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Learning Remote Sensing Object Detection With
Single Point Supervision

Shitian He , Huanxin Zou , Yingqian Wang , Member, IEEE, Boyang Li , Xu Cao, and Ning Jing

Abstract— Pointly supervised object detection (PSOD) has
attracted considerable interest due to its lower labeling cost
when compared to box-level supervised object detection. How-
ever, the complex scenes and densely packed and dynamic-scale
objects in remote-sensing (RS) images hinder the development
of PSOD methods in the RS field. In this article, we make the
first attempt to achieve RS object detection with single-point
supervision and propose a PSOD method tailored for RS images.
Specifically, we design a point label upgrader (PLUG) to generate
pseudo-box labels from single-point labels and then use the
pseudo-boxes to supervise the optimization of existing detectors.
Moreover, to handle the challenge of the densely packed objects
in RS images, we propose a sparse feature-guided semantic
prediction (SemPred) module that can generate high-quality
semantic maps by fully exploiting informative cues from sparse
objects. Extensive ablation studies on the DOTA dataset have
validated the effectiveness of our method. Our method can
achieve significantly better performance when compared to
state-of-the-art image-level and point-level supervised detection
methods and reduce the performance gap between PSOD and
box-level supervised object detection. The code is available at
https://github.com/heshitian/PLUG.

Index Terms— Remote sensing (RS), single-point supervised
object detection (PSOD), sparse guided feature aggregation.

I. INTRODUCTION

REMOTE-SENSING object detection (RSOD) plays an
important role in many fields, such as national defense

and security, resource management, and emergency rescuing.
With the development of deep learning, many deep neural
network (DNN)-based detection methods [1], [2], [3], [4], [5],
[6], [7] were proposed and achieved promising performance.
Besides, a number of remote-sensing (RS) datasets (e.g.,
HRSC2016 [8], NWPU VHR-10 [9], and DOTA series [10])
containing accurate and rich annotations were proposed to
develop and benchmark RSOD methods. In these datasets,
accurate location, scale, category, and quantity information of
objects are provided and greatly facilitate the development of
RSOD. However, such rich annotation formats will lead to
expensive labor costs when RSOD methods are transferred to
the new RS data (e.g., images captured by new satellites).
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To reduce the labor costs of annotating new RS data,
researchers explored image-level annotations where only cat-
egory information of objects is provided and introduced
image-level supervised detection methods [11], [12], [13],
[14], [15], [16]. These methods generally detect objects in
a “find-and-refine” pipeline, that is, the coarse positions of
objects are first found, and the proposals are then generated
and refined. However, due to the complex RS scenes and the
lack of location, scale, and quantity information, it is highly
challenging to achieve good RSOD performance based on
image-level annotation. Recently, single-point annotation [17],
[18], [19], [20] has attracted much attention. Different from
image-level annotations, point labels can simultaneously pro-
vide category, quantity, and coarse position information. The
introduction of additional location and quantity information
simplifies the original “find-and-refine” pipeline to the “refine-
only” one and thus reduces the difficulties of pseudo-box
generation. Besides, the labor cost of single-point annotations
is only about 1/18 of box-level labels [19] and is negligibly
higher than image-level ones. Therefore, single-point annota-
tions have a large potential in the detection field.

Pointly supervised object detection (PSOD) is still in its
infancy, with just a few methods [17], [18], [19] being
proposed in recent years. Papadopoulos et al. [17] introduced
center-click annotation and used the error distribution between
two clicks to estimate object scales. Ren et al. [18] proposed
a unified object detection framework that can handle different
forms of supervision (e.g., tags, points, scribbles, and boxes)
simultaneously. Chen et al. [19] predefined massive proposals
in varied scales, aspect ratios, and shaking degrees for each
point label and used multi-instance learning (MIL) to select
and refine the most suitable proposals as the final results.

A straightforward way to achieve pointly supervised RSOD
is to directly apply existing PSOD methods to RS images.
These PSOD methods mainly follow the MIL pipeline,
in which many proposals are preset for each point label, and
then the optimal one is selected as the pseudo-box label.
However, this framework is unsuitable for the RSOD task due
to the low recall of proposal bags caused by the extremely
huge variation of scales and aspect ratios of RS objects. In this
article, we make the first attempt to achieve RSOD with
single-point supervision and propose a point label upgrader
(PLUG) to generate high-quality pseudo-box labels from sin-
gle points. Specifically, the semantic response map is first
learned under point-level supervision, and then pseudo-boxes
can be generated in the shortest path paradigm. Due to the
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discard of proposal generation, our PLUG is less susceptible to
interference from varied scales and aspect ratios. Moreover, the
dense and cluttered objects in RS images hamper the extraction
of discriminative features and thus degrade the qualities of
generated pseudo-boxes. Considering this issue, we propose a
sparse feature-guided semantic prediction (SemPred) module
to extract general representations of sparse objects and utilize
them to improve the quality of the pseudo-boxes of dense
objects. In this way, our PLUG can obtain more discriminative
feature representations and improve the downstream detection
performance.

By utilizing PLUG to transform single-point labels into box-
level ones, we can develop a PLUG-Det method to achieve
PSOD tailored for RS images. The training pipeline of our
PLUG-Det consists of three stages (as shown in Fig. 1). First,
our PLUG is trained under single-point supervision. Then,
pseudo-boxes are generated by performing inference using the
well-trained PLUG. Finally, existing fully supervised detectors
(e.g., Faster-RCNN) are trained using the pseudo-boxes to
achieve PSOD.

In summary, our main contributions are as follows.
1) We present the first study on single-point supervised

RSOD and propose a simple, yet effective method called
PLUG to generate pseudo-box annotations from single-
point ones.

2) To handle the challenge of dense and clustered objects in
RS images, we propose a sparse feature-guided SemPred
approach to enhance the discriminative feature represen-
tation capability of our PLUG.

3) By using the generated pseudo-boxes to train exist-
ing detectors (Faster-RCNN [21] in this article), our
method (i.e., PLUG-Det) achieves promising detection
performance and outperforms many existing weakly
supervised detectors.

The remainder of this article is organized as follows.
In Section II, we briefly review the related works. Section III
presents the details of the proposed method. Comprehensive
experimental results are provided in Section IV, and Section V
concludes this article.

II. RELATED WORKS

A. Object Detection in Remote-Sensing Images

RSOD has been extensively investigated in the past decades.
Since the convolutional neural network (CNN) was proposed,
deep-learning-based RSOD methods have achieved significant
improvements [22]. Compared to objects in natural images,
RS objects have some special characteristics [23], including
varied orientation, dynamic scales, densely packed arrange-
ments, significant intraclass difference, and so on. Therefore,
RSOD methods generally focus on the solutions to the above
unique issues.

Specifically, regarding the varied orientation issue, many
researchers proposed new representation approaches, for
example, rotated bounding boxes [24], [25], [26], [27], inter-
secting lines [28], [29], key points [30], [31], [32], and rotated
Gaussian distribution [33], [34]. Besides, some researchers
proposed improved feature extraction modules [7], [35], [36],

Fig. 1. Illustration of the training pipeline of our PSOD method. First,
our PLUG is trained under single-point supervision. Then, pseudo-box labels
are generated by performing inference using the well-trained PLUG. Finally,
existing fully supervised detectors (e.g., Faster-RCNN) are trained under the
supervision of the generated pseudo-boxes.

novel loss functions [23], [37], and new angle regression
mechanisms [38], [39] to improve the detection performance
on multioriented objects. Regarding the dynamic scales issue,
Hu et al. [40] proposed a feature enhancement method that
can extract more discriminative features containing struc-
ture, deep semantic, and relation information simultaneously.
In [23] and [41], multiscale features were used to extract the
scale-invariant representation of objects. Besides, Li et al. [6]
proposed a ground sample distance (GSD) identification sub-
network and combined GSD information with the sizes of
regions of interest (RoIs) to determine the physical size of
objects. Regarding the densely packed arrangement issue,
Yang et al. [42] proposed ClusDet, in which clustering regions
were first extracted by a cluster proposal subnetwork, and then
fed to a specific detection subnetwork for final prediction.
Li et al. [43] proposed a density map-guided detection method,
where the density map can represent whether a region contains
objects or not and thus guide cropping images statistically.

Apart from the above studies, there are still many works try-
ing to tackle other issues (e.g., excessive feature coupling [44],
[45], unbalanced label assignment [46], and various aspect
ratios [47], [48]) in RSOD. Recently, Transformer-based
object detection methods [49], [50], [51] have attracted much
attention due to their strong modeling capability. Therefore,
some Transformer-based RSOD methods [52], [53] have been
proposed and achieved remarkable detection performance.

The aforementioned methods improve the detection perfor-
mance under box-level supervision. In this article, we aim to
relieve the labor cost of annotating RS images and propose a
single-point supervised RSOD method.

B. Image-Level Supervised Object Detection

To relieve the burden of box-level labeling, numerous
image-level supervised detection methods [11], [12], [13],
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[14], [15], [16], [54], [55], [56] were proposed, which can
be categorized into class activation map (CAM)-based and
MIL-based methods.

CAM-based methods [15], [16] detect objects based on
the CAMs. Li et al. [57] proposed a CAM-based detec-
tion framework, in which the mutual information between
images was exploited, and the class-specific activation weights
were learned to better distinguish multiclass objects. Since
CAM-based methods can only generate a few proposals for
each class [58], it is not suitable for RS images with multiple
instances.

MIL-based methods [11], [12], [13], [14] generally utilize
off-the-shelf proposal generators (e.g., selective search [59],
edge boxes [60], and sliding windows) to produce initial
proposals and then consider the proposal refinement process
as an MIL problem to make final predictions [58]. For
example, WSDDN [11] first generates proposals using edge
boxes and then feeds the extracted features of proposals
to two parallel branches for classification and detection
scoring, respectively. The two obtained scores are used to
classify positive proposals. Based on WSDDN, OICR [12]
uses selective search to generate proposals and adds an
instance classification refinement process to enhance the
discriminatory capability of the instance classifier. PCL [13]
improves the original proposal bags to proposal clusters so
that spatially adjacent proposals with the same label can be
assigned to the same category cluster.

In 2014, Zhang et al. [61] first transferred the image-level
supervised detection methods into the RSOD field. Specifi-
cally, they first performed saliency-based segmentation and
negative sample mining to generate initial training samples and
then proposed an iterative training approach to refine the sam-
ples and the detector gradually. On this basis, Han et al. [62]
proposed a Bayesian framework to generate training samples,
in which a deep Boltzmann machine was employed to extract
the high-level features. In the image-level supervised RSOD
field, the key challenging issues are local discrimination,
multiinstances, and the imbalance between easy and difficult
samples. Recent methods put efforts into the improvement of
these issues. For example, regarding the local discrimination
issue, Feng et al. [63] proposed a novel triple context-
aware network, named TCANet, to learn complementary and
discriminative visual features. Feng et al. [56] subsequently
proposed a progressive contextual instance refinement method.
Qian et al. [64] proposed a semantic segmentation-guided
pseudo-label mining module to mine high-quality pseudo-
ground-truth instances. Regarding the multi-instances issue,
Wang et al. [65] proposed a unique multi-instance graph
learning framework. Feng et al. [66] proposed to utilize
the rotation consistency to pursue all possible instances.
Wang et al. [67] developed a novel multiview noisy learn-
ing framework, named MOL, which uses reliable object
discovery and progressive object mining to reduce back-
ground interference and tackle the multi-instance issue. For
the imbalanced easy and difficult samples, Yao et al. [68]
performed dynamic curriculum learning to progressively learn
the object detectors in an easy-to-hard manner. Qian et al. [69]
incorporated a difficulty evaluation score into training

loss to alleviate the imbalance between easy and difficult
samples.

The aforementioned studies improve the detection perfor-
mance of image-level supervised RSOD methods. However,
since image-level annotations cannot provide enough location
and quantity information, these methods cannot achieve rea-
sonable performance when applied to the RSOD task (see
Section IV). In this article, we sacrifice little labor cost and
focus on single-point supervised RSOD.

C. Point Supervision in Vision Tasks

Recently, point-level labels gradually attracted research
attention due to their similar labeling time and richer label-
ing information. Point-level supervision has been extensively
investigated in many vision tasks, including object detec-
tion [17], [18], [19], semantic segmentation [70], [71], [72],
instance segmentation [73], [74], [75], panoptic segmenta-
tion [76], localization [20], [77], [78], infrared small target
segmentation [79], [80], and so on.

Wu et al. [72] proposed a deep bilateral filtering network
(DBFNet) for single-point supervised semantic segmentation,
in which a bilateral filter was introduced to enhance the consis-
tency of features in smooth regions and enlarge the distance of
features on different sides of edges. Cheng et al. [74] proposed
a multipoint supervised instance segmentation (PSIS) method,
named Implicit PointRend, that can generate parameters of
the mask prediction function for each object. Fan et al. [76]
considered panoptic pseudo-mask generation as a shortest
path searching puzzle and used semantic similarity, low-level
texture cues, and high-level manifold knowledge as traversing
costs between adjacent pixels. Yu et al. [20] proposed a
coarse point refine (CPR) method for single-point super-
vised object localization, and the CPR method can select
semantic-correlated points around point labels and find seman-
tic center points through MIL learning.

In the object detection field, Papadopoulos et al. [17] first
introduced center-click annotation, in which the error distribu-
tion between two clicks is utilized to estimate object scales.
Hence, two repetitive and independent center annotations are
needed in their method. Different from that, our method tries
to generate pseudo-boxes from a single arbitrary point on
the object mask. Ren et al. [18] proposed a unified object
detection framework (i.e., UFO2) that can handle different
forms of supervision (e.g., tags, points, scribbles, and boxes)
simultaneously. Different from handling different forms of
supervision, the emphasis of our method is better at generating
pseudo-boxes from single points based on the characteristics
of RS objects. Chen et al. [19] proposed an MIL-based
single-point supervised detection framework that can adap-
tively generate and refine proposals via multistage cascaded
networks. In their method, proposal bags are generated through
some fixed parameters that control the proposal scales, aspect
ratios, shaking degrees, and quantities. However, due to the
challenges in the RS field (as mentioned in Section I), their
method suffers performance degradation when applied to RS
images. In this article, we focus on the special challenges of
RSOD and explore single-point supervised detection methods
tailored for RS images.
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Fig. 2. Overview of the proposed PLUG, which is designed to transform point labels into pseudo-boxes. Specifically, the feature extraction module extracts
discriminative features from input images. Then, the sparse feature-guided SemPred module takes the extracted features as its input and is responsible for the
semantic response prediction. Finally, the ILG module takes both the input images and the predicted response as its input to generate pseudo-boxes. (a) Overall
architecture. (b) Meta-feature encoding. (c) Aggregator.

III. METHOD

In this section, we introduce the details of our method.
We first introduce the architecture of the proposed PLUG,
which consists of the feature extraction module, the sparse
feature-guided SemPred module, and the instance label gener-
ation (ILG) module (see Fig. 2). Afterward, we introduce the
training losses of our PLUG.

A. Feature Extraction
In our method, ResNet [81] with feature pyramid network

(FPN) [82] is used as the feature extraction module. The
ResNet backbone extracts features of images of different
scales, and FPN fuses the multiscale features to balance
the contents of semantic and structural information. Follow-
ing [20], the P2 layer (with 8× downsampling ratio) of FPN
is used for subsequent processing.

B. Sparse Feature-Guided Semantic Prediction
Taking the extracted features as input, the sparse

feature-guided SemPred module is responsible for obtaining
the semantic response of objects, in which object regions are
activated in the specific category layers. Besides, the SemPred
module can reduce the difficulty of discriminative feature
extraction on dense objects. Specifically, we observe that the
pseudo-boxes generated on sparse objects are of higher quality
than those generated on dense objects (see Section IV-F for
details). Consequently, in our SemPred module, the gen-
eral representation of sparse objects is used to enhance the
extracted features and thus improve the discriminative fea-
ture representation capability of our PLUG. The detailed
architecture of the SemPred module is shown in Fig. 2(a),

which consists of three stages: meta-feature encoding, feature
aggregation, and SemPred.

1) Meta-Feature Encoding: In this stage, the general rep-
resentation (i.e., meta-feature) of sparse objects is encoded
from the extracted features. As shown in Fig. 2(b), meta-
feature encoding takes the extracted features as input and
obtains sparse features by selecting the features of images
with a single object. Then, the sparse features are fed to a
predictor and the ILG module to generate the pseudo-labels of
sparse objects. With the sparse features and the pseudo-labels,
masked average pooling is performed to obtain the feature
representation of each sparse object. To obtain more represen-
tative and stable meta-features, all the sparse representations in
the dataset are averaged according to their categories. Finally,
C (the number of categories) meta-features are obtained, each
of which can represent the general information of objects in
a specific category.

2) Feature Aggregation: After obtaining C meta-features,
C aggregated features are generated in this stage by using
meta-features to enhance the extracted features. The archi-
tecture of our aggregator is shown in Fig. 2(c). Specifically,
for each meta-feature, element-wise subtraction and multipli-
cation are first performed. Then, the processed features are
concatenated with the original feature to obtain the aggregated
features. Note that, a fully connected layer and a ReLU layer
are used after each operation (i.e., subtraction, multiplication,
and concatenation).

3) Semantic Prediction: For each aggregated feature, a pre-
dictor (composed of a linear layer and a Sigmoid function) is
used for semantic response prediction. Since the representa-
tions in meta-features are category-aware, different aggregated
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features are experts in predicting objects in corresponding
categories. Hence, the specific layer of the semantic response
from different aggregated features is selected and concatenated
to generate the final semantic response. It is worth noting
that the predictors in different branches and the meta-feature
encoding module share the same architecture and parameters.

Note that, in the SemPred module, meta-feature encoding
is performed in the training phase only. During inference, the
meta-features have been optimized and stored in advance, and
thus the extracted features can be directly aggregated. In fact,
the guidance of sparse objects can be considered as a self-
distillation process [83], where the sparse features are the
teacher and can transfer knowledge (high-quality features) to
the student. With the guidance of sparse objects, the semantic
response can be enhanced and benefits the pseudo-box gener-
ation in the following ILG module.

C. Instance Label Generation

After obtaining the semantic response, the ILG module is
designed to generate pseudo-box annotations. The core of this
module is to assign each pixel to its most likely object or
background. Based on the assignment results, we can obtain
the bounding box of each object by finding the circumscribed
rectangle of the corresponding pixels.

Specifically, let L = {l0, l1, l2, . . . , lL} denote the set of
instances, where l0 denotes background and {l1, l2, . . . , lL}

denote L objects. Each pixel p on the image will be assigned
to an instance according to

Ins(p) = arg min
l∈L

{Cost(p, pl)} (1)

where pl represents the point label of instance l that contains
both location and instance information. Cost(p, pl) denotes
the cost between pixel p and point label pl . The core of the
label assignment process in (1) is to find an instance with a
minimum cost for each pixel.

The cost calculation between pixel p and point label pl is
formulated as a shortest path problem. Specifically, we formu-
late the cost between p and pl as the second curvilinear curve
integral along a given path 0 ∈ {01, . . . , 0n}. That is,

Cost(p, pl) = min
0∈{01,...,0n}

∫
0

(
C sem(z⃗) + λCedge(z⃗)

)
dz⃗ (2)

where C sem(·) and Cedge(·) represent the semantic-aware
neighbor cost and edge-aware neighbor cost, respectively, and
λ is a hyperparameter to balance these two terms [76]. Specif-
ically, C sem(·) is the L2 distance of the semantic response
between two adjacent pixels. Cedge(·) is the L1 distance of
the edge map (generated by Sobel operator [84]) between two
adjacent pixels, which can help better distinguish the densely
packed objects (see Section IV-C3). Note that, Cost(p, p0) is
manually set to a fixed threshold τ (τ = 0.5 in our method)
to assign pixels that are “far from” all the instances to the
background. Besides, since there is no analytical solution to
the integral in (2), we use Dijkstra’s algorithm to obtain its
numerical solution.

D. Losses

In the proposed PLUG, the ILG module is parameter-free,
and the training process is only performed on the SemPred
module. The losses to train the SemPred module have three
parts including positive loss, negative loss, and color prior loss.

1) Positive Loss: Since point labels can provide accurate
supervision on the annotated locations, we set these labeled
pixels as positive samples and design a positive loss to
optimize the SemPred module to generate correct predictions
on these positions. The positive loss is designed based on the
standard focal loss [85]

Lpos = −
1

Npos

Npos∑
j=1

C∑
i=1

[
y j i

(
1 − y′

j i

)γ log
(

y′

j i

)
+

(
1 − y j i

)
y

′γ
j i log

(
1 − y′

j i

)]
(3)

where Npos and C denote the total number of positive
samples and categories, respectively. y and y′ represent the
ground-truth category label and the prediction scores, respec-
tively. We follow the general settings in [85] to set γ to 2.

2) Negative Loss: In PSOD, only objects are labeled by
single points, while the background regions are not annotated.
Consequently, single-point annotations cannot provide suffi-
cient supervision of the background. In our method, we follow
this basic setting in PSOD and propose an approach to provide
supervision on the background regions. Specifically, we sup-
pose that background pixels are dominant in amount in the
unlabeled region and then coarsely set all the unlabeled pixels
as negative samples. Based on the coarse negative samples,
we design a negative loss to enforce our model to better
distinguish objects and background, that is,

Lneg = −
1

Nneg

Nneg∑
j=1

C∑
i=1

(
1 − y j i

)
y

′γ
j i log

(
1 − y′

j i

)
(4)

where Nneg is the number of negative samples.
3) Color Prior Loss: We follow [76] to introduce a color

prior loss, which can encourage adjacent pixels with similar
colors to be classified to the same category, and enhance the
prediction stability of our SemPred module. The color prior
loss is formulated as

Lcol = −
1
Z

H W∑
i=1

∑
j∈N (i)

Ai, j log y
′T
i y′

j (5)

where y′
i and y′

j denote the category prediction scores of the
i th and j th pixels, respectively. Ai, j is the color prior affinity
and is obtained by thresholding the pixel similarity computed
in the LAB color space (with a threshold of 0.3). N (i) is the
set of neighbor pixel indices of i . Z =

∑H W
i=1

∑
j∈N (i) Ai, j is

the normalization factor.
In summary, the overall loss is the weighted summation of

the above three losses, that is,

Lall = Lpos + α1Lneg + α2Lcol (6)

where α1, α2 are two hyperparameters to balance differ-
ent terms. In this article, α1 and α2 are set to Nneg/Npos
and 1, respectively. With the well-designed loss function, our
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PLUG can be well-optimized and effectively generate pseudo-
bounding boxes.

IV. EXPERIMENTS

In this section, we first introduce the datasets and imple-
mentation details and then combine the proposed PLUG
with Faster-RCNN [21] to develop a PSOD method (i.e.,
PLUG-Det). Afterward, we compare PLUG-Det with image-
level, point-level, and box-level supervised object detection
methods. Moreover, we conduct ablation studies and make
deep analyses to validate the effectiveness of our method.
Finally, we develop a PLUG-Seg network by combining PLUG
with Mask-RCNN [87] and conduct experiments to show the
potential of our method in a single PSIS.

A. Datasets and Implementation Details

1) Datasets: To verify the effectiveness of our
method, we conduct extensive experiments on the
DOTA-v1.0 dataset [10], which contains 2806 large-
scale RS images with 15 object categories, including plane
(PL), baseball diamond (BD), bridge (BR), ground track
field (GTF), small vehicle (SV), large vehicle (LV), ship
(SH), tennis court (TC), basketball court (BC), storage tank
(ST), soccer ball field (SBF), roundabout (RA), harbor (HB),
swimming pool (SP), and helicopter (HC). Objects in the
DOTA dataset are labeled with box annotations. Since the
iSAID dataset [88] contains the corresponding mask labels
of objects in the DOTA dataset, we randomly selected a
point on the mask of each object as the ground-truth point
label. We used the training set and validation set for model
development and performance evaluation, respectively. Due to
hardware memory limitation, we cropped the original images
into 512 × 512 patches with 128 overlapped pixels, and used
the cropped patches for training and inference. In the training
phase, random flip was used for data augmentation.

2) Implementation Details: We implemented our method
based on the MMDetection [89] toolbox with an NVIDIA RTX
3090Ti GPU. The training of our PLUG-Det method consists
of three stages: the training of PLUG, the inference of PLUG,
and the training of existing detectors (e.g., Faster-RCNN).
In the first stage, the learning rate was initially set to 0.001 and
decreased by a factor of 0.1 at the 8th and 11th epoch,
respectively. We trained our PLUG for a total of 12 epochs
with a batch size of 8. Besides, we used the stochastic gradient
descent (SGD) algorithm [90] for optimization. In the second
stage, pseudo-boxes of the training set were obtained by
performing inference using the trained PLUG. In this stage,
the batch size was set to 1. In the third stage, we adopted the
existing detector by default without modifying its hyperparam-
eters. Taking Faster-RCNN with ResNet50 as an example, the
learning rate was initially set to 0.005, and the optimizer was
SGD with a 1× training schedule. Other training settings were
kept as the default values in MMDetection [89]. The training
times of the three stages are 4.8, 6, and 3.1 h, respectively.
The total training time is the summation of the time spent in
each stage and is about 14 h.

3) Evaluation Metrics: We used mean Intersection over
Union (mIoU) between generated pseudo-boxes and ground-
truth boxes to evaluate the performance of PLUG. Besides,
mIoUs, mIoUm, and mIoUl were used as the indicators to
evaluate the quality of pseudo-boxes on small, medium, and
large objects, respectively. Moreover, we evaluated the perfor-
mance of PLUG-Det and its variants by reporting the mAP50
(averaged over IoU values with the threshold being set to 0.5)
for all categories and the AP50 for each category. Similarly,
mAPs, mAPm, and mAPl were used to evaluate the detection
performance on small, medium, and large objects, respectively.

B. Comparison to the State-of-the-Art Methods

In this section, we use the pseudo-boxes generated by dif-
ferent methods to train a Faster-RCNN detector and compare
the detection performance of our PLUG-Det with existing
image-level supervised and single-point supervised detection
methods. Moreover, Faster-RCNN with ground-truth box-level
supervision is also included to provide upper-bound results for
reference.

Table I shows the AP50 values achieved by different detec-
tion methods. It can be observed that image-level supervised
detectors (i.e., WSDDN [11], OICR [12], and OICR-FR [12])
achieve very low detection accuracy. Compared to those
detectors, PSOD methods achieve better detection performance
due to the extra coarse position and quantity information
introduced by point annotations. Specifically, P2BNet-FR
achieves an mAP50 score of 0.156 and can further achieve
a 0.029 improvement with a two-stage cascaded optimiza-
tion pipeline. In contrast, our PLUG-FR achieves an mAP50
score of 0.423, which significantly outperforms P2BNet-FR.
The experimental results demonstrate the superiority of our
method when compared to the MIL-based methods. It is worth
noting that Faster-RCNN developed under ground-truth box
supervision can achieve an mAP50 score of 0.648. That is, our
PLUG-FR can achieve 65.3% of the performance of box-level
supervised Faster-RCNN [21], but with an 18× reduction in
annotation cost.

Besides, our method can generalized to different down-
stream detectors. We additionally use the one-stage detector
FCOS [86] and the transformer-based detector Deformable
DETR [50] to validate the generalization capability of
our method. As shown in Table I, PLUG-FCOS and
PLUG-Deformable DETR can achieve 0.360 and 0.322 in
terms of mAP50 and are 66.2% and 55.8% of the per-
formance of each fully supervised detectors, respectively.
The consistent performance ratios compared to respective
fully supervised detectors demonstrate the generality of our
method.

Fig. 3 shows the qualitative results on eight typical scenes
achieved by different detection methods. It can be observed
that our PLUG-Det can achieve better detection perfor-
mance than other state-of-the-art image-level supervised and
single-point supervised detectors, especially on challenging
scenes. Specifically, image-level supervised detectors (e.g.,
OICR-FR) may bring false alarms (e.g., Scene C) and miss
detection (e.g., Scene F) due to their insufficient supervision.
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TABLE I
AVERAGE PRECISION SCORES ACHIEVED BY DIFFERENT DETECTION METHODS ON THE DOTA DATASET.

HERE, DEF-DETR REPRESENTS DEFORMABLE DETR

Fig. 3. Qualitative results obtained by different object detection methods on the DOTA validation set. The correctly detected results are marked by yellow
boxes, and the falsely detected results are marked by red boxes. Gradually darker colors represent stronger supervision.

Besides, the single-point supervised detector P2BNet-FR has
worse scale and aspect ratio adaptability compared with our
method. For example, the vehicles in Scene A with large aspect
ratios cannot be correctly detected by P2BNet-FR but can be
better detected by our method.

C. Ablation Study
In this section, we conduct ablation studies to validate the

effectiveness of our method.
1) Investigation of the Feature Extraction Module: We

use ResNet [81] with FPN [82] as the feature extraction
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TABLE II
COMPARISON OF THE PSEUDO-BOX QUALITY AND DETECTION PERFORMANCE ACHIEVED BY DIFFERENT BACKBONES. HERE, #PARAM REPRESENTS

THE NUMBER OF PARAMETERS, AND FLOPS IS CALCULATED WITH A 512 × 512 INPUT IMAGE

Fig. 4. Semantic response of images predicted by the SemPred module.
Here, the layer of the corresponding category is visualized.

module of our PLUG. Here, we compare the performance
of our feature extraction module with different backbones
(i.e., ResNet18, ResNet50, and ResNet101). We first eval-
uate the quality of generated pseudo-boxes on the training
set. As shown in Table II, our PLUG can achieve mIoU
scores of 0.531, 0.549, and 0.558 with ResNet18, ResNet50,
and ResNet101 backbones, respectively. We also evaluate
the downstream detection performance on the validation set.
As shown in Table II, our PLUG-Det achieves an mAP50
score of 0.436 with ResNet101, which is higher than the
mAP50 scores with ResNet18 and ResNet50. That is because
the ResNet101 backbone is deeper and can extract more
discriminative features. However, compared to ResNet18 and
ResNet50, using ResNet101 as backbone introduces larger
model size (1.82× of ResNet50) and higher FLOPs (1.78× of
ResNet50). Consequently, we use ResNet50 as the backbone
to achieve a good balance between accuracy and efficiency.

2) Effectiveness of the SemPred Module: The SemPred
module utilizes meta-features of sparse objects to aggregate
the extracted features and use the aggregated features for

Fig. 5. Distribution of masked mean response in different categories.

semantic response prediction. We conduct experiments to
validate the effectiveness of the SemPred module and its key
components.

Semantic Response Visualization: The semantic response
prediction contains two potential tasks, including the recog-
nition of objects from the background and the discrimination
among categories. In this part, we validate the effectiveness
of the SemPred module on these two tasks, respectively. First,
we validate the object recognition capability by visualizing
the predicted semantic response maps. As shown in Fig. 4,
objects of different categories can be well distinguished from
the background, and the response regions basically fit object
shapes. Second, we validate the category discrimination capa-
bility of the SemPred module by visualizing the variation of
masked mean response1 on different category layers. As shown
in Fig. 5, each object is only strongly activated on a single cat-
egory layer. These results clearly demonstrate the effectiveness
of the SemPred module in recognizing and classifying objects
from backgrounds.

Sparse Feature Guidance (SFG): In the SemPred module,
the general representations of sparse objects are used to aggre-
gate the extracted features from backbones. To validate the
SFG scheme, we replaced the SemPred module with a vanilla
predictor (a linear layer followed by a Sigmoid function) and
developed a variant (i.e., “vanilla” in Table III) of PLUG
without the guidance of sparse objects. As shown in Table III,
the mIoU score is improved from 0.497 to 0.549 when SFG
is performed, and the mAP50 value of our PLUG-Det is also
improved from 0.356 to 0.423 correspondingly. It demon-
strates that the proposed SFG scheme can improve the quality
of generated pseudo-boxes and thus benefits the downstream
detection performance. Moreover, we compare the semantic

1Masked mean response denotes the average value of response map on the
ground-truth mask of each object.
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Fig. 6. Heatmaps of specific response layers produced by our SemPred module with and without performing SFG.

TABLE III
COMPARISON OF THE PSEUDO-BOX QUALITY AND DETECTION PERFORMANCE ACHIEVED BY OUR PLUG WITH DIFFERENT SEMPRED MODULES.

NOTE THAT THE VANILLA AND SEMPRED MODULES REPRESENT THE METHOD WITHOUT AND WITH PERFORMING SFG, RESPECTIVELY

response maps produced by our PLUG and its variants (vanilla
and SemPred). We can draw the following conclusions from
Fig. 6.

1) The SFG scheme can improve the recognition capability
of our PLUG on confusing backgrounds. As shown
in Scene A, the plane (PL) and the boarding bridges
are similar in color space. With the guidance of sparse
features, our PLUG can better distinguish objects from
the background.

2) The SFG scheme can improve the recognition capability
of our PLUG on dense objects. For densely packed
objects of the same category (e.g., Scenes B and C),
some objects are weakly activated when SFG is not
performed. In contrast, by performing SFG, the features
of each object can be enhanced, and the intraclass

instance recognition performance is improved. Besides,
SFG can also improve the recognition capability of our
PLUG on densely packed objects of different categories
[e.g., the ships (SH) and harbor (HB) in Scene G].

3) The SFG scheme can enhance the capability of our
PLUG to distinguish objects in different categories but
with similar appearances. As shown in Scene E, the
tennis court (TC) and basketball court (BC) have similar
appearances, and our PLUG without SFG cannot distin-
guish them and produces a falsely mixed response. Since
category-aware meta-features are used to aggregate the
extracted features, the enhanced features have stronger
category characteristics. Consequently, our PLUG with
SFG can effectively handle this mixed response issue
and can well distinguish similar objects.
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Fig. 7. Cosine similarities between different pairs of representations in
meta-features. Here, darker colors indicate larger values (i.e., higher simi-
larity).

Cross-Category Correlation of Meta-Features: Meta-
features are the general representation of objects in different
categories. Here, we visualize the cosine similarity map
between each pair of meta-features to investigate their cor-
relation. As shown in Fig. 7, apart from the elements on the
diagonal, there are still some pairs of meta-features [e.g., large
vehicle (LV) versus small vehicle (SV), plane (PL) versus
helicopter (HC), basketball court (BC) versus tennis court
(TC)] highly correlated due to the similar appearance of the
objects. This observation is consistent with the visualization
results in Fig. 6 and can demonstrate the effectiveness of the
usage of meta-features.

3) Effectiveness of the Edge-Aware Neighbor Cost: In this
section, we validate the effectiveness of the edge-aware neigh-
bor cost in the ILG module. Fig. 8 shows the likelihood maps
Pmap = 1 − Cmap with and without using edge-aware neighbor
cost on an example scene, where the values represent the
likelihood of a pixel belonging to a specific instance. It can be
observed that densely packed adjacent instances cannot be well
distinguished without using edge-aware neighbor cost. That
is because the semantic-aware neighbor cost encourages the
labeled points to diffuse to the adjacent semantic-similar areas
and tends to consider the densely packed objects as a single
instance. When the edge-aware neighbor cost is introduced,
the diffusion of labeled points can stop at the boundaries, and
these densely packed objects can be better distinguished.

Note that, the value of λ in (2) should be properly set to
ensure preferable growth from point labels. We compare the
quality of pseudo-boxes and the detection performance with
respect to different λ values. As shown in Table IV, when λ is
set to 0.5, our PLUG can generate pseudo-boxes of the highest
quality, and our PLUG-Det can achieve the best detection
performance. Consequently, we set λ to 0.5 to balance the
semantic-aware and edge-aware neighbor cost.

4) Effectiveness of Losses: In this section, we conduct
ablation studies to validate the effectiveness of the proposed
losses. As shown in Table V, our PLUG can only achieve an

TABLE IV
COMPARISON OF THE PSEUDO-BOX QUALITY AND DETECTION PERFOR-

MANCE ACHIEVED BY OUR PLUG WITH DIFFERENT λ VALUES. BEST
RESULTS ARE IN BOLD FACES

TABLE V
COMPARISON OF THE PSEUDO-BOX QUALITY AND DETECTION PERFOR-

MANCE ACHIEVED BY OUR PLUG WITH DIFFERENT LOSSES

mIoU of 0.318 when the positive loss is used only. That is
because the background cannot be considered in the training
process and thus degrades the recognition capability of our
PLUG to distinguish objects and backgrounds. When the
negative loss is introduced, both the quality of pseudo-boxes
and the detection performance are significantly improved.
Moreover, applying the color prior loss can further introduce
a 0.051 improvement of mIoU and a 0.006 improvement of
mAP50. The experimental results demonstrate the effectiveness
of the proposed losses.

D. Analyses of the Selecting Strategy of Point Labels

In the preceding experiments, point labels were randomly
selected from object masks. How will the locations of
the selected points affect the performance? In this section,
we implement three kinds of point labels and conduct exper-
iments to analyze their impacts on the quality of generated
pseudo-boxes and downstream detection performance. Specif-
ically, we adopt three different labeling strategies, that is,
selecting the point in the center, selecting the point on the
corner, and randomly selecting a point on the mask. Note that,
since there is no clear definition of the corners of objects,
we just selected the point (on the mask) that is farthest from
the center point as its “corner” label. Objects with different
point labels are shown in Fig. 9.

Table VI shows the quality of pseudo-boxes and the detec-
tion performance of our method with different point labels.
It can be observed that our PLUG with center point labels can
achieve the most superior results, which are 0.553 in terms
of mIoU and 0.438 in terms of mAP50. Besides, when the
randomly selected points are used, the performance is slightly
decreased (0.549 and 0.427 in terms of mIoU and mAP50,
respectively). Moreover, the corner labels result in a larger
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Fig. 8. Likelihood maps generated by the ILG module with and without using the edge-aware neighbor cost. Note that, we visualize Pmap = 1 − Cmap
for better visual analyses, where Cmap is the cost map for each labeled point, and the values on the cost map can represent the costs from each pixel to the
labeled point. Consequently, Cmap ∈ H × W × N , where H and W are the height and width of images and N is the number of objects in the image. Based
on Cmap, Pmap can represent the likelihood of each pixel belonging to a specific instance, and thus can more intuitively show the diffusion of labeled points.

Fig. 9. Objects with point labels under different point selection strategies.
The red points are the centers of masks, the yellow points are the corners of
masks, and the white points are the randomly selected points on masks.

degree of performance degradation, in which mIoU and mAP50
are decreased to 0.518 and 0.406, respectively.

It is worth noting that the performance of our method with
corner point labels is inferior to that with center and random
point labels. That is because the edge-aware neighbor cost used
in the ILG module hinders the pixel diffusion of corner points.
Specifically, the edge-aware neighbor cost is utilized to help
stop the diffusion of labeled points at boundaries and thus pre-
vent the labeled points from spreading toward the background
areas (see Section IV-C3). However, since the corner points are
located on the boundaries of objects, the edge-aware cost may
hinder the diffusion of the labeled points to the internal area of
the object, as their paths pass through the edges. For example,
as shown in Pmap of the instance 6 in Fig. 8, the ILG module
can recognize its correct regions with the semantic-aware cost
only. However, when the edge-aware cost is introduced, the
labeled points can only be diffused to background areas.

E. Extension to Rotated Object Detection

In our method, the ILG module utilizes semantic and edge
information to assign pixels to its most likely object or
background and uses the circumscribed rectangle of assigned
pixels as pseudo boxes. Therefore, by further transforming the
circumscribed rectangle to the one with the minimum area,
our method can be easily extended to the task of rotated object

TABLE VI
COMPARISON OF THE PSEUDO-BOX QUALITY AND DETECTION PERFOR-

MANCE ACHIEVED BY OUR PLUG WITH DIFFERENT POINT LABEL
SELECTION STRATEGIES

Fig. 10. IoU of generated pseudo-boxes in images with different numbers.
Here, four exampled scenes are shown for visualization. Note that the blue
star indicates that the mean IoU of pseudo-boxes is 0.520 in images with a
single object.

detection. We conduct experiments to validate the effectiveness
of our method on rotated object detection. Specifically, we use
the modified PLUG to generate rotated pseudo-boxes and
use ROITrans [26] as the downstream rotated detector to
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Fig. 11. Illustrations and analyses of the influence of densely packed objects on the quality of generated pseudo-boxes. (a) Illustration of the generation
process of the two kinds of semantic response maps. Note that the synthetic response is obtained by shifting the response map of a single object with specific
offsets, and then fusing the shifted response. (b) IoU score ranges of the pseudo-boxes generated from the two kinds of semantic response maps in (a) with
varying object numbers. (c) IoU score ranges of the pseudo-boxes generated from the two kinds of semantic response maps in (a) with varying object distances
(in pixels).

TABLE VII
COMPARISON OF THE DETECTION PERFORMANCE ACHIEVED BY ROITRANS AND PLUG-ROITRANS

develop PLUG-ROITrans. The experimental results of our
PLUG-ROITrans (under single-point supervision) and the
original ROITrans (under ground-truth rotated box supervi-
sion) are shown in Table VII. It can be observed that our
PLUG-ROITrans can achieve 0.351 in terms of mAP50, which
is 51.6% of the performance of fully supervised ROITrans.
The results demonstrate the preliminary effectiveness of our
method in pointly supervised rotated object detection in RS
images.

F. Further Analyses on Dense Objects

As mentioned in Section I, dense objects introduce chal-
lenges to discriminative feature extraction and thus affect the
quality of generated pseudo-boxes. In this section, we conduct
a series of experiments to analyze the influence of dense
objects. First, we coarsely suppose that the density of objects
is positively related to their numbers in an image patch
(with the same area). Then, we split the DOTA dataset into
several subsets containing different numbers of objects and
quantitatively evaluate the quality of generated pseudo-boxes
with respect to the object density. Note that, we do not
perform SFG in our PLUG to better demonstrate the chal-
lenges introduced by dense objects. As shown in Fig. 10,
the quality of generated boxes degrades as the number of
objects (i.e., density) increases. The examples in Scenes A to D
qualitatively illustrate the quality degradation of pseudo-boxes
with dense objects.

Second, considering that the number, adjacent distance, and
appearance of objects are the three key factors that influence

the quality of pseudo-boxes, we design specific experiments to
quantitatively investigate the impact of the first two factors by
keeping the object appearance unchanged. Specifically, we use
the “copy-and-paste” strategy [see the subfigures with blue
boxes in Fig. 11(a)] to generate multiple identical objects with
controllable density. As shown in Fig. 11(b) and (c), the quality
of generated boxes degrades as the object density increases.

Finally, we keep the density of the semantic response maps
unchanged and investigate the influence of densely packed
objects on the discriminative feature extraction. Specifically,
we shift and fuse the single-object response to synthesize a
pseudo-dense-object response map. In this way, we build a
control group with identical object density in the response
maps but different feature representations in the feature extrac-
tion module. As shown in Fig. 11(b) and (c), the mIoU scores
of the pseudo-boxes generated from the control group are
significantly higher than those obtained from the images with
dense objects. The experimental results clearly validate that
densely packed objects in RS images can hinder the dis-
criminative feature extraction and thus degrade the quality of
pseudo boxes. With our SFG scheme, the mIoUs of generated
pseudo-labels in different density intervals are increased. The
qualitative results demonstrate the effectiveness of our method
in handling densely packed objects.

G. Extension to Instance Segmentation

Since the ILG module in our PLUG produces instance
labels for each object from their point annotation, our PLUG
can be easily extended to PSIS. Specifically, we concatenated
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TABLE VIII
QUANTITATIVE RESULTS ACHIEVED BY DIFFERENT INSTANCE SEGMENTATION METHODS ON THE DOTA DATASET

Fig. 12. Qualitative results achieved by different instance segmentation methods on the DOTA dataset. The correctly detected results are marked by yellow
boxes, and the falsely detected results are marked by red boxes. Gradually darker colors represent stronger supervision. The predicted instance masks are
randomly colored.

our PLUG with Mask-RCNN and developed a PLUG-Seg
network to achieve PSIS in RS images. Besides, we used
the ground-truth mask labels in the iSAID dataset [88] and
adopted the mask-level mAP50, mAPs, mAPm, and mAPl as
quantitative metrics for performance evaluation. We compare
our PLUG-Seg with BoxInst [91] and Mask-RCNN [87],
which use box-level and mask-level supervision for instance
segmentation, respectively. We also followed these two meth-
ods [87], [91] to evaluate the performance of object detection
and instance segmentation simultaneously. The experimental
results are shown in Table VIII and Fig. 12.

It can be observed from Table VIII that our PLUG-Seg
can achieve an mAP50 of 0.435 for object detection and an
mAP50 of 0.406 for instance segmentation. With single-point
annotation for each instance, our PLUG-Seg can achieve
68%/81% and 66%/65% accuracy in object detection/instance
segmentation when compared to box-level (i.e., BoxInst [91])
and mask-level (i.e., Mask-RCNN [87]) supervised methods,
respectively. The qualitative results in Fig. 12 also demonstrate
the promising performance of our PLUG-Seg. It is worth
noting that our PLUG-Seg can achieve better performance
than BoxInst [91] on scenes with complex backgrounds (e.g.,
the roundabout and small vehicles in Scene E and the bridge
in Scene F). These experimental results demonstrate that

single-point annotation can provide sufficient supervision for
instance segmentation.

V. CONCLUSION

In this article, we proposed a method to learn RSOD
with single-point supervision. In our method, a PLUG is
designed to generate pseudo-boxes from point labels. We also
handle the dense object issue in RS images by designing a
sparse feature-guided SemPred module. Experimental results
validate the effectiveness and superiority of our method. In the
future, we will further extend our method to generate rotated
pseudo-boxes from single-point labels and investigate more
stable and efficient pseudo-label generation schemes. We hope
that our study can draw attention to the research of single-point
supervised RSOD.
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