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Abstract

The success of foundation models is strongly linked to scale, which has reinforced
the interest in federated learning. With the prohibitive cost of training a large
language model (LLM) in mind, little attention has been placed on reusing pre-
trained models in collaborative training settings. Self-supervision has also played
an important role in this success, but its emphasis has been primarily on data.
This paper leverages Bayesian principles to bring self-supervision into the model
aggregation toolbox. It introduces self-supervised Fisher merging, a framework that
successfully merges models in parameter space without re-visiting data, opening a
new door in model reusability. Experimental results build the foundation of our
method on tractable linear models, and highlight its potential on aggregating neural
networks.

1 Introduction

The proliferation of foundation models (Bommasani et al., 2021) in society, specifically large
language models (LLM), puts the spotlight on decentralized training procedures carried out by
multiple machines. This point has reinforced the interest in federated learning (FL) (Konen et al.,
2016; McMahan et al., 2017), whose main success is to leverage computation and data from private
devices (Abadi et al., 2016) and train a single global machine learning model. These two achievements
represent the two major goals of FL in the last years: i) provide a robust learning paradigm that
collectively trains a model from multiple clients and ii) avoid the centralisation of sensitive data,
motivating new manners to communicate and aggregate locally trained parameters in a safe and fully
private way.

In recent years, foundation models have revolutionized the field of machine learning, introducing
new challenges to FL. One in particular is critical, as Brown et al. (2020) pointed out:

“Practical large-scale pre-training requires large amounts of computation, which
is energy-intensive: training the GPT-3 175B consumed several thousand
petaflop/s-days of compute during pre-training, (...). This means we should be
cognizant of the cost and efficiency of such models.”

Although the training of large models might cost millions of dollars, new repositories of pre-trained
foundation models (Wolf et al., 2020) are available for public use, promoting flexible and reusable AI.
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While FL still offers multiple solutions to train these computationally expensive models from scratch,
a third goal has emerged: reusability.

Reusing assets has been historically one of the core ideas in software development, mainly due to
reasons of efficiency, where it is not usually desirable to duplicate time and resources for a task
already solved. With the focus on the model aggregation step of FL, we are interested in the novel
ideas brought around reusable pre-trained models (Raffel, 2023), which also comply with the two
main principles in FL described above.

In this paper, we provide a new framework for model aggregation beyond the traditional parameter
averaging used in FL. Additionally, we show that self-supervised learning might help on merging
parameters from different pre-trained models. To deal with conditional predictions, we build on top
of a recent aggregation method based on the Fisher information matrix (Matena and Raffel, 2022).

Background. Model aggregation is one of the most critical steps in FL, where standard approaches
like parameter averaging (McMahan et al., 2017) has been shown to converge to good solutions.
However, these often rely on the assumption that the client’s data is i.i.d. sampled from the global
data. To address issues like drastic degradation in performance whenever the previous assumption
is not satisfied, other methods considered principles from Bayesian inference (Sharma et al., 2019;
Chen and Chao, 2021).

The probabilistic view of FL aims to do model aggregation as an approximate maximisation of the
joint likelihood of the models’ posterior (Ashman et al., 2022; Matena and Raffel, 2022). This is
often convenient as having densities over the different models’ parameters facilitates aggregation.
In practice, obtaining the global posterior is also equivalent to the computation of the log-marginal
likelihood (LML) of the final model. It has recently been shown that masked pre-training, a variant
of self-supervised learning (SSL), maximises according to an estimate of the LML (Moreno-Muñoz
et al., 2023). For that reason, we are interested in exploring appropriate designs of SSL to perform
model aggregation beyond parameter averaging in the Bayesian framework.

2 Self-supervised Learning for Model Aggregation

We consider the problem setting where we have K models built from neural networks (NN) parame-
terised by θ1,θ2, · · · ,θK . The main goal behind model aggregation is to generate a single model
with parameters θ and similar capabilities as each one of the K local models. For convenience, we
will refer to this one as the global model. The main difficulty behind this task is to perform model
aggregation without revisiting any data.

A typical starting point to frame probabilistic model aggregation is to consider the maximisation
of the joint posterior distribution. We assume each local posterior density p(θ|Dk) coming from a
different FL client, such that

θ∗ = argmax
θ

K∑
k=1

log p (θ | Dk) , (1)

where Dk are the local data only observed by each kth client. We generally assume these data to be
pairs of input-output observations {yn,xn} ∀n ∈ {1, 2, . . . , N}. Due to obtaining posterior densities
over NN parameters is generally difficult — i.e. as it is in Bayesian NNs (Bishop, 1995; MacKay,
1995), approximations are often used. When such approximations are set via isotropic Gaussian
distributions with identical variances, the optimal solution for θ∗ in Eq. (1) is known. This one equals
the average of all model parameters and is given by θ∗ = 1/K

∑
k θk. Using the convention of

Matena and Raffel (2022), we will refer to this approach as isotropic merging in our empirical results.

Laplace Approximation and Fisher Merging. If we frame model aggregation with a different ap-
proach than isotropic Gaussians, we might end up considering Laplace approximation (LA) (MacKay,
2003; Daxberger et al., 2021). Specifically, LA approximates the posterior of NN’s parameters using
θMAP, such that

p(θ | D) ≈ N (θ|θMAP,Σ) with Σ := (∇2
θL(D|θ)|θMAP)

−1. (2)

Since LA usually requires approximations to the (potentially indefinite) Hessian of the log-likelihood
function (Daxberger et al., 2021; MacKay, 2003), the Fisher information matrix is one such choice.
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This is defined as the variance of the gradient of the log-likelihood function respect to θ.

F(θ) :=

N∑
n=1

Epθ(y|xn)

[
∇θ log pθ (y | xn)∇θ log pθ (y | xn)

⊤
]
. (3)

Since this approximation is quadratically large within the number of parameters, it is usually infeasible
to compute, store, or invert. Thus, we typically apply further factorization assumptions. The most
lightweight is a diagonal factorization which ignores off-diagonal elements (LeCun et al., 1989).
Other approaches, like FEDBE (Chen and Chao, 2021), use a diagonal covariance matrix for the
Gaussian posterior. More expressive alternatives are block-diagonal factorizations such as the
Kronecker-factored approximate curvature (KFAC) method (Botev et al., 2017).

Following the spirit of Raffel (2023) and Daxberger et al. (2021), the recent aggregation method of
Matena and Raffel (2022) introduces Fisher merging. Their idea is to construct Gaussian-distributed
approximations for each kth model with mean θk and precision Fk. Since the full Fisher matrix
takes O(|θ|2) in memory, they empirically estimate the diagonal. Using additional hyperparameters,
the final model aggregation is computed via a weighted average, which outperforms the traditional
isotropic merging.

2.1 Self-supervised Fisher merging.

Inspired by the success of self-supervised learning (SSL) in foundation models, we propose a new
merging method that recurrently benefits from conditional independence. The core idea is to avoid
the diagonal Fisher approximation of Matena and Raffel (2022) to obtain a better performance in the
global model aggregation step.

Inverted Bayes’ Rule. Our starting point is slightly different to Fisher merging. In particular, we
are interested in obtaining the global posterior solution according to the LML of the data. If we
denote the marginal likelihood constant or evidence as Zi =

∫
p(yi|xi,θ)p0(θ)dθ where p0(θ) is

the prior density over parameters, then we can compute the same constant for each local client. This
is, Z1,Z2, . . . ,ZK given the corresponding data D1,D2, . . . ,DK . Now, under the assumption of
i.i.d. observations, we can say that the exact global posterior can be obtained as

log p(θ | D1,D2, . . . ,DK) =

K∑
k=1

(
log pk(θ|Dk)−

k − 1

K
log p0(θ)

)
+

∑
k

logZk − logZ, (4)

where each log-posterior density from the kth client is denoted as log pk(θ|Dk). Moreover, as we are
considering a maximum likelihood principle for the global posterior, the intractable LML constants in
Eq. (4) can be ignored in our case, such that

log p(θ|D) =

K∑
k=1

(
log p(θ|Dk)−

k − 1

K
log p0(θ)

)
+ const. (5)

Thus, using Eq. (5), our main goal is now to find θ∗ such that θ∗ = argmaxθ log p (θ|D). The main
difficulty appears as we want to maximise each one of the approximate log p(θ|Dk) inherited from
the Fisher merging method. Luckily, we can avoid diagonal approximations using a self-supervised
learning variant known as masked pre-training (MPT).

Masked Pre-Training on the space of parameters. The idea behind MPT is to remove random
input dimensions (also known as masking) in the observed objects and learn a model that accurately
predicts the missing values. In BERT (Devlin et al., 2018), each object is usually considered as a D
dimensional vector, where each feature (or token) is named as token. Given a random set of M tokens
— i.e. originally set to 15% in BERT, MPT maximises according to the average of the following
objective1

log p(θM|θR,Dk) = E

∑
j∈M

log p(θj |θR,Dk)

 , (6)

1We adapted the objective to work on the parameter variables θ instead of observations. Notice that we want
to avoid a data model aggregation in the context of FL.
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where the average is w.r.t. the random masking π ∈
(
D
M

)
. Thus, having access to a simpler average

of conditional densities between parameters, we can exploit this point to build our merging loss.
Particularly, we inherit the weighted sum between posterior and prior densities from Eq. (5), and
we also average over the K local models and random masking patterns. Notice that our loss accepts
mini-batching for stochastic optimization. See box below.

Conditional Precision and Fisher matrices. The last building block of our method is how to
obtain conditional densities with Fisher-based precision matrices. For this, we primarily make use
of the empirical Fisher estimates as in Matena and Raffel (2022) to build precision block matrices
on the masked and rest dimensions. Having these, we exploit properties of Gaussian conditionals
to obtain the conditional predictive mean and precision. It is important to notice that conditional
independence is assumed among the masked tokens as in (Devlin et al., 2018).

▷ Self-supervised Fisher (SSF) merging loss:

Lθ = −E

∑
j∈M

[
log p(θ

(π)
j |θ(π)

m+1:D−1,Dk)
]
− k − 1

K
log p0(θ

(π)
j |θ(π)

1:D−1)

 . (7)

3 Experiments

In this section, we explore the capabilities of SSF, and validate our proposed construction of each
local posterior density. First, we lay the foundation with linear models, and then study different
configurations of the method (e.g masking rate, number of random masks, merging steps) with
small-size neural networks. Specifically, we train and merge numerous NN with the same architecture
and same initialization, but different hyperparameters. This follows the same model merging set up,
recently used in Matena and Raffel (2022) as a benchmark to compare different methodologies. Lastly,
we scale-up the size of the models by using CONVNETS (LeCun et al., 1998) of 24K parameters
pre-trained on MNIST and FASHION-MNIST datasets.

All the experiments on non-linear models follow the same SSF set-up: the maximization of the
aggregated posterior distribution is composed of 5000 steps or epochs, and 20 random masking of
parameters per step. We study how the number of masked parameters affects the merging performance,
as reducing the masking size typically improves the computational cost of the method. We optimize
the global model using stochastic gradient descent (SGD) and our loss (see Eq. 7), simulating standard
NN training.

Once we have pre-trained each model, and before the merging, we compute and store the sum of the
gradients and squared-gradients for a limited number of samples. We require the squared gradients as
they define the diagonal of the Fisher matrix. On the other hand, we partially build the Fisher matrix
on-the-fly by computing the outer product between the gradients respect to masked parameters. This
process is made at each step to compute the conditional predictive probabilities for each local model.

3.1. Formal results in tractable linear models. To verify that our merging approach is based on a
good approximation of the true posterior distribution, we first need a tractable probabilistic model.
The Bayesian treatment of linear regression (Bishop, 2006) is the best choice as the selection of
proper conjugate priors makes the posterior also Gaussian and exact. Thus, we assume the zero-mean
isotropic Gaussian prior p(w | α) = N

(
w | 0, α−1I

)
, and the corresponding posterior distribution

is obtained as p(w | t) = N (w | mN ,SN ), where

mN = SN

(
S−1
0 m0 + βΦTt

)
S−1
N = S−1

0 + βΦTΦ.
(8)

In this first case, we are able to aggregate models using their exact posterior distribution. Thus, our
analysis relies on a synthetic regression dataset, where three linear models are fitted on different
overlapping subsets of the input data (non-i.i.d). The findings presented in Fig. 1 indicate that during
the self-supervised merging process the parameters of the optimized model, or global, converge to
the true ones. These are the ones fitted to the whole observed data. Moreover, since the posterior
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distribution is usually intractable in non-linear settings, we approximated the posterior of each linear
model with the Fisher matrix. In particular, we use it as a positive-definite approximation of the
Hessian over the log-likelihood function, which defines the precision matrix. In linear regression it
has the following closed-form expression,

F(θ) = x⊤x/σ2.

In this regard, Fig. 1 shows that throughout the self-supervised merging process, the parameters of
the global converge toward the true parameters in all cases. This observation lays the groundwork for
the applicability of our aggregation method to non-linear scenarios.

Figure 1: Asymptotic convergence of the optimized parameters to the true parameters during the
aggregation process with linear models. (Left). Value of the loss, defined in Eq. (7), at each
aggregation step. The negative loss is minimized during the aggregation, as it quantifies the probability
of observing the global parameters given the posterior of each aggregated model. (Right). Mean-
squared error between the parameters of the final model and the true parameters. Although using the
Fisher matrix introduces a small bias, the aggregated model converges towards the true model.

3.2. Beyond linear models with small-size networks. One remaining question is whether our
self-supervised merging method holds with non-linear models, such as neural networks within a
large parameter space. It is worth to highlight that we aim to optimize a neural network from
scratch without revisiting any data, maximizing the joint posterior distribution at each step. This is
expressed with predictive conditionals over parameters which might number on the millions. The
PINWHEEL classification (synthetic) dataset offers a promising initial step in our analysis and given
our computational constraints. The studied models are neural networks, with identical architecture
and initialization, and composed of 400 parameters. However, each model is trained with different
hyperparameters. In Table 1 and Fig. 2, we indicate that our self-supervised method is able to
optimize a randomly initialized model in parameter space and outperform the current state-of-the-art
merging methods.

Table 1: Comparison of the different merging methodologies w.r.t. the number of aggregated models
and SSF masking rate. The values corresponds to the test loss of the global model, and each row
represents an independent set of experiments.

# MODELS ISOTROPIC FISHER SSF 20% (ours) SSF 30% (ours) SSF 40% (ours) SSF 50% (ours)

2 1.0762 ± 0.0023 0.7413 ± 0.0090 0.7396 ± 0.0099 0.7397 ± 0.0093 0.7397 ± 0.0079 0.7398 ± 0.0079
3 0.6658 ± 0.0158 0.2320 ± 0.0003 0.2265 ± 0.0005 0.2270 ± 0.0005 0.2276 ± 0.0005 0.2277 ± 0.0005
4 0.4342 ± 0.0037 0.1424 ± 0.0002 0.1397 ± 0.0002 0.1403 ± 0.0002 0.1403 ± 0.0002 0.1406 ± 0.0002
5 0.3085 ± 0.0002 0.1126 ± 0.0002 0.1108 ± 0.0002 0.1109 ± 0.0002 0.1117 ± 0.0002 0.1114 ± 0.0002

3.3. Bounding the cost for medium-size neural networks. With an eye on foundation models,
where models might be composed of billions of parameters, we fix the number of parameters
considered to construct each local density. This bounds the total cost of the method, that grows with
the size of the model. To do so, we randomly select a window of parameters with a fixed length, from
which we mask a random subset. Specifically, we select 5000 parameters and mask 800. Limiting the
number of rest dimensions can be balanced with an increase of random masks per step, which might
also help to stochastically explore further dimensions. Thus, we increase the number of permutations
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Figure 2: (Left). We generate a Pinwheel synthetic dataset composed of 5 different clusters, with
1000 samples per cluster and 2 latent dimensions per sample. (Right). Each classification model,
defined as a three hidden layers neural network, is trained for a different number of epochs and with a
different learning rate. After 5000 epochs of aggregation SSF outperforms the current state-of-the-art
merging methods.

Figure 3: (Left). Comparison of the three techniques on merging 24k parameter CONVNETS trained
with MNIST. We fix the number of parameters considered at each optimization step to bound the
computational expenses of the optimization process. Despite not considering the whole parameter
set, SSF optimizes a large model in parameter space, converging to an optimal solution. However, in
this case SSF and Fisher merging obtain identical performance. (Right). Comparison of the three
techniques on merging CONVNETS trained with FASHION-MNIST. The three merging methods lead
to almost identical test losses, being Fisher merging slightly better than SSF.

.

per step to 200. In this analysis, we merge three CONVNET models of 24K parameters, trained on
MNIST and FASHION-MNIST datasets from different hyperparameter configurations. In Fig. 3 we can
observe how SSF converges towards Fisher merging. The reason for this might be that limiting the
number of dimensions introduces a small bias in the conditioning.

Table 2: Comparison of the different merging methodologies w.r.t. MNIST and FASHION-MNIST
datasets. In both cases we fix the number of parameters considered for the calculation of the loss,
biasing the merging but bounding the computational cost.

DATASET ISOTROPIC FISHER SSF 20 % (ours)

MNIST 0.0911 ± 0.0 0.0697 ± 0.0 0.0697 ± 0.0
FASHION-MNIST 0.4734 ± 0.0 0.4679 ± 0.0 0.4694 ± 0.0

3.4. Limitations. We have shown the positive results of improving the approximation given the
local posterior densities, and we designed a novel self-supervision technique that aggregates models
in parameter space. However, we have identified a clear trade-off — this advancement comes at
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the expense of lacking a direct closed-form merging solution (e.g. parameter averaging), forcing
an optimization process. Here, we identify two main computational problems. First, the predictive
conditional for each local posterior is linked to the parameter size, due to the inherent quadratic cost
of the Fisher matrix. Precisely, computing outer products between masked and rest parameters at
each step of SSF might become challenging for larger models. Second, the optimization of large
models is increasingly expensive when the model size grows, as it has been shown on recent large
foundation models (Bommasani et al., 2021).

3.5. Future directions. We have already explored a possible solution for the first limitation, but
improving the optimization of large models is out of the scope of this paper. We leave as future
work the exploration of possible upgrades for both the method and the optimization, and also the
integration of ssf in real FL scenarios. Perhaps, it has potential to serve as a form of knowledge
distillation during the aggregation step, facilitating the reusability of pre-trained models.

4 Conclusion
In this paper, we proposed self-supervised Fisher merging, a novel aggregation technique that works
beyond the standard parameter averaging. Inspired by the success of masked pre-training on recent
foundation models and new links to the implicit maximization of the LML (Moreno-Muñoz et al.,
2023), we provide a robust approximation to the global posterior by decomposing each local density
as sum of conditionals over parameters. This clearly avoids the diagonalization of the Fisher matrix.
We maximize the joint posterior throughout an optimization process, training models from scratch
without re-visiting any data. We support our method with a formal study on tractable linear models,
and with empirical results on merging small and medium-size neural networks.
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