irreducible and can be thought of as label error (people may sometimes
disagree on the label of a given hand-written digit), whereas epistemic entropy quantifies uncertainty
which can be reduced with more data. Our focus is the latter, as it is only captured by Bayesian
methods. It can be viewed as the mutual information between parameter and predictive posterior
random variables for input x, and as such is 0 by definition for point estimators that yield deterministic
predictive estimators.

Table 1: Comparison of methods on MNIST7 test data. SBMC methods are bold. For metrics, the
best gold-standard (GS) value is bold, along with others within 1% for accuracy and NLL, and 50%
for entropies (entropy is harder to estimate, and also high precision is less critical). SMC∥, HMC∥,
and SGHMC∥ are highlighted in red as they are particularly bad for these very short chains, and this
is precisely the problem the approximate methods like SBMC address.

Time Cost Total Cost Hep Hep

Method P (epochs) ↓ (epochs) ↓ Accuracy ↑ NLL ↓ correct incorrect Hep OOD

MAP 1 160 160 92.3±0.366 0.253±0.012 0 0 0
SWA 1 160 160 92.3±0.387 0.27±0.017 0 0 0
MC Drop 1 160 160 93.9±0.626 0.214±0.021 0.049±0.007 0.269±0.008 0.267±0.01
Laplace 1 160 160 88.2±0.235 0.539±0.022 0.504±0.036 0.901±0.038 1.22±0.033
Deep Ens 1 176 1760 92.4±0.150 0.245±0.004 0.011±0.000 0.057±0.001 0.123±0.011
Deep Ens 8 178 14,240 92.5±0.059 0.239±0.001 0.011±0.000 0.059±0.001 0.134±0.004
SGHMC 1 160 1600 87.7±0.742 0.974±0.05 0.652±0.031 0.725±0.031 0.883±0.036
S-SGHMC 1 160 + 160 1760 90.3±0.758 0.409±0.014 0.342±0.015 0.687±0.027 0.836±0.039
S-SGHMC∥ 8 160 + 160 12,960 92.3±0.160 0.388±0.001 0.434±0.005 0.782±0.007 0.965±0.003
SMC 1 173 1730 79.7±2.71 0.623±0.091 0.013±0.002 0.033±0.009 0.045±0.011
S-SMC 1 170 + 160 1860 92.2±0.371 0.267±0.014 0.026±0.003 0.129±0.014 0.202±0.028
S-SMC∥ 8 178 + 160 14,400 93.3±0.160 0.226±0.004 0.059±0.001 0.272±0.003 0.378±0.03
HMC 1 160 1600 78.4±2.38 1.27±0.085 0.303±0.025 0.325±0.026 0.594±0.021
S-HMC 1 160 + 160 1760 93.0±0.166 0.232±0.002 0.056±0.001 0.264±0.002 0.463±0.009
S-HMC∥ 8 160 + 160 12,960 93.1±0.085 0.231±0.002 0.070±0.000 0.299±0.002 0.531±0.011

HMC (GS) 1 20,000 20,000 93.6±0.415 0.222±0.009 0.096±0.004 0.410±0.013 0.768±0.084
HMC (GS) 1 200,000 200,000 94.8±0.211 0.194±0.004 0.120±0.004 0.493±0.008 1.04±0.122

Figure 2: Average total and epistemic entropy
over four OOD classes and correct and incor-
rect predictions ID for MNIST7 (P = 1).

To illustrate the properties of SBMC, we conduct an
experiment. The dataset is a subset of 1200 MNIST
[LeCun et al., 2010] data trained on digits 0, . . . , 7
(MNIST7) with 8, 9 held out as (similar but) out-of-
domain (OOD). White noise inputs and randomly
selected in-domain (ID) digits corrupted with white
noise are considered as far OOD classes. The archi-
tecture is described in Appendix E.3.1. The prior
variance is v = 0.1. The average total and epistemic
entropy for various categories of OOD test data are
presented in Figure 2 (per-digit result is given in Ap-

pendix F.1). The average epistemic entropy over the test data, split by correct and incorrect predictions,

5



are presented in Figure 2. This quantity is clearly predictive of misclassifications, and this downstream
task will be revisited below.

In Table 1 we compare several SOTA competitors, including the MAP (computed with SGD and early
stopping on validation data), DE, MC Dropout, Laplace approximation, and SWA, with (S-)HMC∥
(S-)SMC∥, and (S-)SGHMC∥ all with approximately equal time cost of ≈ 170 epochs, according to
SGD early stopping. These can be further parallelized with model- and data-parallel techniques, but
we do not consider that here. Note that SBMC methods require the MAP estimator, so their total time
cost is roughly double. A single HMC run using 2e4− 2e5 epochs is also included as a GS baseline.
Convergence for all methods is verified by running 5 chains with dispersed initial conditions and
measuring the standard error. Ensemble methods use P independent ensembles of N = 10 particles,
and all particles are used for estimating posterior expectations.

The results show that when directly targeting (1), SMC∥, HMC∥, and SGHMC∥, degrade rapidly
away from convergence, to the point of catastrophic failure in first order metrics at this cost level.
However, their UQ performance is still adequate–for example, some of the HMC∥ and SGHMC∥
Hep estimators are within our tolerance of 50% of the GS solution (in bold). The MAP and DE
quickly deliver good accuracy, but do not accurately estimate Hep. These failure modes are perfectly
complementary. To achieve the “best of both worlds”, SBMC anchors to the MAP estimator to
preserve accuracy, and then uses an ensemble of short parallel runs of BMC to augment that with
uncertainty. MC Dropout performs particularly well and is notably the only non-BMC method which
achieves an Hep estimator within our tolerance of 50% of the GS solution (in bold), and for a low
total cost.

Figure 3: Accuracy, UQ, and confidence meta-classifier ab-
stention (Abst) metrics (re-normalized so 1 is best) for IMDb
(left) and CIFAR10 (right).

For the next experiments, we look
at the IMDb sentiment classification
dataset [Maas et al., 2011] and the CI-
FAR dataset [Krizhevsky et al., 2009].
Results for these cases are compara-
ble and summarized in Figure 3 and
Appendix F, along with further fig-
ures and tables. Further details on all
model architectures are given in Ap-
pendix E.3. The next step is to apply
the approach to LLMs– preliminary
simulation results for next-token pre-
diction with GPT-2 are given in Ap-
pendix A.1.

Table 2: Confidence meta-classifier results (optimal
F1 decision threshold, MNIST7).

P Method Precision Recall F1 AUC-ROC

– MAP 0.707 0.898 0.791 0.828
– DE 0.734 0.897 0.807 0.855
1 S-SMC∥ 0.701 0.890 0.783 0.824
8 S-SMC∥ 0.753 0.915 0.826 0.884
1 S-HMC∥ 0.750 0.906 0.820 0.885
8 S-HMC∥ 0.752 0.913 0.825 0.892

Out-of-domain inference. One clear appli-
cation of UQ is inferring confidence in model
predictions, i.e. whether the output is reliable
or “hallucinated", to borrow the vernacular
from modern LLMs [Ji et al., 2023, Guo et al.,
2025] This information can be used to decide
whether the model should abstain from re-
sponding or provided to the user so they can
make their own decision about whether to
trust the response. To that end, we propose

to build a confidence meta-classifier of incorrect/OOD data, as follows. First, we fit our model to
1000 training data and 200 validation data for early stop procedure in MAP and DE methods/prior
from MNIST7, and label incorrect predictions as z = 1 and correct predictions as z = 0. Then,
we generate 2000 additional OOD meta-training data as described above, all of which get label
z = 1. Let pmax(x, θ) := maxy p(y|x, θ) = p(y∗|x, θ) denote the maximum probability, and de-
note the difference between the top two as ∆max(x, θ) := pmax(x, θ)−maxy′∈Y\y∗ p(y|x, θ) . Let
pmax(x | D) = maxy E[p(y|x, θ) | D]. Consider as features:

pmax(x | D), Htotal(x),E[pmax(x, θ)|D],E[∆max(x, θ)|D], Hep(x),Var[pmax(x, θ)|D],Var[∆max(x, θ)|D] .

Note that the last 3 are identically 0 for the MAP estimator, as they capture the epistemic uncertainty
in the data. We build and standardize these features for each of our 4 models–MAP, DE, S-SMC∥,
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S-HMC∥– and train the binary meta-classifier x 7→ z, using a single hidden layer MLP with 50
neurons.

Figure 4: 2-level estimator (using
confidence meta-classifier for ab-
stention) accuracy on IMDb.

The results on 2000 ID test data plus 2000 newly-generated
OOD test data are presented in Table 2. Accuracy is the ratio
of true positives (not correct) and true negatives (correct) to
the total testing dataset size. All estimators do surprisingly
well, and our SBMC methods are the best. AUC-ROC is per-
haps the most useful metric, as it measures the ability of the
score pincorrect(x) to rank in-correctness of the subsequent infer-
ence: the probability that a randomly selected incorrect example
from the test set, xincorrect ∈ Dincorrect will have a higher score
than a randomly selected correct example, xcorrect ∈ Dcorrect:
P[pincorrect(xincorrect) > pincorrect(xcorrect)].

Figure 4 shows the accuracy of a 2-level estimator over thresh-
olds for IMDb. See Appendix G for further details. First we
infer with the meta-classifier whether the model inference will be correct, under the assumption
that OOD inputs implies incorrect inference. If yes, we infer with the original model. If no, we
abstain from inference (abstentions are counted as correct decisions when the original model would
be incorrect). Figure 3 presents summary metrics for IMDb and CIFAR10.

Figure 5: Dual axis Accuracy and Hep(OOD) ab-
lations over s in column 1 and P in column 2 for
MNIST7 (row 1), IMDb (row 2), and CIFAR10
(row 3).

Ablations are considered by varying s and P .
Small s improves mixing, as shown in Figure
1 (d), but also introduces bias because π ̸= π
(see (3), (1)). In this short-chain setting, smaller
s typically increases accuracy and decreases
Hep(OOD). Both algorithms improve with P ,
but it is particularly notable that SMC∥ improves
much more. Comprehensive results are given in
Appendix H.

Tuning. Firstly, we would like to empha-
size that the results are fairly insensitive to
s ∈ [0.05, 0.3], and we recommend selecting
s = 0.1 as a good default choice. It is worth
noting that v is an important hyper-parameter
a priori, at the level of the original Bayesian
model. For example, changing from v = 1/40
to v = 0.1 for s = 0.1 changes (accuracy, NLL)
from (0.867, 0.365) to (0.889, 0.271). 4 If de-
sired, one should first select v optimally for the
MAP/DE, and then select s. Both can be done
with CV. See Section 4 for further discussion.

4 Discussion of Related Work

There has been a growing amount of work recently in many-short-chain MCMC, e.g. [Wilkinson,
2006, Chen et al., 2016, Sommer et al., 2024, Margossian et al., 2024, Nguyen et al., 2025, Sommer
et al., 2025, Duffield et al., 2024]. The island-SMC method Vergé et al. [2015] considers interact-
ing SMCs, which is necessary for consistency unless the estimator is carefully constructed with
appropriate weights Whiteley et al. [2016], Dai et al. [2022]. See e.g. Liang et al. [2025] for further
discussion.

The idea of MAP-anchored priors is intuitive, and closely related to a number of successful methods.
In addition to augmenting data with adversarial perturbations of the inputs, as proposed in the original
DE paper, another intuitive idea to promote spread and generalization is to randomize the model itself.
Randomized maximum likelihood (RML) approaches do this by anchoring each ensemble member to
random draws from the prior and/or data [Gu and Oliver, 2007, Bardsley et al., 2014, Pearce et al.,

4Prior tuning is relevant for all methods, and is not particular to SBMC.
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Figure 6: Left: SBMC for various s. Middle: Cold posterior for various T . Right: Autocorrelation
functions using NUTS sampler, showing that SBMC improves mixing, while CP hinders mixing.

2020]. SBMC can easily bootstrap DE or RML ideas by initializing each process from a different
MAP estimator. It is worth noting that MC Dropout Gal and Ghahramani [2016] could also do this.

The method most closely related to our work is Paulin et al. [2025], who anchor to the SWA estimator
by adding a Gaussian factor, and simulate an ensemble of ULAs. They also observed an extreme
speedup in mixing time. We experimented with a similar formulation with a factor of N (θMAP, sId),
s ∈ (0,∞), which also interpolates between the posterior and the MAP estimator and is arguably
more elegant and theoretically appealing. But, the effective prior centers on v

s+v θMAP (or SWA), and
in practice we found that this version did not perform as well as centering the prior on θMAP itself.

Cold posteriors [Wenzel et al., 2020] also interpolate between δθMAP
and the posterior via annealing

(or ‘tempering’) the posterior (1) with an inverse temperature T < 1, as π̃T (θ) ∝ L(θ;D)1/Tπ
1/T
0 .

This sharpens the posterior, as shown in Figure 6 (middle) which typically makes the target distribu-
tion more difficult to simulate and slows down MCMC mixing, as shown in Figure 6 (right).

The SBMC likelihood is effectively flattened relative to the Gaussian prior by the factor s, while the
missing information is represented in the sharper prior, as shown in Figure 6 (left). In practice, this
means that the nonlinear and irregular component of the gradients has a smaller relative magnitude,
the total Hessian of the posterior is better conditioned, and the chains mix faster. See Figure 6 (right)
for an illustration of the mixing behavior, and Appendix C for further discussion, including a sketch
of the mathematics. See Appendix B for discussion of other related works.

5 Conclusion

The SBMC method has been introduced and shown to be within reach of modern practical applications.
It comprises a judicious model which uses a scalar parameter s to interpolate between δθMAP

(s = 0)
and the posterior (s = 1), and is hence able to balance the benefits of each and achieve strong
performance in accuracy and UQ metrics at a cost comparable to SOTA approaches like DE. Both
MCMC∥ and SMC∥ are attractive algorithm options, which are consistent for the given target model.
Therefore we have a mechanism for controlling the approximation between two reasonable choices if
convergence is ensured. However, since the method no longer targets the posterior for any s < 1,
we would recommend adopting a heuristic approach to convergence as with other SOTA methods,
rather than chasing more rigorous convergence guarantees. Any BMC algorithm can be used, and
SG-MCMC methods are particularly attractive since they are amenable to mini-batching and close to
SGD, for which ample deep learning tooling is readily available. The next step is to apply the method
to modern generative AI models [Guo et al., 2025, Agarwal et al., 2025, Bai et al., 2025, Huang et al.,
2025] for controlling hallucinations and improving robustness and reliability. See Appendix A.1 for
preliminary results on next-token prediction with GPT-2 and further discussion.
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A Future Directions

The most obvious next step is UQ for modern large language models (LLMs) [Guo et al., 2025],
where robustness and hallucination detection are crucial pain points [Vashurin et al., 2025]. It has
been recently shown that high-quality entropy metrics are valuable for identifying untrustworthy
outputs there [Gustafsson et al., 2020, Arteaga et al., 2024, Farquhar et al., 2024]. In the context
of LLMs, where the training itself is extremely computationally expensive, it becomes particularly
important to have add-on plug-in type methods that can be applied post-training, such as [Qiu et al.,
2019, Farquhar et al., 2024, Qiu and Miikkulainen, 2024]. But those methods are constrained to
the uncertainty already encoded in the point estimator of model weights, which may already be
under-estimated. The work [Arteaga et al., 2024] has shown that batch ensembles of fine-tuned LLMs
can also work well for UQ hallucination detection, and also that epistemic uncertainty provides
valuable information for that task. Based on existing benchmarks against deep ensembles, we believe
our SBMC(s) approach will perform even better. Furthermore, an even simpler and cheaper version
is to learn the last layer only, so all the data can be pre-processed once and for all by the frozen
pre-trained LLM parameters, and then we simply run the last layer through SBMC. This can be
applied at the pre-training or post-training stage, although the value of the method on downstream
tasks will be most clear at post-training, while there would be some necessary design choices for how
to leverage a pre-trained ensemble, instead of a point estimator, during post-training.

A.1 GPT-2

Here we present some preliminary results on GPT-2, on consumer hardware (an old MacBook Pro
with an M2 processor and 16GB RAM). These are early results, just to further emphasize scalability
and potential utility in hallucination detection. The starting point is the pre-trained GPT-2 model
fine-tuned on Shakespeare data 5. We then adopt a LoRA approach [Hu et al., 2022] to fine-tune an
additive rank 50 adjustment with ≈ 2e5 parameters at the last layer on the 3e5 token tiny Shakespeare
dataset 6 (in 128-token blocks) for 100 epochs, and consider top-1 token-level predictions 7. The
results are presented in Table 3.

Table 3: Comparison of methods on test accuracy, NLL, and various entropy metrics for next-token
prediction with GPT2 on tiny Shakespeare.

Methods Accuracy (%) NLL Htot correct Htot incorrect Hep correct Hep incorrect

MAP 38.66 3.166 1.554 3.605 0 0

S-HMC 39.36 3.083 1.571 3.612 0.047 0.077

A.2 Overcoming other computational bottlenecks

Our sampler relies only on forward/back-prop evaluations, so every mainstream hardware scheme
can be stacked on top of it: data-parallel all-reduce for moderate models[Goyal et al., 2017];
optimizer-state sharding (ZeRO/FSDP) when parameters no longer fit[Rajbhandari et al., 2020];
tensor model-parallelism for in-layer splits [Shoeybi et al., 2019] and pipeline model-parallelism for
depthwise splits [Huang et al., 2019]; and, finally, the full hybrid of DP/sharding/tensor/pipeline that
is now routine in trillion-parameter language models [Chowdhery et al., 2023, Black et al., 2022].

A.3 Further directions

Further directions at the methodological level include

• DE-SBMC: an obvious extension, would be to condition the HMC ensemble, or SMC
ensemble (P > 1) with the DE, in case there may be any gain to be had.

5https://huggingface.co/sadia72/gpt2-shakespeare
6https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
7We truncated to the 2500 most frequent tokens, which includes tokens that appeared 11 or more times.
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• One could condition SGLD/SGHMC with the MAP(s) from SGD (or DE). In this way, there
is an initial phase which aims to recover a good point estimator, and then a second phase of
essentially the same method, which aims to quantify the spread.

• P−parallelizing N−ensemble MCMC methods such as Gilks et al. [1994], Goodman and
Weare [2010], Vrugt et al. [2009], Hoffman and Sountsov [2022].

• Leveraging N−ensemble MCMC methods within SMC for better mutations (with the cost
of more communication).

• Parallel stochastic-gradient-MCMC methods like SGLD [Welling and Teh, 2011] and SG-
HMC [Chen et al., 2014], and ensemblized versions thereof.

• Related to above, mini-batch gradients can be used in lieu of full gradients, which may
have some advantages in terms of scalability and convergence. For SMC samplers, we have
unbiased estimators ℓ̂w of log weights using mini-batches, and could use exp(ℓ̂w) for a non-
negative and biased estimator or Bernoulli/Poisson augmentation to achieve (non-negative)
unbiased weights [Gunawan et al., 2020, Bardenet et al., 2017].

B More related work

Empirical Bayes methods [Efron and Morris, 1973] fit higher level parameters in hierarchical models
through optimization of the marginal likelihood. An SBMC model could be built in principle with a
general prior πϕ(θ), for example N (θ;µ,Σ) for ϕ = (µ,Σ), and solved by EB. There is a significant
cost overhead for optimizing the marginal-likelihood, but that could be offset in principle with Laplace
approximation Bishop [2006] or other approaches. The particular SBMC(s) model considered here
could also utilize EB for selecting s and/or α, as an alternative to cross-validation. And even before
this, EB could be used to define the prior variance v, or a more general prior.

The work LogME You et al. [2021] use EB for fitting prior and likelihood variance in the context
of transfer learning for regression, and then they extended this idea for building estimators from
an ensemble of pre-trained models You et al. [2022]. The latter could naturally be combined with
other ensemble approaches described above, and plugged into SBMC. The Laplace Redux work
of Daxberger et al. [2021] provides an off-the-shelf Laplace module with block diagonal Hessian
approximations to plug pre-trained models into for transfer learning. This could naturally augment
SBMC in a number of ways, from leveraging it in marginal likelihood calculations for EB, to using it
as a drop in alternative for the prior, or leveraging their Hessian approximation in various other ways.
It is worth momentarily digressing on an approach inspired by this observation. If the data is split
into Nα pre-training and N −Nα fine-tuning sets, or if the likelihood is split by α and 1− α scalar
fractions, then one could build a Laplace approximation (or another variational approximation) of
the original α posterior, and use that as a prior for the remaining likelihood fraction. This posterior
approximation may be closer to the original GS, and since each problem features an explicitly
tempered likelihood, they should both be easier solve. This may help with potentially overfitting,
although we did not observe much of an issue in that respect.

C A sketch of the theory

We can think about the SBMC model as an incremental incorporation of the data. So first let
σ2 = v/a and consider the original problem with prior N (0, σ2). Now split the log-likelihood into
(1− a)ℓ+ aℓ, and consider incorporating only the aℓ part. It is easy to see that the MAP estimator
θ̂MAP for this problem is equivalent to the MAP estimator associated with the prior N (0, v). The
Laplace approximation however, will differ, depending on which one we consider. Let us consider
the N (0, σ2) prior, and now it is time to incorporate the rest of the data (1− a)ℓ. The Hessian of our
Laplace approximation is

a∇2ℓ(θ) +
1

2(v/a)
Id.

This could be carried through rigorously, but for the sake of the argument, let’s suppose we wave our
hands and swap out NtrainId for ∇2ℓ(θ) =

∑Ntrain

i=1 ∇2ℓi(θ) (at least it is of the right order). To get
back to the SBMC prior we have to equate

(2vNtrain + 1)/(2v/a) = 1/(2sv) ⇒ a = s−1/(2vNtrain + 1) .
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Suppose v = 0.1 (common) and s = 0.1 (our recommendation). Then a = 10/(Ntrain/5 + 1) ≪ 1,
for large datasets. Therefore, ℓ ≈ (1− a)ℓ, and we end up with a reasonable approximation. Note
this is also typically a positive thing for the prior, which is effectively N (0, σ2 = v/a), since broader
priors and less inductive bias typically deliver better performance, and small variance priors are often
chosen more as a matter of convenience.

There are also immediate opportunities for extension, for example using better approximations of the
Laplace approximation, or working out a more careful analysis along these lines.

Note that we can do things like this also to mitigate catastrophic forgetting in general when fine-tuning
in a continual learning setting. Something similar was done for continual learning in Duffield et al.
[2024]. Whereas, we do this simply to improve the approximation quality for short chains.

Hessian. Note the Hessian of the posterior π in (1) with N (0, v) prior is

∇2ℓ+
1

v
Id .

If we assume that the minimum eigenvalue of ∇2ℓ is 0, and the maximum is λmax, then the condition
number of the Hessian of the posterior is λmaxv + 1. Meanwhile, the Hessian of the SBMC target
π in (3) with N (θMAP, vs) prior will have condition number λmaxvs+ 1. Therefore, the parameter
s < 1 allows us to “tune away" the ill-conditioning of the posterior. See also the discussion in Paulin
et al. [2025].

D Techniques for SMC∥ in practice

Adaptive tempering. As mentioned, adaptive tempering is used to ensure a dense tempering regime
and provide stability[Syed et al., 2024].
Example D.1 (Adaptive tempering). In order to keep the sufficient diversity of sample population,
we let the effective sample size to be at least ESSmin = N/2 at each tempering λj−1 and use it
compute the next tempering λj . For jth tempering, we have weight samples {wk

j−1, θ
k
j−1}Nk=1, then

the ESS is computed by

ESS =
1∑N

k=1(w
k
j−1)

2
,

where wk
j−1 = L(θkj−1)

λj−λj−1/
∑N

k=1 L(θkj−1)
λj−λj−1 . Let h = λj − λj−1, the effective sample

size can be presented as a function of h, ESS(h). Using suitable root finding method, one can find h∗

such that ESS(h∗) = ESSmin, then set the next tempering λj = λj−1 + h∗.

Note that the partition function estimator ZN is no longer unbiased once we introduce adaptation,
which means that in principle we should do short pilot runs and then keep everything fixed to preserve
the integrity of the theory, but we have found this does not make a difference in practice.

Adaptive number of mutation steps. The number of mutation steps M is chosen adaptively.
After resampling at a given tempering step, let θi,0 denote the i-th sample and θi,m its state after m
mutation steps. We monitor the mean displacement from the post-resampling state,

distm =
1

N

N∑
i=1

∥∥θi,m − θi,0
∥∥
2
,

and terminate the mutation update at the smallest M ≥ 2 for which the displacement has stabilized:

|distM − distM−1|
distM−1

≤ η,

with tolerance η > 0. This criterion automatically increases M when the tempering increment is
large or the target becomes tighter (requiring more mixing to decorrelate the resampled particles),
and conversely saves computation when the resampled state is already close to stationary at the new
tempering level.

Numerical stability: nested Log-sum-exp. When computing likelihoods in Sequential Monte Carlo
(SMC) algorithms, numerical underflow frequently arises because likelihood values can become
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extremely small, often beyond computational precision. To address this, one standard practice is
to work with log-likelihoods rather than likelihoods directly. By operating in the log domain, the
computer can safely store and manipulate extremely small values without loss of precision.

Specifically, the standard log-sum-exp trick can be applied to stabilize computations. For instance,
consider a scenario with nested sums and products in parallel SMC. For each processor p = 1, . . . , P ,
we initially have:

ZN,p =

J∏
j=1

N∑
i=1

ωi,p
j .

To avoid numerical instability, each sum within the product is computed using the log-sum-exp trick:

N∑
i=1

ωi,p
j = exp

(
max

i
log(wi,p

j )
) N∑

i=1

exp
(
log(wi,p

j )−max
i

log(wi,p
j )

)
.

This procedure yields the decomposition:

ZN,p = KpẐp,

where

Kp =

J∏
j=1

exp
(
max

i
log(wi,p

j )
)
, and Ẑp =

J∏
j=1

N∑
i=1

exp
(
log(wi,p

j )−max
i

log(wi,p
j )

)
.

In parallel SMC, an additional stabilization step is applied across processors. The global normalization
constant across processors can also suffer from numerical instability. To address this, the log-sum-exp
trick is applied again at the processor level:

ZN,p = exp
(
log(Ẑp) + log(Kp)− log(K)

)
K,

with

log(K) = max
p

(
log(Ẑp) + log(Kp)

)
.

Since the factor K cancels out when calculating the parallel SMC estimator, it suffices to compute
only:

exp
(
log(Ẑp) + log(Kp)− log(K)

)
,

which ensures numerical stability even when K itself is computationally very small.

Thus, by recursively applying the log-sum-exp trick at both the particle and processor levels, parallel
SMC estimators can robustly handle computations involving extremely small numbers without
numerical underflow.

E Complementary description of simulations

E.1 Computation of Error bars

Assume running R times of experiments to get R square errors/loss between simulated estimator φ̂
and the ground truth, SE(φ̂)r for r = 1, ..., R. Take the MSE as an example, the MSE is the mean of
SE(φ̂)r over R realizations, and the standard error of MSE (s.e.) is computed by√

1
R

∑R
r=1(SE(φ̂)r − MSE)2

√
R

. (7)
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E.2 Integrated Autocorrelation Time

Integrated Autocorrelation Time (IACT) means the time until the chain is uncorrelated with its initial
condition. The precise mathematical definition is as follows.

Let θ0, . . . , θt, . . . denote the Markov chain, and let φ(θ) be a scalar function of the state. We first
define the autocovariance function (ACF) at lag s:

γs(φ) = E
[(
φ(θt+s)− E[φ(θ)]

)(
φ(θt)− E[φ(θ)]

)]
,

and the ACF at lag s as the normalized quantity

ρs(φ) =
γs(φ)

γ0(φ)
,

where γ0(φ) is the variance of φ(θ).

Then the integrated autocorrelation time (IACT) of φ is then defined in terms of the ACF by

IACT(φ) = 1 + 2

∞∑
s=1

ρs(φ).

E.3 Details of the Bayesian Neural Networks

Let weights be Ai ∈ Rni×ni−1 and biases be bi ∈ Rni for i ∈ {1, ..., D}, we denote θ :=
((A1, b1), ..., (AD, bD)). The layer is defined by

g1(x, θ) := A1x+ b1,

gd(x, θ) := Aiσni−1(gi−1(x)) + bi, i ∈ {2, ..., D − 1},
g(x, θ) := ADσnD−1

(gD−1(x)) + bD,

where σi(u) := (ν(u1), ..., ν(ui))
T with ReLU activation ν(u) = max{0, u}.

Consider the discrete data set in a classification problem, we have Y = {1, ...,K} and nD = K, then
we instead define the so-called softmax function as

hk(x, θ) =
exp(gk(x, θ))∑K
j=1 exp(gj(x, θ))

, k ∈ Y, (8)

and define h(x, θ) = (h1(x, θ), ..., hK(x, θ)) as a categorical distribution on K outcomes based on
data x. Then we assume that yi ∼ h(xi) for i = {1, ...,m}.

Now we describe the various neural network architectures we use for the various datasets.

E.3.1 MNIST7 Classification Example

The architecture is a simple CNN with (i) one hidden layer with 4 channels of 3× 3 kernels with unit
stride and padding, followed by (ii) ReLU activation and (iii) 2× 2 max pooling, (iv) a linear layer,
and (v) a softmax. The parameter prior and dataset is built as follows

• Training is conducted on a sub-dataset consisting of the first 1200 training samples with
labels 0 through 7. Evaluation is performed on first Nid in-domain test images with labels 0
through 7 and the on the four generated out-of-domain dataset (Nood total number of data).

• The OOD dataset is generated as follows: two of the datasets are the first Nood/4 out-of-
domain test images with labels 8 and 9, respectively. The third dataset, the white noise
image (wn), is a set of Nood/4 synthetic 28 × 28 “images” with pixels drawn uniformly
at random from [0, 1]. The fourth dataset, the perturbed image (per.), is a set of the first
Nood/4 MNIST test images of digits0–7, each pixel perturbed by Gaussian noise (standard
error as 0.5) while retaining its original label.

• MAP and DE are estimated using an initialization and regularization based on the prior
N(0, vId), where d = 6320 and v = 0.1. The tuning parameter in SBMC methods is s. The
batchsize is 64.
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• The gold-standard is computed by the single HMC over 5 realizations, called HMC (GS),
with N = B, T = 1 and L = 1.

• SWA. Starting from the estimated MAP weights, we train with SGD (momentum 0.9, lr
10−3). After a 25-epoch warm-up, we update an AveragedModel each epoch (1 weight
sample per epoch) and use SWALR with swa_lr = 5× 10−4. After training we use the SWA
weights for prediction. We run R=5 independent replicates.

• MC Dropout. We enable a 30% dropout in the (only) dropout layer after flattening (before
the FC). Starting from the MAP estimation, we train with Adam (lr 10−3). At test time, we
keep dropout on and average T=10 stochastic forward passes for predictive probabilities.
We run R=5 independent replicates.

• Laplace. We fit a Laplace approximation with a Kronecker-factored approximation of the
Hessian8Daxberger et al. [2021]. The starting model is the estimated MAP model; we
estimate the posterior over the last layer and draw T=10 predictive weight samples with
pred_type=’nn’ (re-linearization) for MC predictive inference. We run R=5 independent
replicates.

E.3.2 IMDb Classification Example

Here we use SBERT embeddings Reimers and Gurevych [2019] based on the model all-mpnet-
base-v2 Song et al. [2020] 9. In other words, frozen weights from all-mpnet-base-v2 until the 768
dimensional [CLS] output. The NN model and parameter prior for IMDb10 are built as follows

• NN is followed by (i) no hidden layer, (ii) ReLU activation, (iii) a final linear layer, and (iv)
softmax output.

• Training is conducted on the whole train set (25000 data). Evaluation is performed on
the whole test images as the in-domain dataset (25000 data) and on the four generated
out-of-domain datasets (Nood total number of data).

• The OOD dataset is generated as follows: four of these datasets (each dataset has Nood/5
data) use textual data from the Appliances domain, which is distinct from the in-domain
IMDb movie review data. Specifically, four OOD datasets were constructed from Amazon
Reviews 2023 Appliances data Hou et al. [2024] 11, containing customer reviews and
product metadata. Two datasets directly used the two JSON files, and two text-based OOD
datasets were generated as follows. From Appliances.jsonl, we extracted the review
text, representing natural language expressions of user opinions but unrelated to movies;
from meta_Appliances.jsonl, we constructed meta descriptions by concatenating each
product’s title and listed features. The last dataset, Lipsum, is a collection of 100 very short,
meaningless text strings, each consisting of between one and ten randomly selected words
drawn from the classic “Lorem ipsum” filler vocabulary.

• MAP and DE are estimated using an initialization and regularization based on the prior
N(0, vId), where d = 1538. The tuning parameter in SBMC methods is s. The batchsize is
64.

• The gold-standard is computed by the single HMC over 5 realizations, called HMC (GS),
with N = B, T = 1 and L = 1.

E.3.3 CIFAR-10 Classification Example

Here, the architecture is ResNet-50 pre-trained from ImageNet with all parameters frozen until the
final pooled 2048 dimensional features. The NN model and parameter prior for CIFAR10 are as
follows.

• NN is followed by (i) no hidden layer, (ii) ReLU activations, (iii) a final linear layer, and (iv)
softmax output.

8https://github.com/aleximmer/Laplace
9https://huggingface.co/sentence-transformers/all-mpnet-base-v2

10https://huggingface.co/datasets/stanfordnlp/imdb
11https://amazon-reviews-2023.github.io/

19



• Training is conducted on the whole train set (50000 data). Evaluation is performed on
the whole test images as the in-domain dataset (10000 data) and on the three generated
out-of-domain datasets (Nood total number of data).

• The OOD dataset is generated as follows:

– Close OOD (CIFAR-100 “not in CIFAR-10”). Drawn Nood/3 data from the 90 fine-
grained CIFAR-100 classes that don’t overlap with the 10 classes inCIFAR-10. All
images are 32× 32 RGB natural photographs with nearly identical color distribution
and textures to CIFAR-10.

– Corrupt OOD (CIFAR-10-C). Select Nood/3 CIFAR-10 test images and subject them
to 15 types of realistic distortions—Gaussian/impulse noise (motion/defocus blur, frost,
fog, brightness/contrast shifts, JPEG compression, pixelation, etc.) at five different
severity levels. The pixel-level statistics are methodically disturbed, yet the original
labels stay the same.

– Far OOD (SVHN). Select Nood/3 data from 26032 32x32 RGB test photos of house-
number digits (0–9) that have been cut from Google Street View. The SVHN displays
centred white numbers on colourful, frequently cluttered urban backgrounds, in contrast
to CIFAR’s multi-object array of natural-scene photos.

• MAP and DE are estimated using an initialization and regularization based on the prior
N(0, vId), where d = 20490 and v = 0.2. The tuning parameter in SBMC methods is s.
The batchsize is 128.

• The gold-standard is computed by the single HMC over 5 realizations, called HMC (GS),
with N = B, T = 1 and L = 1.

E.4 Hardware description

The main CPU cluster we access has nodes with 2 × 16-core Intel Skylake Gold 6130 CPU @
2.10GHz, 192GB RAM without communication in between, so it can only run N/P = 32 particles
in parallel with one particle per core. There are also unconnected AMD “Genoa” compute nodes,
with 2 × 84-core AMD EPYC 9634 CPUs and 1.5TB RAM.

F Further results for UQ

Results in this section further support the statement mentioned in the main text, that is, (i) SBMC sig-
nificantly outperforms the MAP estimator, as well as a DE of MAP estimators, (ii) DE systematically
underestimates Hep for the same ensemble size as SBMC.

F.1 MNIST7

In the MNIST7 case, the full setting is described in Appendix E.3.1, where we let Nid = 7000 and
Nood = 2000, where each dataset has 500 data. Selected results appear in the main text in Figure 2,
where the full data table is given in Table 16. Additional detailed results of the per-digit analysis are
provided below, see Figure 7, and the full data table in Table 12.
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(a) MAP (b) DE (c) S-HMC∥

(d) S-SMC∥ (e) HMC (GS)

Figure 7: Comparison of entropy across groups for MNIST7. S-SMC∥ (P = 1 chain with N = 10),
S-HMC∥ (NP chains), HMC (GS) (2e4 samples), DE (N models) and MAP, with fixed number of
leapfrog L = 1, v = 0.1 and s = 0.1 (5 realizations).

F.2 IMDb

In the IMDb case, the full setting is described in Appendix E.3.2, where we let Nood = 500, and each
dataset has 100 data.

Experiments with v = 1
40 . Results of entropy comparison among MAP, DE and SBMCs are given

in Figure 8, showing comparison in the OOD datasets and the correct/incorrect predictions in the ID
domain. Additional detailed results of the per-digit analysis are provided below, see Figure 9, and the
full data table in Table 13.

Figure 8: Comparison of average total and epistemic entropy over four out-of-domain classes and
correct/incorrect predictions in-domain for IMDb. S-SMC∥ (P = 1 chain with N = 10), S-HMC∥
(NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 25, M = 1,
v = 0.025 and s = 0.1 (5 realizations).

(a) MAP (b) DE (c) S-HMC∥ (d) S-SMC∥

Figure 9: Comparison of entropy across groups for IMDb. S-SMC∥ (P = 1 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 25,
M = 1, v = 0.025 and s = 0.1 (5 realizations).

Experiments with v = 1. Results of entropy comparison among MAP, DE and SBMCs are given
in Figure 10, showing comparison in the OOD datasets and the correct/incorrect predictions in the ID

21



domain. Additional detailed results of the per-digit analysis are provided below, see Figure 11, and
the full data table in Table 14.

Figure 10: Comparison of average total and epistemic entropy over four out-of-domain classes and
correct/incorrect predictions in-domain for IMDb. S-SMC∥ (P = 8 chain with N = 10), S-HMC∥
(NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 26, M = 2,
v = 1 and s = 0.35 (5 realizations).

(a) MAP (b) DE (c) S-HMC∥ (d) S-SMC∥

Figure 11: Comparison of entropy across groups for IMDb. S-SMC∥ (P = 8 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 26,
M = 2, v = 1 and s = 0.35 (5 realizations).

F.3 CIFAR10

In the CIFAR10 case, the full setting is described in Appendix E.3.3, where we let Nid = 10000 and
Nood = 300, and each dataset has 100 data points. Results of entropy comparison among MAP, DE
and SBMCs are given in Figure 12, showing comparison in the OOD datasets and the correct/incorrect
prediction in the ID domain.

Figure 12: Comparison of average total and epistemic entropy over three out-of-domain classes and
correctly/incorrectly predicted ID for CIFAR10. S-SMC∥ (P = 8 chains with N = 10), S-HMC∥
(NP chains), DE (N ) and MAP, with fixed number of leapfrog L = 1, B = 200, M = 4, v = 0.2
and s = 0.05 (5 realizations).

G Further results of OOD inference

Establishment of the meta-classifier of incorrect/OOD data is given in the main text under Out-of-
domain inference. Here, the OOD detection is performed in the default and optimal F1 decision rule,
respectively.
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The default decision rule treats the output probability of "abstain" (out-of-domain or likely
misclassified) in the meta-classifier as a binary decision with a fixed cut-off at 0.5. That is, if the
model predicts that there is at least a 50% probability of the data being OOD or incorrectly predicted,
it abstains; otherwise, it classifies the data as correctly predicted ID. This rule requires no adjustment
beyond the choice of 0.5. Its behaviour is totally dependent on whether the model’s confidence in
abstention exceeds the halfway level.

The optimal F1 decision rule adapts the abstention threshold to maximize the F1 score on a
held-out set. In practices, the meta-classifier’s probabilities are assessed over a grid of potential
thresholds ranging from 0 to 1, the F1 score are calculated for each threshold, and the threshold with
the highest F1 score is chosen as the optimal F1 threshold. This customised threshold balances false
positives and false negatives in the most effective way for the given data distribution, at the cost of
requiring a representative validation set. It often outperforms the default decision rule when class
proportions or costs of errors are skewed.

G.1 MNIST7

In the MNIST7 case, the full setting is described in Appendix E.3.1, where we let Nid = 2000 and
Nood = 2000, where each dataset has 500 data. Metrics of Precision, Recall, F1 and AUC-ROC
metrics are given in Table 4, the normalized confusion rate matrices to show how the OOD domain
has been detected from the ID domain are given in Figure 13. Plots for ROC curve and 2-level
estimator accuracy are given in Figure 14.

Table 4: Evaluation Metrics using thresholds. S-SMC∥ (P = 1, 8 chains with N = 10) and S-HMC∥
(NP chains), with fixed number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and s = 0.1, on
MNIST (5 realizations, ± s.e. in metrics and bold the first 30% data in mean).

(a) Default decision threshold (0.5).

P Method Precision Recall F1 AUC-ROC

– MAP 0.846±0.014 0.162±0.016 0.271±0.024 0.828±0.013
– DE 0.876±0.007 0.213±0.011 0.342±0.015 0.855±0.003
1 S-SMC∥ 0.845±0.020 0.216±0.037 0.338±0.049 0.824±0.017
8 S-SMC∥ 0.894±0.015 0.389±0.046 0.537±0.052 0.884±0.006
1 S-HMC∥ 0.906±0.004 0.432±0.020 0.584±0.020 0.885±0.002
8 S-HMC∥ 0.907±0.001 0.470±0.007 0.619±0.006 0.892±0.001

(b) Optimal F1 decision threshold.

P Method Precision Recall F1 AUC-ROC

– MAP 0.707±0.013 0.898±0.006 0.791±0.009 0.828±0.013
– DE 0.734±0.004 0.897±0.003 0.807±0.002 0.855±0.003
1 S-SMC∥ 0.701±0.021 0.890±0.015 0.783±0.010 0.824±0.017
8 S-SMC∥ 0.753±0.004 0.915±0.004 0.826±0.001 0.884±0.006
1 S-HMC∥ 0.750±0.003 0.906±0.004 0.820±0.002 0.885±0.002
8 S-HMC∥ 0.752±0.003 0.913±0.004 0.825±0.001 0.892±0.001

(a) MAP (b) DE (c) S-SMC∥(P = 1) (d) S-SMC∥(P = 8) (e) S-HMC∥(P = 1) (f) S-HMC∥(P = 8)

(g) MAP (h) DE (i) S-SMC∥(P = 1) (j) S-SMC∥(P = 8) (k) S-HMC∥(P = 1) (l) S-HMC∥(P = 8)

Figure 13: Averaged confusion rate matrices for OOD prediction on MNIST7, with default decision
threshold (top) and optimal F1 decision threshold (bottom). S-SMC∥ (P = 1, 8 chains with N = 10)
and S-HMC∥ (NP chains), with fixed number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and
s = 0.1, on MNIST (5 realizations and ± s.e. in metrics).
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(a) ROC curve (b) 2-level estimator accuracy

Figure 14: Averaged curve plots for OOD detection on MNIST7. S-SMC∥ (P = 1, 8 chains with
N = 10) and S-HMC∥ (NP chains), with fixed number of leapfrog L = 1, B = 160, M = 10,
v = 0.1 and s = 0.1, on MNIST (5 realizations and ± s.e. in metrics).

G.2 IMDB

In the IMDb case, the full setting is described in Appendix E.3.2, where we let Nood = 25000, and
each dataset has 5000 data points.

Experiment with v = 1
40 Metrics of Precision, Recall, F1 and AUC-ROC metrics are given in

Table 5, the normalized confusion rate matrices to show how the OOD domain has been detected
from ID domain are given in Figure 15. Plots for ROC curve and 2-level estimator accuracy are given
in Figure 16.

Table 5: Performance at the optimal F1 decision threshold. S-SMC∥ (P = 1 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B, M ,
v = 0.025 and s = 0.1 (5 realizations, ± s.e. in metrics and bold the first 30% data in mean).

P Method Precision Recall F1 AUC-ROC

– MAP 0.707 ± 0.003 0.953 ± 0.001 0.811 ± 0.001 0.768 ± 0.005
– DE 0.856 ± 0.041 0.890 ± 0.017 0.869 ± 0.016 0.896 ± 0.025
1 S-SMC∥ 0.673 ± 0.005 0.919 ± 0.002 0.777 ± 0.004 0.777 ± 0.002
8 S-SMC∥ 0.935 ± 0.003 0.876 ± 0.002 0.905 ± 0.000 0.935 ± 0.002
1 S-HMC∥ 0.844 ± 0.002 0.876 ± 0.004 0.859 ± 0.001 0.905 ± 0.001
8 S-HMC∥ 0.970 ± 0.003 0.879 ± 0.003 0.922 ± 0.000 0.944 ± 0.002

(a) MAP (b) DE (c) S-SMC∥(P = 1) (d) S-SMC∥(P = 8) (e) S-HMC∥(P = 1) (f) S-HMC∥(P = 8)

Figure 15: Averaged confusion rate matrices for OOD prediction on IMDb, with optimal F1 decision
threshold. S-SMC∥ (P = 1, 8 chain with N = 10), S-HMC∥ (NP chains), DE (N models) and
MAP, with fixed number of leapfrog L = 1, B = 25, M = 1, v = 0.025 and s = 0.1 (5 realizations
and ± s.e. in metrics).
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(a) ROC curve (b) 2-level estimator accuracy

Figure 16: Averaged curve plots for OOD detection in IMDb. S-SMC∥ (P = 1, 8 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 25,
M = 1, v = 0.025 and s = 0.1 (5 realizations and ± s.e. in metrics).

Experiment with v = 1. Metrics of Precision, Recall, F1 and AUC-ROC metrics are given in Table
6, the normalized confusion rate matrices to show how the OOD domain has been detected from the
ID domain are given in Figure 17. The plots for the ROC curve and 2-level estimator accuracy are
given in Figure 18.

Table 6: Performance at the optimal F1 decision threshold. S-SMC∥ (P = 1 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B, M ,
v = 1 and s = 0.35 (5 realizations, ± s.e. in metrics and bold the first 30% data in mean).

P Method Precision Recall F1 AUC-ROC

– MAP 0.733±0.004 0.897±0.003 0.807±0.002 0.809±0.006
– DE 0.968±0.004 0.880±0.004 0.922±0.001 0.959±0.003
1 S-SMC∥ 0.791±0.000 0.871±0.003 0.829±0.001 0.889±0.001
8 S-SMC∥ 0.947±0.003 0.878±0.003 0.911±0.000 0.944±0.002
1 S-HMC∥ 0.923±0.002 0.885±0.001 0.904±0.001 0.943±0.002
8 S-HMC∥ 0.965±0.004 0.880±0.003 0.920±0.000 0.948±0.002

(a) MAP (b) DE (c) S-SMC∥(P = 1) (d) S-SMC∥(P = 8) (e) S-HMC∥(P = 1) (f) S-HMC∥(P = 8)

Figure 17: Averaged confusion rate matrices for OOD prediction on IMDb, with optimal F1 decision
threshold. S-SMC∥ (P = 1, 8 chain with N = 10), S-HMC∥ (NP chains), DE (N models) and
MAP, with fixed number of leapfrog L = 1, B = 26, M = 2, v = 1 and s = 0.35 (5 realizations
and ± s.e. in metrics).
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(a) ROC curve (b) 2-level estimator accuracy

Figure 18: Averaged curve plots for OOD detection in IMDb. S-SMC∥ (P = 1, 8 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 26,
M = 2, v = 1 and s = 0.35 (5 realizations and ± s.e. in metrics).

G.3 CIFAR10

In the CIFAR10 case, the full setting is described in Appendix E.3.3, where we let Nid = 9000 and
Nood = 9000, and each dataset has 3000 data points. Metrics of Precision, Recall, F1 and AUC-ROC
metrics are given in Table 7, the normalized confusion rate matrices to show how the OOD domain
has been detected from the ID domain are given in Figure 19. Plots for ROC curve and 2-level
estimator accuracy are given in Figure 20.

(a) MAP (b) DE (c) S-SMC∥(P = 1) (d) S-SMC∥(P = 8) (e) S-HMC∥(P = 1) (f) S-HMC∥(P = 8)

(g) MAP (h) DE (i) S-SMC∥(P = 1) (j) S-SMC∥(P = 8) (k) S-HMC∥(P = 1) (l) S-HMC∥(P = 8)

Figure 19: Averaged confusion rate matrices for OOD prediction on CIFAR10, with default decision
threshold (top) and optimal F1 decision threshold (bottom). S-SMC∥ (P = 1, 8 chains with N = 10),
S-HMC∥ (NP chains), DE (N ) and MAP, with fixed number of leapfrog L = 1, B = 200, M = 4,
v = 0.2 and s = 0.05 (5 realizations and ± s.e. in metrics).

Table 7: Evaluation Metrics using thresholds. S-SMC∥ (P = 1, 8 chains with N = 10), S-HMC∥
(NP chains), DE (N ) and MAP, with fixed number of leapfrog L = 1, B = 200, M = 4, v = 0.2
and s = 0.05 (5 realizations, ± s.e. in metrics and bold the first 30% data in mean).

(a) Default decision threshold (0.5).

P Method Precision Recall F1 AUC-ROC

– MAP 0.606±0.058 0.947±0.053 0.723±0.015 0.856±0.001
– DE 0.608±0.062 0.943±0.057 0.721±0.015 0.858±0.002
1 S-SMC∥ 0.607±0.059 0.951±0.049 0.726±0.018 0.861±0.001
8 S-SMC∥ 0.606±0.060 0.952±0.048 0.725±0.019 0.864±0.000
1 S-HMC∥ 0.606±0.060 0.951±0.049 0.724±0.019 0.864±0.000
8 S-HMC∥ 0.605±0.060 0.953±0.047 0.725±0.019 0.867±0.000

(b) Optimal F1 decision threshold.

P Method Precision Recall F1 AUC-ROC

– MAP 0.776±0.005 0.836±0.006 0.805±0.001 0.856±0.001
– DE 0.767±0.003 0.848±0.003 0.805±0.001 0.858±0.002
1 S-SMC∥ 0.794±0.000 0.824±0.001 0.809±0.000 0.861±0.001
8 S-SMC∥ 0.792±0.003 0.830±0.003 0.811±0.000 0.864±0.000
1 S-HMC∥ 0.794±0.000 0.829±0.001 0.811±0.000 0.864±0.000
8 S-HMC∥ 0.788±0.001 0.842±0.001 0.814±0.000 0.867±0.000
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(a) ROC curve (b) Total accuracy over thresholds

Figure 20: Averaged curve plots for OOD detection in CIFAR10. S-SMC∥ (P = 1, 8 chains with
N = 10), S-HMC∥ (NP chains), DE (N ) and MAP, with fixed number of leapfrog L = 1, B = 200,
M = 4, v = 0.2 and s = 0.05 (5 realizations and ± s.e. in metrics).

H Further results of Ablations in Practical SBMC(s < 1
2
)

H.1 MNIST7

Experiments in this section are tested on the (filtered) MNIST7 dataset with the model setting stated
in Appendix E.3.1.

Table 8 shows the performance as the tuning parameter s varies. Figure 21 and 22 show the trend of
the SBMC∥ in different values of the tuning parameter s as P increases. Table 15 and 16 give the
corresponding full data results of the below figures.
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Table 8: Comparison of different s of (S-)SMC∥ (P = 1, 8 chain with N = 10), (S-)HMC∥ (NP
chains), MAP and DE (NP models), with fixed number of leapfrog L = 1 and v = 0.1, on MNIST7
(5 realizations and ± s.e. in accuracy).
s Method Epochs Accuracy NLLL Brier Hep

ID OD
cor. inc. 8 9 wn per.

1
HMC (GS) 2e4 93.61±0.41 2.224e-1 1.015e-1 9.621e-2 4.097e-1 4.614e-1 3.119e-1 1.126e+0 7.919e-1
HMC (GS) 2e5 94.77±0.21 1.942e-1 8.700e-2 1.204e-1 4.928e-1 5.635e-1 4.067e-1 1.602e+0 1.031e+0
HMC (GS) 1.8e6 95.13±0.02 1.882e-1 8.345e-2 1.281e-1 5.185e-1 5.856e-1 4.244e-1 1.682e+0 1.112e+0

1
SMC∥ 173.0 79.74±2.71 6.230e-1 2.920e-1 1.337e-2 3.339e-2 3.321e-2 2.775e-2 6.482e-2 5.512e-2
HMC∥ 160 78.41±2.39 1.273e+0 5.799e-1 3.026e-1 3.247e-1 3.173e-1 2.988e-1 6.626e-1 1.099e+0

0.5
S-SMC∥ 161.0 84.18±0.64 4.827e-1 2.304e-1 1.556e-2 4.082e-2 4.000e-2 3.234e-2 1.238e-1 6.418e-2
S-HMC∥ 160 85.26±1.06 8.234e-1 3.672e-1 2.993e-1 3.704e-1 3.627e-1 3.271e-1 8.832e-1 8.030e-1

0.25

S-SMC∥ 166.6 90.35±0.26 3.300e-1 1.441e-1 2.257e-2 1.094e-1 1.146e-1 7.791e-2 3.888e-1 1.996e-1
P = 8 161.5 93.00±0.11 2.366e-1 1.096e-1 8.828e-2 3.717e-1 2.984e-1 2.089e-1 7.488e-1 4.585e-1

S-HMC∥ 160 92.79±0.19 2.571e-1 1.156e-1 1.133e-1 4.232e-1 4.985e-1 3.225e-1 1.289e+0 6.280e-1
P = 8 160 93.15±0.05 2.490e-1 1.127e-1 1.384e-1 4.788e-1 5.572e-1 3.678e-1 1.349e+0 7.311e-1

0.1

S-SMC∥ 170.0 92.17±0.37 2.671e-1 1.186e-1 2.642e-2 1.288e-1 1.384e-1 9.406e-2 3.943e-1 1.832e-1
P = 8 178.0 93.26±0.16 2.259e-1 1.025e-1 5.871e-2 2.725e-1 2.440e-1 1.637e-1 7.238e-1 3.823e-1

S-HMC∥ 160 92.96±0.17 2.326e-1 1.071e-1 5.624e-2 2.645e-1 3.072e-1 1.941e-1 9.304e-1 4.216e-1
P = 8 160 93.12±0.08 2.310e-1 1.072e-1 6.982e-2 2.993e-1 3.524e-1 2.258e-1 1.067e+0 4.780e-1

0.01
S-SMC∥ 183.6 92.57±0.37 2.439e-1 1.121e-1 1.149e-2 5.904e-2 6.445e-2 4.602e-2 2.187e-1 1.008e-1
S-HMC∥ 162 92.95±0.10 2.289e-1 1.069e-1 1.912e-2 1.015e-1 1.238e-1 7.814e-2 4.678e-1 1.945e-1

0
MAP 160.2 92.32±0.37 2.527e-1 1.163e-1 0 0 0 0 0 0

DE (N ) 176.5 92.40±0.15 2.455e-1 1.148e-1 1.059e-2 5.646e-2 7.433e-2 3.468e-2 2.690e-1 1.1056e-1
DE (8N ) 178.38 92.54±0.06 2.393e-1 1.124e-1 1.111e-2 5.980e-2 7.846e-2 4.016e-2 2.935e-1 1.188e-1

s Method Htot

ID OD

cor. inc. 8 9 wn per.

1
HMC (GS) 2.621e-1 9.652e-1 1.110e+0 8.198e-1 1.492e+0 1.081e+0
HMC (GS) 2.852e-1 1.033e+0 1.204e+0 9.322e-1 1.915e+0 1.296e+0
HMC (GS) 2.948e-1 1.057e+0 1.223e+0 9.532e-1 2.012e+0 1.384e+0

1
SMC∥ 5.506e-1 1.078e+0 1.138e+0 9.851e-1 6.426e-1 9.171e-1
HMC∥ 1.854e+0 1.962e+0 1.988e+0 1.927e+0 1.965e+0 1.844e+0

0.5
S-SMC∥ 4.363e-1 1.019e+0 1.127e+0 9.294e-1 8.128e-1 8.712e-1
S-HMC∥ 1.427e+0 1.752e+0 1.837e+0 1.667e+0 1.857e+0 1.694e+0

0.25

S-SMC∥ 1.508e-1 6.679e-1 8.384e-1 5.945e-1 8.495e-1 7.445e-1
P = 8 1.247e-1 6.641e-1 1.000e+0 7.354e-1 1.177e+0 9.931e-1

S-HMC∥ 3.149e-1 1.026e+0 1.220e+0 8.606e-1 1.624e+0 1.019e+0
P = 8 3.456e-1 1.070e+0 1.267e+0 9.025e-1 1.714e+0 1.111e+0

0.1

S-SMC∥ 1.536e-1 7.042e-1 8.975e-1 6.591e-1 9.743e-1 8.001e-1
P = 8 1.374e-1 7.075e-1 1.001e+0 7.307e-1 1.216e+0 9.805e-1

S-HMC∥ 2.343e-1 9.132e-1 1.091e+0 7.567e-1 1.452e+0 8.443e-1
P = 8 2.553e-1 9.380e-1 1.127e+0 7.893e-1 1.543e+0 8.937e-1

0.01
S-SMC∥ 1.737e-1 7.571e-1 9.632e-1 6.607e-1 9.254e-1 8.511e-1
S-HMC∥ 1.995e-1 8.232e-1 1.003e+0 6.991e-1 1.234e+0 6.726e-1

0
MAP 1.833e-1 7.645e-1 9.507e-1 6.157e-1 7.682e-1 7.839e-1

DE (N ) 1.919e-1 7.899e-1 9.821e-1 6.393e-1 9.806e-1 8.112e-1
DE (8N ) 1.938e-1 7.988e-1 1.001e+0 6.532e-1 1.067e+0 8.133e-1
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Figure 21: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 160, M = 7, v = 0.1 and s = 0.25, on MNIST7 (5 realizations).

Figure 22: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and s = 0.1, on MNIST7 (5 realizations).

H.2 IMDB

The experiments in this section are tested on the IMDb dataset with the model setting stated in
Appendix E.3.2.

Experiment with (v = 1
40 ). Summary metrics of IMDb dataset with v = 0.025 and s = 0.1 is

shown in the left spider-plot in Figure 3. Table 9 shows the performance as the tuning parameter s
varies. Figure 23 shows the trend for the SBMC methods as P increases, where the full data can be
found in Table 17.

Table 9: Comparison of S-SMC∥ (N = 10), S-HMC∥ (N chains), DE (N models) and MAP, with
fixed number of leapfrog L = 1, B = 25, M = 1 and v = 0.025, on IMDb (5 realizations and ± s.e.
in accuracy).
s Method Ep. Acc. NL Hep

ID OD

cor. inc. reviews meta lipsum full reviews full meta

0.1

S-SMC∥ 18.60 86.70±0.03 3.655e-1 1.122e-4 1.664e-4 1.792e-4 2.200e-4 1.749e-4 3.285e-4 3.212e-4
P = 8 19.15 86.69±0.01 3.653e-1 2.531e-4 3.697e-4 4.744e-4 4.971e-4 4.862e-4 5.876e-4 6.105e-4
S-HMC∥ 25 86.70±0.01 3.634e-1 2.418e-4 3.565e-4 4.598e-4 4.633e-4 4.260e-4 5.057e-4 5.410e-4
P = 8 25 86.72±0.00 3.633e-1 2.766e-4 4.022e-4 5.694e-4 6.062e-4 5.637e-4 7.438e-4 7.051e-4

0
MAP 25.00 84.47±0.09 3.911e-1 0 0 0 0 0 0 0
DE (N ) 25.86 84.76±0.08 3.888e-1 1.005e-04 1.366e-04 5.064e-5 5.026e-5 4.909e-5 6.302e-5 5.548e-5

s Method Brier ECE Htot

ID OD

cor. inc. reviews meta lipsum full reviews full meta

0.1

S-SMC∥ 1.093e-1 3.699e-1 4.792e-1 6.357e-1 5.251e-1 5.463e-1 5.142e-1 6.457e-1 6.261e-1
P = 8 1.092e-1 3.698e-1 4.788e-1 6.355e-1 5.213e-1 5.406e-1 5.115e-1 6.430e-1 6.236e-1
S-HMC∥ 1.086e-1 3.694e-1 4.750e-1 6.340e-1 5.165e-1 5.331e-1 5.079e-1 6.400e-1 6.186e-1
P = 8 1.086e-1 3.701e-1 4.752e-1 6.341e-1 5.184e-1 5.359e-1 5.085e-1 6.426e-1 6.209e-1

0
MAP 1.204e-1 4.389e-1 4.800e-1 6.306e-1 5.814e-1 6.117e-1 5.894e-1 6.705e-1 6.658e-1
DE (N ) 1.193e-1 4.340e-1 4.819e-1 6.319e-1 5.793e-1 6.098e-1 5.882e-1 6.702e-1 6.649e-1
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Figure 23: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
L = 1, B = 25, M = 1, v = 0.025, s = 0.1, on IMDb (5 realizations)

Experiments with v = 1. Summary metrics of IMDb dataset with v = 15 and s = 0.35 are
shown in the spider-plot in Figure 24. Table 10 shows the performance as the tuning parameter s vary.
Figure 25, 26 and 27 give the full convergence of SBMC∥ with increasing P . The corresponding full
data results are given in the Table 18 , 19 and 20.

Table 10: Comparison of different s of S-SMC∥ (N = 10) and S-HMC∥ (N chains), with fixed
number of leapfrog L = 1 and v = 1, on IMDb (5 realizations and ± s.e. in accuracy).

s Method Ep. Acc. NL Hep

ID OD

cor. inc. reviews meta lipsum full reviews full meta

0.35
S-SMC∥ 27.40 88.27±0.07 2.803e-1 6.177e-4 1.460e-3 1.581e-3 2.495e-3 2.187e-3 2.279e-3 2.504e-3
P = 8 27.63 88.88±0.03 2.714e-1 9.342e-3 2.164e-2 3.756e-2 5.515e-2 5.260e-2 6.049e-2 6.435e-2

S-HMC∥ 26 88.81±0.01 2.750e-1 1.565e-2 3.463e-2 5.414e-2 7.021e-2 6.872e-2 8.407e-2 7.930e-2
P = 8 26 88.93±0.02 2.737e-1 1.662e-2 3.651e-2 5.315e-2 7.391e-2 6.917e-2 9.098e-2 8.360e-2

0.25
S-SMC∥ 29.6 88.27±0.10 2.807e-1 2.512e-4 6.069e-4 4.733e-4 7.166e-4 8.590e-4 9.313e-4 9.520e-4
P = 8 28.5 88.87±0.03 2.720e-1 8.124e-3 1.872e-2 3.066e-2 5.057e-2 4.691e-2 6.403e-2 5.777e-2

S-HMC∥ 26 88.83±0.02 2.745e-1 1.269e-2 2.830e-2 4.522e-2 5.927e-2 5.886e-2 7.342e-2 6.803e-2
P = 8 26 88.92±0.02 2.734e-1 1.337e-2 2.964e-2 4.442e-2 6.215e-2 5.863e-2 7.869e-2 7.108e-2

0.1
S-SMC∥ 24 88.54±0.11 2.762e-1 1.820e-4 4.315e-4 4.819e-4 5.915e-4 6.766e-4 7.711e-4 6.500e-4
P = 8 23.7 88.92±0.01 2.711e-1 4.207e-3 9.768e-3 2.182e-2 3.140e-2 2.700e-2 3.352e-2 3.540e-2

S-HMC∥ 26 88.86±0.02 2.726e-1 5.753e-3 1.319e-2 2.712e-2 3.551e-2 3.561e-2 5.110e-2 4.289e-2
P = 8 26 88.93±0.01 2.721e-1 6.065e-3 1.386e-2 2.792e-2 3.888e-2 3.653e-2 5.408e-2 4.638e-2

0
MAP 52 87.97±0.04 2.854e-1 – 0 0 0 0 0 0

DE (N ) 26.52 87.75±0.02 2.921e-1 3.144e-3 7.055e-3 4.514e-2 5.054e-2 5.386e-2 7.963e-2 5.318e-2
DE (8N ) 25.86 87.70 ±0.01 2.925e-1 3.469e-3 7.608e-3 4.394e-2 5.622e-2 5.089e-2 7.435e-2 6.198e-2

s Method Brier ECE Htot

ID OD

cor. inc. reviews meta lipsum full reviews full meta

0.35
S-SMC∥ 8.547e-2 3.832e-1 2.643e-1 5.482e-1 3.802e-1 5.116e-1 5.172e-1 5.581e-1 5.286e-1
P = 8 8.206e-2 3.899e-1 2.744e-1 5.596e-1 3.987e-1 5.555e-1 5.304e-1 6.025e-1 5.920e-1

S-HMC∥ 8.298e-2 3.889e-1 2.890e-1 5.681e-1 4.289e-1 5.583e-1 5.556e-1 6.133e-1 6.120e-1
P = 8 8.254e-2 3.904e-1 2.893e-1 5.683e-1 4.188e-1 5.626e-1 5.386e-1 6.156e-1 6.088e-1

0.25
S-SMC∥ 8.548e-2 3.825e-1 2.673e-1 5.500e-1 3.562e-1 4.872e-1 4.727e-1 5.548e-1 5.609e-1
P = 8 8.220e-2 3.901e-1 2.772e-1 5.609e-1 3.891e-1 5.447e-1 5.340e-1 6.036e-1 5.874e-1

S-HMC∥ 8.286e-2 3.896e-1 2.873e-1 5.667e-1 4.239e-1 5.585e-1 5.533e-1 6.117e-1 6.076e-1
P = 8 8.249e-2 3.904e-1 2.871e-1 5.665e-1 4.138e-1 5.595e-1 5.338e-1 6.135e-1 6.047e-1

0.1
S-SMC∥ 8.387e-2 3.869e-1 2.721e-1 5.544e-1 3.970e-1 5.202e-1 5.063e-1 5.686e-1 5.684e-1
P = 8 8.190e-2 3.906e-1 2.752e-1 5.588e-1 3.920e-1 5.407e-1 5.143e-1 5.959e-1 5.865e-1

S-HMC∥ 8.232e-2 3.898e-1 2.802e-1 5.618e-1 4.088e-1 5.505e-1 5.384e-1 6.066e-1 5.975e-1
P = 8 8.217e-2 3.906e-1 2.801e-1 5.613e-1 4.028e-1 5.510e-1 5.231e-1 6.081e-1 5.961e-1

0
MAP 8.714e-2 4.350e-1 2.721e-1 5.531e-1 4.071e-1 5.598e-1 5.462e-1 5.695e-1 5.561e-1

DE (N ) 8.928e-2 4.343e-1 2.850e-1 5.580e-1 4.497e-1 5.808e-1 5.609e-1 6.185e-1 6.032e-1
DE (8N ) 8.941e-2 4.354e-1 2.859e-1 5.588e-1 4.533e-1 5.888e-1 5.708e-1 6.187e-1 6.068e-1
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Figure 24: Summary metrics for IMDb in all methods. S-SMC∥ (P = 1 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 26,
M = 2, v = 1 and s = 0.35 (5 realizations).

Figure 25: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 1, v = 1 and s = 0.35, on IMDb (5 realizations and ±s.e.
in accuracy ).

Figure 26: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 2, v = 1 and s = 0.25, on IMDb (5 realizations and ± s.e.
in accuracy).

Figure 27: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 2, v = 1 and s = 0.1, on IMDb (5 realizations).
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H.3 CIFAR10

Experiments in this section are tested on the CIFAR10 dataset with the model setting stated in
Appendix E.3.3.

The summary metrics on CIFAR10 are shown in a spider-plot in Figure 3. Table 11 shows the
performance as the tuning parameter s vary. Figure 28, 29 and 30 give the full convergence of
SBMC∥ with increasing P . The corresponding full data results are given in Table 21 , 22 and 23.

Figure 28: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.05, on CIFAR10 (5 realizations).

Table 11: Comparison of S-SMC∥ (N = 10), S-HMC∥ (N chains), DE (N ) and MAP, with fixed
number of leapfrog L = 1, B = 200, M = 4 and v = 0.2, on CIFAR10 (5 realizations and ± s.e. in
accuracy).

s Method Ep. Acc. NL Brier ECE

0.2
S-SMC∥ 289.6 86.99 ± 0.08 4.710e-1 2.007e-1 6.462e-2
P = 8 289.3 90.30 ± 0.03 3.217e-1 1.445e-1 1.180e-2

S-HMC∥ 200 90.23 ± 0.08 2.990e-1 1.466e-1 2.518e-2
P = 8 200 90.82 ± 0.03 2.810e-1 1.395e-1 3.481e-2

0.1
S-SMC∥ 229.6 88.26 ± 0.07 3.855e-1 1.770e-1 4.593e-2
P = 8 225.3 90.45 ± 0.06 2.980e-1 1.400e-1 7.737e-3

S-HMC∥ 200 90.57 ± 0.04 2.823e-1 1.398e-1 1.073e-2
P = 8 200 90.83 ± 0.03 2.701e-1 1.353e-1 1.517e-2

0.05
S-SMC∥ 168.8 89.26 ± 0.07 3.408e-1 1.580e-1 3.470e-2
P = 8 174.3 90.63 ± 0.05 2.881e-1 1.371e-1 9.720e-3

S-HMC∥ 200 90.67 ± 0.03 2.749e-1 1.366e-1 6.598e-3
P = 8 200 90.84 ± 0.03 2.677e-1 1.340e-1 6.601e-3

0
MAP 200 90.39±0.07 2.913e-1 1.420e-1 2.502e-2

DE (N ) 200 90.81±0.03 2.741e-1 1.355e-1 1.770e-2

s Method Hep Htot

ID OOD ID OOD

cor. inc. close corrupt far cor. inc. close corrupt far

0.2
S-SMC∥ 3.682e-4 1.947e-3 2.063e-3 1.092e-3 1.629e-3 1.136e-1 5.613e-1 5.440e-1 3.630e-1 7.756e-1
P = 8 8.362e-2 3.326e-1 4.244e-1 2.361e-1 4.065e-1 1.071e-1 5.954e-1 9.675e-1 6.080e-1 1.160e+0

S-HMC∥ 1.159e-1 4.091e-1 5.195e-1 2.993e-1 5.333e-1 2.676e-1 9.231e-1 1.059e+0 6.768e-1 1.297e+0
P = 8 1.405e-1 4.604e-1 6.042e-1 3.476e-1 6.129e-1 2.945e-1 9.687e-1 1.146e+0 7.256e-1 1.364e+0

0.1
S-SMC∥ 2.948e-4 1.507e-3 1.603e-3 8.256e-4 1.450e-3 1.309e-1 6.364e-1 6.121e-1 4.027e-1 9.110e-1
P = 8 5.539e-2 2.369e-1 3.054e-1 1.636e-1 2.937e-1 1.217e-1 6.453e-1 9.184e-1 5.690e-1 1.156e+0

S-HMC∥ 7.055e-2 2.795e-1 3.591e-1 1.972e-1 3.581e-1 2.241e-1 8.596e-1 9.703e-1 6.102e-1 1.219e+0
P = 8 1.035e-1 3.121e-1 4.095e-1 2.244e-1 4.031e-1 2.367e-1 8.884e-1 1.023e+0 6.371e-1 1.257e+0

0.05
S-SMC∥ 4.258e-4 2.273e-3 2.515e-3 1.297e-3 2.185e-3 1.351e-1 6.620e-1 6.639e-1 4.300e-1 9.008e-1
P = 8 3.507e-2 1.584e-1 2.027e-1 1.058e-1 1.961e-1 1.311e-1 6.684e-1 8.643e-1 5.368e-1 1.111e+0

S-HMC∥ 4.060e-2 1.804e-1 2.308e-1 1.228e-1 2.243e-1 1.917e-1 8.073e-1 8.900e-1 5.558e-1 1.154e+0
P = 8 4.579e-2 1.966e-1 2.564e-1 1.358e-1 2.472e-1 1.971e-1 8.203e-1 9.173e-1 5.684e-1 1.168e+0

0
MAP 0 0 0 0 0 1.423e-1 7.037e-1 7.258e-1 4.577e-1 1.065e+0

DE (N ) 9.291e-3 4.753e-2 4.861e-2 2.603e-2 3.930e-2 1.541e-1 7.275e-1 7.629e-1 4.786e-1 1.029e+0
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Figure 29: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.1, on CIFAR10 (5 realizations).

Figure 30: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.2, on CIFAR10 (5 realizations).

I All-inclusive data tables

Table 12: Comparison in all domains among S-SMC∥ (P = 1 chain with N = 10), S-HMC∥ (NP
chains), HMC (GS) (2e4 samples), DE (N models) and MAP, with fixed number of leapfrog L = 1,
v = 0.1 and s = 0.1, on MNIST7 (5 realizations and ± s.e. in entropy).

Group MAP DE S-HMC (s = 0.1) S-SMC (s = 0.1) HMC (GS) (s = 1)

Htot Htot Hal Hep Htot Hal Hep Htot Hal Hep Htot Hal Hep

Digit 0 1.276e-1 1.307e-1 1.237e-1 7.076e-3 1.671e-1 1.228e-1 4.427e-2 1.110e-1 8.528e-2 2.574e-2 2.157e-1 1.268e-1 8.893e-2

Digit 1 1.768e-1 1.840e-1 1.781e-1 5.823e-3 1.889e-1 1.585e-1 3.038e-2 1.408e-1 1.255e-1 1.535e-2 2.124e-1 1.621e-1 5.025e-2

Digit 2 2.294e-1 2.266e-1 2.142e-1 1.236e-2 2.980e-1 2.168e-1 8.122e-2 2.090e-1 1.679e-1 4.118e-2 3.410e-1 1.988e-1 1.423e-1

Digit 3 3.168e-1 3.493e-1 3.222e-1 2.711e-2 3.883e-1 2.896e-1 9.873e-2 2.686e-1 2.245e-1 4.404e-2 4.229e-1 2.616e-1 1.613e-1

Digit 4 2.158e-1 2.221e-1 2.103e-1 1.182e-2 2.753e-1 2.095e-1 6.583e-2 1.981e-1 1.654e-1 3.272e-2 2.925e-1 1.847e-1 1.078e-1

Digit 5 3.993e-1 4.058e-1 3.787e-1 2.712e-2 4.395e-1 3.224e-1 1.171e-1 3.056e-1 2.520e-1 5.366e-2 4.428e-1 2.655e-1 1.773e-1

Digit 6 1.856e-1 2.045e-1 1.927e-1 1.180e-2 2.836e-1 2.047e-1 7.891e-2 1.856e-1 1.495e-1 3.605e-2 2.968e-1 1.785e-1 1.182e-1

Digit 7 1.897e-1 1.957e-1 1.859e-1 9.730e-3 2.403e-1 1.802e-1 6.008e-2 1.693e-1 1.396e-1 2.967e-2 2.528e-1 1.569e-1 9.589e-2

Digit 8 9.507e-1 9.821e-1 9.078e-1 7.433e-2 1.091e+0 7.836e-1 3.072e-1 8.975e-1 7.591e-1 1.384e-1 1.121e+0 6.333e-1 4.873e-1

Digit 9 6.157e-1 6.393e-1 6.046e-1 3.468e-2 7.567e-1 5.626e-1 1.941e-1 6.591e-1 5.651e-1 9.406e-2 9.210e-1 5.554e-1 3.657e-1

Perturbed 7.528e-1 8.112e-1 7.006e-1 1.106e-1 8.443e-1 4.227e-1 4.216e-1 8.001e-1 6.169e-1 1.832e-1 1.228e+0 2.819e-1 9.466e-1

White Noise 7.703e-1 9.806e-1 7.117e-1 2.690e-1 1.453e+0 5.221e-1 9.304e-1 9.744e-1 5.800e-1 3.944e-1 1.398e+0 3.444e-1 1.053e+0

All ID 2.301e-1 2.398e-1 2.069e-1 3.291e-2 2.821e-1 2.111e-1 7.090e-2 1.966e-1 1.623e-1 3.429e-2 1.021e+0 5.943e-1 4.265e-1
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Table 13: Comparison in all domains among S-SMC∥ (P = 1 chain with N = 10), S-HMC∥ (NP
chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 25, M = 1, v = 0.025
and s = 0.1, on IMDb (5 realizations).

Group MAP DE S-HMC∥ S-SMC∥

Htot Htot Hal Hep Htot Hal Hep Htot Hal Hep

Negative 4.352e-1 4.407e-1 4.406e-1 9.314e-5 4.892e-1 4.889e-1 2.482e-4 4.929e-1 4.927e-1 1.148e-4

Positive 5.716e-1 5.688e-1 5.687e-1 1.188e-4 5.031e-1 5.029e-1 2.659e-4 5.072e-1 5.071e-1 1.240e-4

Meta 6.117e-1 6.098e-1 6.097e-1 5.026e-5 5.331e-1 5.326e-1 4.633e-4 5.463e-1 5.461e-1 2.200e-4

Full Meta 6.658e-1 6.649e-1 6.649e-1 5.548e-5 6.185e-1 6.180e-1 5.410e-4 6.260e-1 6.257e-1 3.212e-4

Reviews 5.814e-1 5.793e-1 5.793e-1 5.064e-5 5.165e-1 5.160e-1 4.598e-4 5.251e-1 5.249e-1 1.792e-4

Full reviews 6.705e-1 6.702e-1 6.701e-1 6.302e-5 6.400e-1 6.395e-1 5.057e-4 6.457e-1 6.454e-1 3.285e-4

Lipsum 5.894e-1 5.882e-1 5.881e-1 4.909e-5 5.079e-1 5.074e-1 4.260e-4 5.142e-1 5.140e-1 1.749e-4

All ID 5.034e-1 5.048e-1 5.046e-1 1.060e-4 4.962e-1 4.959e-1 2.570e-4 5.000e-1 4.999e-1 1.194e-4

Table 14: Comparison in all domains among S-SMC∥ (P = 8 chain with N = 10), S-HMC∥ (NP
chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 26, M = 2, v = 1
and s = 0.35, on IMDb (5 realizations).

Group MAP DE S-HMC∥ S-SMC∥

Htot Htot Hal Hep Htot Hal Hep Htot Hal Hep

Negative 2.489e-1 2.494e-1 2.483e-1 1.033e-3 3.107e-1 2.928e-1 1.794e-2 2.962e-1 2.860e-1 1.016e-2

Positive 3.629e-1 3.675e-1 3.659e-1 1.631e-3 3.296e-1 3.099e-1 1.971e-2 3.160e-1 3.048e-1 1.126e-2

Meta 5.598e-1 5.767e-1 5.507e-1 2.594e-2 5.626e-1 4.887e-1 7.391e-2 5.555e-1 5.004e-1 5.514e-2

Full Meta 5.561e-1 5.737e-1 5.469e-1 2.683e-2 6.088e-1 5.251e-1 8.360e-2 5.920e-1 5.277e-1 6.435e-2

Reviews 4.071e-1 4.251e-1 4.030e-1 2.212e-2 4.188e-1 3.657e-1 5.315e-2 3.987e-1 3.611e-1 3.756e-2

Full reviews 5.695e-1 6.007e-1 5.574e-1 4.331e-2 6.156e-1 5.246e-1 9.098e-2 6.025e-1 5.420e-1 6.049e-2

Lipsum 5.462e-1 5.556e-1 5.283e-1 2.733e-2 5.386e-1 4.695e-1 6.917e-2 5.304e-1 4.778e-1 5.260e-2

All ID 3.059e-1 3.084e-1 3.071e-1 1.332e-3 3.202e-1 3.013e-1 1.883e-2 3.061e-1 2.954e-1 1.071e-2

Table 17: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
L = 1, B = 25, M = 1, v = 0.025, s = 0.1, on IMDb (5 realizations and ± s.e. in accuracy).

P Method Ep. Acc. NL Hep

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 18.60 86.70±0.03 3.655e-1 1.122e-4 1.664e-4 1.792e-4 2.200e-4 1.749e-4 3.285e-4 3.212e-4
1 S-HMC∥ 25 86.70±0.01 3.634e-1 2.418e-4 3.565e-4 4.598e-4 4.633e-4 4.260e-4 5.057e-4 5.410e-4

2 S-SMC∥ 18.70 86.72±0.03 3.656e-1 1.936e-4 2.798e-4 3.061e-4 3.358e-4 4.211e-4 4.491e-4 4.465e-4
2 S-HMC∥ 25 86.69±0.01 3.634e-1 2.697e-4 3.955e-4 5.604e-4 5.852e-4 4.916e-4 6.022e-4 6.819e-4

4 S-SMC∥ 19.10 86.68±0.02 3.654e-1 2.370e-4 3.452e-4 4.433e-4 4.874e-4 5.515e-4 5.848e-4 6.201e-4
4 S-HMC∥ 25 86.72±0.01 3.635e-1 2.776e-4 4.042e-4 5.940e-4 6.264e-4 5.629e-4 7.074e-4 7.288e-4

8 S-SMC∥ 19.15 86.69±0.01 3.653e-1 2.531e-4 3.697e-4 4.744e-4 4.971e-4 4.862e-4 5.876e-4 6.105e-4
8 S-HMC∥ 25 86.72±0.00 3.633e-1 2.766e-4 4.022e-4 5.694e-4 6.062e-4 5.637e-4 7.438e-4 7.051e-4

P Method Brier ECE Htot

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 1.093e-1 3.699e-1 4.792e-1 6.357e-1 5.251e-1 5.463e-1 5.142e-1 6.457e-1 6.261e-1
1 S-HMC∥ 1.086e-1 3.694e-1 4.750e-1 6.340e-1 5.165e-1 5.331e-1 5.079e-1 6.400e-1 6.186e-1

2 S-SMC∥ 1.093e-1 3.702e-1 4.793e-1 6.356e-1 5.243e-1 5.466e-1 5.131e-1 6.462e-1 6.270e-1
2 S-HMC∥ 1.086e-1 3.695e-1 4.752e-1 6.342e-1 5.172e-1 5.342e-1 5.092e-1 6.409e-1 6.196e-1

4 S-SMC∥ 1.092e-1 3.699e-1 4.787e-1 6.355e-1 5.230e-1 5.440e-1 5.127e-1 6.459e-1 6.259e-1
4 S-HMC∥ 1.086e-1 3.699e-1 4.754e-1 6.342e-1 5.180e-1 5.351e-1 5.085e-1 6.419e-1 6.203e-1

8 S-SMC∥ 1.092e-1 3.698e-1 4.788e-1 6.355e-1 5.213e-1 5.406e-1 5.115e-1 6.430e-1 6.236e-1
8 S-HMC∥ 1.086e-1 3.701e-1 4.752e-1 6.341e-1 5.184e-1 5.359e-1 5.085e-1 6.426e-1 6.209e-1
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Table 15: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 160, M = 7, v = 0.1 and s = 0.25, on MNIST7 (5 realizations and
± s.e. in accuracy).

P Method Ep. Acc. NL Brier

1 S-SMC∥ 166.6 90.35±0.26 3.300e-1 1.441e-1
1 S-HMC∥ 160 92.79±0.19 2.571e-1 1.156e-1

2 S-SMC∥ 160.3 92.00±0.24 2.726e-1 1.239e-1
2 S-HMC∥ 160 92.97±0.14 2.536e-1 1.140e-1

4 S-SMC∥ 164.5 92.59±0.15 2.504e-1 1.152e-1
4 S-HMC∥ 160 93.13±0.07 2.506e-1 1.133e-1

8 S-SMC∥ 161.5 93.00±0.11 2.366e-1 1.096e-1
8 S-HMC∥ 160 93.15±0.05 2.490e-1 1.127e-1

HMC (GS) 2e4 92.87±0.48 2.376e-1 1.079e-1

P Method Hep Htot

ID OOD ID OOD

cor. inc. 8 9 wn per. cor. inc. 8 9 wn per.

1 S-SMC∥ 2.257e-2 1.094e-1 1.146e-1 7.791e-2 3.847e-1 1.914e-1 1.508e-1 6.679e-1 8.384e-1 5.945e-1 8.290e-1 7.110e-1
1 S-HMC∥ 1.133e-1 4.232e-1 4.985e-1 3.225e-1 1.281e+0 6.314e-1 3.149e-1 1.026e+0 1.220e+0 8.606e-1 1.614e+0 1.019e+0

2 S-SMC∥ 5.445e-2 2.442e-1 1.975e-1 1.402e-1 5.073e-1 2.923e-1 1.371e-1 6.768e-1 9.108e-1 6.629e-1 9.559e-1 8.111e-1
2 HMC∥ 1.298e-1 4.568e-1 5.380e-1 3.638e-1 1.321e+0 6.720e-1 3.358e-1 1.050e+0 1.250e+0 8.975e-1 1.680e+0 1.050e+0

4 S-SMC∥ 7.492e-2 3.240e-1 2.544e-1 1.797e-1 6.264e-1 3.749e-1 1.287e-1 6.669e-1 9.591e-1 7.064e-1 1.051e+0 8.923e-1
4 HMC∥ 1.356e-1 4.718e-1 5.508e-1 3.634e-1 1.327e+0 7.084e-1 3.443e-1 1.065e+0 1.261e+0 9.031e-1 1.689e+0 1.078e+0

8 S-SMC∥ 8.828e-2 3.717e-1 2.984e-1 2.089e-1 7.384e-1 4.475e-1 1.247e-1 6.641e-1 1.001e+0 7.354e-1 1.152e+0 9.627e-1
8 S-HMC∥ 1.384e-1 4.788e-1 5.572e-1 3.678e-1 1.349e+0 7.235e-1 3.456e-1 1.070e+0 1.267e+0 9.025e-1 1.715e+0 1.094e+0

HMC (GS) 7.199e-2 3.432e-1 3.887e-1 2.748e-1 1.169e+0 5.579e-1 2.045e-1 8.566e-1 9.984e-1 7.425e-1 1.574e+0 8.725e-1

Table 20: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 2, v = 1 and s = 0.1, on IMDb (5 realizations and ± s.e.
in accuracy).

P Method Ep. Acc. NL Hep

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 24 88.54±0.11 2.763e-1 1.820e-4 4.315e-4 4.819e-4 5.915e-4 6.766e-4 7.711e-4 6.500e-4
1 S-HMC∥ 26 88.86±0.02 2.726e-1 5.753e-3 1.319e-2 2.712e-2 3.551e-2 3.561e-2 5.110e-2 4.289e-2

2 S-SMC∥ 23.2 88.78±0.08 2.727e-1 2.476e-3 5.724e-3 1.160e-2 1.973e-2 9.401e-3 1.314e-2 1.894e-2
2 S-HMC∥ 26 88.90±0.02 2.724e-1 5.934e-3 1.365e-2 2.817e-2 3.918e-2 3.793e-2 5.296e-2 4.581e-2

4 S-SMC∥ 23.5 88.85±0.05 2.722e-1 3.730e-3 8.583e-3 1.937e-2 2.851e-2 2.377e-2 3.216e-2 3.538e-2
4 S-HMC∥ 26 88.92±0.01 2.722e-1 5.992e-3 1.368e-2 2.753e-2 3.839e-2 3.531e-2 5.049e-2 4.444e-2

8 S-SMC∥ 23.7 88.92±0.01 2.711e-1 4.207e-3 9.768e-3 2.182e-2 3.140e-2 2.700e-2 3.352e-2 3.540e-2
8 S-HMC∥ 26 88.93±0.01 2.721e-1 6.065e-3 1.386e-2 2.792e-2 3.888e-2 3.653e-2 5.408e-2 4.638e-2

P Method Brier ECE Htot

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 8.387e-2 3.869e-1 2.721e-1 5.544e-1 3.970e-1 5.202e-1 5.063e-1 5.686e-1 5.684e-1
1 S-HMC∥ 8.232e-2 3.898e-1 2.802e-1 5.618e-1 4.088e-1 5.505e-1 5.384e-1 6.066e-1 5.975e-1

2 S-SMC∥ 8.252e-2 3.892e-1 2.734e-1 5.571e-1 3.939e-1 5.263e-1 5.028e-1 5.812e-1 5.855e-1
2 S-HMC∥ 8.227e-2 3.900e-1 2.801e-1 5.614e-1 4.092e-1 5.567e-1 5.347e-1 6.068e-1 5.966e-1

4 S-SMC∥ 8.229e-2 3.900e-1 2.750e-1 5.583e-1 3.944e-1 5.389e-1 5.114e-1 5.948e-1 5.854e-1
4 S-HMC∥ 8.218e-2 3.903e-1 2.800e-1 5.612e-1 4.041e-1 5.526e-1 5.222e-1 6.068e-1 5.967e-1

8 S-SMC∥ 8.190e-2 3.906e-1 2.752e-1 5.588e-1 3.920e-1 5.407e-1 5.143e-1 5.959e-1 5.865e-1
8 S-HMC∥ 8.217e-2 3.906e-1 2.801e-1 5.613e-1 4.028e-1 5.510e-1 5.231e-1 6.081e-1 5.961e-1
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Table 16: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and s = 0.1, on MNIST7 (5 realizations and
± s.e. in accuracy).

P Method Ep. Acc. NL Brier

1 S-SMC∥ 170.0 92.17±0.37 2.671e-1 1.186e-1
1 S-HMC∥ 160 92.96±0.17 2.326e-1 1.071e-1

2 S-SMC∥ 179.0 92.52±0.30 2.507e-1 1.127e-1
2 S-HMC∥ 160 93.10±0.12 2.310e-1 1.067e-1

4 S-SMC∥ 180.5 93.01±0.29 2.369e-1 1.069e-1
4 HMC∥ 160 93.12±0.09 2.306e-1 1.069e-1

8 S-SMC∥ 178.0 93.26±0.16 2.259e-1 1.025e-1
8 S-HMC∥ 160 93.12±0.09 2.310e-1 1.072e-1

HMC (GS) 2e4 92.92±0.41 2.366e-1 1.084e-1

P Method Hep Htot

ID OOD ID OOD

cor. inc. 8 9 wn per. cor. inc. 8 9 wn per.

1 S-SMC∥ 2.642e-2 1.288e-1 1.384e-1 9.406e-2 3.972e-1 1.776e-1 1.536e-1 7.042e-1 8.975e-1 6.591e-1 9.753e-1 7.859e-1
1 S-HMC∥ 5.624e-2 2.645e-1 3.072e-1 1.941e-1 9.259e-1 4.100e-1 2.343e-1 9.132e-1 1.091e+0 7.567e-1 1.443e+0 8.248e-1

2 S-SMC∥ 4.233e-2 2.042e-1 1.836e-1 1.227e-1 5.306e-1 2.620e-1 1.449e-1 7.053e-1 9.422e-1 6.870e-1 1.058e+0 8.577e-1
2 S-HMC∥ 6.494e-2 2.844e-1 3.395e-1 2.198e-1 9.977e-1 4.432e-1 2.472e-1 9.223e-1 1.112e+0 7.769e-1 1.506e+0 8.436e-1

4 S-SMC∥ 5.315e-2 2.471e-1 2.200e-1 1.465e-1 6.363e-1 3.288e-1 1.403e-1 7.019e-1 9.791e-1 7.130e-1 1.126e+0 9.159e-1
4 S-HMC∥ 6.733e-2 2.924e-1 3.479e-1 2.179e-1 1.010e+0 4.740e-1 2.520e-1 9.300e-1 1.119e+0 7.823e-1 1.493e+0 8.866e-1

8 S-SMC∥ 5.872e-2 2.725e-1 2.440e-1 1.637e-1 7.309e-1 3.750e-1 1.374e-1 7.075e-1 1.001e+0 7.307e-1 1.220e+0 9.649e-1
8 S-HMC∥ 6.982e-2 2.993e-1 3.524e-1 2.258e-1 1.066e+0 4.817e-1 2.553e-1 9.380e-1 1.127e+0 7.893e-1 1.539e+0 8.946e-1

HMC (GS) 5.034e-2 2.417e-1 2.713e-1 1.900e-1 9.303e-1 3.683e-1 2.076e-1 8.477e-1 1.001e+0 7.264e-1 1.430e+0 7.518e-1

Table 18: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 1, v = 1 and s = 0.35, on IMDb (5 realizations and ±s.e.
in accuracy ).

P Method Ep. Acc. NL Hep

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 27.40 88.27±0.07 2.803e-1 6.177e-4 1.460e-3 1.581e-3 2.495e-3 2.187e-3 2.279e-3 2.504e-3
1 S-HMC∥ 26.00 88.81±0.01 2.750e-1 1.565e-2 3.463e-2 5.414e-2 7.021e-2 6.872e-2 8.407e-2 7.930e-2

2 S-SMC∥ 27.70 88.65±0.04 2.744e-1 5.513e-3 1.323e-2 2.132e-2 3.443e-2 2.751e-2 2.232e-2 3.585e-2
2 S-HMC∥ 26.00 88.86±0.03 2.745e-1 1.620e-2 3.584e-2 5.510e-2 7.622e-2 7.118e-2 8.766e-2 8.490e-2

4 S-SMC∥ 28.55 88.78±0.03 2.726e-1 8.040e-3 1.881e-2 3.057e-2 4.854e-2 5.097e-2 5.547e-2 5.766e-2
4 S-HMC∥ 26.00 88.88±0.01 2.740e-1 1.640e-2 3.610e-2 5.388e-2 7.488e-2 6.705e-2 8.588e-2 8.184e-2

8 S-SMC∥ 27.63 88.88±0.03 2.714e-1 9.342e-3 2.164e-2 3.756e-2 5.515e-2 5.260e-2 6.049e-2 6.435e-2
8 S-HMC∥ 26.00 88.93±0.02 2.737e-1 1.662e-2 3.651e-2 5.315e-2 7.391e-2 6.917e-2 9.098e-2 8.360e-2

P Method Brier ECE Htot

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 8.547e-2 3.832e-1 2.643e-1 5.482e-1 3.802e-1 5.116e-1 5.172e-1 5.581e-1 5.286e-1
1 S-HMC∥ 8.298e-2 3.889e-1 2.890e-1 5.681e-1 4.289e-1 5.583e-1 5.556e-1 6.133e-1 6.120e-1

2 S-SMC∥ 8.327e-2 3.868e-1 2.694e-1 5.548e-1 3.937e-1 5.456e-1 5.091e-1 5.790e-1 5.742e-1
2 S-HMC∥ 8.281e-2 3.896e-1 2.891e-1 5.681e-1 4.285e-1 5.684e-1 5.521e-1 6.125e-1 6.107e-1

4 S-SMC∥ 8.254e-2 3.884e-1 2.720e-1 5.576e-1 3.985e-1 5.601e-1 5.295e-1 5.963e-1 5.815e-1
4 S-HMC∥ 8.262e-2 3.898e-1 2.891e-1 5.684e-1 4.232e-1 5.673e-1 5.377e-1 6.139e-1 6.100e-1

8 S-SMC∥ 8.206e-2 3.899e-1 2.744e-1 5.596e-1 3.987e-1 5.555e-1 5.304e-1 6.025e-1 5.920e-1
8 S-HMC∥ 8.254e-2 3.904e-1 2.893e-1 5.683e-1 4.188e-1 5.626e-1 5.386e-1 6.156e-1 6.088e-1
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Table 19: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 2, v = 1 and s = 0.25, on IMDb (5 realizations and ± s.e.
in accuracy).

P Method Ep. Acc. NL Hep

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 29.6 88.27±0.10 2.807e-1 2.512e-4 6.069e-4 4.733e-4 7.166e-4 8.590e-4 9.313e-4 9.520e-4
1 S-HMC∥ 26 88.83±0.02 2.745e-1 1.269e-2 2.830e-2 4.522e-2 5.927e-2 5.886e-2 7.342e-2 6.803e-2

2 S-SMC∥ 27.2 88.64±0.05 2.752e-1 4.948e-3 1.174e-2 1.344e-2 2.120e-2 1.410e-2 2.411e-2 2.792e-2
2 S-HMC∥ 26 88.84±0.03 2.741e-1 1.304e-2 2.918e-2 4.586e-2 6.400e-2 6.096e-2 7.596e-2 7.216e-2

4 S-SMC∥ 28.3 88.77±0.04 2.737e-1 7.211e-3 1.662e-2 2.329e-2 4.029e-2 4.913e-2 5.544e-2 4.798e-2
4 S-HMC∥ 26 88.90±0.1 2.736e-1 1.321e-2 2.932e-2 4.487e-2 6.264e-2 5.689e-2 7.369e-2 6.930e-2

8 S-SMC∥ 28.5 88.87±0.03 2.720e-1 8.124e-3 1.872e-2 3.066e-2 5.057e-2 4.691e-2 6.403e-2 5.777e-2
8 S-HMC∥ 26 88.92±0.02 2.734e-1 1.337e-2 2.964e-2 4.442e-2 6.215e-2 5.863e-2 7.869e-2 7.108e-2

P Method Brier ECE Htot

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 8.548e-2 3.825e-1 2.673e-1 5.500e-1 3.562e-1 4.872e-1 4.727e-1 5.548e-1 5.609e-1
1 S-HMC∥ 8.286e-2 3.896e-1 2.873e-1 5.667e-1 4.239e-1 5.585e-1 5.533e-1 6.117e-1 6.076e-1

2 S-SMC∥ 8.343e-2 3.867e-1 2.723e-1 5.560e-1 3.696e-1 5.182e-1 4.861e-1 5.794e-1 5.849e-1
2 S-HMC∥ 8.271e-2 3.894e-1 2.870e-1 5.668e-1 4.228e-1 5.661e-1 5.478e-1 6.112e-1 6.061e-1

4 S-SMC∥ 8.283e-2 3.888e-1 2.758e-1 5.589e-1 3.823e-1 5.388e-1 5.321e-1 5.920e-1 5.801e-1
4 S-HMC∥ 8.254e-2 3.902e-1 2.870e-1 5.665e-1 4.174e-1 5.633e-1 5.328e-1 6.118e-1 6.058e-1

8 S-SMC∥ 8.220e-2 3.901e-1 2.772e-1 5.609e-1 3.891e-1 5.447e-1 5.340e-1 6.036e-1 5.874e-1
8 S-HMC∥ 8.249e-2 3.904e-1 2.871e-1 5.665e-1 4.138e-1 5.595e-1 5.338e-1 6.135e-1 6.047e-1

Table 21: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.05, on CIFAR10 (5 realizations
and ±s.e. in accuracy).

P Method Ep. Acc. NL Brier ECE

1 S-SMC∥ 168.8 89.26 ± 0.07 3.408e-1 1.580e-1 3.470e-2
1 S-HMC∥ 200 90.67 ± 0.03 2.749e-1 1.366e-1 6.598e-3

2 S-SMC∥ 172.0 90.12 ± 0.06 3.100e-1 1.466e-1 1.942e-2
2 S-HMC∥ 200 90.80 ± 0.02 2.707e-1 1.351e-1 5.574e-3

4 S-SMC∥ 173.4 90.34 ± 0.04 2.960e-1 1.399e-1 1.242e-2
4 S-HMC∥ 200 90.84 ± 0.04 2.688e-1 1.344e-1 6.442e-3

8 S-SMC∥ 174.3 90.63 ± 0.05 2.881e-1 1.371e-1 9.720e-3
8 S-HMC∥ 200 90.84 ± 0.03 2.677e-1 1.340e-1 6.601e-3

P Method Hep Htot

ID OOD ID OOD

cor. inc. close corrupt far cor. inc. close corrupt far

1 S-SMC∥ 4.258e-4 2.273e-3 2.515e-3 1.297e-3 2.185e-3 1.351e-1 6.620e-1 6.639e-1 4.300e-1 9.008e-1
1 S-HMC∥ 4.060e-2 1.804e-1 2.308e-1 1.228e-1 2.243e-1 1.917e-1 8.073e-1 8.900e-1 5.558e-1 1.154e+0

2 S-SMC∥ 1.796e-2 9.094e-2 1.115e-1 5.702e-2 1.340e-1 1.321e-1 6.646e-1 7.737e-1 4.864e-1 1.017e+0
2 S-HMC∥ 4.376e-2 1.896e-1 2.454e-1 1.300e-1 2.387e-1 1.956e-1 8.144e-1 9.064e-1 5.626e-1 1.162e+0

4 S-SMC∥ 2.855e-2 1.356e-1 1.700e-1 8.859e-2 1.862e-1 1.304e-1 6.700e-1 8.293e-1 5.188e-1 1.101e+0
4 S-HMC∥ 4.523e-2 1.937e-1 2.520e-1 1.337e-1 2.417e-1 1.970e-1 8.161e-1 9.129e-1 5.660e-1 1.163e+0

8 S-SMC∥ 3.507e-2 1.584e-1 2.027e-1 1.058e-1 1.961e-1 1.311e-1 6.684e-1 8.643e-1 5.368e-1 1.111e+0
8 S-HMC∥ 4.579e-2 1.966e-1 2.564e-1 1.358e-1 2.472e-1 1.971e-1 8.203e-1 9.173e-1 5.684e-1 1.168e+0
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Table 22: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.1, on CIFAR10 (5 realizations and
±s.e. in accuracy).

P Method Ep. Acc. NL Brier ECE

1 S-SMC∥ 229.6 88.26 ± 0.07 3.855e-1 1.770e-1 4.593e-2
1 S-HMC∥ 200 90.57 ± 0.04 2.823e-1 1.398e-1 1.073e-2

2 S-SMC∥ 226.0 89.62 ± 0.09 3.336e-1 1.553e-1 1.983e-2
2 S-HMC∥ 200 90.76 ± 0.04 2.753e-1 1.372e-1 1.356e-2

4 S-SMC∥ 224.8e 90.20 ± 0.08 3.100e-1 1.453e-1 9.413e-3
4 S-HMC∥ 200 90.84 ± 0.04 2.722e-1 1.360e-1 1.517e-2

8 S-SMC∥ 225.3 90.45 ± 0.06 2.980e-1 1.400e-1 7.737e-3
8 S-HMC∥ 200 90.83 ± 0.03 2.701e-1 1.353e-1 1.517e-2

P Method Hep Htot

ID OOD ID OOD

cor. inc. close corrupt far cor. inc. close corrupt far

1 S-SMC∥ 2.948e-4 1.507e-3 1.603e-3 8.256e-4 1.450e-3 1.309e-1 6.364e-1 6.121e-1 4.027e-1 9.110e-1
1 S-HMC∥ 7.055e-2 2.795e-1 3.591e-1 1.972e-1 3.581e-1 2.241e-1 8.596e-1 9.703e-1 6.102e-1 1.219e+0

2 S-SMC∥ 2.733e-2 1.343e-1 1.594e-1 8.581e-2 1.677e-1 1.256e-1 6.382e-1 7.735e-1 4.910e-1 1.037e+0
2 S-HMC∥ 9.734e-2 2.968e-1 3.862e-1 2.112e-1 3.821e-1 2.316e-1 8.732e-1 9.990e-1 6.238e-1 1.235e+0

4 S-SMC∥ 4.484e-2 2.002e-1 2.495e-1 1.365e-1 2.536e-1 1.235e-1 6.432e-1 8.577e-1 5.408e-1 1.135e+0
4 S-HMC∥ 1.018e-1 3.072e-1 4.011e-1 2.200e-1 3.936e-1 2.360e-1 8.822e-1 1.014e+0 6.323e-1 1.247e+0

8 S-SMC∥ 5.539e-2 2.369e-1 3.054e-1 1.636e-1 2.937e-1 1.217e-1 6.453e-1 9.184e-1 5.690e-1 1.156e+0
8 S-HMC∥ 1.035e-1 3.121e-1 4.095e-1 2.244e-1 4.031e-1 2.367e-1 8.884e-1 1.023e+0 6.371e-1 1.257e+0

Table 23: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.2, on CIFAR10 (5 realizations and
±s.e. in accuracy).

P Method Ep. Acc. NL Brier ECE

1 S-SMC∥ 289.6 86.99 ± 0.08 4.710e-1 2.007e-1 6.462e-2
1 S-HMC∥ 200 90.23 ± 0.08 2.990e-1 1.466e-1 2.518e-2

2 S-SMC∥ 289.6 88.77 ± 0.07 3.854e-1 1.699e-1 2.554e-2
2 S-HMC∥ 200 90.53 ± 0.04 2.890e-1 1.426e-1 3.096e-2

4 S-SMC∥ 289.4 89.82 ± 0.04 3.441e-1 1.536e-1 1.193e-2
4 S-HMC∥ 200 90.73 ± 0.02 2.840e-1 1.406e-1 3.368e-2

8 S-SMC∥ 289.3 90.30 ± 0.03 3.217e-1 1.445e-1 1.180e-2
8 S-HMC∥ 200 90.82 ± 0.03 2.810e-1 1.395e-1 3.481e-2

P Method Hep Htot

ID OOD ID OOD

cor. inc. close corrupt far cor. inc. close corrupt far

1 S-SMC∥ 3.682e-4 1.947e-3 2.063e-3 1.092e-3 1.629e-3 1.136e-1 5.613e-1 5.440e-1 3.630e-1 7.756e-1
1 S-HMC∥ 1.159e-1 4.091e-1 5.195e-1 2.993e-1 5.333e-1 2.676e-1 9.231e-1 1.059e+0 6.768e-1 1.297e+0

2 S-SMC∥ 3.863e-2 1.856e-1 2.117e-1 1.180e-1 2.030e-1 1.108e-1 5.822e-1 7.557e-1 4.901e-1 9.434e-1
2 S-HMC∥ 1.300e-1 4.377e-1 5.681e-1 3.260e-1 5.774e-1 2.836e-1 9.479e-1 1.109e+0 7.039e-1 1.331e+0

4 S-SMC∥ 6.722e-2 2.780e-1 3.470e-1 1.916e-1 3.332e-1 1.089e-1 5.885e-1 8.861e-1 5.634e-1 1.087e+0
4 S-HMC∥ 1.368e-1 4.524e-1 5.899e-1 3.392e-1 5.947e-1 2.909e-1 9.611e-1 1.132e+0 7.169e-1 1.346e+0

8 S-SMC∥ 8.362e-2 3.326e-1 4.244e-1 2.361e-1 4.065e-1 1.071e-1 5.954e-1 9.675e-1 6.080e-1 1.160e+0
8 S-HMC∥ 1.405e-1 4.604e-1 6.042e-1 3.476e-1 6.129e-1 2.945e-1 9.687e-1 1.146e+0 7.256e-1 1.364e+0
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