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ABSTRACT

Diffusion Transformers (DiTs) excel at visual generation yet remain hampered
by slow sampling. Existing training-free accelerators—step reduction, feature
caching, and sparse attention—enhance inference speed but typically rely on a
uniform heuristic or manually designed adaptive strategy for all images, leaving
quality on the table. Alternatively, dynamic neural networks offer per-image adap-
tive acceleration, but their high fine-tuning costs limit broader applicability. To ad-
dress these limitations, we introduce RAPID3: Tri-Level Reinforced Acceleration
PolIcies for Diffusion Transformer framework that delivers image-wise accelera-
tion with zero updates to the base generator. Specifically, three lightweight pol-
icy heads—Step-Skip, Cache-Reuse, and Sparse-Attention—observe the current
denoising state and independently decide their corresponding speed-up at each
timestep. All policy parameters are trained online via Group Relative Policy Op-
timization (GRPO) while the generator remains frozen. Meanwhile, an adver-
sarially learned discriminator augments the reward signal, discouraging reward
hacking by boosting returns only when generated samples stay close to the origi-
nal model’s distribution. Across state-of-the-art DiT backbones including Stable
Diffusion 3 and FLUX, RAPID3 achieves nearly 3× faster sampling with com-
petitive generation quality.

1 INTRODUCTION

Diffusion Transformers (DiTs) have emerged as the dominant backbone for high-fidelity visual gen-
eration thanks to their scalability and strong generalization (Peebles & Xie, 2023; Bao et al., 2023).
They now underpin state-of-the-art systems in diverse downstream tasks—image synthesis (Chen
et al., 2023; Esser et al., 2024; Labs, 2024), video generation (OpenAI, 2024; team, 2025), and con-
trollable editing (Xiao et al., 2024; Feng et al., 2025). Despite this progress, DiTs remain inefficient
during inference, requiring multiple denoising steps with computationally intensive blocks on large
latent maps, making real-world deployment challenging.

A first family of training-free accelerators (Figure 1 (a)) tackles this cost by hard-coded heuristics:
reducing the step count (Song et al., 2020; Lu et al., 2022a;b; Park et al., 2024), reusing intermediate
features (Ma et al., 2024b; Chen et al., 2024a; Selvaraju et al., 2024; Liu et al., 2024), or sparsifying
attention (Zhang et al., 2025a; Yuan et al., 2024b). These techniques preserve the frozen generator
but apply a uniform or manually designed adaptive policy to every image and timestep; quality there-
fore fluctuates, and conservative settings are adopted to avoid artifacts, sacrificing potential speed-
ups. A second family—dynamic neural networks trained with fine-tuning (Figure 1 (b))—learns
routers that adapt width, depth, or spatial resolution on the fly (Han et al., 2021; Ganjdanesh et al.,
2024; Zhao et al., 2024; You et al., 2024; Anagnostidis et al., 2025; Zhao et al., 2025b). While these
methods offer adaptability and high performance, they require extensive optimization on large-scale
image–text datasets, making them impractical for many large generators or proprietary models.

Sampling in a diffusion transformer, however, is naturally a Markov decision process: its forward
pass unfolds as a sequence of denoising steps. If we consider the latent generated at each step—along
with its timestep index and prompt embedding—as the state, then the selection of the next timestep
can be treated as a continuous action, while decisions on whether to reuse cached features or apply
sparse attention are regarded as discrete actions. Since the generator’s weights remain fixed, the
outcome of any action is deterministic and fully predictable by the model itself, eliminating the need
to learn environment dynamics. Episodes are inherently brief, typically spanning multiple sampling
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Figure 1: Accelerating Diffusion Transformers: (a) Training-free methods primarily use uniform
or manually designed rules (e.g., step skip, cache reuse, or sparse attention) for all images and
timesteps, offering speed but little adaptivity. (b) Dynamic fine-tuned models learn routers that
tailor acceleration to each input but require costly fine-tuning of the generator’s parameters. (c) Pro-
posed RAPID3 keeps the generator frozen and equips it with three lightweight policy heads—Step-
Skip, Cache-Reuse, and Sparse-Attention—trained via reinforcement learning to make action deci-
sions based on the latent representations, timestep, and text prompt information.

steps, and conclude with a complete image whose quality can be quantitatively assessed post hoc,
enabling a straightforward reward signal that balances image fidelity against computational cost.

Our key insight is that the DiT inference setting, when viewed through the above lens, sits squarely
in the comfort zone of modern policy-optimization methods: a concise but expressive action space;
a stationary and deterministic environment; an inexpensive simulator (the frozen DiT) that delivers
abundant rollouts; and a scalar reward that directly reflects the user’s objective. By leveraging this
structure, we can train lightweight policies to dynamically determine which acceleration strategy to
invoke—enabling adaptivity without modifying the generator’s parameters. The recent TPDM (Ye
et al., 2024) relates to our idea: it achieves data-dependent step skipping via reinforcement learning
(RL), while negleting the redundant computation from the intra-timestep perspective.

Motivated by this key observation, we present RAPID3 (Figure 1 (c))—Tri-Level Reinforced
Acceleration PolIcies for Diffusion Transformer RAPID3 attaches three ultra-small policy
heads—Step-Skip, Cache-Reuse, and Sparse-Attention—to a frozen DiT. Each head observes in-
expensive summaries of the latent, timestep, and prompt, and independently decides corresponding
acceleration strategies. All policy parameters are trained online with Group Relative Policy Optimi-
sation (GRPO) (Shao et al., 2024). Moreover, instead of using existing evaluation metrics to build
the reward function, we train a discriminator adversarially to enhance the reward for samples that
remain close to the original generator’s distribution, which effectively prevents the reward hacking
problem (Skalse et al., 2022).

Experimental results show that RAPID3 achieves nearly 3× acceleration for Stable Diffusion
3 (Esser et al., 2024) and FLUX (Labs, 2024), while maintaining competitive visual quality. By
updating only the policy head, which constitutes merely 0.025% of the generator’s parameters, its
training process relies solely on readily available text prompts and and consumes only 1% of the
GPU hours required for training dynamic neural networks (Zhao et al., 2025b).

2 RELATED WORK
Diffusion transformers. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Albergo
et al., 2023) have achieved remarkable success in visual generation tasks (Rombach et al., 2022;
OpenAI, 2024). Early diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al.,
2022) are primarily built on U-Net (Ronneberger et al., 2015). However, Transformer-based archi-
tectures (Vaswani et al., 2017) have gradually replaced U-Net as the foundation for these models.
DiT (Peebles & Xie, 2023) represents one of the first attempts to integrate Transformers into the
diffusion process. Concurrently, U-ViT (Bao et al., 2023) combines the advantages of U-Net’s skip
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connections with the capabilities of Transformer architectures. Building on DiT, PixArt-α expands
its capabilities to text-to-image generation, while SD3 (Esser et al., 2024) and FLUX (Labs, 2024)
further demonstrate its scalability. Beyond image generation, Transformer-based diffusion mod-
els, such as Sora (OpenAI, 2024) and WanX (WanTeam et al., 2025), have also shown significant
promise in video generation. Despite these achievements, diffusion models continue to suffer from
high computational demands and time-consuming generation. The proposed framework addresses
this limitation by adaptively adjusting computation for each image generation process, enabling
faster and more efficient visual generation.
Diffusion transformer acceleration. To enhance inference efficiency of DiTs, researchers have ex-
plored training-free techniques such as reducing sampling steps (Song et al., 2020; Lu et al., 2022a;
Park et al., 2024; Lu et al., 2022b), feature caching (Ma et al., 2024b; Chen et al., 2024a; Liu et al.,
2024; Huang et al., 2024), and sparse attention mechanisms (Zhang et al., 2025a;b; Xi et al., 2025).
However, these approaches typically use uniform strategies for all images and the entire generation
process or depend on manually designed heuristics, limiting their generalization. Inspired by the
efficiency gains of dynamic neural networks (Han et al., 2021; Verma et al., 2024; Zhao et al., 2024;
2025a), some studies (Ganjdanesh et al., 2024; Zhao et al., 2024; 2025b) introduce dynamic archi-
tectures to improve efficiency, while others (You et al., 2024; Anagnostidis et al., 2025) dynamically
reduce computation along the spatial dimension. However, these methods require fine-tuning dif-
fusion models, which imposes a significant training burden and becomes impractical when training
data is limited. Few-step distillation techniques (Luo et al., 2023; Yan et al., 2024; Lin et al., 2024;
Yin et al., 2024; Shao et al., 2025) accelerate inference but often require extensive parameter tun-
ing and training of around 100M additional parameters, even with methods like LoRA (Hu et al.,
2022). In contrast, our approach trains lightweight policy heads with only 3M additional parameters,
adaptively selecting acceleration strategies while keeping DiT parameters frozen. This ensures both
parameter and data efficiency, offering a more practical and elegant solution.
Reinforcement learning in diffusion models. The success of reinforcement learning (RL) in large
language models (LLMs) (Ouyang et al., 2022; Shao et al., 2024; Guo et al., 2025; Team, 2025) has
encouraged researchers to explore it in diffusion models. DDPO (Black et al., 2023) views denoising
as a multi-step decision-making task, aligning generated images with downstream objectives. Simi-
larly, DPOK (Fan et al., 2023) demonstrates the effectiveness of RL in fine-tuning diffusion models,
achieving superior text-image alignment and improved image fidelity. Some approaches (Wallace
et al., 2024; Yuan et al., 2024a) have also explored the alignment of generation quality with human
preferences in an offline RL framework. However, these methods primarily focus on enhancing the
generation quality rather than accelerating the generation speed. TPDM (Ye et al., 2024) allevi-
ates this problem by learning an efficient noise scheduler, without exploring its incorporation with
other acceleration techniques. Our approach leverages RL to learn policy heads that dynamically
determine step-skipping, cache-reuse, and sparse-attention strategies at each timestep, adaptively
improving the generation efficiency.

3 METHODOLOGY

We begin with foundational concepts of DiT and RL in Section 3.1. Then, we present the proposed
tri-level reinforced acceleration policies and their corresponding policy heads in Section 3.2 and
Section 3.3, respectively. Section 3.4 details the adversarial reinforcement learning within the the
proposed framework. A comprehensive overview of the methodology is provided in Figure 2.

3.1 PRELIMINARY

Architecture of diffusion transformers. Diffusion Transformers (DiTs) (Peebles & Xie, 2023;
Bao et al., 2023; Chen et al., 2023; Esser et al., 2024; Labs, 2024) has demonstrated remarkable
advancements in visual generation thanks to its scalable architecture. It generally consists of a stack
of layers, each of which integrates a self-attention (SA) block and a multi-layer perceptron (MLP)
block. The operation of a DiT block can be roughly expressed as:

xl+1
t , cl+1

t = F l
LAYER(x

l
t, c

l
t) = F l

MLP(F l
SA(x

l
t, c

l
t)), (1)

where xl
t ∈ RN×C denotes the input to the l-th layer at timestep t. Here, N represents the number of

tokens and C the channel dimension. The condition embedding clt combines timestep information
with text-based guidance, which are critical for generation.
Reinforcement learning with Group Relative Policy Optimization. To improve the perfor-
mance and alignment of LLMs with human preferences, RL techniques such as Proximal Policy

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Optimization (PPO) (Schulman et al., 2017) are widely applied during fine-tuning. To reduce
the training cost, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is proposed,
which leverages a group-based strategy to estimate advantages. Specifically, for a given question
q from the training set, GRPO samples a group of output answers {oi}Gi=1 from a LLM model
πθold with fixed parameters. The target policy πθ is then updated by maximizing the following
objective:JGRPO(θ) = 1

G

∑G
i=1

(
min

(
πθ(oi|q)
πθold (oi|q)

Ai, clip
(

πθ(oi|q)
πθold (oi|q)

, 1− ε, 1 + ε
)
Ai

)
− βDKL

)
,

where ε and β are hyperparameters. The term DKL represents a KL-divergence penalty between the
current model πθ and the pre-trained reference model πref. The advantage Ai is computed from a
group of rewards {ri}Gi=1 as Ai =

ri−mean({r1,r2,··· ,rG})
std({r1,r2,··· ,rG}) . Due to its simplicity and effectiveness,

we integrate GRPO into the generation process of diffusion transformers to train policy heads, as
discussed later in Section 3.4.

3.2 TRI-LEVEL REINFORCED ACCELERATION POLICIES

As previously outlined, our goal is to find policies that dynamically selects acceleration strategies for
visual generation. To achieve this, we define three levels of candidate strategies to accelerate from
model-external to model-internal perspectives: Step-Skip, Cache-Reuse, and Sparse-Attention.
These strategies are effective and training-free acceleration techniques, but existing approaches often
apply them with uniform or manually designed adaptive policies.
Level-1: Step-Skip. The diffusion Transformer’s generation involves a multi-timestep schedule,
where the timestep decreases from tT to t0. This process’ efficiency is critically dependent on the
required of timestep number. A natural idea is to reduce the needed timesteps. However, prior meth-
ods (Song et al., 2020; Lu et al., 2022a; Park et al., 2024; Lu et al., 2022b) employ fixed schedules,
ignoring that different images may require varying timesteps. For instance, highly detailed images
often demand more timesteps to achieve high-quality outputs, whereas simpler images can be gen-
erated effectively with fewer steps. Applying a uniform schedule across all cases risks degrading
both generation quality and computational efficiency.

To achieve inference-time dynamic timestep jumping, we define a policyP step that selects the current
timestep t based on the state of the previous timestep tprev. Specifically, let G(·) denote the forward
computation of DiT, sampler(·) represent the diffusion sampling function, and Xtprev indicate the
latent feature at the previous timestep. The feature at the current timestep, Xt, can be formulated as

Xt ← sampler(Xtprev ,G(Xtprev , tprev), t). (2)

This approach allows the generation process to adjust the number of required timesteps per input,
enabling varying computational resource allocation depending on the the target complexity. As a
result, the diffusion process achieves a balance between generation quality and efficiency.
Level-2: Cache-Reuse. Feature caching mechanisms (Ma et al., 2024b; Chen et al., 2024a;
Selvaraju et al., 2024; Liu et al., 2024) leverage temporal coherence in diffusion processes by
reusing computed feature maps across consecutive timesteps. A prevalent approach in diffusion
transformers involves caching the residual components of feature maps (Chen et al., 2024a; Liu
et al., 2024) - specifically, the difference between a model’s input and output. For timestep t,
this enables computational simplification through reuse of the residual cached at timestep tcache,
expressed as Ot ≈ Xt + ∆tcache , where Ot denotes the output of the diffusion transformer and
∆tcache = G(Xtcache , tcache)−Xtcache represents the cached residual.

Two fundamental challenges emerge in practical implementations: a) The trade-off between accel-
eration and generation quality exhibits strong dependence on the temporal interval between cache
updates. Current approaches relying on fixed or heuristic update intervals demonstrate limited gen-
eralizability, particularly when combined with other acceleration techniques. b) Generating different
images may require distinct caching schedules, posing challenges to designing and optimization.

Hence, the 2nd level of our objective centers on developing an adaptive policy Pcache that dynami-
cally selects optimal caching strategies per timestep t. Formally, the policy determines the compu-
tation path through the following conditional operation:

Ot = G(Xt, t) if update cache, Xt +∆tcache if reuse cache. (3)

If the policy model determines to update the cache, we will conduct the computation G(Xt, t) as the
original diffusion transformer and update the cache to ∆t.
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Figure 2: Overview of RAPID3. (a) Accelerate generation with RAPID3 during inference. (b) The
details of policy heads {P step,Pcache,P sparse}.
Level-3: Sparse-Attention. The quadratic computational complexity of self-attention mechanisms
in transformers (O(n2) for n tokens) poses significant latency challenges for high-resolution image
generation. To mitigate this bottleneck, recent work (Zhang et al., 2025a; Yuan et al., 2024b) has
integrated sparse attention mechanisms into diffusion transformers through conditional computation
of attention weights. These approaches prune the computation in attention maps by employing
a hyperparameter θ ∈L×H to control sparsity for each layer and attention head, where L and H
represent the number of layers and attention heads, respectively. Existing implementations, such as
SpargeAttn (Zhang et al., 2025a), search for θ over the entire diffusion process of DiT and keep it
fixed across all timesteps during generation.

However, this static configuration ignores the evolution of attention patterns during the diffusion
process. During the diffusion process, different timesteps exhibit distinct properties and may vary
in their sensitivity to sparsity. Fixing the θ could sacrifice potential speed-up or lead to quality
degradation. More importantly, the θ optimized for the original DiT may become unsuitable when
DiT is combined with other acceleration methods.

To address this, we propose a dynamic sparsity policy P sparse, to adaptively identify a optimal hyper-
paremter for the current timestep, θt ∈L×H , from a series of pre-defined candidate hyperparemters
{θ1, θ2, ...θNsparse}. The original self-attention block can then be replaced with sparse attention using
the identified hyperparameter, which is formulated as:

F l
SA(x

l
t, c

l
t)

P sparse

−−−→ F l
SAsparse

(xl
t, c

l
t; θ

l
t). (4)

This approach enables the adaptation of computation sparsity on a per-timestep basis.

3.3 DESIGN OF POLICY HEADS

The learning of our tri-level acceleration framework involves joint optimization of three policy heads
P step,Pcache,P sparse. They determine the acceleration strategy based on the state at the current
timestep t. Each policy head begins with a convolution layer for feature projection, followed by
AdaLN (Perez et al., 2018) integrating the condition embedding ct. The output is finally pooled and
fed to the corresponding linear head for action prediction. Each policy head is detailed as follows:
a) Step-Skip policy P step. It predicts jump steps via parametric distribution learning:

P step : Ot 7→ [α, β], astep
t ∼ Beta(α, β), tnext = ⌊t · astep

t ⌋, (5)

where Ot denotes the output of the diffusion transformer at the current timestep t. Inspired by (Ye
et al., 2024), Pstep uses a linear layer to regress two values, α and β, which parameterize a Beta
distribution. A value from this distribution is subsequently used to compute the next timestep tnext.
b) Cache-Reuse policy Pcache. This discrete decision network determines whether to perform
computation or reuse the cached result based on the discrepancy between the inputs at the current
timestep Xt and the last cached timestep Xtcache . This process can be expressed as:

Pcache : Xt −Xtcache 7→ pcache
t ∈ R2, acache

t ∼ Categorical(pcache
t ) (6)

with action semantics: acache
t = 0 indicates that computation should be performed at the current

timestep to update the cache, while acache
t = 1 correspond to reusing the cache.

c) Sparse-Attention policy P sparse. This policy adapts computation through discrete choices:

P sparse : Xt 7→ psparse
t ∈ R1+Nsparse , asparse

t ∼ Categorical(psparse
t ), (7)
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where asparse
t =0 indicates full attention where no sparsity is applied, while asparse

t ∈ [1, Nsparse] de-
notes applying sparse attention with different θ values that progressively increase the sparsity ratios.
Here, Nsparse is set to 3 by default. Although we experiment with additional candidate hyperparam-
eters, we observe that an overly aggressive sparsity strategy significantly degrades the generation
quality. Notably, P sparse

t remains inactive when Pcache
t decides to reuse the cache.

3.4 ADVERSARIAL REINFORCEMENT LEARNING

To train the policy heads, we propose an adversarial reinforcement learning framework, inspired
by adversarial training (Goodfellow et al., 2020; Lin et al., 2024; Sauer et al., 2024; Lin et al.,
2025). This approach iteratively trains the policy heads alongside a discriminator model, effectively
addressing the challenging issue of reward hacking. The training pipeline is outlined in Algorithm 1.
Training policy heads with reinforcement learning. To train the policy heads, we adopt the diffu-
sion transformer G equipped with policy heads {P step,Pcache,P sparse} to sample a group of images
{Ii}Gi=1, based on the same text prompt. Subsequently, the pre-trained image reward model Q is
employed to evaluate the quality and alignment of each image with the given text condition c, pro-
ducing scores {qi}Gi=1. Simultaneously, the discriminator model D (details provided later), is used
to estimate the likelihood that a generated image originates from the diffusion transformer without
acceleration, producing scores {di}Gi=1. This framework encourages the policy heads to identify
acceleration strategies that ensure the accelerated model performs comparably to the original.

To estimate the generation cost, we define the concept of equivalent steps K, expressed as
K =

∑Kstep

k=1 (1 − Ccache
k ) × (1 − Csparse

k ), where Kstep is the total number of steps during gener-
ation, determined by P step. Here, Ccache

k and Csparse
k represent the cost reductions (normalized into

[0, 1]) achieved by reusing cache and applying sparse attention at the k-th step, respectively. In
practice, we round K to its nearest integer. The final reward for an image is then expressed as
ri =

1
K

∑K
k=1 λ

K−k(qi + ωdi), where λ ∈ (0, 1) is a decay factor that penalizes higher generation
costs and ω denotes the weight of the discriminator in reward.

We can adopt the equation in Section 3.1 to obtain the each sample’s advantage Ai. Based on the
formulation of GRPO, our training process can be formulated as:

JGRPO-RAPID3 =
1

G

G∑
i=1

(min (ϕiAi, clip (ϕi, 1− ε, 1 + ε)Ai)) , (8)

where ϕi =
πθ(Ii|c)
πθold (Ii|c)

. Here, πθ (Ii | c) represents the likelihood of generating the image Ii given
the text condition c, under the current parameters θ of the three policy heads, while πθold uses the old
parameters. The KL divergence term is omitted because the policy heads are randomly initialized,
and therefore there is no reference model.
Training the discriminator model. Relying solely on the image reward model Q may lead policy
heads to exploit or “hack” the reward model, rather than genuinely improving acceleration strategies.
To address this, we introduce the discriminator model D, a binary classification model designed to
distinguish between images generated by the diffusion transformer G with and without acceleration
strategies applied. It enhances the reward of accelerated samples from G that remain close to those
without acceleration. This makes the discriminator complementary to the reward model, ensuring a
more robust training process.

To achieve this, we first allow the generation model G, without acceleration, to sample images and
construct the positive dataset Iorigin. Next, we initialize the policy heads to accelerate G, sample
images again, and construct the negative dataset Iaccele. Both datasets are then employed to train
the discriminator. During the reinforcement learning process, the images sampled using GRPO can
be used to update the negative dataset Iaccele. Cross entropy loss is employed during training. As
mentioned in the previous paragraph, we employ the discriminator model D as an additional reward
model to provide a supplementary reward signal, which is combined with the reward from the image
reward model Q to produce the final reward signal.

This adversarial training process enables joint improvement of the policy models and discriminator.
The policy heads are trained to assist G in efficiently producing high-quality images that can fool
the discriminator, while the discriminator is optimized to better distinguish between data generated
by G with and without acceleration.
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Figure 3: Latency vs. quality trade-off.
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Table 1: Results on SD3 (Esser et al., 2024). Bold highlights the best results across various ac-
celeration methods. We report latency of the diffusion transformer, excluding the text encoder and
VAE decoder. Additional comparison results are provided in Table 8.

Method Latency (s) ↓ Speed ↑ COCO HPS GenEval
CLIP ↑ Aesthetic ↑ Score ↑ Correct ↑ Overall ↑

SD3 28-steps 5.77 1.00 × 32.05 5.31 28.83 67.81 69.01
static or manually designed adaptive acceleration methods

SD3 9-steps 1.98 2.91 × 31.88 5.21 27.67 60.58 61.67
w/ TeaCache δ=0.15 2.20 2.62 × 32.02 5.25 27.87 61.48 62.81

w/ ∆-DiT N=4 3.76 1.53 × 31.91 5.12 27.67 57.69 58.67
w/ SpargeAttn 5.08 1.13 × 31.39 5.02 27.16 43.94 45.01

dynamic acceleration methods
w/ TPDM 2.32 2.48 × 31.98 5.25 27.75 59.67 60.70

w/ RAPID3 (Ours) 1.97 2.92 × 32.09 5.26 28.07 62.57 63.48

4 EXPERIMENT

Model configurations. We conduct experiments using two diffusion transformers: Stable Diffusion
3 (SD3) (Esser et al., 2024) and its larger counterpart, FLUX (Labs, 2024). For the reward model, we
adopt ImageReward (Xu et al., 2023). For the discriminator, we use pre-trained CLIP (Radford et al.,
2021) and inset adapters (Chen et al., 2022) for parameter-efficient training. The hyperparameters
for the baseline approaches and our method are detailed in Section G and Section H, respectively.
Datasets and evaluation. We use 20K prompts randomly sampled from Byeon et al. (2022)
and COCO 2017 (Lin et al., 2014) training set to train our policy heads. For evaluation, we
use 5,000 images with prompts from the COCO 2017 validation set, along with metrics such as
CLIP-Score (Zhengwentai, 2023), and Aesthetic v2 (Schuhmann, 2022) for a comprehensive as-
sessment. Additionally, two comprehensive benchmarks, HPS (Wu et al., 2023) with 1,600 prompts
and GenEval Ghosh et al. (2023) with 553 prompts, are introduced to demonstrate the generalization
capability of our method. We report the latency measured on an NVIDIA H20 GPU.

4.1 RESULTS ON SD3

We compare RAPID3 with other acceleration techniques, including common step-reduction, two
cache reuse methods—∆-DiT (Chen et al., 2024a) and TeaCache (Liu et al., 2024)—and a sparse
attention mechanism, SpargeAttn (Zhang et al., 2025a). ∆-DiT employs a uniform interval for all
image generations, while TeaCache introduces a manually set threshold to control accumulation
errors, enabling a certain degree of adaptivity. For our method, we set the decay factor λ in our
method is set to 0.97, resulting in around 2.92× acceleration. From Table 1, we observe that RAPID3

achieves the best balance across all metrics while delivering the highest acceleration ratio compared
to its counterparts. This demonstrates that the learned adaptive policies outperform both uniform
policies and manually designed adaptive policies, validating the effectiveness of our approach.

Additionally, we compare our method with TPDM (Ye et al., 2024), which only adjusts the genera-
tion steps per image. The results show that our method surpasses TPDM across all metrics, validat-
ing the superiority of our tri-level acceleration design compared to a single-strategy approach.
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Table 2: Comparison be-
tween RAPID3 and DyFLUX.
Compared to DyFLUX (Zhao
et al., 2025b), our method, sig-
nificantly improves inference
speed, maintains generation
quality competitive with the
original FLUX, and requires
substantially less training cost.

method training inference
GPU hours ↓ data ↓ latency (s) ↓ Aesthetic ↑

FLUX - - 22.15 5.64
DyFLUX 38,000 3M image-text 13.93 5.29

RAPID3 (Ours) 400 20K text only 8.30 5.63
≈1% ≪0.7% -40% +0.34
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Figure 5: Visual comparison based on FLUX. (a) Images generated by the origin FLUX with
the default 28 steps. (b) Images generated by FLUX accelerated with RAPID3. (c) The generation
processes for (b), where equivalent steps represent the generation time cost for each image.
4.2 SCALE UP TO FLUX
Comparison with other acceleration strategies. In Figure 3, we compare the trade-off between
generation latency and quality across various acceleration methods on COCO. We set λ in RAPID3

to 0.97 and 0.90, respectively, to achieve varying acceleration ratios. Both our method and Tea-
Cache (Liu et al., 2024), as well as directly reducing steps, significantly accelerate generation speed.
However, our method demonstrates greater robustness in maintaining performance, verifying its
effectiveness in larger diffusion transformers.

In Figure 4, we compare our approach with other acceleration techniques in terms of visual quality.
For this comparison, SpargeAttn, TeaCache, and our method all use the fastest point on the curve
from Figure 3. The results demonstrate that our method better preserves visual quality, highlighting
the importance of dynamically selecting acceleration strategies.
Comparison with dynamic model. DyFLUX (Zhao et al., 2025b) extends DyDiT (Zhao et al.,
2024) to FLUX (Labs, 2024). It introduces a more sophisticated training process to fine-tune the
generator, enabling it to learn an acceleration strategy with per-image adaptivity. As shown in Ta-
ble 2, our RAPID3 achieves superior generation quality while also delivering faster inference. No-
tably, in terms of training cost—both data and computational efficiency—our method outperforms
DyFLUX significantly, highlighting its clear superiority.
Visualization. In Figure 5, we illustrate the images generated by the original FLUX and our
RAPID3. To facilitate a clear comparison with the original 28-step generation process, we use the
equivalent step as metric, defined in Section 3.4, to represent the generation time cost. For images
with a single object and a simple scenario (e.g. the image in the first column), our method requires
fewer equivalent steps. Conversely, for images with multiple objects and complex scenarios (e.g.
the image in the last column), it requires more equivalent steps. This demonstrates that our method

8
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Table 3: Effectiveness of dif-
ferent candidate acceleration
strategies. The symbol ✓ indi-
cates that the corresponding strat-
egy is used in our method.

strategy COCO HPS
step cache sparse CLIP ↑ Aesthetic ↑ Score ↑

✓ 31.98 5.25 27.75
✓ ✓ 32.04 5.25 27.86

✓ ✓ 31.96 5.13 27.80
✓ ✓ ✓ 32.09 5.26 28.07

Table 4: Effectiveness of reward
modelQ and discriminator modelD.
In Q + D, ω controlling the weight of
the reward from D is set to 1.0. IR de-
notes the score from ImageReward Xu
et al. (2023).

Method IR
COCO HPS

CLIP ↑ Aesthetic ↑ Score ↑

only Q 0.9605 32.04 5.18 27.72
only D 0.9538 31.91 5.24 27.96
Q+D 0.9574 32.09 5.26 28.07

has learned to adaptively adjust its acceleration strategy based on the complexity of each image.
Additional visualizations are provided in Section J.

4.3 ANALYSIS

For fairness, we adjust the hyperparameters to ensure similar equivalent steps across all experiments.
The color denotes the default setting of RAPID3. All evaluations are conducted on COCO.
Effectiveness of different candidate acceleration strategies. In Table 3, we present the results
of our method using different candidate acceleration strategies, including step-skip, cache-reuse,
and sparse-attention, referred to as “step”, “cache”, and “sparse”, respectively. The results show
that progressively incorporating these three acceleration strategies leads to increasingly improved
generation performance (e.g. CLIP score). Notably, RAPID3 with our default setting, which uses
all three strategies, achieves the best average performance. This improvement can be attributed to
the expanded solution space provided by more acceleration strategies, enabling RAPID3 to identify
a better acceleration approach for each image generation process.
Effectiveness of the reward model and discriminator model. We individually remove the reward
model Q and the discriminator D from the training of our method to evaluate their effectiveness.
Results are presented in Table 4. We additionally include the ImageReward score (IR), used during
training, as an additional evaluation metric. When only the reward model Q is employed, training
process degrades to standard reinforcement learning with GRPO, achieving the highest ImageRe-
ward score. However, its performance on other metrics drops significantly, as the reward siginal
relies on the ImageReward score, making it susceptible to reward hacking. As a result, the policy
model focuses solely on optimizing the reward from Q, neglecting the actual generation quality.

In contrast, our method incorporates the discriminator D into the training process, effectively al-
leviating the reward hacking problem and maintaining strong performance across various metrics,
highlighting the importance of the proposed adversarial reinforcement learning. For completeness,
we also conduct an experiment using only the discriminator D during training and find that it does
not outperform our method, further highlighting the importance of integrating both Q and D.

5 CONCLUSION

In this study, we address the challenge of accelerating diffusion transformers in a per-image adaptive
manner without modifying their parameters. To achieve this, we introduce RAPID3: Tri-Level
Reinforced Acceleration Policies for Diffusion Transformer. RAPID3 employs three lightweight
policy heads, optimized via Group Relative Policy Optimization, to select Step-Skip, Cache-Reuse,
and Sparse-Attention strategies at each timestep, significantly improving the generation speed. To
mitigate reward hacking problem, we incorporate an adversarially learned discriminator to ensure
robust policy learning. Extensive experiments demonstrate the effectiveness of RAPID3, and we
anticipate our method will inspire further advancements in accelerating diffusion transformers.
Limitations and future work. Our method still relies on training to learn acceleration policies.
Incorporating prior knowledge to adaptively select acceleration strategies could further ease the
training burden. Additionally, extending the proposed method to video generation models (Zheng
et al., 2024; Yang et al., 2024; WanTeam et al., 2025) and editing models (Feng et al., 2025; Xiao
et al., 2024; Chen et al., 2024b) warrants further exploration in the future.
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We organize our appendix as follows:

Additional details of methods and experiments:

• Section A: Pipeline of adversarial reinforcement learning in our method.
• Section B: Implementation details for compatibility with classifier-free guidance (CFG).
• Section C: Details of manually combined strategies.
• Section D: Sensitivity to RL method.
• Section E: Comparison with additional state-of-the-art techniques.
• Section F: Impact of training data scale.
• Section L: Experiments on DPG-Bench.
• Section M: Comparison with learning-based cache.

Experimental settings:

• Section G: Details of training-free methods in comparison.
• Section H: More implementation details of our method.

Visualizations

• Section I: Additional visual comparison with other acceleration techniques.
• Section J: Additional visualization results.
• Section K: Visualization of the distribution patterns in dynamic acceleration strategies.
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A PIPELINE OF ADVERSARIAL REINFORCEMENT LEARNING

In Algorithm 1, we present the pipeline of the proposed adversarial reinforcement learning in
RAPID3.

Algorithm 1: The pipeline of adversarial reinforcement learning in RAPID3.
Input: Pre-trained diffusion transformer G and image reward model Q

1 Randomly initialize the discriminator D and policy heads P = {P step,Pcache,P sparse}
2 while training do
3 // Training the discriminator model
4 If Iorigin is None then: Iorigin ← G samplers w/o acceleration strategies from P end ;
5 If Iaccele is None then: Iaccele ← G samples w/ acceleration strategies from P end ;
6 for I ∈ Iorigin ∪ Iaccele do
7 update D with cross entropy loss ;
8 end
9 // Training policies with reinforcement learning

10 foreach training iteration do
11 {Ii}Gi=1← G conducts sampling with acceleration strategies from P;
12 {ri}Gi=1← obtain rewards of {Ii}Gi=1 based on Q and D ;
13 update policy models P with JGRPO-RAPID3 ;
14 update negative dataset Iaccele with {Ii}Gi=1;
15 end
16 end

Output: Policy heads P that can select the acceleration strategy for each image generation

B IMPLEMENTATION DETAILS FOR COMPATIBILITY WITH CLASSIFIER-FREE
GUIDANCE

Our method is compatible with Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) and actually
all experiments are conducted using CFG. Below, we outline the implementation details:

• SD3 (Esser et al., 2024): In the default settings of SD3, the CFG scale is set to 7.0. During
generation with CFG, the batch size is configured to two, consisting of one sample with a
textual condition and another with a null condition. The acceleration is dependent on the
status of the conditioned sample.

• FLUX (Labs, 2024): As the CFG scale has already been distilled into the FLUX, generation
can be conducted directly using our method with a batch size of 1.

C COMPARISON WITH MANUALLY COMBINED STRATEGIES

To demonstrate the superiority of the proposed learned policy in our method, we compare it against
manually combining different acceleration strategies, as shown in Table 6. The details of manually
combined strategies are presented in Table 5. In these methods, we manually integrate reduced
sampling steps, feature caching, and sparse attention Specifically, for reducing sampling steps, we
adjust the sampling schedule directly. For feature caching, we employ the hand-crafted adaptive
method TeaCache (Liu et al., 2024), while using SpargeAttn (Zhang et al., 2025a) as the sparse
mechanism.

We observe that the proposed RAPID3 significantly outperforms all manual strategies, demonstrat-
ing that simply combining acceleration strategies does not lead to better performance. In fact, the
joint introduction of step skipping, cache reuse, and sparse attention greatly expands the search
space, making it difficult to manually identify optimal strategies. This often destabilizes the gen-
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eration process and leads to unsatisfactory generation quality. This highlights the importance of
learnable policies in our method.

Table 5: Comparison with manual acceleration strategies.

Method Latency (s) Step Cache Sparse

manual-1 3.27 21 δ = 0.15 ζ1 = 0.05, ζ2 = 0.06

manual-2 2.04 28 δ = 0.20 ζ1 = 0.05, ζ2 = 0.06

manual-3 2.38 26 δ = 0.12 ζ1 = 0.20, ζ2 = 0.21

Table 6: Comparison with
manual acceleration strate-
gies. Our method significantly
outperforms them.

Method Latency (s) ↓ COCO HPS
CLIP ↑ Aesthetic ↑ Score ↑

manual-1 3.27 31.43 4.92 27.16
manual-2 2.04 31.34 4.95 27.48
manual-3 2.38 29.82 4.85 26.94
RAPID3 1.97 32.09 5.26 28.07

D SENSITIVITY TO RL METHOD

In addition to GRPO, we also evaluate RLOO (Ahmadian et al., 2024), a RL approach that has
proven effective in LLM training. The primary difference between GRPO and RLOO lies in how
the advantage is obtained. As shown in Table 7, replacing GRPO with RLOO in our method also
achieves competitive performance, demonstrating the robustness of our approach across different
reinforcement learning approaches.

Table 7: Replacing the GRPO with
RLOO (Ahmadian et al., 2024).
RAPID3 demonstrates robustness
across two RL approaches.

RL method
COCO HPS

CLIP ↑ Aesthetic ↑ Score ↑

GRPO 32.09 5.26 28.07
RLOO 32.10 5.27 28.06

E ADDITIONAL COMPARISON WITH SOTA METHODS

To supplement Table 1, we incorporate additional methods into our comparison on COCO
dataset (Lin et al., 2014), including ToMeSD (Bolya & Hoffman, 2023), AT-EDM (Wang et al.,
2024), SDTM (Fang et al., 2025), TokenCache (Lou et al., 2024), DyDiT (Zhao et al., 2024), and
ToCa (Zou et al., 2024), as shown in Table 8. The consistent superiority of our method over these
state-of-the-art acceleration techniques further underscores its effectiveness and significance.

F IMPACT OF TRAINING DATA SCALE

In Table 9, we further investigate the impact of training data scale on the performance of our method.
The results show that even with just 5K text-only training samples, our method achieves competitive
performance, highlighting its data efficiency. Since our approach keeps the original generator frozen
to reduce training costs, the relatively modest improvement observed when increasing the training
data to 40K is expected. To balance performance and training efficiency, we adopt 20K samples as
the default setting.

G DETAILS OF TRAINING-FREE METHODS

Details of TeaCache. TeaCache (Liu et al., 2024) is a representative acceleration method leverag-
ing cache reuse. It manually designs a strategy to accelerate inference with per-image adaptivity.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Method Acceleration Category Speed ↑ CLIP ↑ Aesthetic ↑

SD3 - 1.00 × 32.05 5.31
ToMeSD Token Merging 1.50 × 30.39 5.03
AT-EDM Token Pruning 1.54 × 30.27 5.02
SDTM Token Merging 1.56 × 31.59 5.23
TokenCache Cache-Reuse 1.49 × 31.43 5.21
DyDiT Dynamic Neural Network 1.57 × 31.48 5.22
ToCa Cache-Reuse 2.67 × 32.05 5.24
RAPID3 (ours) Dynamic Acceleration 2.92 × 32.09 5.26

Table 8: Comparison of methods across different acceleration categories and evaluation metrics.

Table 9: Impact of training data scale. The
training data consists of text only. We use 20K
samples as the default setting to balance perfor-
mance and training efficiency.

Method
COCO HPS

CLIP ↑ Aesthetic ↑ Score ↑

SD3 32.05 5.31 28.83
5K 32.04 5.23 27.91

20K 32.09 5.26 28.07
40K 32.09 5.27 28.26

The method employs a threshold, δ, to decide whether to use the cache or perform computation.
Specifically, if the accumulated difference between the latent maps of two consecutive timesteps
exceeds the threshold δ, the model performs a full computation and updates the cache. Otherwise, it
directly uses the cached residual to skip the model’s computation. Larger δ brings more significant
acceleration while also hurts the performance.

For experiments with SD3, we set δ = 0.15. For FLUX, we use two settings, δ = 0.15 and δ = 0.25,
to balance the trade-off between latency and generation quality.

Details of ∆-DiT. ∆-DiT (Chen et al., 2024a) is a representative acceleration method that lever-
ages cache reuse while employing a uniform strategy to accelerate different image generation. The
method divides the generation process into two distinct stages. In the first stage, the latter half of the
network layers can use cached residuals, while the earlier layers perform full computations. Con-
versely, in the second stage, the earlier half of the layers can use cached residuals, and the latter
layers always conduct full computations.

In the experiment on SD3, for the layers that using caching, the interval for performing computations
to update the cache, N , is set to 4. However, it is challenging to directly apply this approach to
FLUX, which consists of two different types of layers and was not explored in the original paper.
Therefore, we conduct our experiments using SD3.

Details of SpargeAttn. SpargeAttn (Zhang et al., 2025a) is a representative method for sparsifying
the computation of attention. It employs thresholds ζ1 and ζ2 to control the difference between
the results of attention with and without sparsification. Larger values of ζ1 and ζ2 offer better
acceleration but inevitably introduce performance degradation.

For experiments with SD3, we set ζ1 = 0.20 and ζ2 = 0.21. For experiments with FLUX, we use
three settings: [ζ1 = 0.07, ζ2 = 0.08], [ζ1 = 0.20, ζ2 = 0.21], and [ζ1 = 0.30, ζ2 = 0.31].

H MORE IMPLEMENTATION DETAILS OF RAPID3

In Table 10, we present the default implementation details of our approach.
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Table 10: Default Implementation Details of RAPID3.

details of training
device 8× NVIDIA H20 GPU
total batch size 128
learning rate 1e-5
weight decay 0.1
optimizer AdamW
samples per group in GRPO 4

details of reward
decay factor λ 0.97
weight of the discriminator in reward ω 1.0
Ccache

k 0.95 (measured)

candidate sparse attention
[ζ1 = 0.07, ζ2 = 0.08],
[ζ1 = 0.10, ζ2 = 0.11],
[ζ1 = 0.20, ζ2 = 0.21]

Csparse
k 0.05, 0.07, 0.10 (measured)

I ADDITIONAL VISUAL COMPARISON WITH OTHER ACCELERATION
TECHNIQUES

In Figure 6, we provide additional visual comparisons with other acceleration techniques on
FLUX (Labs, 2024).
A man on cross country skis at the edge of a trail. A woman holding a tennis racquet on a  tennis court.

A man that is holding a small baby. A stuffed animal holding a hockey stick. 

FLUX 9-stepsFLUX 28-steps SpargeAttn TeaCache RAPID3 (Ours) FLUX 9-stepsFLUX 28-steps SpargeAttn TeaCache RAPID3 (Ours) 

missing details
missing details

unrealistic

hazy
unrealistic

grid
unrealistic

unrealistic
missing details

unrealistic unrealistic

unrealistic

x1.0 x2.86 x1.15 x2.61 x2.91 x1.0 x2.86 x1.15 x2.61 x2.91

Figure 6: Additional visual comparison with other acceleration techniques.

J ADDITIONAL VISUALIZATION RESULTS

In Figures 7 and 8, we present additional visualizations of images generated by the original
FLUX (Labs, 2024) and its accelerated counterpart using our method. The results demonstrate
that our method preserves visual quality more effectively while achieving the best acceleration ratio,
verifying the importance of dynamically selecting acceleration strategies.

Moreover, we can observe several notable trends emerging from our dynamic acceleration strategies:

• Step-Skip Stride: The stride of step-skip is relatively small when t approaches 1.0 (near
the noise distribution) but becomes larger as t approaches 0.0 (near the image distribution).
This behavior can be attributed to the model’s requirements during different stages of gen-
eration. At the initial stage, the model focuses on generating the overall shape, structure,
and composition of the image, which has a significant impact on the final image quality.
Therefore, our method employs finer-grained steps during this phase to ensure higher image
quality.
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• Cache-Reuse: Cache reuse is typically applied at intervals of 0–4 steps, as the computations
in some consecutive steps are similar and can be replaced by cached results from previous
steps.

• Sparse-Attention: Sparse attention is applied in an image-dependent manner, meaning the
frequency of its usage varies depending on the image. For instance, as shown in Figure 7,
5 steps of sparse attention are used for the rightmost image, while only 1 step is applied for
the middle image.

These results, along with the ablation study presented in Table 3, highlight that the three acceleration
policies work synergistically and effectively complement each other.
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Figure 7: Additional visualizations of images generated by the original FLUX (Labs, 2024) and
its accelerated version using our method. (1)

K DISTRIBUTION PATTERNS IN DYNAMIC ACCELERATION STRATEGIES

In Figure 9, we present the distribution patterns of dynamic acceleration strategies learned by our
policy heads, derived from 5,000 samples of the COCO dataset (Lin et al., 2014). Specifically, Fig-
ure 9(a) illustrates the distribution of total steps used during generation, while Figures 9(b) and 9(c)
demonstrate the distributions of steps involving the use of cache and sparse attention, respectively.
These findings further confirms the ability of our method to adaptively select acceleration strategies
for each image generation process, leading to a diverse range of strategies.

L EXPERIMENTS ON DPG-BENCH

We conduct experiments on a comprehensive benchmark, DPG-Bench (Hu et al., 2024), to evaluate
the proposed method against various baselines. The results, presented in Table 11, demonstrate that
the proposed dynamic acceleration strategy remains robust even in such challenging settings.

M COMPARISON WITH LEARNING-BASED CACHE

Recent advancements in feature-caching for accelerating diffusion transformers, such as Harmon-
iCa (Huang et al., 2024) and Learning-to-Cache (Ma et al., 2024a), have started incorporating
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Figure 8: Additional visualizations of images generated by the original FLUX (Labs, 2024) and
its accelerated version using our method. (2)

Figure 9: Visualization of distribution patterns in dynamic acceleration strategies. In (a), we
visualize the distribution of total steps for sample generation. In (b) and (c), we demonstrate the
distribution of steps using cache and sparse attention. For instance, 3,230 samples are generated
using 12–16 steps, 2,694 samples utilize cache reuse with 4–8 steps, and 2,526 samples employ
sparse attention with 2–4 steps during the generation process. This experiment is based on our
model, which achieves a 2.91 × speedup over FLUX (Labs, 2024), as illustrated in Figure 3.

Table 11: Experiments on DPG-Bench (Hu et al., 2024).

Method Global Entity Attribute Relation Other Average

SD3 28-steps 88.09 87.81 85.79 86.16 87.00 81.29
SD3 9-steps 85.78 85.38 82.12 83.72 83.70 76.77
w/ ∆-DiT N=4 68.61 73.69 76.46 79.78 75.69 64.58
w/ TeaCache 84.03 85.56 84.15 88.46 83.20 77.53
w/ TPDM 80.00 78.35 80.26 81.76 79.19 72.46
w/ SpargeAttn 80.39 81.66 81.53 79.48 79.66 73.73
w/ RAPID3 (Ours) 88.94 84.91 84.36 86.30 85.77 78.81

learning-based processes. These methods typically introduce routers to decide whether to perform
computation for a block or reuse the cache from a previous step. To compare our proposed method
with such designs, we conduct experiments on HarmoniCa, an improved version of Learning-to-
Cache, with results presented in Table 12. The results demonstrate that our method outperforms the
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Table 12: Comparison with HarmoniCa (Huang et al., 2024).

Method Speed ↑ COCO HPS GenEval
CLIP ↑ Aesthetic ↑ Score ↑ Correct ↑ Overall ↑

SD3 28-steps 1.00 × 32.05 5.31 28.83 67.81 69.01
w/ HarmoniCa 2.01 × 31.75 5.23 28.05 59.67 60.99

w/ RAPID3 (Ours) 2.92 × 32.09 5.26 28.07 62.57 63.48

learning-based feature-caching approach, HarmoniCa, underscoring the superiority of our approach.
This can be attributed to three key reasons:

• Three-level acceleration strategies: Our method incorporates three levels of acceleration
strategies, step-skip, cache-reuse, and sparse-attention, rather than relying solely on cache
reuse. This diverse set of strategies offers greater flexibility and optimization potential
compared to caching-based methods like HarmoniCa.

• Unconstrained performance upper bound: Traditional learning-based caching paradigms
like HarmoniCa are designed to align the performance with the original model, which in-
herently limits their upper bound to the performance of the original model. In contrast,
our method, trained with reinforcement learning, is not bound by this constraint. Instead,
it continuously optimizes the model to achieve higher rewards, unlocking the potential for
superior performance.

• Its router determines whether to use caching solely based on the timestep, independent
of each image generation. This results in inferior performance compared to our image-
adaptive accretion strategy.

We hope our design will inspire future work in feature-caching methods to fully realize their com-
bined potential.
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