
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RAPID3: TRI-LEVEL REINFORCED ACCELERATION
POLICIES FOR DIFFUSION TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion Transformers (DiTs) excel at visual generation yet remain hampered
by slow sampling. Existing training-free accelerators—step reduction, feature
caching, and sparse attention—enhance inference speed but typically rely on a
uniform heuristic or manually designed adaptive strategy for all images, leaving
quality on the table. Alternatively, dynamic neural networks offer per-image adap-
tive acceleration, but their high fine-tuning costs limit broader applicability. To ad-
dress these limitations, we introduce RAPID3: Tri-Level Reinforced Acceleration
PolIcies for Diffusion Transformer framework that delivers image-wise accelera-
tion with zero updates to the base generator. Specifically, three lightweight pol-
icy heads—Step-Skip, Cache-Reuse, and Sparse-Attention—observe the current
denoising state and independently decide their corresponding speed-up at each
timestep. All policy parameters are trained online via Group Relative Policy Op-
timization (GRPO) while the generator remains frozen. Meanwhile, an adver-
sarially learned discriminator augments the reward signal, discouraging reward
hacking by boosting returns only when generated samples stay close to the origi-
nal model’s distribution. Across state-of-the-art DiT backbones including Stable
Diffusion 3 and FLUX, RAPID3 achieves nearly 3× faster sampling with com-
petitive generation quality.

1 INTRODUCTION

Diffusion Transformers (DiTs) have emerged as the dominant backbone for high-fidelity visual gen-
eration thanks to their scalability and strong generalization (Peebles & Xie, 2023; Bao et al., 2023).
They now underpin state-of-the-art systems in diverse downstream tasks—image synthesis (Chen
et al., 2023; Esser et al., 2024; Labs, 2024), video generation (OpenAI, 2024; team, 2025), and con-
trollable editing (Xiao et al., 2024; Feng et al., 2025). Despite this progress, DiTs remain inefficient
during inference, requiring multiple denoising steps with computationally intensive blocks on large
latent maps, making real-world deployment challenging.

A first family of training-free accelerators (Figure 1 (a)) tackles this cost by hard-coded heuristics:
reducing the step count (Song et al., 2020; Lu et al., 2022a;b; Park et al., 2024), reusing intermediate
features (Ma et al., 2024b; Chen et al., 2024a; Selvaraju et al., 2024; Liu et al., 2024), or sparsifying
attention (Zhang et al., 2025a; Yuan et al., 2024b). These techniques preserve the frozen generator
but apply a uniform or manually designed adaptive policy to every image and timestep; quality there-
fore fluctuates, and conservative settings are adopted to avoid artifacts, sacrificing potential speed-
ups. A second family—dynamic neural networks trained with fine-tuning (Figure 1 (b))—learns
routers that adapt width, depth, or spatial resolution on the fly (Han et al., 2021; Ganjdanesh et al.,
2024; Zhao et al., 2024; You et al., 2024; Anagnostidis et al., 2025; Zhao et al., 2025b). While these
methods offer adaptability and high performance, they require extensive optimization on large-scale
image–text datasets, making them impractical for many large generators or proprietary models.

Sampling in a diffusion transformer, however, is naturally a Markov decision process: its forward
pass unfolds as a sequence of denoising steps. If we consider the latent generated at each step—along
with its timestep index and prompt embedding—as the state, then the selection of the next timestep
can be treated as a continuous action, while decisions on whether to reuse cached features or apply
sparse attention are regarded as discrete actions. Since the generator’s weights remain fixed, the
outcome of any action is deterministic and fully predictable by the model itself, eliminating the need
to learn environment dynamics. Episodes are inherently brief, typically spanning multiple sampling

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) training-free methods
sparse attentioncache reusestep skip

(b) dynamic neural networks

(ε,c)1,2,..N (ε,c)1,2,..N (ε,c)1,2,..N (ε,c)1 (ε,c)N (ε,c)1 (ε,c)N

(c) RAPID3 (ours)

frozen trainable
cache
reuse

original
 model

w/ sparse
attention

dynamic
model

policies policies

ε

c

inistal noise

condition

pre-image adaptivity
frozen generator

pre-image adaptivity
frozen generator

pre-image adaptivity
frozen generator

Figure 1: Accelerating Diffusion Transformers: (a) Training-free methods primarily use uniform
or manually designed rules (e.g., step skip, cache reuse, or sparse attention) for all images and
timesteps, offering speed but little adaptivity. (b) Dynamic fine-tuned models learn routers that
tailor acceleration to each input but require costly fine-tuning of the generator’s parameters. (c) Pro-
posed RAPID3 keeps the generator frozen and equips it with three lightweight policy heads—Step-
Skip, Cache-Reuse, and Sparse-Attention—trained via reinforcement learning to make action deci-
sions based on the latent representations, timestep, and text prompt information.

steps, and conclude with a complete image whose quality can be quantitatively assessed post hoc,
enabling a straightforward reward signal that balances image fidelity against computational cost.

Our key insight is that the DiT inference setting, when viewed through the above lens, sits squarely
in the comfort zone of modern policy-optimization methods: a concise but expressive action space;
a stationary and deterministic environment; an inexpensive simulator (the frozen DiT) that delivers
abundant rollouts; and a scalar reward that directly reflects the user’s objective. By leveraging this
structure, we can train lightweight policies to dynamically determine which acceleration strategy to
invoke—enabling adaptivity without modifying the generator’s parameters. The recent TPDM (Ye
et al., 2024) relates to our idea: it achieves data-dependent step skipping via reinforcement learning
(RL), while negleting the redundant computation from the intra-timestep perspective.

Motivated by this key observation, we present RAPID3 (Figure 1 (c))—Tri-Level Reinforced
Acceleration PolIcies for Diffusion Transformer RAPID3 attaches three ultra-small policy
heads—Step-Skip, Cache-Reuse, and Sparse-Attention—to a frozen DiT. Each head observes in-
expensive summaries of the latent, timestep, and prompt, and independently decides corresponding
acceleration strategies. All policy parameters are trained online with Group Relative Policy Optimi-
sation (GRPO) (Shao et al., 2024). Moreover, instead of using existing evaluation metrics to build
the reward function, we train a discriminator adversarially to enhance the reward for samples that
remain close to the original generator’s distribution, which effectively prevents the reward hacking
problem (Skalse et al., 2022).

Experimental results show that RAPID3 achieves nearly 3× acceleration for Stable Diffusion
3 (Esser et al., 2024) and FLUX (Labs, 2024), while maintaining competitive visual quality. By
updating only the policy head, which constitutes merely 0.025% of the generator’s parameters, its
training process relies solely on readily available text prompts and and consumes only 1% of the
GPU hours required for training dynamic neural networks (Zhao et al., 2025b).

2 RELATED WORK
Diffusion transformers. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Albergo
et al., 2023) have achieved remarkable success in visual generation tasks (Rombach et al., 2022;
OpenAI, 2024). Early diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al.,
2022) are primarily built on U-Net (Ronneberger et al., 2015). However, Transformer-based archi-
tectures (Vaswani et al., 2017) have gradually replaced U-Net as the foundation for these models.
DiT (Peebles & Xie, 2023) represents one of the first attempts to integrate Transformers into the
diffusion process. Concurrently, U-ViT (Bao et al., 2023) combines the advantages of U-Net’s skip

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

connections with the capabilities of Transformer architectures. Building on DiT, PixArt-α expands
its capabilities to text-to-image generation, while SD3 (Esser et al., 2024) and FLUX (Labs, 2024)
further demonstrate its scalability. Beyond image generation, Transformer-based diffusion mod-
els, such as Sora (OpenAI, 2024) and WanX (WanTeam et al., 2025), have also shown significant
promise in video generation. Despite these achievements, diffusion models continue to suffer from
high computational demands and time-consuming generation. The proposed framework addresses
this limitation by adaptively adjusting computation for each image generation process, enabling
faster and more efficient visual generation.
Diffusion transformer acceleration. To enhance inference efficiency of DiTs, researchers have ex-
plored training-free techniques such as reducing sampling steps (Song et al., 2020; Lu et al., 2022a;
Park et al., 2024; Lu et al., 2022b), feature caching (Ma et al., 2024b; Chen et al., 2024a; Liu et al.,
2024; Huang et al., 2024), and sparse attention mechanisms (Zhang et al., 2025a;b; Xi et al., 2025).
However, these approaches typically use uniform strategies for all images and the entire generation
process or depend on manually designed heuristics, limiting their generalization. Inspired by the
efficiency gains of dynamic neural networks (Han et al., 2021; Verma et al., 2024; Zhao et al., 2024;
2025a), some studies (Ganjdanesh et al., 2024; Zhao et al., 2024; 2025b) introduce dynamic archi-
tectures to improve efficiency, while others (You et al., 2024; Anagnostidis et al., 2025) dynamically
reduce computation along the spatial dimension. However, these methods require fine-tuning dif-
fusion models, which imposes a significant training burden and becomes impractical when training
data is limited. Few-step distillation techniques (Luo et al., 2023; Yan et al., 2024; Lin et al., 2024;
Yin et al., 2024; Shao et al., 2025) accelerate inference but often require extensive parameter tun-
ing and training of around 100M additional parameters, even with methods like LoRA (Hu et al.,
2022). In contrast, our approach trains lightweight policy heads with only 3M additional parameters,
adaptively selecting acceleration strategies while keeping DiT parameters frozen. This ensures both
parameter and data efficiency, offering a more practical and elegant solution.
Reinforcement learning in diffusion models. The success of reinforcement learning (RL) in large
language models (LLMs) (Ouyang et al., 2022; Shao et al., 2024; Guo et al., 2025; Team, 2025) has
encouraged researchers to explore it in diffusion models. DDPO (Black et al., 2023) views denoising
as a multi-step decision-making task, aligning generated images with downstream objectives. Simi-
larly, DPOK (Fan et al., 2023) demonstrates the effectiveness of RL in fine-tuning diffusion models,
achieving superior text-image alignment and improved image fidelity. Some approaches (Wallace
et al., 2024; Yuan et al., 2024a) have also explored the alignment of generation quality with human
preferences in an offline RL framework. However, these methods primarily focus on enhancing the
generation quality rather than accelerating the generation speed. TPDM (Ye et al., 2024) allevi-
ates this problem by learning an efficient noise scheduler, without exploring its incorporation with
other acceleration techniques. Our approach leverages RL to learn policy heads that dynamically
determine step-skipping, cache-reuse, and sparse-attention strategies at each timestep, adaptively
improving the generation efficiency.

3 METHODOLOGY

We begin with foundational concepts of DiT and RL in Section 3.1. Then, we present the proposed
tri-level reinforced acceleration policies and their corresponding policy heads in Section 3.2 and
Section 3.3, respectively. Section 3.4 details the adversarial reinforcement learning within the the
proposed framework. A comprehensive overview of the methodology is provided in Figure 2.

3.1 PRELIMINARY

Architecture of diffusion transformers. Diffusion Transformers (DiTs) (Peebles & Xie, 2023;
Bao et al., 2023; Chen et al., 2023; Esser et al., 2024; Labs, 2024) has demonstrated remarkable
advancements in visual generation thanks to its scalable architecture. It generally consists of a stack
of layers, each of which integrates a self-attention (SA) block and a multi-layer perceptron (MLP)
block. The operation of a DiT block can be roughly expressed as:

xl+1
t , cl+1

t = F l
LAYER(x

l
t, c

l
t) = F l

MLP(F l
SA(x

l
t, c

l
t)), (1)

where xl
t ∈ RN×C denotes the input to the l-th layer at timestep t. Here, N represents the number of

tokens and C the channel dimension. The condition embedding clt combines timestep information
with text-based guidance, which are critical for generation.
Reinforcement learning with Group Relative Policy Optimization. To improve the perfor-
mance and alignment of LLMs with human preferences, RL techniques such as Proximal Policy

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Optimization (PPO) (Schulman et al., 2017) are widely applied during fine-tuning. To reduce
the training cost, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is proposed,
which leverages a group-based strategy to estimate advantages. Specifically, for a given question
q from the training set, GRPO samples a group of output answers {oi}Gi=1 from a LLM model
πθold with fixed parameters. The target policy πθ is then updated by maximizing the following
objective:JGRPO(θ) = 1

G

∑G
i=1

(
min

(
πθ(oi|q)
πθold (oi|q)

Ai, clip
(

πθ(oi|q)
πθold (oi|q)

, 1− ε, 1 + ε
)
Ai

)
− βDKL

)
,

where ε and β are hyperparameters. The term DKL represents a KL-divergence penalty between the
current model πθ and the pre-trained reference model πref. The advantage Ai is computed from a
group of rewards {ri}Gi=1 as Ai =

ri−mean({r1,r2,··· ,rG})
std({r1,r2,··· ,rG}) . Due to its simplicity and effectiveness,

we integrate GRPO into the generation process of diffusion transformers to train policy heads, as
discussed later in Section 3.4.

3.2 TRI-LEVEL REINFORCED ACCELERATION POLICIES

As previously outlined, our goal is to find policies that dynamically selects acceleration strategies for
visual generation. To achieve this, we define three levels of candidate strategies to accelerate from
model-external to model-internal perspectives: Step-Skip, Cache-Reuse, and Sparse-Attention.
These strategies are effective and training-free acceleration techniques, but existing approaches often
apply them with uniform or manually designed adaptive policies.
Level-1: Step-Skip. The diffusion Transformer’s generation involves a multi-timestep schedule,
where the timestep decreases from tT to t0. This process’ efficiency is critically dependent on the
required of timestep number. A natural idea is to reduce the needed timesteps. However, prior meth-
ods (Song et al., 2020; Lu et al., 2022a; Park et al., 2024; Lu et al., 2022b) employ fixed schedules,
ignoring that different images may require varying timesteps. For instance, highly detailed images
often demand more timesteps to achieve high-quality outputs, whereas simpler images can be gen-
erated effectively with fewer steps. Applying a uniform schedule across all cases risks degrading
both generation quality and computational efficiency.

To achieve inference-time dynamic timestep jumping, we define a policyP step that selects the current
timestep t based on the state of the previous timestep tprev. Specifically, let G(·) denote the forward
computation of DiT, sampler(·) represent the diffusion sampling function, and Xtprev indicate the
latent feature at the previous timestep. The feature at the current timestep, Xt, can be formulated as

Xt ← sampler(Xtprev ,G(Xtprev , tprev), t). (2)

This approach allows the generation process to adjust the number of required timesteps per input,
enabling varying computational resource allocation depending on the the target complexity. As a
result, the diffusion process achieves a balance between generation quality and efficiency.
Level-2: Cache-Reuse. Feature caching mechanisms (Ma et al., 2024b; Chen et al., 2024a;
Selvaraju et al., 2024; Liu et al., 2024) leverage temporal coherence in diffusion processes by
reusing computed feature maps across consecutive timesteps. A prevalent approach in diffusion
transformers involves caching the residual components of feature maps (Chen et al., 2024a; Liu
et al., 2024) - specifically, the difference between a model’s input and output. For timestep t,
this enables computational simplification through reuse of the residual cached at timestep tcache,
expressed as Ot ≈ Xt + ∆tcache , where Ot denotes the output of the diffusion transformer and
∆tcache = G(Xtcache , tcache)−Xtcache represents the cached residual.

Two fundamental challenges emerge in practical implementations: a) The trade-off between accel-
eration and generation quality exhibits strong dependence on the temporal interval between cache
updates. Current approaches relying on fixed or heuristic update intervals demonstrate limited gen-
eralizability, particularly when combined with other acceleration techniques. b) Generating different
images may require distinct caching schedules, posing challenges to designing and optimization.

Hence, the 2nd level of our objective centers on developing an adaptive policy Pcache that dynami-
cally selects optimal caching strategies per timestep t. Formally, the policy determines the compu-
tation path through the following conditional operation:

Ot = G(Xt, t) if update cache, Xt +∆tcache if reuse cache. (3)

If the policy model determines to update the cache, we will conduct the computation G(Xt, t) as the
original diffusion transformer and update the cache to ∆t.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

sampler
X�nextO�X� Diffusion

Transformer

policy
heads

�

��
cache

sampler
O�prev

X�prev Diffusion
Transformer

policy
heads

��
sparse ��

step��prev
cache ��prev

sparse ��prev
step

O� ~��
stepBeta(α,β) ~��

cacheX�

X�cache

Cat.(��
cache) ~��

sparseX� Cat.(��
sparse)

feature flow
action flow

~ sampling

(a) accelerate with RAPID3 during inference

(b) details of policy heads

X�cache

X�cache

Figure 2: Overview of RAPID3. (a) Accelerate generation with RAPID3 during inference. (b) The
details of policy heads {P step,Pcache,P sparse}.
Level-3: Sparse-Attention. The quadratic computational complexity of self-attention mechanisms
in transformers (O(n2) for n tokens) poses significant latency challenges for high-resolution image
generation. To mitigate this bottleneck, recent work (Zhang et al., 2025a; Yuan et al., 2024b) has
integrated sparse attention mechanisms into diffusion transformers through conditional computation
of attention weights. These approaches prune the computation in attention maps by employing
a hyperparameter θ ∈L×H to control sparsity for each layer and attention head, where L and H
represent the number of layers and attention heads, respectively. Existing implementations, such as
SpargeAttn (Zhang et al., 2025a), search for θ over the entire diffusion process of DiT and keep it
fixed across all timesteps during generation.

However, this static configuration ignores the evolution of attention patterns during the diffusion
process. During the diffusion process, different timesteps exhibit distinct properties and may vary
in their sensitivity to sparsity. Fixing the θ could sacrifice potential speed-up or lead to quality
degradation. More importantly, the θ optimized for the original DiT may become unsuitable when
DiT is combined with other acceleration methods.

To address this, we propose a dynamic sparsity policy P sparse, to adaptively identify a optimal hyper-
paremter for the current timestep, θt ∈L×H , from a series of pre-defined candidate hyperparemters
{θ1, θ2, ...θNsparse}. The original self-attention block can then be replaced with sparse attention using
the identified hyperparameter, which is formulated as:

F l
SA(x

l
t, c

l
t)

P sparse

−−−→ F l
SAsparse

(xl
t, c

l
t; θ

l
t). (4)

This approach enables the adaptation of computation sparsity on a per-timestep basis.

3.3 DESIGN OF POLICY HEADS

The learning of our tri-level acceleration framework involves joint optimization of three policy heads
P step,Pcache,P sparse. They determine the acceleration strategy based on the state at the current
timestep t. Each policy head begins with a convolution layer for feature projection, followed by
AdaLN (Perez et al., 2018) integrating the condition embedding ct. The output is finally pooled and
fed to the corresponding linear head for action prediction. Each policy head is detailed as follows:
a) Step-Skip policy P step. It predicts jump steps via parametric distribution learning:

P step : Ot 7→ [α, β], astep
t ∼ Beta(α, β), tnext = ⌊t · astep

t ⌋, (5)

where Ot denotes the output of the diffusion transformer at the current timestep t. Inspired by (Ye
et al., 2024), Pstep uses a linear layer to regress two values, α and β, which parameterize a Beta
distribution. A value from this distribution is subsequently used to compute the next timestep tnext.
b) Cache-Reuse policy Pcache. This discrete decision network determines whether to perform
computation or reuse the cached result based on the discrepancy between the inputs at the current
timestep Xt and the last cached timestep Xtcache . This process can be expressed as:

Pcache : Xt −Xtcache 7→ pcache
t ∈ R2, acache

t ∼ Categorical(pcache
t) (6)

with action semantics: acache
t = 0 indicates that computation should be performed at the current

timestep to update the cache, while acache
t = 1 correspond to reusing the cache.

c) Sparse-Attention policy P sparse. This policy adapts computation through discrete choices:

P sparse : Xt 7→ psparse
t ∈ R1+Nsparse , asparse

t ∼ Categorical(psparse
t), (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where asparse
t =0 indicates full attention where no sparsity is applied, while asparse

t ∈ [1, Nsparse] de-
notes applying sparse attention with different θ values that progressively increase the sparsity ratios.
Here, Nsparse is set to 3 by default. Although we experiment with additional candidate hyperparam-
eters, we observe that an overly aggressive sparsity strategy significantly degrades the generation
quality. Notably, P sparse

t remains inactive when Pcache
t decides to reuse the cache.

3.4 ADVERSARIAL REINFORCEMENT LEARNING

To train the policy heads, we propose an adversarial reinforcement learning framework, inspired
by adversarial training (Goodfellow et al., 2020; Lin et al., 2024; Sauer et al., 2024; Lin et al.,
2025). This approach iteratively trains the policy heads alongside a discriminator model, effectively
addressing the challenging issue of reward hacking. The training pipeline is outlined in Algorithm 1.
Training policy heads with reinforcement learning. To train the policy heads, we adopt the diffu-
sion transformer G equipped with policy heads {P step,Pcache,P sparse} to sample a group of images
{Ii}Gi=1, based on the same text prompt. Subsequently, the pre-trained image reward model Q is
employed to evaluate the quality and alignment of each image with the given text condition c, pro-
ducing scores {qi}Gi=1. Simultaneously, the discriminator model D (details provided later), is used
to estimate the likelihood that a generated image originates from the diffusion transformer without
acceleration, producing scores {di}Gi=1. This framework encourages the policy heads to identify
acceleration strategies that ensure the accelerated model performs comparably to the original.

To estimate the generation cost, we define the concept of equivalent steps K, expressed as
K =

∑Kstep

k=1 (1 − Ccache
k) × (1 − Csparse

k), where Kstep is the total number of steps during gener-
ation, determined by P step. Here, Ccache

k and Csparse
k represent the cost reductions (normalized into

[0, 1]) achieved by reusing cache and applying sparse attention at the k-th step, respectively. In
practice, we round K to its nearest integer. The final reward for an image is then expressed as
ri =

1
K

∑K
k=1 λ

K−k(qi + ωdi), where λ ∈ (0, 1) is a decay factor that penalizes higher generation
costs and ω denotes the weight of the discriminator in reward.

We can adopt the equation in Section 3.1 to obtain the each sample’s advantage Ai. Based on the
formulation of GRPO, our training process can be formulated as:

JGRPO-RAPID3 =
1

G

G∑
i=1

(min (ϕiAi, clip (ϕi, 1− ε, 1 + ε)Ai)) , (8)

where ϕi =
πθ(Ii|c)
πθold (Ii|c)

. Here, πθ (Ii | c) represents the likelihood of generating the image Ii given
the text condition c, under the current parameters θ of the three policy heads, while πθold uses the old
parameters. The KL divergence term is omitted because the policy heads are randomly initialized,
and therefore there is no reference model.
Training the discriminator model. Relying solely on the image reward model Q may lead policy
heads to exploit or “hack” the reward model, rather than genuinely improving acceleration strategies.
To address this, we introduce the discriminator model D, a binary classification model designed to
distinguish between images generated by the diffusion transformer G with and without acceleration
strategies applied. It enhances the reward of accelerated samples from G that remain close to those
without acceleration. This makes the discriminator complementary to the reward model, ensuring a
more robust training process.

To achieve this, we first allow the generation model G, without acceleration, to sample images and
construct the positive dataset Iorigin. Next, we initialize the policy heads to accelerate G, sample
images again, and construct the negative dataset Iaccele. Both datasets are then employed to train
the discriminator. During the reinforcement learning process, the images sampled using GRPO can
be used to update the negative dataset Iaccele. Cross entropy loss is employed during training. As
mentioned in the previous paragraph, we employ the discriminator model D as an additional reward
model to provide a supplementary reward signal, which is combined with the reward from the image
reward model Q to produce the final reward signal.

This adversarial training process enables joint improvement of the policy models and discriminator.
The policy heads are trained to assist G in efficiently producing high-quality images that can fool
the discriminator, while the discriminator is optimized to better distinguish between data generated
by G with and without acceleration.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

7 10 13 16 19 22
latency (s)

5.43

5.53

5.63
C

O
C

O
-A

es
th

et
ic

9-steps

14-steps
28-steps

×1.84 speed +0.01 Aesthetic
×2.91 speed -0.01 Aesthetic

FLUX
w/ SpargeAttn
w/ TeaCache
w/ RAPID3 (ours)

Figure 3: Latency vs. quality trade-off.

A bunch of pumpkins that have been carved with different faces in them.

unrealistic

grid

wrong face

A woman is on skis on the ski slope.

missing details

grid

unrealistic

FLUX 9-stepsFLUX 28-steps SpargeAttn TeaCache RAPID3 (Ours)

x1.0 x2.86 x1.15 x2.61 x2.91

Figure 4: Visual comparison. The acceleration ratio rel-
ative to the original FLUX 28-steps is reported.

Table 1: Results on SD3 (Esser et al., 2024). Bold highlights the best results across various ac-
celeration methods. We report latency of the diffusion transformer, excluding the text encoder and
VAE decoder. Additional comparison results are provided in Table 8.

Method Latency (s) ↓ Speed ↑ COCO HPS GenEval
CLIP ↑ Aesthetic ↑ Score ↑ Correct ↑ Overall ↑

SD3 28-steps 5.77 1.00 × 32.05 5.31 28.83 67.81 69.01
static or manually designed adaptive acceleration methods

SD3 9-steps 1.98 2.91 × 31.88 5.21 27.67 60.58 61.67
w/ TeaCache δ=0.15 2.20 2.62 × 32.02 5.25 27.87 61.48 62.81

w/ ∆-DiT N=4 3.76 1.53 × 31.91 5.12 27.67 57.69 58.67
w/ SpargeAttn 5.08 1.13 × 31.39 5.02 27.16 43.94 45.01

dynamic acceleration methods
w/ TPDM 2.32 2.48 × 31.98 5.25 27.75 59.67 60.70

w/ RAPID3 (Ours) 1.97 2.92 × 32.09 5.26 28.07 62.57 63.48

4 EXPERIMENT

Model configurations. We conduct experiments using two diffusion transformers: Stable Diffusion
3 (SD3) (Esser et al., 2024) and its larger counterpart, FLUX (Labs, 2024). For the reward model, we
adopt ImageReward (Xu et al., 2023). For the discriminator, we use pre-trained CLIP (Radford et al.,
2021) and inset adapters (Chen et al., 2022) for parameter-efficient training. The hyperparameters
for the baseline approaches and our method are detailed in Section G and Section H, respectively.
Datasets and evaluation. We use 20K prompts randomly sampled from Byeon et al. (2022)
and COCO 2017 (Lin et al., 2014) training set to train our policy heads. For evaluation, we
use 5,000 images with prompts from the COCO 2017 validation set, along with metrics such as
CLIP-Score (Zhengwentai, 2023), and Aesthetic v2 (Schuhmann, 2022) for a comprehensive as-
sessment. Additionally, two comprehensive benchmarks, HPS (Wu et al., 2023) with 1,600 prompts
and GenEval Ghosh et al. (2023) with 553 prompts, are introduced to demonstrate the generalization
capability of our method. We report the latency measured on an NVIDIA H20 GPU.

4.1 RESULTS ON SD3

We compare RAPID3 with other acceleration techniques, including common step-reduction, two
cache reuse methods—∆-DiT (Chen et al., 2024a) and TeaCache (Liu et al., 2024)—and a sparse
attention mechanism, SpargeAttn (Zhang et al., 2025a). ∆-DiT employs a uniform interval for all
image generations, while TeaCache introduces a manually set threshold to control accumulation
errors, enabling a certain degree of adaptivity. For our method, we set the decay factor λ in our
method is set to 0.97, resulting in around 2.92× acceleration. From Table 1, we observe that RAPID3

achieves the best balance across all metrics while delivering the highest acceleration ratio compared
to its counterparts. This demonstrates that the learned adaptive policies outperform both uniform
policies and manually designed adaptive policies, validating the effectiveness of our approach.

Additionally, we compare our method with TPDM (Ye et al., 2024), which only adjusts the genera-
tion steps per image. The results show that our method surpasses TPDM across all metrics, validat-
ing the superiority of our tri-level acceleration design compared to a single-strategy approach.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison be-
tween RAPID3 and DyFLUX.
Compared to DyFLUX (Zhao
et al., 2025b), our method, sig-
nificantly improves inference
speed, maintains generation
quality competitive with the
original FLUX, and requires
substantially less training cost.

method training inference
GPU hours ↓ data ↓ latency (s) ↓ Aesthetic ↑

FLUX - - 22.15 5.64
DyFLUX 38,000 3M image-text 13.93 5.29

RAPID3 (Ours) 400 20K text only 8.30 5.63
≈1% ≪0.7% -40% +0.34

000522_equlientst
ep9.459999

000120_equlientst
ep10.660000

000147_equlientstep12.4
20000 000128_visualize_equlientstep17.20

9999
000211_equlientstep
14.330000

(a
) F

LU
X

-2
8s

te
p

(b
) F

LU
X

 w
/ o

ur
 m

et
ho

d
(c

) t
im

es
te

p
va

lu
e 1.0

0.8

0.6

0.4

0.2

0.0

original steps=9
using cache steps=7
using sparse steps=1
equivalent steps=10.66

0 0 5 10

original steps=9
using cache steps=6
using sparse steps=3
equivalent steps=12.42

0 5 10 15

original steps=11
using cache steps=5
using sparse steps=3
equivalent steps=14.33

original steps=14
using cache steps=5
using sparse steps=3
equivalent steps=17.20

150 5 10 150 5 10 2015
step index step index step index step index

5 10
step index

15

original steps=6
using cache steps=10
using sparse steps=3
equivalent steps=9.77

Figure 5: Visual comparison based on FLUX. (a) Images generated by the origin FLUX with
the default 28 steps. (b) Images generated by FLUX accelerated with RAPID3. (c) The generation
processes for (b), where equivalent steps represent the generation time cost for each image.
4.2 SCALE UP TO FLUX
Comparison with other acceleration strategies. In Figure 3, we compare the trade-off between
generation latency and quality across various acceleration methods on COCO. We set λ in RAPID3

to 0.97 and 0.90, respectively, to achieve varying acceleration ratios. Both our method and Tea-
Cache (Liu et al., 2024), as well as directly reducing steps, significantly accelerate generation speed.
However, our method demonstrates greater robustness in maintaining performance, verifying its
effectiveness in larger diffusion transformers.

In Figure 4, we compare our approach with other acceleration techniques in terms of visual quality.
For this comparison, SpargeAttn, TeaCache, and our method all use the fastest point on the curve
from Figure 3. The results demonstrate that our method better preserves visual quality, highlighting
the importance of dynamically selecting acceleration strategies.
Comparison with dynamic model. DyFLUX (Zhao et al., 2025b) extends DyDiT (Zhao et al.,
2024) to FLUX (Labs, 2024). It introduces a more sophisticated training process to fine-tune the
generator, enabling it to learn an acceleration strategy with per-image adaptivity. As shown in Ta-
ble 2, our RAPID3 achieves superior generation quality while also delivering faster inference. No-
tably, in terms of training cost—both data and computational efficiency—our method outperforms
DyFLUX significantly, highlighting its clear superiority.
Visualization. In Figure 5, we illustrate the images generated by the original FLUX and our
RAPID3. To facilitate a clear comparison with the original 28-step generation process, we use the
equivalent step as metric, defined in Section 3.4, to represent the generation time cost. For images
with a single object and a simple scenario (e.g. the image in the first column), our method requires
fewer equivalent steps. Conversely, for images with multiple objects and complex scenarios (e.g.
the image in the last column), it requires more equivalent steps. This demonstrates that our method

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Effectiveness of dif-
ferent candidate acceleration
strategies. The symbol ✓ indi-
cates that the corresponding strat-
egy is used in our method.

strategy COCO HPS
step cache sparse CLIP ↑ Aesthetic ↑ Score ↑

✓ 31.98 5.25 27.75
✓ ✓ 32.04 5.25 27.86

✓ ✓ 31.96 5.13 27.80
✓ ✓ ✓ 32.09 5.26 28.07

Table 4: Effectiveness of reward
modelQ and discriminator modelD.
In Q + D, ω controlling the weight of
the reward from D is set to 1.0. IR de-
notes the score from ImageReward Xu
et al. (2023).

Method IR
COCO HPS

CLIP ↑ Aesthetic ↑ Score ↑

only Q 0.9605 32.04 5.18 27.72
only D 0.9538 31.91 5.24 27.96
Q+D 0.9574 32.09 5.26 28.07

has learned to adaptively adjust its acceleration strategy based on the complexity of each image.
Additional visualizations are provided in Section J.

4.3 ANALYSIS

For fairness, we adjust the hyperparameters to ensure similar equivalent steps across all experiments.
The color denotes the default setting of RAPID3. All evaluations are conducted on COCO.
Effectiveness of different candidate acceleration strategies. In Table 3, we present the results
of our method using different candidate acceleration strategies, including step-skip, cache-reuse,
and sparse-attention, referred to as “step”, “cache”, and “sparse”, respectively. The results show
that progressively incorporating these three acceleration strategies leads to increasingly improved
generation performance (e.g. CLIP score). Notably, RAPID3 with our default setting, which uses
all three strategies, achieves the best average performance. This improvement can be attributed to
the expanded solution space provided by more acceleration strategies, enabling RAPID3 to identify
a better acceleration approach for each image generation process.
Effectiveness of the reward model and discriminator model. We individually remove the reward
model Q and the discriminator D from the training of our method to evaluate their effectiveness.
Results are presented in Table 4. We additionally include the ImageReward score (IR), used during
training, as an additional evaluation metric. When only the reward model Q is employed, training
process degrades to standard reinforcement learning with GRPO, achieving the highest ImageRe-
ward score. However, its performance on other metrics drops significantly, as the reward siginal
relies on the ImageReward score, making it susceptible to reward hacking. As a result, the policy
model focuses solely on optimizing the reward from Q, neglecting the actual generation quality.

In contrast, our method incorporates the discriminator D into the training process, effectively al-
leviating the reward hacking problem and maintaining strong performance across various metrics,
highlighting the importance of the proposed adversarial reinforcement learning. For completeness,
we also conduct an experiment using only the discriminator D during training and find that it does
not outperform our method, further highlighting the importance of integrating both Q and D.

5 CONCLUSION

In this study, we address the challenge of accelerating diffusion transformers in a per-image adaptive
manner without modifying their parameters. To achieve this, we introduce RAPID3: Tri-Level
Reinforced Acceleration Policies for Diffusion Transformer. RAPID3 employs three lightweight
policy heads, optimized via Group Relative Policy Optimization, to select Step-Skip, Cache-Reuse,
and Sparse-Attention strategies at each timestep, significantly improving the generation speed. To
mitigate reward hacking problem, we incorporate an adversarially learned discriminator to ensure
robust policy learning. Extensive experiments demonstrate the effectiveness of RAPID3, and we
anticipate our method will inspire further advancements in accelerating diffusion transformers.
Limitations and future work. Our method still relies on training to learn acceleration policies.
Incorporating prior knowledge to adaptively select acceleration strategies could further ease the
training burden. Additionally, extending the proposed method to video generation models (Zheng
et al., 2024; Yang et al., 2024; WanTeam et al., 2025) and editing models (Feng et al., 2025; Xiao
et al., 2024; Chen et al., 2024b) warrants further exploration in the future.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Sotiris Anagnostidis, Gregor Bachmann, Yeongmin Kim, Jonas Kohler, Markos Georgopoulos, Art-
siom Sanakoyeu, Yuming Du, Albert Pumarola, Ali Thabet, and Edgar Schönfeld. Flexidit: Your
diffusion transformer can easily generate high-quality samples with less compute. arXiv preprint
arXiv:2502.20126, 2025.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In CVPR, pp. 22669–22679, 2023.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4599–4603, 2023.

Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon
Kim. Coyo-700m: Image-text pair dataset. https://github.com/kakaobrain/
coyo-dataset, 2022.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis,
Yiren Zhao, and Tao Chen. Delta-dit: A training-free acceleration method tailored for diffusion
transformers. arXiv preprint arXiv:2406.01125, 2024a.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. NeurIPS, 35:16664–
16678, 2022.

Xi Chen, Zhifei Zhang, He Zhang, Yuqian Zhou, Soo Ye Kim, Qing Liu, Yijun Li, Jianming Zhang,
Nanxuan Zhao, Yilin Wang, et al. Unireal: Universal image generation and editing via learning
real-world dynamics. arXiv preprint arXiv:2412.07774, 2024b.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. NeurIPS,
34:8780–8794, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In ICML, 2024.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. NeurIPS, 36:79858–79885, 2023.

Haipeng Fang, Sheng Tang, Juan Cao, Enshuo Zhang, Fan Tang, and Tong-Yee Lee. Attend to not
attended: Structure-then-detail token merging for post-training dit acceleration. In CVPR, pp.
18083–18092, 2025.

Kunyu Feng, Yue Ma, Bingyuan Wang, Chenyang Qi, Haozhe Chen, Qifeng Chen, and Zeyu Wang.
Dit4edit: Diffusion transformer for image editing. In AAAI, volume 39, pp. 2969–2977, 2025.

Alireza Ganjdanesh, Yan Kang, Yuchen Liu, Richard Zhang, Zhe Lin, and Heng Huang. Mixture
of efficient diffusion experts through automatic interval and sub-network selection. In ECCV, pp.
54–71. Springer, 2024.

10

https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
for evaluating text-to-image alignment. Advances in Neural Information Processing Systems, 36:
52132–52152, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. TPAMI, 44(11):7436–7456, 2021.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33:
6840–6851, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
with llm for enhanced semantic alignment. arXiv preprint arXiv:2403.05135, 2024.

Yushi Huang, Zining Wang, Ruihao Gong, Jing Liu, Xinjie Zhang, Jinyang Guo, Xianglong Liu,
and Jun Zhang. Harmonica: Harmonizing training and inference for better feature caching in
diffusion transformer acceleration. In ICML, 2024.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024.

Shanchuan Lin, Xin Xia, Yuxi Ren, Ceyuan Yang, Xuefeng Xiao, and Lu Jiang. Diffusion adversar-
ial post-training for one-step video generation. arXiv preprint arXiv:2501.08316, 2025.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pp.
740–755. Springer, 2014.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. arXiv preprint arXiv:2411.19108, 2024.

Jinming Lou, Wenyang Luo, Yufan Liu, Bing Li, Xinmiao Ding, Weiming Hu, Jiajiong Cao, Yuming
Li, and Chenguang Ma. Token caching for diffusion transformer acceleration. arXiv preprint
arXiv:2409.18523, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. NeurIPS, 35:5775–5787,
2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023.

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching. NeurIPS, 37:133282–133304, 2024a.

11

https://github.com/black-forest-labs/flux

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In CVPR, pp. 15762–15772, 2024b.

OpenAI. Video generation models as world simulators. https://openai.com/index/
video-generation-models-as-world-simulators/, 2024. Accessed: 2025-04-
10.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. NeurIPS, 35:27730–27744, 2022.

Yong-Hyun Park, Chieh-Hsin Lai, Satoshi Hayakawa, Yuhta Takida, and Yuki Mitsufuji. Jump your
steps: Optimizing sampling schedule of discrete diffusion models. In ICLR, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, pp. 4195–
4205, 2023.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI, volume 32, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, pp. 8748–8763. PmLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. In ECCV, pp. 87–103. Springer, 2024.

Christoph Schuhmann. Laion-aesthetics. https://laion.ai/blog/
laion-aesthetics/, 2022. Accessed: 2025-04-19.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration. arXiv preprint arXiv:2407.01425, 2024.

Huiyang Shao, Xin Xia, Yuhong Yang, Yuxi Ren, Xing Wang, and Xuefeng Xiao.
Rayflow: Instance-aware diffusion acceleration via adaptive flow trajectories. arXiv preprint
arXiv:2503.07699, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and character-
izing reward gaming. NeurIPS, 35:9460–9471, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

12

https://openai.com/index/video-generation-models-as-world-simulators/
https://openai.com/index/video-generation-models-as-world-simulators/
https://laion.ai/blog/laion-aesthetics/
https://laion.ai/blog/laion-aesthetics/
https://qwenlm.github.io/blog/qwq-32b/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

The Movie Gen team. Movie gen: A cast of media foundation models, 2025. URL https:
//arxiv.org/abs/2410.13720.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 30, 2017.

Preeti Raj Verma, Navneet Pratap Singh, Deepika Pantola, and Xiaochun Cheng. Neural network
developments: A detailed survey from static to dynamic models. Computers and Electrical Engi-
neering, 120:109710, 2024.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In CVPR, pp. 8228–8238, 2024.

Hongjie Wang, Difan Liu, Yan Kang, Yijun Li, Zhe Lin, Niraj K Jha, and Yuchen Liu. Attention-
driven training-free efficiency enhancement of diffusion models. In CVPR, pp. 16080–16089,
2024.

WanTeam, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
image synthesis. arXiv preprint arXiv:2306.09341, 2023.

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
spatial-temporal sparsity. arXiv preprint arXiv:2502.01776, 2025.

Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. arXiv preprint
arXiv:2409.11340, 2024.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
NeurIPS, 36:15903–15935, 2023.

Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow:
Piecewise rectified flow as universal plug-and-play accelerator. arXiv preprint arXiv:2405.07510,
2024.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Zilyu Ye, Zhiyang Chen, Tiancheng Li, Zemin Huang, Weijian Luo, and Guo-Jun Qi. Schedule
on the fly: Diffusion time prediction for faster and better image generation. arXiv preprint
arXiv:2412.01243, 2024.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
Bill Freeman. Improved distribution matching distillation for fast image synthesis. NeurIPS, 37:
47455–47487, 2024.

Haoran You, Connelly Barnes, Yuqian Zhou, Yan Kang, Zhenbang Du, Wei Zhou, Lingzhi Zhang,
Yotam Nitzan, Xiaoyang Liu, Zhe Lin, et al. Layer-and timestep-adaptive differentiable token
compression ratios for efficient diffusion transformers. arXiv preprint arXiv:2412.16822, 2024.

13

https://arxiv.org/abs/2410.13720
https://arxiv.org/abs/2410.13720

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Huizhuo Yuan, Zixiang Chen, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning of diffusion
models for text-to-image generation. arXiv preprint arXiv:2402.10210, 2024a.

Zhihang Yuan, Hanling Zhang, Lu Pu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
Guohao Dai, and Yu Wang. Ditfastattn: Attention compression for diffusion transformer models.
NeurIPS, 37:1196–1219, 2024b.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei
Chen. Spargeattn: Accurate sparse attention accelerating any model inference. arXiv preprint
arXiv:2502.18137, 2025a.

Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhenghong Liu, and Hao
Zhang. Fast video generation with sliding tile attention. arXiv preprint arXiv:2502.04507, 2025b.

Wangbo Zhao, Jiasheng Tang, Yizeng Han, Yibing Song, Kai Wang, Gao Huang, Fan Wang, and
Yang You. Dynamic tuning towards parameter and inference efficiency for vit adaptation. Ad-
vances in Neural Information Processing Systems, 37:114765–114796, 2024.

Wangbo Zhao, Yizeng Han, Jiasheng Tang, Zhikai Li, Yibing Song, Kai Wang, Zhangyang Wang,
and Yang You. A stitch in time saves nine: Small vlm is a precise guidance for accelerating large
vlms. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 19814–
19824, 2025a.

Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Hao Luo, Yibing Song, Gao Huang, Fan
Wang, and Yang You. Dydit++: Dynamic diffusion transformers for efficient visual generation.
arXiv preprint arXiv:2504.06803, 2025b.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
arXiv preprint arXiv:2412.20404, 2024.

SUN Zhengwentai. clip-score: CLIP Score for PyTorch. https://github.com/taited/
clip-score, March 2023. Version 0.2.1.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
transformers with token-wise feature caching. arXiv preprint arXiv:2410.05317, 2024.

14

https://github.com/taited/clip-score
https://github.com/taited/clip-score

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENT OF LLM USAGE

All writing, visualizations, and experiments are completed by the authors. LLMs (e.g., GPT-4o)
are used solely to refine the writing.

We organize our appendix as follows:

Additional details of methods and experiments:

• Section A: Pipeline of adversarial reinforcement learning in our method.
• Section B: Implementation details for compatibility with classifier-free guidance (CFG).
• Section C: Details of manually combined strategies.
• Section D: Sensitivity to RL method.
• Section E: Comparison with additional state-of-the-art techniques.
• Section F: Impact of training data scale.
• Section L: Experiments on DPG-Bench.
• Section M: Comparison with learning-based cache.

Experimental settings:

• Section G: Details of training-free methods in comparison.
• Section H: More implementation details of our method.

Visualizations

• Section I: Additional visual comparison with other acceleration techniques.
• Section J: Additional visualization results.
• Section K: Visualization of the distribution patterns in dynamic acceleration strategies.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A PIPELINE OF ADVERSARIAL REINFORCEMENT LEARNING

In Algorithm 1, we present the pipeline of the proposed adversarial reinforcement learning in
RAPID3.

Algorithm 1: The pipeline of adversarial reinforcement learning in RAPID3.
Input: Pre-trained diffusion transformer G and image reward model Q

1 Randomly initialize the discriminator D and policy heads P = {P step,Pcache,P sparse}
2 while training do
3 // Training the discriminator model
4 If Iorigin is None then: Iorigin ← G samplers w/o acceleration strategies from P end ;
5 If Iaccele is None then: Iaccele ← G samples w/ acceleration strategies from P end ;
6 for I ∈ Iorigin ∪ Iaccele do
7 update D with cross entropy loss ;
8 end
9 // Training policies with reinforcement learning

10 foreach training iteration do
11 {Ii}Gi=1← G conducts sampling with acceleration strategies from P;
12 {ri}Gi=1← obtain rewards of {Ii}Gi=1 based on Q and D ;
13 update policy models P with JGRPO-RAPID3 ;
14 update negative dataset Iaccele with {Ii}Gi=1;
15 end
16 end

Output: Policy heads P that can select the acceleration strategy for each image generation

B IMPLEMENTATION DETAILS FOR COMPATIBILITY WITH CLASSIFIER-FREE
GUIDANCE

Our method is compatible with Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) and actually
all experiments are conducted using CFG. Below, we outline the implementation details:

• SD3 (Esser et al., 2024): In the default settings of SD3, the CFG scale is set to 7.0. During
generation with CFG, the batch size is configured to two, consisting of one sample with a
textual condition and another with a null condition. The acceleration is dependent on the
status of the conditioned sample.

• FLUX (Labs, 2024): As the CFG scale has already been distilled into the FLUX, generation
can be conducted directly using our method with a batch size of 1.

C COMPARISON WITH MANUALLY COMBINED STRATEGIES

To demonstrate the superiority of the proposed learned policy in our method, we compare it against
manually combining different acceleration strategies, as shown in Table 6. The details of manually
combined strategies are presented in Table 5. In these methods, we manually integrate reduced
sampling steps, feature caching, and sparse attention Specifically, for reducing sampling steps, we
adjust the sampling schedule directly. For feature caching, we employ the hand-crafted adaptive
method TeaCache (Liu et al., 2024), while using SpargeAttn (Zhang et al., 2025a) as the sparse
mechanism.

We observe that the proposed RAPID3 significantly outperforms all manual strategies, demonstrat-
ing that simply combining acceleration strategies does not lead to better performance. In fact, the
joint introduction of step skipping, cache reuse, and sparse attention greatly expands the search
space, making it difficult to manually identify optimal strategies. This often destabilizes the gen-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

eration process and leads to unsatisfactory generation quality. This highlights the importance of
learnable policies in our method.

Table 5: Comparison with manual acceleration strategies.

Method Latency (s) Step Cache Sparse

manual-1 3.27 21 δ = 0.15 ζ1 = 0.05, ζ2 = 0.06

manual-2 2.04 28 δ = 0.20 ζ1 = 0.05, ζ2 = 0.06

manual-3 2.38 26 δ = 0.12 ζ1 = 0.20, ζ2 = 0.21

Table 6: Comparison with
manual acceleration strate-
gies. Our method significantly
outperforms them.

Method Latency (s) ↓ COCO HPS
CLIP ↑ Aesthetic ↑ Score ↑

manual-1 3.27 31.43 4.92 27.16
manual-2 2.04 31.34 4.95 27.48
manual-3 2.38 29.82 4.85 26.94
RAPID3 1.97 32.09 5.26 28.07

D SENSITIVITY TO RL METHOD

In addition to GRPO, we also evaluate RLOO (Ahmadian et al., 2024), a RL approach that has
proven effective in LLM training. The primary difference between GRPO and RLOO lies in how
the advantage is obtained. As shown in Table 7, replacing GRPO with RLOO in our method also
achieves competitive performance, demonstrating the robustness of our approach across different
reinforcement learning approaches.

Table 7: Replacing the GRPO with
RLOO (Ahmadian et al., 2024).
RAPID3 demonstrates robustness
across two RL approaches.

RL method
COCO HPS

CLIP ↑ Aesthetic ↑ Score ↑

GRPO 32.09 5.26 28.07
RLOO 32.10 5.27 28.06

E ADDITIONAL COMPARISON WITH SOTA METHODS

To supplement Table 1, we incorporate additional methods into our comparison on COCO
dataset (Lin et al., 2014), including ToMeSD (Bolya & Hoffman, 2023), AT-EDM (Wang et al.,
2024), SDTM (Fang et al., 2025), TokenCache (Lou et al., 2024), DyDiT (Zhao et al., 2024), and
ToCa (Zou et al., 2024), as shown in Table 8. The consistent superiority of our method over these
state-of-the-art acceleration techniques further underscores its effectiveness and significance.

F IMPACT OF TRAINING DATA SCALE

In Table 9, we further investigate the impact of training data scale on the performance of our method.
The results show that even with just 5K text-only training samples, our method achieves competitive
performance, highlighting its data efficiency. Since our approach keeps the original generator frozen
to reduce training costs, the relatively modest improvement observed when increasing the training
data to 40K is expected. To balance performance and training efficiency, we adopt 20K samples as
the default setting.

G DETAILS OF TRAINING-FREE METHODS

Details of TeaCache. TeaCache (Liu et al., 2024) is a representative acceleration method leverag-
ing cache reuse. It manually designs a strategy to accelerate inference with per-image adaptivity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Method Acceleration Category Speed ↑ CLIP ↑ Aesthetic ↑

SD3 - 1.00 × 32.05 5.31
ToMeSD Token Merging 1.50 × 30.39 5.03
AT-EDM Token Pruning 1.54 × 30.27 5.02
SDTM Token Merging 1.56 × 31.59 5.23
TokenCache Cache-Reuse 1.49 × 31.43 5.21
DyDiT Dynamic Neural Network 1.57 × 31.48 5.22
ToCa Cache-Reuse 2.67 × 32.05 5.24
RAPID3 (ours) Dynamic Acceleration 2.92 × 32.09 5.26

Table 8: Comparison of methods across different acceleration categories and evaluation metrics.

Table 9: Impact of training data scale. The
training data consists of text only. We use 20K
samples as the default setting to balance perfor-
mance and training efficiency.

Method
COCO HPS

CLIP ↑ Aesthetic ↑ Score ↑

SD3 32.05 5.31 28.83
5K 32.04 5.23 27.91

20K 32.09 5.26 28.07
40K 32.09 5.27 28.26

The method employs a threshold, δ, to decide whether to use the cache or perform computation.
Specifically, if the accumulated difference between the latent maps of two consecutive timesteps
exceeds the threshold δ, the model performs a full computation and updates the cache. Otherwise, it
directly uses the cached residual to skip the model’s computation. Larger δ brings more significant
acceleration while also hurts the performance.

For experiments with SD3, we set δ = 0.15. For FLUX, we use two settings, δ = 0.15 and δ = 0.25,
to balance the trade-off between latency and generation quality.

Details of ∆-DiT. ∆-DiT (Chen et al., 2024a) is a representative acceleration method that lever-
ages cache reuse while employing a uniform strategy to accelerate different image generation. The
method divides the generation process into two distinct stages. In the first stage, the latter half of the
network layers can use cached residuals, while the earlier layers perform full computations. Con-
versely, in the second stage, the earlier half of the layers can use cached residuals, and the latter
layers always conduct full computations.

In the experiment on SD3, for the layers that using caching, the interval for performing computations
to update the cache, N , is set to 4. However, it is challenging to directly apply this approach to
FLUX, which consists of two different types of layers and was not explored in the original paper.
Therefore, we conduct our experiments using SD3.

Details of SpargeAttn. SpargeAttn (Zhang et al., 2025a) is a representative method for sparsifying
the computation of attention. It employs thresholds ζ1 and ζ2 to control the difference between
the results of attention with and without sparsification. Larger values of ζ1 and ζ2 offer better
acceleration but inevitably introduce performance degradation.

For experiments with SD3, we set ζ1 = 0.20 and ζ2 = 0.21. For experiments with FLUX, we use
three settings: [ζ1 = 0.07, ζ2 = 0.08], [ζ1 = 0.20, ζ2 = 0.21], and [ζ1 = 0.30, ζ2 = 0.31].

H MORE IMPLEMENTATION DETAILS OF RAPID3

In Table 10, we present the default implementation details of our approach.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Default Implementation Details of RAPID3.

details of training
device 8× NVIDIA H20 GPU
total batch size 128
learning rate 1e-5
weight decay 0.1
optimizer AdamW
samples per group in GRPO 4

details of reward
decay factor λ 0.97
weight of the discriminator in reward ω 1.0
Ccache

k 0.95 (measured)

candidate sparse attention
[ζ1 = 0.07, ζ2 = 0.08],
[ζ1 = 0.10, ζ2 = 0.11],
[ζ1 = 0.20, ζ2 = 0.21]

Csparse
k 0.05, 0.07, 0.10 (measured)

I ADDITIONAL VISUAL COMPARISON WITH OTHER ACCELERATION
TECHNIQUES

In Figure 6, we provide additional visual comparisons with other acceleration techniques on
FLUX (Labs, 2024).
A man on cross country skis at the edge of a trail. A woman holding a tennis racquet on a tennis court.

A man that is holding a small baby. A stuffed animal holding a hockey stick.

FLUX 9-stepsFLUX 28-steps SpargeAttn TeaCache RAPID3 (Ours) FLUX 9-stepsFLUX 28-steps SpargeAttn TeaCache RAPID3 (Ours)

missing details
missing details

unrealistic

hazy
unrealistic

grid
unrealistic

unrealistic
missing details

unrealistic unrealistic

unrealistic

x1.0 x2.86 x1.15 x2.61 x2.91 x1.0 x2.86 x1.15 x2.61 x2.91

Figure 6: Additional visual comparison with other acceleration techniques.

J ADDITIONAL VISUALIZATION RESULTS

In Figures 7 and 8, we present additional visualizations of images generated by the original
FLUX (Labs, 2024) and its accelerated counterpart using our method. The results demonstrate
that our method preserves visual quality more effectively while achieving the best acceleration ratio,
verifying the importance of dynamically selecting acceleration strategies.

Moreover, we can observe several notable trends emerging from our dynamic acceleration strategies:

• Step-Skip Stride: The stride of step-skip is relatively small when t approaches 1.0 (near
the noise distribution) but becomes larger as t approaches 0.0 (near the image distribution).
This behavior can be attributed to the model’s requirements during different stages of gen-
eration. At the initial stage, the model focuses on generating the overall shape, structure,
and composition of the image, which has a significant impact on the final image quality.
Therefore, our method employs finer-grained steps during this phase to ensure higher image
quality.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Cache-Reuse: Cache reuse is typically applied at intervals of 0–4 steps, as the computations
in some consecutive steps are similar and can be replaced by cached results from previous
steps.

• Sparse-Attention: Sparse attention is applied in an image-dependent manner, meaning the
frequency of its usage varies depending on the image. For instance, as shown in Figure 7,
5 steps of sparse attention are used for the rightmost image, while only 1 step is applied for
the middle image.

These results, along with the ablation study presented in Table 3, highlight that the three acceleration
policies work synergistically and effectively complement each other.

FL
U

X
-2

8s
te

p
FL

U
X

 w
/ o

ur
 m

et
ho

d
 ti

m
es

te
p

va
lu

e

1.0

0.8

0.6

0.4

0.2

0.0

original steps=13
using cache steps=2
using sparse steps=3
equivalent steps=16.08

5 10
step index

150

original steps=7
using cache steps=6
using sparse steps=1
equivalent steps=8.56

5 10step index
0

original steps=8
using cache steps=10
using sparse steps=2
equivalent steps=10.81

0 5 10
step index

15 5 10 15

original steps=9
using cache steps=8
using sparse steps=5
equivalent steps=14.43

0 20
step index

original steps=7
using cache steps=6
using sparse steps=2
equivalent steps=9.45

5 10
step index

Figure 7: Additional visualizations of images generated by the original FLUX (Labs, 2024) and
its accelerated version using our method. (1)

K DISTRIBUTION PATTERNS IN DYNAMIC ACCELERATION STRATEGIES

In Figure 9, we present the distribution patterns of dynamic acceleration strategies learned by our
policy heads, derived from 5,000 samples of the COCO dataset (Lin et al., 2014). Specifically, Fig-
ure 9(a) illustrates the distribution of total steps used during generation, while Figures 9(b) and 9(c)
demonstrate the distributions of steps involving the use of cache and sparse attention, respectively.
These findings further confirms the ability of our method to adaptively select acceleration strategies
for each image generation process, leading to a diverse range of strategies.

L EXPERIMENTS ON DPG-BENCH

We conduct experiments on a comprehensive benchmark, DPG-Bench (Hu et al., 2024), to evaluate
the proposed method against various baselines. The results, presented in Table 11, demonstrate that
the proposed dynamic acceleration strategy remains robust even in such challenging settings.

M COMPARISON WITH LEARNING-BASED CACHE

Recent advancements in feature-caching for accelerating diffusion transformers, such as Harmon-
iCa (Huang et al., 2024) and Learning-to-Cache (Ma et al., 2024a), have started incorporating

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

000385_equlientste
p13.270000

000350_equlie
ntstep12.0400
00

000028
_equlie
ntstep1
0.6299
99

000517_equlientste
p11.310000

000585_e
qulientstep
17.050001

FL
U

X
-2

8s
te

p
FL

U
X

 w
/ o

ur
 m

et
ho

d
 ti

m
es

te
p

va
lu

e

1.0

0.8

0.6

0.4

0.2

0.0
0 5 10

step index
5 10
step index

150 5 10
step index

0 0 5 10
step index

15 5 10 150
step index

15

original steps=8
using cache steps=2
using sparse steps=4
equivalent steps=12.04

original steps=9
using cache steps=5
using sparse steps=3
equivalent steps=13.27

original steps=8
using cache steps=6
using sparse steps=3
equivalent steps=11.31

original steps=11
using cache steps=3
using sparse steps=5
equivalent steps=17.05

original steps=7
using cache steps=8
using sparse steps=3
equivalent steps=10.62

Figure 8: Additional visualizations of images generated by the original FLUX (Labs, 2024) and
its accelerated version using our method. (2)

Figure 9: Visualization of distribution patterns in dynamic acceleration strategies. In (a), we
visualize the distribution of total steps for sample generation. In (b) and (c), we demonstrate the
distribution of steps using cache and sparse attention. For instance, 3,230 samples are generated
using 12–16 steps, 2,694 samples utilize cache reuse with 4–8 steps, and 2,526 samples employ
sparse attention with 2–4 steps during the generation process. This experiment is based on our
model, which achieves a 2.91 × speedup over FLUX (Labs, 2024), as illustrated in Figure 3.

Table 11: Experiments on DPG-Bench (Hu et al., 2024).

Method Global Entity Attribute Relation Other Average

SD3 28-steps 88.09 87.81 85.79 86.16 87.00 81.29
SD3 9-steps 85.78 85.38 82.12 83.72 83.70 76.77
w/ ∆-DiT N=4 68.61 73.69 76.46 79.78 75.69 64.58
w/ TeaCache 84.03 85.56 84.15 88.46 83.20 77.53
w/ TPDM 80.00 78.35 80.26 81.76 79.19 72.46
w/ SpargeAttn 80.39 81.66 81.53 79.48 79.66 73.73
w/ RAPID3 (Ours) 88.94 84.91 84.36 86.30 85.77 78.81

learning-based processes. These methods typically introduce routers to decide whether to perform
computation for a block or reuse the cache from a previous step. To compare our proposed method
with such designs, we conduct experiments on HarmoniCa, an improved version of Learning-to-
Cache, with results presented in Table 12. The results demonstrate that our method outperforms the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Comparison with HarmoniCa (Huang et al., 2024).

Method Speed ↑ COCO HPS GenEval
CLIP ↑ Aesthetic ↑ Score ↑ Correct ↑ Overall ↑

SD3 28-steps 1.00 × 32.05 5.31 28.83 67.81 69.01
w/ HarmoniCa 2.01 × 31.75 5.23 28.05 59.67 60.99

w/ RAPID3 (Ours) 2.92 × 32.09 5.26 28.07 62.57 63.48

learning-based feature-caching approach, HarmoniCa, underscoring the superiority of our approach.
This can be attributed to three key reasons:

• Three-level acceleration strategies: Our method incorporates three levels of acceleration
strategies, step-skip, cache-reuse, and sparse-attention, rather than relying solely on cache
reuse. This diverse set of strategies offers greater flexibility and optimization potential
compared to caching-based methods like HarmoniCa.

• Unconstrained performance upper bound: Traditional learning-based caching paradigms
like HarmoniCa are designed to align the performance with the original model, which in-
herently limits their upper bound to the performance of the original model. In contrast,
our method, trained with reinforcement learning, is not bound by this constraint. Instead,
it continuously optimizes the model to achieve higher rewards, unlocking the potential for
superior performance.

• Its router determines whether to use caching solely based on the timestep, independent
of each image generation. This results in inferior performance compared to our image-
adaptive accretion strategy.

We hope our design will inspire future work in feature-caching methods to fully realize their com-
bined potential.

22

	Introduction
	Related Work
	Methodology
	Preliminary
	Tri-Level Reinforced Acceleration Policies
	Design of Policy Heads
	Adversarial Reinforcement Learning

	Experiment
	Results on SD3
	Scale up to FLUX
	Analysis

	Conclusion
	Pipeline of Adversarial Reinforcement Learning
	Implementation details for compatibility with classifier-free guidance
	Comparison with Manually Combined Strategies
	Sensitivity to RL method
	Additional Comparison with SOTA Methods
	Impact of training data scale
	Details of Training-free Methods
	More Implementation Details of RAPID3
	Additional visual comparison with other acceleration techniques
	Additional Visualization Results
	Distribution Patterns in Dynamic Acceleration Strategies
	Experiments on DPG-Bench
	Comparison with learning-based Cache

