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Abstract

Vision-language models (VLMs) excel at tasks like visual question answering and image
captioning, but their reliance on frozen, pretrained image encoders like CLIP often leads
to persistent vision errors that degrade downstream performance. Moreover, real-world
deployment demands that VLMs continually adapt to new, scarce data in a few-shot setting
without forgetting prior knowledge. To meet these challenges, we introduce LoRSU (Low-
Rank Adaptation with Structured Updates), a lightweight and robust technique for few-shot
continual learning of VLMs’ image encoders. Our approach leverages theoretical insights
to identify and update only the most critical parameters, achieving significant resource
efficiency. Specifically, we demonstrate that LoRSU reduces computational overhead by
over 25× compared to full VLM updates, without sacrificing performance. In experiments
on VQA benchmarks under a few-shot continual learning protocol, LoRSU demonstrates
superior scalability, efficiency, and accuracy, offering a practical solution for dynamic, resource-
constrained vision-language applications.

1 Introduction

Large Language Models (LLMs) have revolutionized natural language understanding and generation, enabling
significant advancements across diverse applications. As intelligent agents are increasingly expected to operate
in real-world multimodal environments, integrating visual understanding becomes essential. Vision-Language
Models (VLMs) extend LLMs by incorporating visual information, either through pretrained vision encoders
or end-to-end multimodal training. These models have demonstrated state-of-the-art performance in vision
language tasks such as visual question answering (VQA) and image captioning, highlighting their potential
for general-purpose multimodal reasoning (Chen et al., 2024; Wang et al., 2024a).

Approaches relying on pre-trained image encoders typically use variants of the CLIP model (Radford et al.,
2021), which is kept frozen in the vision-language binding process (Liu et al., 2024). CLIP is a widely deployed
vision transformer with strong zero-shot capabilities across various tasks and domains. However, several
existing works have highlighted various weaknesses of CLIP on out-of-domain data (Liu et al., 2024; Zhu
et al., 2023; Chen et al., 2023; Li et al., 2023; Tong et al., 2024). When deploying VLMs as visual assistants
in new domains, it is expected that VLMs can be updated using a few images gathered from the target
environment whenever deficiencies are noted.

Continual learning allows a model to be continuously updated as new data from new tasks or domains
are encountered (De Lange et al., 2021). Recent literature on continual learning (CL) of vision-language
models focuses on updating either the LLM (Srivastava et al., 2024) and/or language projection layers (Das
et al., 2024), while maintaining a frozen image encoder, as noted in a recent review on continual learning of
VLMs (Huang et al., 2025).

In vision-language models, the LLM component provides reasoning and factual knowledge, while the image
encoder’s role is to extract robust and accurate visual features. In this work, we argue that adapting VLMs to
new visual domains or tasks is more effective and efficient when the image encoder is updated rather than the
LLM. Limiting updates to the vision encoder can lead to unprecedented stability in the performed updates.
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Figure 1: (1st column) Incorrect response of the pretrained LLaVA to a sample from the TSI dataset. (2nd
column) A sample of few-shot data used for fine-tuning LLaVA. (3rd column) Correct response of LLaVA
to a test TSI image after fine-tuning with LoRSU. (4th column) A set of desiderata for few-shot continual
learning with VLMs that our method satisfies.

To enable reliable few-shot continual learning (FSCL) under large vision-language models, we posit a set of
desiderata capturing four main aspects: 1) Maintaining the VLM’s knowledge, since models capture a vast
body of generic knowledge, updates on new domains/tasks should not drastically deteriorate this knowledge
(as also noted in He et al. (2023a); Zhang et al. (2024)); 2) Significant performance gains, as it has been
noted that continual learning solutions, when coupled with pre-trained models, can lead to worse performance
than zero-shot or very marginal improvement (Janson et al., 2022); 3) Efficient updates, given the large model
sizes, few-shot updates that require a large compute budget become impractical; and 4) No replay (Rolnick
et al., 2019), as replaying a set of examples that cover the model’s previous knowledge can significantly
increase the update memory and compute footprint.

Under this set of desiderata, we introduce a novel parameter-efficient fine-tuning (PEFT) method called
LoRSU (Low-Rank Adaptation with Structured Updates). We show, for the first time, that it is possible to
perform continual few-shot updates with zero replay of previous data or storage of previous models, while
achieving strong performance gains of up to (∼ 20%) with negligible deterioration of the model’s previous
knowledge (∼ 1%).

Our method localizes the updates to specific layers in the vision encoder, namely the Attention and MLP
layers, and selects a small set of parameters with the highest sensitivity to the received few-shot data. This
approach limits the updates to a small number of relevant parameters, striking a balance between adaptability
to the new task and preservation of information from previous tasks.

The third column of Figure 1 demonstrates the correct response of LLaVA after fine-tuning the image encoder
separately using our method on a few-shot sample from the TSI dataset (Das et al., 2019) (shown in the
second column). This is contrasted with the incorrect response of the pre-trained LLaVA, depicted in the
first column.

Through extensive experiments, we demonstrate that updating the image encoder is essential for improving
the performance of the VLM that relies on it. More importantly, this approach is computationally efficient,
as the image encoder has significantly fewer parameters compared to the language model, especially when
updated separately. Additionally, the method is less prone to forgetting, particularly the LLM knowledge.

We evaluated our approach on various VQA tasks, comparing it to state-of-the-art CL methods and the
PEFT baselines in various few-shot CL settings. We show significant improvements in the performance of the
full VLM model across all settings, with very low rates of forgetting, without using any replay buffer of data
from previous tasks. By selectively updating the image encoder, our method provides a robust and efficient
solution for handling visual shifts. This targeted adaptation strategy avoids the need to modify the entire
model, preserving existing knowledge while ensuring strong performance in new domains.
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The contributions of this paper are as follows:

• We propose LoRSU, a novel replay-free PEFT method tailored for FSCL.

• We introduce two new VQA datasets, TSI and DALLE, created to expose the limitations of pre-trained
image encoders in VLMs.

• We conduct the first large-scale study of FSCL in VLMs (spanning more than 700 experiments),
evaluating LoRSU across ten diverse VQA datasets and benchmarking against state-of-the-art PEFT
and CL methods. LoRSU consistently outperforms all baselines.

• To the best of our knowledge, this work is the first to investigate FSCL in generative VLMs, showing
for the first time strong performance gains and negligible previous knowledge deterioration under the
strict CL setting with no use of previous models or examples.

2 Related Work

Continual Learning. Our work falls within the CL literature, where a model needs to be updated
incrementally as new data arrive, accumulating knowledge over tasks and reducing forgetting of previously
acquired information De Lange et al. (2021).

Continual Learning for Multimodal Language Models. Recent work surveys efficiency and forget-
ting in continual LLM updates Wu et al. (2024) and explores VQA-based adaptation with frozen vision
encoders Srivastava et al. (2024), instruction tuning via expanding projection heads He et al. (2023b). Das
et al. (2024) introduced a pseudo-rehearsal strategy for vision-language models, updating only the language
projection layer. Our method adapts only the vision encoder, preserving language capabilities.

Continual Learning with Few-Shot Updates. Verwimp et al. (2023) posits that an ideal continual
learning solution would enable continual correction of model’s mistakes at a lower computational cost than
retraining from scratch. However, most continual few-shot learning from pre-trained models focuses on
classification tasks and introduces solutions that cannot scale to large multimodal models. Panos et al.
(2023) update the vision encoder on the first task only, later adapting a covariance matrix for incoming tasks.
Goswami et al. (2024) calibrate the covariance matrix for new classes based on semantic similarity. Zhao
et al. (2024) introduce few and slow updates, proposing a transfer loss function and a cross-classification
loss to mitigate catastrophic forgetting. Few-shot updates can also be viewed through the lens of model
editing Sinitsin et al. (2020). MEND Mitchell et al. (2022) scales model editing to large language models
by transforming the gradient obtained from fine-tuning, through a low-rank decomposition fed to auxiliary
networks designed to make fast, local edits to a pre-trained model, requiring a set of unrelated examples
to prevent forgetting. ROME Meng et al. (2022) applies causal tracing to identify layers where incorrect
factual knowledge is stored, applying a low-rank update. However, ROME does not scale to continual updates
or non-association types of updates. Cheng et al. (2023) studied multi-modal editing, showing negligible
deterioration in multi-modal task performance when updating language models but severe forgetting when
updating vision encoders. To the contrary, our method focuses on adapting the vision encoder rather than
updating the factual knowledge in the LLM, yet achieving strong performance gains and negligible forgetting.

Continual Learning of Pre-Trained Image Encoders. SPT He et al. (2023a) estimates a mask of
updates based on parameter sensitivity, performing low-rank or sparse updates. SPU Zhang et al. (2024)
localizes updates to the first feed-forward layer of each transformer block, inspired by knowledge neuron
theory Dai et al. (2021). Our approach generalizes updates to all layers, selecting relevant parameters and
maintaining gradient norms, combined with LoRA on selected attention heads for adaptivity and stability,
achieving SOTA performance on continual fewshot multimodal tasks.

Our work builds upon two key lines of research: structured sparse updates (SPU) (Zhang et al., 2024)
and low-rank adaptation (LoRA) (Hu et al., 2021). Whilst SPU demonstrates the value of gradient-based
parameter selection in the MLP layers, and LoRA shows the efficiency of low-rank updates, neither addresses
the unique challenges of VLM continual learning where both attention mechanisms and feed-forward layers
must be adapted jointly. LoRSU’s contribution lies in the insight that these techniques should be applied
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differentially: structured sparsity for MLP layers and selective LoRA for attention heads, with head selection
based on cross-parameter gradient importance.

3 Low-Rank Adaptation with Structured Updates

Few-shot continual learning is a highly practical and challenging scenario, where models must incrementally
adapt to new tasks with limited supervision while retaining previously acquired knowledge. This setting
closely mirrors real-world applications, such as interactive AI assistants and autonomous systems, where
models receive a continuous stream of novel data but only sparse supervision per update.

To address the challenge of efficiently fine-tuning large-scale visual encoders and transformer-based models in a
few-shot continuous learning setting, without causing catastrophic forgetting (i.e., degradation in performance
on previously learned tasks), we propose a novel parameter-efficient fine-tuning method called Low-Rank
Adaptation with Structured Updates (LoRSU) illustrated in Fig. 2.

LoRSU updates specific parameters within each transformer block in a resource-efficient manner, mitigating
the risk of generic knowledge loss when fine-tuning for new tasks. Specifically, we selectively update a
subset of parameters from the first linear layer in the MLP block of each transformer layer, as proposed
in Zhang et al. (2024). Although this approach reduces the fine-tuning burden, it may limit the model
flexibility as the remaining parameters in the transformer block remain fixed. To enhance flexibility, we
further update the most informative attention heads based on the gradient of task-specific loss. More
specifically, let a dataset Dt = {xn, yn}Nt

n=1 for the current task t where xn is an image with text description
yn. We define L(θ; Dt) := Lt(θ) as the loss used for training the model and θ ∈ Rd is the full set of model’s
parameters. The standard Multi-head Self-Attention Mechanism (MSA) Vaswani et al. (2017), comprised
of H Dh-dimensional heads, is defined as the concatenation of multiple self-attention (SA) blocks where
q(i) = W

(i)
q Z⊤, k(i) = W

(i)
k Z⊤, v(i) = W

(i)
v Z⊤ ∈ RDh×N , are the query, key and value matrices, which are

used to compute the self-attention outputs as follows

A(i) = softmax(q(i)⊤
k(i)/

√
Dh) ∈ RN×N , SAi(Z) = A(i)v(i)⊤

∈ RN×Dh , i = 1, . . . , H. (1)

Z ∈ RN×D is the input matrix of N tokens of dimension D and W
(i)
q , W

(i)
k , and W

(i)
k are the query, key,

and value matrices of learnable parameters for head i, respectively. The final MSA function is defined
as MSA(Z) = Concat [SA1(Z), . . . , SAH(Z)] Wo ∈ RN×D, Wo ∈ RHDh×D. Since we care to update the
parameters of the heads that cause the largest changes in Lt(θ), we compute the loss gradient with respect
to the parameters of each head, and then update only those heads with the largest cumulative contribution
to the loss change. Since the matrices W

(i)
q , W

(i)
k , W

(i)
v are all the parameters of head i, we can define an

importance score for each head by adding the squared values of their corresponding gradients G
(i)
q = ∇

W
(i)
q

Lt,

G
(i)
k = ∇

W
(i)
k

Lt, and G
(i)
v = ∇

W
(i)
v

Lt, as follows

si =
∑
m,l

(
(G(i)

q [m, l])2 + (G(i)
k [m, l])2 + (G(i)

v [m, l])2
)

. (2)

We provide a theoretical justification of (2) in the next section. We update only the top-k heads, based
on their importance scores {s1, . . . , sH}, I ⊂ {1, . . . , H}, to be updated on the current task. Nevertheless,
the number of parameters remains high due to the large weight matrices. Therefore, we parametrize the
original weights using LoRA Hu et al. (2021) to further reduce the computational burden. The matrices
W

(i)
q , W

(i)
k , W

(i)
v , i ∈ I are now defined as

W (i)′

α = W (i)
α + A(i)

α B(i)
α , α ∈ {q, k, v}. (3)

Finally, to ensure that we only update W
(i)
q , W

(i)
k , W

(i)
v , ∀i ∈ I we use a binary mask on the gradient vector

with respect to all parameters of all attention heads. We keep the projection matrix Wo frozen. We note
that most modern implementations of transformer blocks concatenate the three attention weight matrices
Wq, Wk, Wv into one and thus we only need to apply LoRA once to this concatenated matrix.
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Figure 2: LoRSU mechanism: After computing the gradient ∇θLt(θ) over the target dataset at time t,
LoRSU picks a small number of attention heads and a small number of parameters from the first linear
layer of the MLP module in the transformer block based on the magnitude of the gradients of ∇WAttnLt and
∇Wfc1Lt, respectively. Computational efficiency is ensured by introducing LoRA adapters to the attention
weight matrices.
Regarding the first linear layer in the MLP module, Wfc1 ∈ Rd×D, we mask the gradients of Wfc1 so only
the most important parameters for the current task to be updated, i.e. we use the following biased gradient
update.

∇̂Wfc1Lt = Mfc1 ⊙ ∇Wfc1Lt, (4)
where Mfc1 ∈ {0, 1}d×D is a zero-one mask that is built by choosing a proportion of the largest squared values
of ∇Wfc1Lt in a similar manner as in Zhang et al. (2024) and ⊙ is the Hadamard product.

Theoretical justification. The importance scores in (2) can be derived from the following constrained
(binary) optimization problem1

p∗ = arg max
p∈{0,1}d

∥p ⊙ ∇W L(θ0)∥2

∥∇W L(θ0)∥2 , s.t.
G⋃

ℓ=1
Iℓ ⊂ {1, 2, . . . , d}, Ii ∩ Ij = ∅, ∀i ̸= j, (5)

and C =
G∑

ℓ=1
cℓ, cℓ ≤ |Iℓ| ∀ℓ, ∥p∥0 ≤ C,

where θ0 is the vector of the pretrained parameters before using Dt for fine-tuning the model. The groups of
parameters Ii correspond to the parameters of a specific module (e.g. Self-Attention or MLP projector) we
aim to learn, hence the constraint of mutually exclusiveness, Ii ∩ Ij = ∅, between different pairs of parameter
groups. Also note that we allowed one to choose a subset cℓ of the parameters of a specific group Iℓ which is
the underpinning mechanism of LoRSU choosing attention heads and parameters of fc1. The mask p∗ is
chosen so that the gradient norm of the masked gradients is as large as possible under the sparsity constraints.
We prove in Appendix A that the indices of the nonzero values of p∗ can be found using the importance
scores in (2) and the magnitudes of the gradients with respect to the fc1 parameters.

Connection to Fisher Information Matrix. The gradient magnitude criterion in (2) is fundamentally
related to the empirical Fisher Information Matrix. The squared gradient magnitudes we use correspond
to the diagonal entries of the empirical Fisher, which measures parameter sensitivity to the current task.
However, our approach represents a conceptually distinct and inverse paradigm compared to traditional
Fisher-based regularization methods like EWC Kirkpatrick et al. (2017). Specifically, it estimates the diagonal

1For notational simplicity, we assume a single transformer block for this case.
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of Fisher Information matrix for previous tasks and uses it to regularize important parameters from changing,
attempting to preserve past knowledge. On the other hand, LoRSU estimates Fisher Information (via squared
gradients) for the current task and uses it to select which parameters to update, allowing task-relevant
parameters to adapt while freezing others. This inverse analogy makes sense precisely because we start
from a strong foundation model: rather than preventing important-to-past parameters from moving, we
allocate capacity for the new task by identifying and updating only parameters with high sensitivity to
current data. As we show in our experimental evaluation, this type of approach significantly outperforms
traditional Fisher-based regularization methods.

4 Experiments

We conduct a series of experiments under three different few-shot continual learning (FSCL) settings (CL-5,
CL-20, and CL-50 shots) to thoroughly investigate the performance of LoRSU based on ten VQA datasets. By
adopting this paradigm, we aim to assess the adaptability and efficiency of LoRSU under constrained learning
conditions, ensuring that it remains both computationally feasible and effective in improving downstream
performance.

4.1 Datasets

Regular VQA datasets. To capture a broad spectrum of visual shift and reasoning challenges—from
classification-style tasks to open-ended question answering—we select four representative VQA datasets from
the large pool of available benchmarks. These cover spatial reasoning, robust domain shifts, multimodal
pattern recognition, and fine-grained perception in scientific imagery: VSR Liu et al. (2023), for spatial
reasoning; HM Kiela et al. (2020), a classification-style VQA for detecting hateful memes under strong domain
shift; MMVP Tong et al. (2024), a challenging dataset assessing multimodal visual patterns with substantial
distributional shifts; VisOnly Kamoi et al. (2024), for fine-grained visual perception in scientific figures.

Classification-to-VQA datasets. We convert four classification datasets to multiple-choice VQA tasks
with five answer choices: GTS Stallkamp et al. (2012), German traffic signs; CAn Wang et al. (2024b),
for testing robustness to spurious features in animal images; AIR Maji et al. (2013), a fine-grained aircraft
dataset; ESAT Helber et al. (2019), for land cover classification in satellite images.

TSI & DALLE. We introduce two novel datasets to explore domain shift deterioration indpendently from
model’s knowledge of present concepts: TSI Das et al. (2019), a classification dataset of 10K training and
5K test images of 27 activity classes; DALLE, generated by querying DALL·E 2, with 660 images from 22
activity classes in TSI.

For FSCL, we split each dataset into 5 sets of disjoint classes/categories and use 5/20/50 shot settings for
model fine-tuning. Dataset splits are detailed in Appendix C.

4.2 Experimental Setting

Metrics. Our proposed metrics aim to reflect the desiderata outlined in the introduction: 1) maintaining the
VLM’s generic knowledge, 2) achieving significant performance improvements beyond zero-shot capabilities,
3) ensuring computational efficiency, and 4) avoiding replay-based methods. Standard continual learning
(CL) metrics typically measure accuracy and forgetting only within the set of adapted tasks/classes, without
considering a model’s pre-existing knowledge or broader capabilities. However, VLMs encapsulate extensive
generic knowledge across diverse domains, making it essential to evaluate how continual adaptation affects
their overall knowledge and performance.

To assess our first two desiderata, we propose two complementary metrics. First, we introduce the Target
Improvement (TI) accuracy, which quantifies the knowledge accumulation capability by measuring the change
in accuracy relative to the zero-shot performance on the test split of each target dataset after continual
fine-tuning. Positive TI values indicate improvements over the pre-trained model’s generic knowledge. Second,
to evaluate the retention of the VLM’s broader knowledge base and potential positive backward transfer,
we define the Control Change (CC) accuracy. CC computes the average change in accuracy across a set
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of control datasets—datasets distinct from the current target task—to gauge whether fine-tuning leads to
forgetting or, conversely, positive transfer to unrelated tasks. Both TI and CC metrics are computed after the
final continual learning session. Finally, to address how accuracy and forgetting evolve throughout continual
adaptation explicitly, we include standard continual learning metrics such as Average Accuracy (ACC) and
Backward Transfer (BWT) (Lopez-Paz & Ranzato, 2017). Unlike TI and CC, these traditional metrics focus
exclusively on adapted tasks without considering the broader generic performance of the model on other
datasets.

Implementation details. Please see Appendix B.

Models. For most of our experiments, we consider the popular Vision Language Model LLaVA-v1.5 (Liu
et al., 2024) that leverages a frozen CLIP image encoder. Specifically, LLaVA utilises a frozen OpenAI-CLIP-
L-14 Radford et al. (2021) with a LLM (Vicuna-7b (Chiang et al., 2023)). The two modules are connected
through a two-layer MLP projector that aligns image and text features. The LLM and the MLP projector
are optimized during the visual instruction tuning while CLIP remains frozen. LLaVA concatenates adjacent
tokens from CLIP-L-14 and processes them with an MLP projector as input to LLama-2 (7B-chat) (Touvron
et al., 2023); the MLP projector and the language model are optimized while the image encoder remains
frozen. Finally, we also consider MiniGPTv2 (Chen et al., 2023) that uses the same LLM as LLaVA but a
frozen EVA-CLIP-g-14 image encoder. We chose LLaVA for its representative architecture, as it is widely
adopted and uses CLIP-L-14, one of the most common vision encoders in VLMs, making our findings broadly
relevant.

Baselines. We compare LoRSU to the following methods that also use the CLIP loss to fine-tune the
image encoder: LN (Perez et al., 2018; Panos et al., 2023) is used for both few-shot and CL. Only the
image encoder LayerNorm modules’ parameters are optimized. F-FT is the standard fine-tuning technique
where all image encoder parameters undergo gradient updates. F-EWC fine-tunes all the image encoder
parameters with EWC regularization (Kirkpatrick et al., 2017). LoRA (Hu et al., 2021) a popular PEFT
method which parameterizes incremental updates by two low-dimensional matrices and only fine-tunes them.
AdaLoRA (Zhang et al., 2023) dynamically adjusts the low-rank update budget allocation during training.
SPU (Zhang et al., 2024) is a PEFT baseline, specifically designed to tackle catastrophic forgetting in CL
scenarios, that utilises structured sparsity based on gradient information to fine-tune the most significant
parameters of the fc1 module in the transformer block.

4.3 Offline performance on different VLMs

Table 1: Offline fine-tuning results for MiniGPTv2
and LLaVA-1.5 under two adaptation strategies com-
pared to zero-shot baseline (no FT): LLM-only tuning
(LLaMA+Pj) and vision-encoder tuning. Best scores in
each column are in bold. Updating the vision encoder
separately leads to best gains.

FT Method MiniGPTv2 LLaVA-1.5

DALLE TSI DALLE TSI

No FT (Zr-shot) 83.6 62.9 91.1 53.1
LLaMA+Pj 86.5 82.3 88.5 73.3
Vision-encoder FT 87.1 86.0 91.1 75.5

In this first experiment, we compare the performance
of two VLMs (LLaVA and MiniGPTv2) on TSI and
DALLE. TSI data depict elderly people activities
(age bias), blurred faces (blurring effect) and is cap-
tured from a mounted camera with relatively low
resolution, yet the actions are easily recognizable to
the human eye. DALLE that is composed of same
activity classes under clear concept centred images
(see Appendix F). First, results in Table 1 illustrate
the visual domain shift of TSI with respect to models
pretraining given the significantly lower performance
of TSI compared to DALLE indicating an update
is indeed on TSI to improve the performance. Next,
we compare two adaptation strategies in an offline
fine-tuning setting to zero-shot (no updates), LLM-only tuning (LLaMA+Pj). Across both models, tuning only
the vision encoder separately yields the largest gains. These consistent improvements strongly corroborate
our claim that vision-only fine-tuning is an efficient and effective strategy for adapting visual-language models
under visual shift setting. For all subsequent experiments, we employ only the LLaVA model.

4.4 CLIP-based Updates
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Table 2: Average accuracy (ACC) (↑) and backward transfer
(BWT) (↑) scores (%) across different continual learning (CL)
setting and fine-tuning datasets (FTD). LoRSU achieves top ACC
at BWT >-1% (i.e., close to zero forgetting). The highest scores
across methods are in bold.

Setting FTD LoRA SPU LoRSU

ACC BWT ACC BWT ACC BWT

CL-5 GTS 79.2 -7.1 80.8 0.5 81.1 0.4
ESAT 73.8 -3.4 79.8 1.5 82.2 2.0

CL-20 GTS 77.2 -9.1 82.8 -0.6 83.5 -0.4
ESAT 64.1 -18.3 82.0 2.0 82.7 0.1

CL-50 GTS 79.3 -10.3 83.8 -0.7 84.7 -0.5
ESAT 61.4 -27.8 81.2 -2.4 82.1 -0.5

We evaluate the performance of the
Vision-Language Model (VLM) when only
the image encoder is fine-tuned using the
CLIP loss in a CL setting. This exper-
iment compares six strong CLIP-based
baselines with our proposed method,
LoRSU. Table 3 reports the average accu-
racies of TI/CC over three runs; detailed
results can be found in appendix D. We
observe that LoRSU consistently achieves
superior TI scores across datasets and
CL settings, underscoring its ability to
enhance task-specific performance effec-
tively. Furthermore, LoRSU maintains
CC accuracies that take consistently small
negative or even positive values, highlight-
ing its capacity to preserve or slightly im-
prove performance on control datasets while fine-tuning on target datasets. Even in datasets where other
methods struggle (e.g., CAn, ESAT), LoRSU often performs better, maintaining positive CC scores. For
instance, In ESAT (CL-50) containing challenging satellite images, LoRSU achieves the highest TI (7.0) with
a positive CC (0.2), outperforming SPU (TI=5.8, CC=0.1) and all other methods.
CL metrics. We assess the performance of LoRSU against LoRA and SPU in terms of ACC and BWT
across two out-of-domain datasets, GTS and ESAT. Since LoRA and SPU have similar number of train-
able parameters as LoRSU and competitive performance in our previous experiment, we choose those for
comparison. Table 2 shows that LoRSU’s performs well with respect to these metrics, following similar
patterns as TI and CC in Table 3. Increasing the number of shots generally improves accuracy, particularly
for structured update methods (SPU and LoRSU); however, this improvement comes with increased negative
backward transfer for SPU, whereas LoRSU demonstrates comparatively less forgetting. Crucially, LoRSU
strikes the best balance: it leverages up to 50 shots for top-end accuracy with forgetting (negative BWT) less
than 1%. Similar patterns are observed in additional datasets in the Appendix D.3. Therefore, our results
demonstrate that LoRSU effectively meets all four desiderata: (1) preserving the VLM’s generic knowledge,
(2) achieving substantial improvements over zero-shot performance, (3) maintaining computational efficiency,
and (4) eliminating the need for replay-based methods.

4.5 CLIP-based vs. Perplexity-based Updates

Traditionally, LLMs and VLMs achieve impressive performance through fine-tuning with the perplexity
loss. We evaluate how the CLIP-based fine-tuning methods, LoRSU and LoRA, perform compared to their
perplexity-based counterparts, LoRSU-Ppl and LoRA-Ppl, respectively. Furthermore, we seek to explore
how these methods compare to parameter-efficient fine-tuning approaches when the entire VLM (LoRA-F)
or only the LLM component (LoRA-L) is updated. The results in Table 4 highlight the strong and robust
performance of LoRSU and LoRSU-Ppl compared to other baseline methods in various settings. Both LoRSU
and LoRSU-Ppl achieve minimal negative or even positive changes in CC, indicating reduced catastrophic
forgetting and improved retention of generic knowledge compared to baselines. The use of the perplexity loss
in LoRSU-Ppl demonstrates a considerable improvement in TI accuracy over LoRSU when fine-tuned for VQA
datasets. For example, LoRSU-Ppl achieves 10% higher TI accuracy than LoRSU on VSR. We hypothesize
that the perplexity loss acts as an additional signal that optimizes the image encoder to complement the frozen
language model more effectively, improving the alignment between visual and textual modalities in VQA.
However, we observe that LoRSU achieves a balance between task-specific improvements and generalization,
consistently demonstrating higher CC accuracy compared to LoRSU-Ppl in most datasets. Updating the
LLM tend to have higher TI under VSR and HM datasets compared to pure distributional shift datasets (e.g.
GTS, TSI, ESAT) indicating that updating the LLM can be less optimal under distribution shift scenarios
compared to the vision encoder updates suggested in LoRSU. Lastly, although LoRA-F achieves high TI
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Table 3: Performance comparison of LoRSU with the CLIP loss against baselines fine-tuning the image encoder
using the same loss. We report the Target Improvement (TI (↑)) and Control Change (CC (↑)) accuracies
across three different continual learning (CL) settings and five fine-tuning datasets (FTD). Greener shades
indicate higher positive values, while redder shades signify lower negative values. The highest accuracies
across methods for each dataset are underlined. LoRSU achieves the best TI and CC.

FT Method

Setting FTD LN F-FT F-EWC LoRA AdaLoRA SPU LoRSU

TI CC TI CC TI CC TI CC TI CC TI CC TI CC

CL-5

GTS 3.5 -1.5 3.7 -6.5 5.0 -11.5 0.7 -4.8 -0.9 -4.9 5.4 -0.6 6.4 -0.7
TSI 0.8 0.0 7.4 -1.1 8.5 -1.0 -0.1 -2.8 1.1 0.2 0.9 0.1 3.2 0.1
CAn -2.4 -0.2 -2.4 -2.2 -16.7 -9.4 -1.3 -4.6 -1.0 -0.1 -0.4 0.1 0.3 0.3
AIR 0.3 -1.6 2.0 -2.7 2.9 -2.8 1.3 -3.7 0.4 0.0 3.1 0.1 4.8 0.4

ESAT 4.2 0.6 -10.3 -1.4 -8.4 -2.1 -1.6 -0.7 1.9 0.1 4.5 0.1 6.8 0.2

CL-20

GTS 5.2 -5.9 4.6 -7.3 6.7 -15.6 2.5 -10.5 0.2 -2.2 7.9 -1.3 8.6 -1.0
TSI 5.1 -1.9 15.3 -3.4 16.0 -32.5 8.5 -4.4 1.3 -9.6 7.8 -0.3 10.6 -0.1
CAn -2.4 -0.4 0.3 -2.9 0.1 -5.1 -2.3 -5.4 -3.5 -2.5 0.1 0.5 1.1 0.3
AIR -0.2 -3.0 9.3 -1.8 10.2 -2.0 5.3 -2.7 2.7 -0.7 3.0 -0.2 5.9 -0.5

ESAT 0.9 -0.1 -24.9 -1.7 -22.0 -3.8 -11.5 -0.5 -6.8 -2.7 5.4 0.3 6.6 0.2

CL-50

GTS 4.8 -6.5 3.4 -9.8 5.3 -12.9 3.1 -11.1 1.0 -3.3 7.7 -1.5 9.7 -1.3
TSI 7.0 -3.0 17.2 -4.6 22.4 -13.4 18.2 -6.3 7.9 -1.9 12.2 -0.5 19.1 -0.3
CAn -5.7 -3.3 -1.0 -4.9 0.6 -9.7 -0.4 -4.4 -1.8 -0.8 0.6 -0.3 1.3 -0.5
AIR 1.8 -3.9 10.0 -3.1 10.9 -3.3 7.8 -3.8 4.6 -0.9 6.2 -0.6 8.2 -0.7

ESAT 4.6 0.1 -41.4 -3.3 -38.1 -2.0 -14.5 -3.6 -17.3 -2.4 5.8 0.1 7.0 0.2

scores on many datasets, it suffers significantly from forgetting, underscoring the importance of LoRSU’s
structured updates in CL scenarios.

4.6 Ablation Studies

We systematically evaluate LoRSU’s design choices by varying the number of tuned attention heads k, the
LoRA adapter rank r, and head-selection strategies (random vs. all-heads). We provide a summary of
these results in Table 5; detailed results are reported in Appendix E. Regarding the impact of LoRA’s
rank we see that performance peaks at r=64 for both GTS and TSI datasets, with graceful degradation at
other values, demonstrating robustness. Using k = 2 attention heads provides an optimal balance between
performance and efficiency, with diminishing returns beyond this point. Finally, the results demonstrate that
our gradient-based head selection (LoRSU) consistently outperforms both random selection (LoRSU-Rand)
and updating all heads (LoRSU-AAH) across all CL settings, validating our structured update approach.

4.7 Computational Efficiency

LoRA-F LoRSU-Ppl LoRSU

9.0 9.1

0.36

23.9

15.0
16.5

TFlops

Params (M)

Figure 3: TFlops and trainable pa-
rameters comparison.

In Figure 3, we assess the computational benefits of LoRSU (CLIP loss)
compared to baseline methods. We focus on two key metrics: trainable pa-
rameters and TFLOPs. LoRSU requires 25× fewer computation resources
than LoRA-F and LoRSU-Ppl, demonstrating the suitability of using
CLIP loss when computational resources are limited. Unlike perplexity
loss, which requires forward and backward passes through both the vision
encoder and LLM, the CLIP loss operates solely on the vision encoder,
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Table 4: Performance comparison between LoRSU using the CLIP loss (LoRSU ) or the perplexity loss
(LoRSU-Ppl) and other baselines that fine-tune only the vision encoder (LoRA, LoRA-Ppl), only the LLM
(LoRA-L), or both of them (LoRA-F). We report the Target Improvement (TI (↑)) and Control Change (CC
(↑)) for each CL setting. † and ‡ denote classification-to-VQA and regular VQA datasets, respectively. The
highest accuracies across methods for each fine-tuning dataset (FTD) are underlined.

Setting FTD
FT Method

LoRA-L LoRA LoRSU LoRA-Ppl LoRA-F LoRSU-Ppl

TI CC TI CC TI CC TI CC TI CC TI CC

CL-5

GTS† -4.1 -0.2 0.7 -4.8 6.4 -0.7 -7.5 -3.0 -2.7 -1.8 1.6 -1.0
TSI† 6.0 -0.1 -0.1 -2.8 3.2 0.1 10.9 -2.4 -8.0 -2.4 13.1 1.5
CAn† -3.3 -0.2 -1.3 -4.6 0.3 0.3 -3.5 -5.5 -4.1 -1.6 0.2 -0.2
AIR† -1.7 0.3 1.3 -3.7 4.8 0.4 -0.7 -1.5 9.6 -1.9 5.8 -0.2

ESAT† -0.2 -0.1 -1.6 -0.7 6.8 0.2 -0.6 0.4 5.4 -0.5 3.7 0.1
VSR‡ 16.8 -0.6 0.5 -4.0 0.4 0.2 10.2 -12.5 18.0 -10.6 10.5 -1.2
HM‡ 7.4 -2.7 -0.4 -6.8 0.6 0.4 -1.2 -1.2 6.0 -4.5 -0.8 0.2

VisOnly‡ -0.4 -0.1 -1.1 -4.5 0.9 0.1 0.3 -0.3 0.2 -0.4 2.7 0.7

CL-20

GTS† -1.4 0.1 2.5 -10.5 8.6 -1.0 -0.5 -6.4 -1.4 -0.8 3.9 -0.7
TSI† 5.9 0.0 8.5 -4.4 10.6 -0.1 6.5 -11.6 2.9 -3.1 13.9 -0.6
CAn† -1.9 -0.6 -2.3 -5.4 1.1 0.3 -3.7 -8.8 -2.1 -1.7 0.5 -1.2
AIR† 3.7 0.3 5.3 -2.7 5.9 -0.5 4.8 -3.5 16.3 -0.3 6.0 -0.3

ESAT† 0.7 0.4 -11.5 -0.5 6.6 0.2 -1.2 -0.1 -4.6 -0.0 2.9 -0.1
VSR‡ 22.2 1.0 0.4 -3.9 0.1 -0.2 19.5 -0.3 23.3 -5.1 22.9 -1.6
HM‡ 10.6 -2.2 -1.8 -5.8 0.7 0.2 10.7 -0.1 11.7 -1.4 10.9 -0.2

VisOnly‡ -2.3 0.7 -1.0 -4.7 0.2 0.1 -2.0 0.5 -1.0 0.2 1.7 0.5

CL-50

GTS† -0.7 -0.3 3.1 -11.1 9.7 -1.3 -1.4 -6.7 -3.9 -2.1 6.9 -0.4
TSI† 9.9 -0.0 18.2 -6.3 19.1 -0.4 -1.6 -16.5 15.1 -0.7 22.0 -1.1
CAn† -1.8 -0.7 -0.4 -4.4 1.3 -0.5 -1.8 -9.8 -2.1 -1.1 1.0 -3.4
AIR† 4.6 0.4 7.8 -3.8 8.2 -0.7 6.2 -3.1 17.9 -0.9 8.9 -0.4

ESAT† 1.0 0.2 -14.5 -3.6 7.0 0.2 1.7 0.2 -9.5 -0.6 -0.7 -0.5
VSR‡ 21.9 1.0 0.4 -4.5 2.3 -0.3 20.2 -5.3 21.0 1.1 23.4 -3.6
HM‡ 10.2 -2.1 0.7 -4.5 0.3 0.2 12.5 -1.5 12.3 -3.7 12.2 0.2

VisOnly‡ -2.4 0.6 -0.2 -6.8 0.3 -0.1 -2.0 0.7 0.2 0.2 0.3 0.1

significantly reducing computational overhead. This makes LoRSU more scalable, enabling efficient CL even
in resource-constrained settings.

4.8 Parameter Overlap Analysis

To understand why LoRSU achieves effective plasticity-stability balance, we analyze the overlap of binary
parameter masks selected across the 5. We compute the Jaccard index (Jaccard, 1901), also known as
Intersection over Union (IoU), between masks from different sessions for five representative datasets in the
CL-50 setting with the CLIP loss. The results are illustrated in Fig. 4 whilst exact values are given in
Appendix D.1.

Results show consistent parameter overlap of only 15-25% across all session pairs. This small overlap provides
insight into LoRSU’s effectiveness. First, sufficient separation (75-85% distinct parameters) provides plasticity
for learning new tasks without interfering with previous knowledge, allowing task-specific adaptation. At
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Table 5: Ablation study on LoRSU (with CLIP loss) hyperparameters in the CL-50 setting. (Top) Effect of
LoRA rank r on target dataset (TSI) accuracy. (Middle) Effect of number of attention heads k. (Bottom)
Comparison of head selection strategies: gradient-based (LoRSU), random (LoRSU-Rand), and all heads
(LoRSU-AAH) using GTS with ESAT as control. Results show r = 64 and k = 2 provide optimal performance,
with gradient-based selection outperforming alternatives.

(a) LoRA Rank Ablation
FT Dataset rank (r) Target DALLE VSR HM MMVP VisOnly

TSI

8 67.2 91.1 51.5 61.6 58.0 31.5
32 68.9 91.2 51.5 61.6 58.0 31.6
64 72.1 90.5 51.6 61.4 58.0 31.6
128 65.8 90.6 51.5 62.1 56.7 31.6

(b) Number of Attention Heads Ablation
FT Dataset # heads Target DALLE VSR HM MMVP VisOnly

TSI

0 64.2 90.8 51.5 61.8 57.3 31.5
1 64.8 90.5 51.5 61.6 58.0 32.0
2 72.1 90.5 51.6 61.4 58.0 31.6
4 66.8 90.5 51.5 62.1 58.0 31.4

(c) Head Selection Strategy (GTS)
Method TI (↑) CC (↑) Params (M)
LoRSU-Rand 7.8 ± 0.5 −18.1 ± 0.8 0.36
LoRSU-AAH 9.1 ± 0.1 −19.6 ± 0.5 2.88
LoRSU 9.7 ± 0.1 −14.3 ± 0.7 0.36
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Figure 4: Jaccard similarity matrices of LoRSU’s binary masks p across CL sessions for five datasets. The
heatmaps show the Intersection over Union (IoU) between the binary masks selected in different continual
learning sessions. Diagonal elements are 1.0 (perfect overlap), while off-diagonal elements indicate the degree
of overlap between different sessions for parameters chosen for update. We include the average IoUs for each
dataset in the title of the panel.

the same time, moderate overlap (15-25% shared parameters) ensures the model continues to leverage the
foundation model’s general-purpose visual features rather than fragmenting into isolated task-specific modules.
This overlap also prevents catastrophic forgetting: if each task used completely disjoint parameters, the
cumulative updates across sessions would shift a large proportion of the pretrained parameters away from
their foundation model values, undermining the stability and general capabilities acquired during pretraining.

This consistent parameter overlap emerges naturally from our gradient-based selection: high-magnitude
gradients identify parameters that are both critical for the new task and exhibit moderate overlap with
previous task parameters, balancing learning and retention.

5 Discussion

We introduced LoRSU, a novel parameter-efficient fine-tuning method specifically designed for few-shot
continual learning scenarios with VLMs. Unlike existing approaches, LoRSU operates without relying on a
replay buffer, making it uniquely suited for resource-constrained settings. Through more than 700 experiments,
we demonstrate that LoRSU satisfies all four desiderata: (1) preserving the VLM’s generic knowledge, (2)
attaining substantial improvements over zero-shot performance, (3) maintaining computational efficiency, and
(4) eliminating the need for replay-based methods. LoRSU outperforms 12 baselines in over 80% of evaluations
across 10 datasets and 3 settings, achieving the highest TI accuracies in most cases while maintaining stable
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or even positive CC accuracies. To the best of our knowledge, we are the first to explore few-shot continual
learning of VLMs. Whilst we focus on CLIP and LLaVA due to computational constraints, our method is
generic to any transformer model, and we plan to extend it to other VLMs and image encoders. Another
promising direction is using a smaller LLM proxy model in perplexity-based methods like LoRSU-Ppl, which
has shown strong VQA performance. This could improve scalability and LoRSU’s use in resource-limited
settings. Finally, LoRSU’s binary mask-based structured updates ensure efficient, precise parameter updates,
but scaling to larger architectures like LLMs poses challenges. Replacing binary masks with more scalable
solutions for vast parameter spaces will be crucial to manage memory and processing demands, offering
opportunities for further refinement.
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A Proof for the optimal mask p∗

Definition A.1. The operator TOP-C : Rd → Rd, for 1 ≤ C ≤ d is defined as

(TOP-C(x))π(i) :=
{

xπ(i), i ≤ C
0, otherwise,

where x = (x1, . . . , xd)⊤ ∈ Rd and π is a permutation of {1, 2, . . . , d} such that |xπ(i)| ≥ |xπ(i+1)|, for
i = 1, . . . , d − 1, i.e. the TOP-S operator keeps only the S largest elements of x in magnitude and truncates
the rest to zero.
Lemma A.2. For any x ∈ Rd − {0}, 1 ≤ C ≤ d, the optimal mask

p∗ = arg max
p∈{0,1}d

∥p ⊙ x∥2

∥x∥2 , s.t. ∥p∥0 ≤ C,

has zeros everywhere except the C largest elements of x in magnitude.

Proof. Rewriting the optimization problem as

max
p∈{0,1}d

d∑
i=1

pix
2
i , s.t.

d∑
i=1

pi ≤ C,

Notice that this is a trivial binary knapsack problem with maximum weight capacity C and weights equal to
one. Hence, the maximum is attained when we pick the top C maximal x2

i elements.

Remark A.3.

It holds that TOP-S(x) = p∗ ⊙ x.
Corollary A.4. The optimal mask p∗ in (5) has zeros everywhere except for the indices i ∈ {j : ∃ℓ ∈
{1, . . . , G}, such that j ∈ {πℓ(1), . . . , πℓ(cℓ)}}, where πℓ is the same permutation as in Definition A.1 for the
set of indices Iℓ.

Proof. The result follows from the mutual exclusiveness of Iℓ in the constraints of (5) and Lemma A.2.

B Implementation Details

We describe below the implementation details of section 4.

• All the experiments are conducted on a single NVIDIA A100 GPU.

• We have included error bars over three runs for all experiments.

• We use PyTorch Paszke et al. (2019) to implement all the algorithms.

• We use Adam (Kingma, 2014) as an optimizer for the methods that utilize the CLIP loss for fine
tuning and AdamW (Loshchilov, 2017) for those ones that use the perplexity loss.

• A learning rate scheduler of Cosine Annealing with Warmup is employed for all methods.

• For all experiments, we set the learning rate 1 × 10−5 and 2 × 10−5, for LoRSU and LoRSU-Ppl,
respectively.

• We set batch size to 16 for all methods that fine-tune the vision encoder through CLIP loss. We
reduce the batch size to 8 for those methods that fine-tune the vision encoder through perplexity
loss or those that fine-tune the LLM. This was due to GPU memory limitations.
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• All methods run for 20, 15, and 10 epochs for the CL-5, CL-10, and CL-50 settings, respectively.

• For LoRA (-Ppl), we set rank r = 64 while LoRA-L and LoRA-F use r = 8, for all experiments.

• For AdaLoRA, we set the initial rank to 70 and the final average rank to 64.

• The adapters of LoRA and AdaLoRA are applied to all weight matrices of each of the transformer
blocks.

• For SPU, we use sparsity=15% for all experiments.

• For LoRSU (-Ppl) we use sparsity=10%, rank=64, and we pick the top-2 attention heads for all
experiments.

The choice of the above hyperparameters ensures that LoRA (-Ppl), LoRA-L, LoRA-F, AdaLoRA. SPU, and
LoRSU (-Ppl) have similar number of trainable parameters.

C Datasets

Details on all datasets used in section 4 are presented here.

C.1 VQA Datasets

We evaluate the performance of LoRSU on ten visual question answering (VQA) datasets falling in two broad
categories: regular VQA datasets and classification datasets converted to VQA datasets.

Regular VQA datasets. We consider four standard VQA datasets used for benchmarking VLMs’ perfor-
mance Duan et al. (2024): VSR Liu et al. (2023), the Visual Spatial Reasoning corpus consists of caption-image
pairs labeled as True or False, where each caption describes the spatial relation between two objects in the
image. VLMs evaluate whether the caption accurately reflects the image. HM Kiela et al. (2020), the Hateful
Memes dataset designed to detect multimodal hateful memes. MMVP Tong et al. (2024), the Multimodal
Visual Patterns dataset is a challenging benchmark which has been built on images that CLIP perceives as
similar despite their clear visual differences. VisOnly Kamoi et al. (2024), a novel dataset created to directly
assess the visual perception abilities of VLMs in answering questions about geometric and numerical details
in scientific figures. This dataset allows us to assess fine-grained visual perception in VLMs independently of
other abilities, such as reasoning, making it the most challenging among the previously mentioned datasets.

Classification-to-VQA datasets. We convert four popular multi-class classification datasets into multiple-
choice VQA problems, where each question has five choices, and the VLM is tasked with selecting the correct
answer. These datasets are introduced as examples of scenarios where visual domain shifts are encountered,
allowing us to examine the utility of updating the image encoder; a critical consideration often overlooked
in many standard VQA datasets.The datasets include: GTS Stallkamp et al. (2012), the German Traffic
Sign dataset, which Zhang et al. (2024) considered as an out-of-distribution dataset for CLIP pretraining;
CAn Wang et al. (2024b), a recent dataset created to test CLIP’s robustness with animal images containing
realistic spurious features such as unexpected backgrounds; AIR Maji et al. (2013), a fine-grained aircraft
classification dataset; ESAT Helber et al. (2019), a dataset of satellite images used for land cover classification.

TSI & DALLE. In addition to these existing datasets, we introduce two novel VQA datasets: TSI and
DALLE, both designed to explore the effects of domain shift. For more details see sections F and C.2.

We follow the common practice in few-shot continual learning Panos et al. (2023) to construct the sequences.
We divide each dataset into 5 sets of disjoint classes/categories and consider 5/20/50 shot settings where only
5/20/50 images per class in the current set are used for fine-tuning the model. More details on how we split
each of these datasets for the CL settings are provided in appendix C.

C.2 TSI & DALLE

We start with the description of how we constructed our newly introduced VQA datasets TSI and DALLE.
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Table 6: The original action names of the Toyota Smarthome dataset and their corresponding captions used
to create the Toyota Smarthome Images (TSI) dataset. We use ✗ to denore the actions that are ambiguous
and were not used to build the TSI dataset. The final prompt is created as “The person in this image is
{caption}”.

Original Class name/Action Generated Caption
Cook.Cleandishes washing dishes
Cook.Cleanup cleaning up
Cook.Cut cutting food
Cook.Stir stirring the pot
Cook.Usestove ✗
Cook.Cutbread cutting bread
Drink.Frombottle holding a bottle
Drink.Fromcan holding a can
Drink.Fromcup holding a cup
Drink.Fromglass holding a glass
Eat.Attable eating
Eat.Snack ✗
Enter walking
Getup ✗
Laydown lying down
Leave walking
Makecoffee.Pourgrains using a white coffee machine
Makecoffee.Pourwater using a white coffee machine
Maketea.Boilwater boiling water in a black kettle
Maketea.Insertteabag making tea
Pour.Frombottle holding a bottle
Pour.Fromcan holding a can
Pour.Fromkettle holding a black kettle
Readbook reading a book
Sitdown sitting down
Takepills ✗
Uselaptop using a laptop
Usetablet using a tablet
Usetelephone using a cordless phone
Walk walking
WatchTV watching TV

TSI. To extract images from the videos of the Toyota Smart Home dataset (TSI), we discretized each video
clip into 2 frames per second and then selected the frame in the middle of the total time duration of the
video clip. In Table 6 we describe the actions that were selected and the corresponding prompt used for CLIP
classification. We also note dropping few actions to avoid ambiguous classes. Note that we did not use any
extra data for this CL benchmark and all the images were created from the already available videos of the
dataset.

The TSI dataset focuses on elderly individuals performing daily activities in domestic settings, which may
not represent the full diversity of how these activities are performed across age groups, abilities, and cultural
contexts, and it could potentially reflect or amplify age-related biases.

DALLE. We generated images from DALL·E 2 using OpenAI python package and we used the prompt
“A person {a}” where a ∈ { using a white coffee machine, eating, cutting bread, stirring the pot, holding a
glass, watching TV, holding a bottle, walking, making tea, cutting food, holding a cup, using a laptop, lying
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down, holding a can, person holding a black kettle, reading a book, cleaning up, sitting down, using a tablet,
boiling water in a black kettle, using a cordless phone, washing dishes}.

In Table 7, we present the average number of images per session used to update the model for each CL setting.
Finally, Table 8 provides characteristics of the datasets used for evaluating performance.

C.3 Continual Learning Splits

For the continual learning settings of section 4, we split all datasets into five non-overlapping continual
learning (CL) splits based on the classes/categories of each dataset. Unless stated otherwise, we use the
training split of each dataset to construct these CL splits.

GTS Stallkamp et al. (2012). We split the 43 classes of GTS as follows:

• Session 1: [25, 2, 11, 1, 40, 27, 5, 9, 17].

• Session 2: [32, 29, 20, 39, 21, 15, 23, 10, 3].

• Session 3: [18, 38, 42, 14, 22, 35, 34, 19, 33].

• Session 4: [12, 26, 41, 0, 37, 6, 13, 24].

• Session 5: [30, 28, 31, 7, 16, 4, 36, 8].

TSI Das et al. (2019). We split the 27 action categories of TSI as follows:

• Session 1: [WatchTV, Laydown, Sitdown, Pour.Fromkettle, Enter, Drink.Frombottle].

• Session 2: [Eat.Attable, Pour.Frombottle, Cook.Cleandishes, Maketea.Boilwater, Leave, Cook.Cleanup].

• Session 3: [Maketea.Insertteabag, Makecoffee.Pourwater, Drink.Fromcan, Readbook, Cutbread].

• Session 4: [Drink.Fromcup, Drink.Fromglass, Usetablet, Pour.Fromcan, Usetelephone].

• Session 5: [Walk, Cook.Stir, Makecoffee.Pourgrains, Cook.Cut, Uselaptop].

CAn Wang et al. (2024b). The 45 classes of CAn are split as follows:

• Session 1: [102, 9, 20, 56, 23, 30, 357, 291, 144].

• Session 2: [41, 293, 42, 49, 54, 57, 70, 279, 305].

• Session 3: [71, 10, 76, 79, 349, 16, 81, 83, 100].

• Session 4: [130, 30, 133, 150, 275, 276, 58, 277, 80].

• Session 5: [39, 290, 37, 296, 316, 337, 89, 360, 128].

The indices of CAn correspond to those of ImageNet Deng et al. (2009) since the dataset was built based on
these 45 animal classes of ImageNet.

AIR Maji et al. (2013). We split the 100 aircraft types of AIR as follows:

• Session 1: [23, 8, 11, 7, 48, 13, 1, 91, 94, 54, 16, 63, 52, 41, 80, 2, 47, 87, 78, 66].

• Session 2: [19, 6, 24, 10, 59, 30, 22, 29, 83, 37, 93, 81, 43, 99, 86, 28, 34, 88, 44, 14].

• Session 3: [84, 70, 4, 20, 15, 21, 31, 76, 57, 67, 73, 50, 69, 25, 98, 46, 96, 0, 72, 35].

• Session 4: [58, 92, 3, 95, 56, 90, 26, 40, 55, 89, 75, 71, 60, 42, 9, 82, 39, 18, 77, 68].

• Session 5: [32, 79, 12, 85, 36, 17, 64, 27, 74, 45, 61, 38, 51, 62, 65, 33, 5, 53, 97, 49].
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ESAT Helber et al. (2019). We split the 10 different land terrain classes of ESAT as follows:

• Session 1: [0, 1].

• Session 2: [2, 3].

• Session 3: [4, 5].

• Session 4: [6, 7].

• Session 5: [8, 9].

DALLE. This dataset was only used for performance evaluation (control dataset), and not fine-tuning.

VSR Liu et al. (2023). The images of this VQA dataset are labeled according to 36 different categories
that describe the dominant object of the image. We create the CL splits as follows:

• Session 1: [oven, dining table, spoon, boat, cake, donut, sandwich].

• Session 2: [fire hydrant, elephant, airplane, truck, apple, hot dog, sheep].

• Session 3: [kite, baseball glove, cow, tie, scissors, toaster, tv].

• Session 4: [bicycle, banana, couch, teddy bear, bus, umbrella, bird].

• Session 5: [potted plant, bowl, broccoli, bottle, knife, orange, person, pizza].

HM Kiela et al. (2020). For the hateful memes dataset, since there was not any labeling information of
the images so we can spli the images in a meaningful way, we randomly split the training images into five
disjoint sets to create our final CL splits.

MMVP Tong et al. (2024). This is the only dataset where no training split is available and it is comprised
of just 300 images. For this reason, we only used it for evaluation in our experiments in the main paper.
However, for completeness, we included results in Table 27 where we fine-tune on it. We use 150 images for
training which are equally split into five sessions and the rest of the 150 images are used for evaluation. Thus,
the setting can be considered as a 30-shot CL setting.

VisOnly Kamoi et al. (2024). This dataset categorizes its samples into seven categories describing the
nature of the geometric and numerical information in scientific figures. We created the splits as follows:

• Session 1: Geometry-Triangle.

• Session 2: Geometry-Quadrilateral.

• Session 3: Geometry-Length

• Session 4: Geometry-Angle.

• Session 5: [Geometry-Area, 3D-Size, 3D-Angle].

D Detailed Results

D.1 Exact IoU results

We provide the exact Jaccard similarity values for the binary masks across sessions for each dataset in tables 9
through 13.
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Table 7: Average number of images per session (5 sessions in total) for each dataset used for fine-tuning.

FT Dataset
Setting GTS TSI CAn AIR ESAT VSR HM VisOnly
CL-5 43.0 27.0 45.0 100.0 10.0 100.0 100.0 7.0
CL-20 170.0 84.0 180.0 400.0 40.0 274.6 300.0 28.0
CL-50 430.0 253.8 450.0 1000.0 100.0 485.2 600.0 70.0

Table 8: Characteristics of the datasets used for performance evaluation in section 4.

Eval Datasets GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly
# Samples 3, 990 4, 908 1, 796 3, 333 17, 000 660 1, 222 2, 000 150 1, 150
# Classes 43 27 45 100 10 27 36 NaN NaN 7

Table 9: Jaccard similarity matrix for the GTSRB dataset.

Session 1 2 3 4 5
1 1.000 0.225 0.200 0.183 0.209
2 0.225 1.000 0.240 0.222 0.232
3 0.200 0.240 1.000 0.216 0.219
4 0.183 0.222 0.216 1.000 0.241
5 0.209 0.232 0.219 0.241 1.000

Table 10: Jaccard similarity matrix for the TSI dataset.

Session 1 2 3 4 5
1 1.000 0.236 0.211 0.193 0.212
2 0.236 1.000 0.249 0.223 0.241
3 0.211 0.249 1.000 0.244 0.229
4 0.193 0.223 0.244 1.000 0.229
5 0.212 0.241 0.229 0.229 1.000

Table 11: Jaccard similarity matrix for the CAn dataset.

Session 1 2 3 4 5
1 1.000 0.233 0.250 0.227 0.210
2 0.233 1.000 0.227 0.252 0.201
3 0.250 0.227 1.000 0.234 0.210
4 0.227 0.252 0.234 1.000 0.212
5 0.210 0.201 0.210 0.212 1.000
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Table 12: Jaccard similarity matrix for the AIR dataset.

Session 1 2 3 4 5
1 1.000 0.224 0.232 0.224 0.226
2 0.224 1.000 0.244 0.250 0.242
3 0.232 0.244 1.000 0.252 0.239
4 0.224 0.250 0.252 1.000 0.231
5 0.226 0.242 0.239 0.231 1.000

Table 13: Jaccard similarity matrix for the ESAT dataset.

Session 1 2 3 4 5
1 1.000 0.157 0.153 0.170 0.173
2 0.157 1.000 0.208 0.198 0.192
3 0.153 0.208 1.000 0.195 0.194
4 0.170 0.198 0.195 1.000 0.211
5 0.173 0.192 0.194 0.211 1.000

Table 14: Accuracy scores (%) for LLaVA with the pretrained (Zr-Shot) or fine-tuned image encoder. All
baselines use GTS dataset for fine-tuning the image encoder (the LLM remains frozen) via CLIP loss. We
include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LN 79.1±1.2 53.6±0.5 81.2±0.6 61.0±1.2 58.9±0.9 91.1±1.3 51.9±1.5 62.7±1.1 59.6±0.2 31.8±0.4

F-FT 79.3±0.6 55.1±0.8 76.8±1.3 58.8±1.0 25.6±0.9 89.2±1.2 51.7±0.9 62.1±0.8 56.4±0.4 30.9±0.2

F-EWC 80.6±0.6 37.4±1.3 63.2±0.7 55.8±1.4 26.1±1.4 81.5±1.1 51.8±1.4 61.2±0.6 53.8±0.4 31.2±0.4

LoRA 76.3±0.8 52.6±1.4 73.3±0.6 56.7±1.2 49.3±0.8 87.1±1.3 51.8±1.2 61.3±1.2 58.1±0.3 31.6±0.4

AdaLoRA 74.7±0.9 49.7±0.7 79.6±0.9 56.3±0.8 42.5±0.8 91.6±1.1 52.0±0.8 60.9±1.2 57.1±0.3 31.7±0.2

SPU 81.0±1.4 53.7±1.5 82.5±0.7 61.0±1.0 67.8±0.6 91.6±1.3 52.0±0.6 62.0±1.3 58.2±0.2 31.6±0.2

LoRSU 82.0±1.3 53.5±1.3 82.4±0.8 60.8±1.4 66.6±0.9 91.5±1.4 51.6±0.7 61.7±1.4 59.8±0.2 31.6±0.2

CL-20

LN 80.8±0.6 49.5±0.7 77.7±1.0 59.7±0.5 32.7±0.6 89.8±0.9 51.8±0.7 62.3±0.3 57.5±0.1 31.2±0.2

F-FT 80.2±0.8 54.5±0.7 74.9±0.8 57.2±1.0 23.2±0.7 86.7±0.4 51.9±0.9 61.6±1.0 58.3±0.2 31.7±0.3

F-EWC 82.3±0.9 35.5±0.9 55.7±0.4 35.4±0.3 28.7±0.9 72.4±0.8 51.6±0.7 60.9±0.8 53.5±0.2 31.0±0.3

LoRA 78.1±0.8 55.6±0.3 59.0±0.9 47.6±0.4 26.0±0.6 83.6±0.8 52.1±0.5 62.1±1.0 53.7±0.3 30.8±0.2

AdaLoRA 75.8±0.8 51.9±0.5 79.3±0.9 59.3±0.4 62.1±0.4 90.7±1.0 51.6±0.5 61.1±0.6 57.7±0.2 31.7±0.2

SPU 83.5±0.6 53.1±0.6 82.2±0.7 60.7±0.8 62.0±0.4 91.5±0.4 51.9±0.5 61.8±0.7 58.8±0.2 31.5±0.2

LoRSU 84.2±0.9 52.9±0.6 82.2±0.5 60.7±0.6 64.7±0.6 90.8±0.5 51.9±0.4 61.7±0.5 59.5±0.1 31.6±0.2

CL-50

LN 80.4±0.2 50.4±0.1 74.9±0.1 58.3±0.0 30.4±0.3 89.0±0.1 51.8±0.0 62.0±0.3 58.7±0.1 31.4±0.1

F-FT 79.0±0.1 48.9±0.2 65.0±0.2 55.0±0.3 23.5±0.0 86.8±0.2 52.0±0.1 60.8±0.1 54.9±0.1 30.7±0.1

F-EWC 80.9±0.2 45.2±0.4 60.5±0.4 43.2±0.0 26.9±0.3 78.5±0.1 52.0±0.0 58.7±0.1 52.9±0.0 31.7±0.1

LoRA 78.7±0.0 50.7±0.0 62.1±0.2 47.4±0.1 24.2±0.2 82.9±0.3 51.7±0.3 61.0±0.2 54.3±0.1 30.8±0.0

AdaLoRA 76.6±0.4 50.4±0.0 79.0±0.2 57.4±0.1 58.3±0.1 90.4±0.2 51.6±0.2 61.8±0.3 55.4±0.1 31.8±0.1

SPU 83.3±0.3 53.8±0.2 81.8±0.2 61.1±0.4 58.8±0.0 91.0±0.2 51.8±0.4 62.1±0.1 59.5±0.1 32.2±0.1

LoRSU 85.3±0.1 54.2±0.1 81.9±0.2 60.5±0.2 61.4±0.3 91.0±0.1 51.7±0.2 62.2±0.4 58.9±0.1 31.8±0.1
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Table 15: Accuracy scores (%) for LLaVA with the pretrained (Zr-Shot) or fine-tuned image encoder. All
baselines use TSI dataset for fine-tuning the image encoder (the LLM remains frozen) via CLIP loss. We
include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LN 75.4±1.0 53.9±0.6 82.6±1.3 60.0±1.0 75.9±0.8 91.1±1.3 51.7±1.4 61.9±1.0 58.4±0.3 30.9±0.3

F-FT 73.8±0.5 60.5±1.1 81.6±0.9 59.5±1.5 70.4±1.0 91.1±1.2 51.8±0.9 61.5±1.3 56.9±0.2 31.3±0.3

F-EWC 74.9±1.1 61.6±1.0 82.1±1.1 58.8±0.9 72.3±1.2 89.9±1.4 51.9±0.9 62.4±1.4 55.5±0.4 31.5±0.3

LoRA 73.4±1.0 53.0±0.9 80.2±0.6 58.8±0.7 59.1±1.4 90.2±1.1 51.6±1.3 61.2±1.4 56.7±0.4 31.7±0.4

AdaLoRA 75.6±0.8 54.2±0.6 82.6±1.1 60.0±1.3 75.7±1.3 91.1±1.2 51.6±0.9 62.1±1.0 59.5±0.3 31.7±0.2

SPU 75.4±0.7 54.0±1.1 83.0±1.3 60.1±0.6 75.7±1.5 91.3±1.3 51.9±1.4 61.7±0.9 58.5±0.4 31.6±0.4

LoRSU 75.9±0.9 56.3±0.7 82.7±0.9 60.8±1.0 76.2±1.4 91.3±1.2 51.6±0.9 61.7±0.8 57.7±0.3 31.2±0.3

CL-20

LN 72.9±0.5 58.2±0.5 78.9±0.9 56.8±0.4 69.3±0.9 91.4±0.8 51.6±0.8 62.6±0.5 56.3±0.3 31.3±0.2

F-FT 72.1±0.7 68.4±0.4 80.0±0.7 55.4±0.4 58.8±0.8 88.4±0.3 51.8±0.6 62.3±0.5 56.9±0.2 31.2±0.3

F-EWC 23.3±0.6 69.1±0.6 20.4±0.7 20.1±0.6 24.2±0.6 17.7±0.7 51.7±0.7 56.9±0.8 49.6±0.3 31.1±0.1

LoRA 68.5±0.7 61.6±0.3 76.7±0.9 55.3±0.7 55.6±0.6 88.8±0.8 51.9±0.3 61.4±0.6 59.1±0.3 31.1±0.3

AdaLoRA 70.3±0.5 54.4±0.4 72.4±0.5 43.6±0.8 34.6±0.7 77.0±0.3 52.2±0.9 62.6±0.4 57.0±0.1 31.9±0.3

SPU 75.5±0.7 60.9±0.8 82.3±0.4 59.2±0.5 73.7±1.0 91.2±0.7 51.7±0.8 61.8±0.9 58.2±0.3 32.0±0.2

LoRSU 75.9±0.6 63.7±0.4 82.8±0.8 60.4±0.3 73.4±0.6 90.9±0.6 51.7±0.4 61.5±0.7 58.8±0.2 31.9±0.2

CL-50

LN 73.0±0.2 60.1±0.2 79.6±0.3 57.7±0.4 61.3±0.4 89.6±0.4 51.9±0.0 61.3±0.0 55.5±0.1 31.3±0.1

F-FT 72.5±0.4 70.3±0.1 78.3±0.4 53.4±0.0 50.6±0.2 89.1±0.3 52.3±0.3 61.1±0.2 57.1±0.1 31.7±0.0

F-EWC 48.0±0.3 75.5±0.2 59.5±0.4 38.8±0.1 42.6±0.3 82.5±0.0 52.5±0.1 56.4±0.3 55.4±0.1 31.3±0.1

LoRA 66.1±0.2 71.3±0.3 76.0±0.1 56.0±0.1 44.5±0.2 88.9±0.3 51.8±0.1 60.4±0.2 56.3±0.1 31.6±0.1

AdaLoRA 73.1±0.2 61.0±0.0 80.6±0.0 52.0±0.4 72.2±0.3 88.9±0.3 51.7±0.2 62.0±0.4 59.1±0.0 31.2±0.1

SPU 75.4±0.0 65.3±0.1 81.8±0.1 59.7±0.2 72.3±0.1 90.8±0.2 51.9±0.1 61.9±0.4 58.0±0.1 31.8±0.0

LoRSU 75.3±0.2 72.2±0.4 82.4±0.3 59.7±0.3 72.5±0.3 90.8±0.3 51.7±0.2 61.7±0.4 58.5±0.1 31.7±0.0
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Table 16: Accuracy scores (%) for LLaVA with the pretrained (Zr-Shot) or fine-tuned image encoder. All
baselines use CAn dataset for fine-tuning the image encoder (the LLM remains frozen) via CLIP loss. We
include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LN 74.3±1.5 52.9±1.4 80.3±1.4 58.9±0.7 72.4±1.2 91.1±0.8 52.0±0.9 61.5±1.2 61.7±0.3 32.1±0.4

F-FT 73.5±1.1 50.6±0.9 80.3±0.8 56.5±0.6 63.1±0.6 91.3±1.5 51.7±1.4 61.8±0.8 58.4±0.2 31.3±0.4

F-EWC 65.9±1.5 39.1±0.7 66.0±1.3 40.0±0.9 41.7±0.7 86.2±0.8 51.8±1.3 59.9±1.0 57.6±0.4 31.3±0.2

LoRA 69.7±1.4 44.8±1.1 81.4±0.7 56.9±1.0 50.7±1.3 92.9±1.3 52.0±1.0 61.8±1.5 56.5±0.4 31.3±0.4

AdaLoRA 75.5±1.4 53.2±0.7 81.7±0.6 60.1±0.7 72.0±1.2 92.1±0.9 51.9±1.4 61.8±1.5 59.0±0.3 31.9±0.3

SPU 76.0±0.9 53.2±0.6 82.3±1.1 60.3±1.3 75.7±0.9 91.3±1.3 51.7±0.8 61.5±1.2 58.4±0.3 31.4±0.4

LoRSU 75.2±0.8 52.7±0.9 83.0±1.0 60.1±0.7 76.8±1.0 91.8±1.4 51.6±1.1 62.3±1.2 58.7±0.3 31.4±0.4

CL-20

LN 72.9±0.5 54.0±0.9 80.3±0.6 57.3±0.4 73.3±0.4 90.7±0.4 51.8±0.8 61.9±0.9 61.0±0.1 31.4±0.1

F-FT 72.9±0.5 47.9±0.6 83.0±0.7 56.9±0.9 62.7±0.9 90.6±0.9 51.9±0.4 61.3±0.4 56.5±0.2 31.5±0.3

F-EWC 70.1±1.0 48.7±0.4 82.8±0.5 51.1±0.8 54.8±0.9 88.3±0.7 51.8±1.0 57.0±0.8 59.6±0.3 31.2±0.3

LoRA 67.5±0.6 48.9±0.6 80.4±0.4 57.3±0.9 39.7±0.4 91.1±0.6 51.8±0.9 61.7±0.3 60.1±0.2 31.9±0.3

AdaLoRA 72.5±1.0 51.5±1.0 79.2±0.4 54.1±1.0 65.5±0.7 90.6±0.8 51.7±0.9 61.9±0.9 56.5±0.3 31.7±0.3

SPU 75.0±0.5 53.5±0.3 82.8±0.8 59.9±0.6 76.1±0.9 91.6±0.9 51.6±0.6 61.9±0.4 61.8±0.2 31.6±0.3

LoRSU 75.3±0.8 53.1±0.9 83.8±0.9 58.8±1.0 75.5±0.7 92.0±0.3 51.9±0.4 62.3±0.6 60.4±0.2 31.6±0.2

CL-50

LN 71.1±0.1 50.4±0.3 77.0±0.3 57.5±0.3 57.9±0.1 89.7±0.1 51.6±0.1 62.4±0.3 56.1±0.1 31.9±0.0

F-FT 70.1±0.1 48.9±0.3 81.7±0.0 56.2±0.2 47.5±0.1 89.9±0.3 52.0±0.1 61.2±0.1 57.7±0.1 31.1±0.1

F-EWC 61.7±0.0 43.9±0.3 83.3±0.4 46.2±0.3 38.9±0.2 87.5±0.1 51.8±0.3 55.8±0.3 54.7±0.1 30.7±0.1

LoRA 66.8±0.2 47.8±0.3 82.3±0.2 55.7±0.0 52.0±0.3 91.0±0.3 51.7±0.3 61.6±0.2 60.2±0.0 31.6±0.1

AdaLoRA 73.5±0.0 49.9±0.1 80.9±0.4 55.7±0.4 77.8±0.1 93.1±0.0 51.5±0.1 61.4±0.3 56.9±0.0 31.6±0.1

SPU 75.2±0.2 53.2±0.0 83.3±0.3 59.3±0.2 73.1±0.3 91.4±0.4 51.7±0.3 61.7±0.1 58.5±0.1 31.6±0.1

LoRSU 75.0±0.2 51.8±0.1 84.0±0.4 58.5±0.2 72.7±0.3 91.9±0.3 51.7±0.1 62.3±0.4 58.1±0.0 31.7±0.1
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Table 17: Accuracy scores (%) for LLaVA with the pretrained (Zr-Shot) or fine-tuned image encoder. All
baselines use AIR dataset for fine-tuning the image encoder (the LLM remains frozen) via CLIP loss. We
include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LN 73.4±0.8 51.3±1.2 80.2±0.6 60.7±1.5 66.9±0.7 91.3±0.6 51.9±0.9 62.4±1.2 58.5±0.2 30.6±0.2

F-FT 72.5±1.2 50.5±0.5 79.9±0.9 62.4±0.9 60.7±1.4 90.6±0.5 51.7±0.9 60.9±1.1 58.3±0.4 31.4±0.3

F-EWC 74.9±1.2 52.4±0.8 71.5±1.2 63.3±1.0 63.8±1.0 90.7±1.5 51.2±0.5 61.2±0.8 58.1±0.4 31.4±0.4

LoRA 70.9±0.9 52.7±0.6 79.0±0.7 61.7±0.5 48.8±0.7 90.6±0.6 52.0±0.9 62.5±0.8 60.0±0.3 31.1±0.2

AdaLoRA 75.0±1.0 53.3±0.8 83.7±0.9 60.8±0.8 75.2±1.5 91.7±1.0 51.6±0.8 61.6±0.8 56.9±0.3 31.9±0.4

SPU 76.2±0.6 53.0±1.3 83.0±0.8 63.5±0.8 75.3±0.7 91.5±1.5 51.5±0.6 61.5±0.8 58.1±0.3 31.5±0.4

LoRSU 76.2±0.8 53.4±1.4 82.5±1.0 65.2±1.3 76.0±0.9 91.8±0.8 51.6±0.8 62.1±1.1 59.0±0.4 31.2±0.3

CL-20

LN 70.3±0.9 53.7±0.6 77.9±1.0 60.2±0.4 56.3±0.7 90.6±0.3 51.7±1.0 62.8±0.7 58.1±0.1 31.8±0.3

F-FT 73.0±0.6 54.1±0.6 80.3±0.9 69.7±0.5 62.7±0.5 90.0±0.4 51.9±0.3 61.8±0.4 58.9±0.1 31.4±0.1

F-EWC 71.2±0.5 53.9±1.0 79.3±0.4 70.6±1.0 64.6±0.7 89.7±0.6 51.7±0.4 61.5±0.5 58.9±0.3 31.4±0.2

LoRA 71.8±0.9 51.1±0.8 78.6±0.3 65.7±0.4 63.4±0.8 89.9±1.0 51.7±0.3 62.3±0.3 56.2±0.2 31.5±0.2

AdaLoRA 73.4±0.8 51.6±0.6 81.2±0.9 63.1±0.6 73.8±0.8 90.8±0.5 52.1±0.4 62.7±0.8 57.7±0.2 31.2±0.1

SPU 75.7±0.4 52.2±0.7 82.0±0.8 63.4±0.9 72.6±0.6 91.7±0.6 51.8±0.6 62.2±0.5 59.0±0.2 31.4±0.2

LoRSU 75.7±0.9 52.6±0.9 81.4±0.7 66.3±0.7 73.0±0.8 90.9±0.8 51.9±0.8 61.8±0.8 56.9±0.1 31.6±0.3

CL-50

LN 69.6±0.4 54.0±0.1 76.9±0.3 62.2±0.2 50.9±0.2 90.2±0.0 52.0±0.3 62.8±0.4 57.7±0.1 31.5±0.1

F-FT 71.2±0.3 50.3±0.3 78.3±0.2 70.4±0.4 59.9±0.0 90.1±0.1 51.9±0.1 61.8±0.3 57.5±0.1 31.3±0.1

F-EWC 71.8±0.2 51.6±0.1 78.3±0.0 71.3±0.2 57.6±0.2 90.2±0.2 51.7±0.1 61.1±0.2 57.4±0.1 31.5±0.0

LoRA 69.8±0.0 54.7±0.0 77.0±0.3 68.2±0.3 51.6±0.1 90.0±0.1 52.0±0.4 62.4±0.0 57.1±0.1 31.5±0.1

AdaLoRA 74.2±0.3 52.0±0.2 82.4±0.1 65.0±0.2 72.6±0.0 91.9±0.1 51.7±0.2 60.7±0.1 55.6±0.0 31.3±0.0

SPU 75.2±0.2 52.2±0.4 82.6±0.3 66.6±0.4 70.0±0.2 91.6±0.3 51.9±0.2 62.0±0.3 57.6±0.0 31.8±0.0

LoRSU 75.4±0.4 52.7±0.3 81.6±0.2 68.6±0.3 69.7±0.3 91.5±0.2 51.7±0.4 62.2±0.1 58.7±0.1 31.1±0.1
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Table 18: Accuracy scores (%) for LLaVA with the pretrained (Zr-Shot) or fine-tuned image encoder. All
baselines use ESAT dataset for fine-tuning the image encoder (the LLM remains frozen) via CLIP loss. We
include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LN 75.8±0.9 53.2±0.6 82.6±1.1 60.0±1.3 80.3±1.0 92.7±1.0 51.9±0.7 61.7±0.5 60.4±0.4 31.8±0.3

F-FT 69.1±0.8 50.5±0.6 80.8±1.1 57.7±1.5 65.8±0.6 91.3±1.5 51.8±0.7 62.0±0.7 58.8±0.3 30.4±0.2

F-EWC 66.3±0.9 52.1±1.4 79.3±1.0 56.8±1.3 67.7±1.3 90.9±0.8 51.9±1.3 62.0±1.2 55.4±0.2 30.9±0.4

LoRA 73.2±1.3 49.3±1.2 80.6±0.9 60.4±1.1 74.5±0.8 92.3±1.3 52.0±1.1 61.6±1.1 57.4±0.4 31.4±0.3

AdaLoRA 75.9±0.5 52.4±1.4 82.4±0.5 60.5±0.8 78.0±1.3 91.5±0.9 51.6±0.8 61.5±1.3 59.0±0.4 30.9±0.2

SPU 75.8±0.8 53.2±1.4 82.8±1.4 60.5±1.5 80.6±0.9 91.5±1.1 51.7±0.6 61.7±1.5 57.5±0.4 31.5±0.2

LoRSU 76.2±1.0 53.6±1.1 82.5±1.2 60.8±0.8 82.9±1.0 91.5±0.9 51.6±0.9 61.3±0.7 57.7±0.4 31.9±0.4

CL-20

LN 74.5±0.5 52.6±0.7 82.5±0.5 58.8±0.7 77.0±0.4 92.4±0.5 51.9±1.0 62.5±0.5 58.0±0.3 31.2±0.1

F-FT 66.5±0.8 51.1±0.7 79.1±0.4 56.7±0.6 51.2±0.7 92.0±0.4 51.6±0.6 61.4±0.8 60.1±0.1 31.5±0.2

F-EWC 69.3±0.3 51.2±1.0 60.5±0.8 57.1±0.6 54.1±0.6 89.7±0.6 51.9±0.6 60.9±0.7 58.4±0.2 31.8±0.2

LoRA 71.1±0.7 50.9±0.5 80.3±1.0 59.4±0.7 64.6±0.7 91.1±0.7 52.0±0.4 62.3±0.6 62.3±0.2 31.3±0.1

AdaLoRA 70.0±0.6 47.3±0.8 78.4±0.9 51.7±0.4 69.3±0.5 91.3±0.7 51.7±0.9 60.8±0.9 58.1±0.2 31.6±0.1

SPU 75.6±0.9 53.1±0.3 82.8±0.9 59.9±0.8 81.5±0.6 92.3±0.4 51.9±0.5 61.5±0.8 58.8±0.2 31.7±0.1

LoRSU 75.3±1.0 53.7±0.8 82.8±0.4 60.7±0.8 82.7±0.7 91.6±0.6 51.6±0.4 61.5±0.4 58.4±0.2 31.4±0.2

CL-50

LN 73.1±0.3 53.0±0.2 82.0±0.1 59.1±0.2 80.7±0.0 92.4±0.2 51.8±0.3 62.0±0.1 60.4±0.0 32.0±0.0

F-FT 58.0±0.4 50.3±0.0 76.8±0.1 57.2±0.2 34.7±0.1 89.7±0.0 51.7±0.2 61.6±0.2 58.1±0.0 31.6±0.1

F-EWC 59.0±0.1 64.5±0.1 77.2±0.1 56.3±0.1 38.0±0.2 87.3±0.2 51.9±0.2 60.7±0.2 58.2±0.1 31.8±0.0

LoRA 62.8±0.3 47.2±0.4 72.4±0.4 54.4±0.2 61.6±0.4 90.2±0.3 51.7±0.2 62.0±0.1 60.8±0.0 30.9±0.1

AdaLoRA 67.2±0.2 49.3±0.3 78.8±0.3 56.9±0.3 58.8±0.3 89.6±0.3 51.8±0.1 61.9±0.2 56.0±0.1 31.6±0.0

SPU 75.1±0.3 53.4±0.2 82.5±0.2 60.2±0.3 81.9±0.1 92.3±0.3 51.8±0.1 61.6±0.1 57.1±0.1 31.9±0.0

LoRSU 75.4±0.3 53.9±0.1 83.1±0.2 60.3±0.1 83.1±0.1 92.1±0.1 51.6±0.2 61.2±0.0 57.6±0.0 31.1±0.0
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Table 19: Average accuracy (ACC) and backward transfer (BWT) scores (%) for LLaVA with the fine-tuned
CLIP-L-14. Each column indicates the setting and fine-tuning method. We include error bars over 3 runs.

FT Method

Setting FTD Zr-Shot LoRA SPU LoRSU
ACC (↑) BWT (↑) ACC (↑) BWT (↑) ACC (↑) BWT (↑) ACC (↑) BWT (↑)

CL-5

GTS 75.4 0.0 79.2±0.7 −7.1±0.8 80.8±0.5 0.5±0.6 81.1±0.6 0.4±0.7

TSI 54.0 0.0 55.5±0.9 −2.5±0.6 55.5±0.6 0.2±0.5 57.0±0.8 0.5±0.6

AIR 60.4 0.0 59.2±0.8 −2.1±0.7 64.7±0.5 2.8±0.6 65.0±0.7 2.5±0.6

ESAT 76.4 0.0 73.8±0.9 −3.4±0.6 79.8±0.6 1.5±0.7 82.2±0.7 2.0±0.6

CL-20

GTS 75.4 0.0 77.2±0.4 −9.1±0.5 82.8±0.4 −0.6±0.3 83.5±0.6 −0.4±0.3

TSI 54.0 0.0 60.6±0.3 −7.2±0.4 60.1±0.5 −1.7±0.3 62.1±0.3 −0.9±0.4

AIR 60.4 0.0 64.3±0.4 −3.6±0.6 65.2±0.7 1.1±0.4 65.4±0.3 0.9±0.4

ESAT 76.4 0.0 64.1±0.5 −18.3±0.7 82.0±0.4 2.0±0.2 82.7±0.5 0.1±0.3

CL-50

GTS 75.4 0.0 79.3±0.3 −10.3±0.5 83.8±0.2 −0.7±0.1 84.7±0.3 −0.5±0.2

TSI 54.0 0.0 67.0±0.3 −8.1±0.6 61.8±0.2 −1.9±0.3 67.9±0.2 −1.1±0.3

AIR 60.4 0.0 65.6±0.4 −6.1±0.3 67.1±0.3 0.5±0.2 67.7±0.3 0.7±0.3

ESAT 76.4 0.0 61.4±0.3 −27.8±0.4 81.2±0.3 −2.4±0.2 82.1±0.4 −0.8±0.2

D.2 CLIP-based Updates+

The detailed accuracies for all baselines and datasets used to create Table 3 of the main paper can be found
in Tables 14 through 18.

D.3 Extra ACC and BWT results

In Table 19 we present results of the ACC and BWT on extra datasets plus the ones in the main paper. The
results follow the same patterns as in section 4 with LoRSU demonstrating the most consistent performance
in both ACC and BWT compared to the other two baselines. SPU is close to LoRSU in terms of BWT but it
significantly lacks behind in ACC.

D.4 CLIP-based vs. Perplexity-based Updates+

The detailed accuracies for all baselines and datasets used to create Table 4 of the main paper can be found
in Tables 20 through 24. We have also included results on fine-tuning the model using MMVP dataset in
Table 27.

E Detailed Ablation Studies

E.1 Ablation on the rank r of LoRSU

In Table 29, we investigate the effect on performance of using different ranks for LoRSU. As the rank
r increases, the VQA accuracy on the target dataset slightly improves, peaking at r = 64. Beyond that,
performance slightly decreases. Performance on other datasets remains relatively stable with small fluctuations.

E.2 Ablation on the number of optimal attention heads of LoRSU

In Table 30, we examine how the number of attention heads chosen to be fine-tuned affects LoRSU’s
performance. We notice that more attention heads marginally improve the performance of the model while
the extra flexibility can cause more forgetting, e.g. ESAT.
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Table 20: Exact accuracy scores (%) for each baseline used to fine-tune the model on the GTS dataset under
three different continual learning (5, 10, 50 shots) settings. We include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LoRA-L 71.5±1.2 52.3±0.5 81.2±0.6 60.0±1.2 75.5±0.9 91.5±1.3 51.9±1.5 61.2±1.1 57.6±0.3 32.2±0.5

LoRA 76.3±0.8 52.6±1.4 73.3±0.6 56.7±1.2 49.3±0.8 87.1±1.3 51.8±1.2 61.3±1.2 58.1±0.3 31.6±0.4

LoRSU 82.0±1.3 53.5±1.3 82.4±0.8 60.8±1.4 66.6±0.9 91.5±1.4 51.6±0.7 61.7±1.4 59.8±0.2 31.6±0.2

LoRA-Ppl 68.1±0.8 54.5±1.4 80.7±0.6 59.3±1.2 52.8±0.8 90.7±1.3 51.7±1.2 60.7±1.2 54.8±0.4 33.4±0.5

LoRA-F 72.9±0.9 54.0±0.7 81.5±0.9 59.6±0.8 61.9±0.8 90.3±1.1 51.9±0.8 60.9±1.2 58.4±0.4 31.1±0.3

LoRSU-Ppl 77.2±1.4 55.1±1.5 82.1±0.7 58.9±1.0 67.0±0.6 90.9±1.3 51.8±0.6 61.6±1.3 58.7±0.3 30.4±0.3

CL-20

LoRA-L 74.2±0.9 52.2±0.9 82.1±0.5 59.6±1.0 75.9±0.6 91.8±1.0 51.6±0.4 62.1±0.9 59.1±0.2 31.8±0.2

LoRA 78.1±0.8 55.6±0.3 59.0±0.9 47.6±0.4 26.0±0.6 83.6±0.8 52.1±0.5 62.1±1.0 53.7±0.3 30.8±0.2

LoRSU 84.2±0.9 52.9±0.6 82.2±0.5 60.7±0.6 64.7±0.6 90.8±0.5 51.9±0.4 61.7±0.5 59.5±0.1 31.6±0.2

LoRA-Ppl 75.1±0.9 50.4±0.9 75.8±0.4 56.5±0.3 40.1±0.9 89.7±0.8 51.6±0.7 57.8±0.8 54.2±0.2 31.5±0.4

LoRA-F 74.2±0.8 52.7±0.3 80.1±0.9 59.5±0.4 66.0±0.6 90.1±0.8 52.1±0.5 64.7±1.0 60.4±0.4 32.3±0.2

LoRSU-Ppl 79.5±0.8 56.1±0.5 82.1±0.9 59.8±0.4 66.1±0.4 90.8±1.0 51.7±0.5 62.1±0.6 59.0±0.3 31.5±0.3

CL-50

LoRA-L 74.9±0.2 51.7±0.2 81.8±0.2 59.8±0.3 75.8±0.1 91.5±0.0 52.0±0.1 61.1±0.2 57.4±0.1 31.8±0.1

LoRA 78.7±0.0 50.7±0.0 62.1±0.2 47.4±0.1 24.2±0.2 82.9±0.3 51.7±0.3 61.0±0.2 54.3±0.1 30.8±0.0

LoRSU 85.3±0.1 54.2±0.1 81.9±0.2 60.5±0.2 61.4±0.3 91.0±0.1 51.7±0.2 62.2±0.4 58.9±0.1 31.8±0.1

LoRA-Ppl 74.2±0.1 49.4±0.2 76.0±0.2 57.9±0.3 37.2±0.0 89.5±0.2 51.7±0.1 57.7±0.1 55.6±0.1 29.8±0.1

LoRA-F 71.7±0.2 51.7±0.4 80.8±0.4 58.3±0.0 60.9±0.3 90.8±0.1 52.1±0.0 63.3±0.1 57.5±0.0 30.9±0.1

LoRSU-Ppl 82.5±0.0 55.8±0.0 82.1±0.2 59.9±0.1 65.4±0.2 91.0±0.3 51.6±0.3 61.7±0.2 62.3±0.1 32.2±0.0

Table 21: Exact accuracy scores (%) for each baseline used to fine-tune the model on the TSI dataset under
three different continual learning (5, 10, 50 shots) settings. We include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LoRA-L 76.0±1.5 59.1±0.6 82.7±0.9 60.7±0.7 75.9±0.9 91.5±1.0 51.5±0.9 63.6±1.2 54.1±0.4 31.2±0.4

LoRA 73.4±1.0 53.0±0.9 80.2±0.6 58.8±0.7 59.1±1.4 90.2±1.1 51.6±1.3 61.2±1.4 56.7±0.4 31.7±0.4

LoRSU 75.9±0.9 56.3±0.7 82.7±0.9 60.8±1.0 76.2±1.4 91.3±1.2 51.6±0.9 61.7±0.8 57.7±0.3 31.2±0.3

LoRA-Ppl 75.0±1.0 64.0±0.6 82.8±1.3 58.4±1.0 60.8±0.8 88.7±1.3 51.6±1.4 61.5±1.0 55.0±0.4 32.2±0.4

LoRA-F 75.3±0.5 45.1±1.1 82.5±0.9 57.2±1.5 73.2±1.0 83.9±1.2 53.8±0.9 64.3±1.3 45.6±0.3 30.9±0.4

LoRSU-Ppl 76.1±1.1 66.2±1.0 83.9±1.1 66.1±0.9 76.1±1.2 91.1±1.4 52.0±0.9 64.4±1.4 60.8±0.5 31.1±0.4

CL-20

LoRA-L 76.1±0.7 59.0±0.6 82.4±0.4 60.8±0.4 75.7±0.9 91.3±0.7 51.5±0.9 63.9±1.0 55.4±0.3 30.8±0.3

LoRA 68.5±0.7 61.6±0.3 76.7±0.9 55.3±0.7 55.6±0.6 88.8±0.8 51.9±0.3 61.4±0.6 59.1±0.3 31.1±0.3

LoRSU 75.9±0.6 63.7±0.4 82.8±0.8 60.4±0.3 73.4±0.6 90.9±0.6 51.7±0.4 61.5±0.7 58.8±0.2 31.9±0.2

LoRA-Ppl 62.1±0.6 59.6±0.5 71.9±0.6 48.3±0.7 42.5±1.0 75.8±0.8 51.6±0.6 49.0±0.5 49.7±0.3 32.4±0.2

LoRA-F 76.1±0.5 56.0±0.5 82.8±0.9 58.2±0.4 67.7±0.9 87.5±0.8 51.6±0.8 64.4±0.5 40.3±0.4 31.2±0.2

LoRSU-Ppl 76.4±0.7 67.0±0.4 83.0±0.7 57.4±0.4 74.0±0.8 88.1±0.3 51.8±0.6 63.6±0.5 57.6±0.2 30.8±0.3

CL-50

LoRA-L 76.4±0.2 63.0±0.2 81.9±0.2 60.5±0.2 75.6±0.2 91.1±0.2 51.7±0.2 64.1±0.3 55.6±0.2 30.9±0.0

LoRA 66.1±0.2 71.3±0.3 76.0±0.1 56.0±0.1 44.5±0.2 88.9±0.3 51.8±0.1 60.4±0.2 56.3±0.1 31.6±0.1

LoRSU 75.3±0.2 72.2±0.4 82.4±0.3 59.7±0.3 72.5±0.3 90.8±0.3 51.7±0.2 61.7±0.4 58.5±0.1 31.7±0.0

LoRA-Ppl 46.3±0.3 51.5±0.3 63.4±0.1 40.1±0.1 41.3±0.4 73.9±0.2 51.7±0.3 49.5±0.3 40.2±0.1 32.7±0.1

LoRA-F 74.0±0.2 68.2±0.1 81.6±0.3 59.2±0.0 75.1±0.2 88.5±0.2 56.8±0.1 65.0±0.3 50.8±0.1 30.4±0.1

LoRSU-Ppl 75.8±0.2 75.1±0.2 82.1±0.3 56.0±0.4 74.2±0.4 86.0±0.4 52.0±0.0 63.2±0.0 58.1±0.1 30.2±0.1
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Table 22: Exact accuracy scores (%) for each baseline used to fine-tune the model on the CAn dataset under
three different continual learning (5, 10, 50 shots) settings. We include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LoRA-L 75.5±1.4 53.1±0.8 79.4±1.4 59.2±0.6 75.2±0.9 91.5±1.1 52.4±1.3 60.2±1.1 57.7±0.5 32.1±0.3

LoRA 69.7±1.4 44.8±1.1 81.4±0.7 56.9±1.0 50.7±1.3 92.9±1.3 52.0±1.0 61.8±1.5 56.5±0.4 31.3±0.4

LoRSU 75.2±0.8 52.7±0.9 83.0±1.0 60.1±0.7 76.8±1.0 91.8±1.4 51.6±1.1 62.3±1.2 58.7±0.3 31.4±0.4

LoRA-Ppl 65.8±1.1 50.7±0.6 79.2±0.5 48.4±1.4 63.0±1.2 86.7±1.3 51.8±1.0 57.2±1.4 52.5±0.3 32.4±0.4

LoRA-F 70.1±0.6 52.2±0.7 78.6±0.7 50.9±0.9 73.4±0.8 91.3±1.0 54.7±0.8 62.2±1.4 58.0±0.5 31.3±0.3

LoRSU-Ppl 74.6±0.9 51.3±1.4 82.9±1.2 58.4±1.2 77.7±1.2 91.8±1.3 51.5±1.1 64.7±1.4 56.5±0.6 29.8±0.3

CL-20

LoRA-L 73.6±1.0 52.2±0.9 80.8±0.9 56.7±0.4 74.7±0.8 91.7±0.5 52.2±0.6 60.9±0.8 59.1±0.3 31.9±0.4

LoRA 67.5±0.6 48.9±0.6 80.4±0.4 57.3±0.9 39.7±0.4 91.1±0.6 51.8±0.9 61.7±0.3 60.1±0.2 31.9±0.3

LoRSU 75.3±0.8 53.1±0.9 83.8±0.9 58.8±1.0 75.5±0.7 92.0±0.3 51.9±0.4 62.3±0.6 60.4±0.2 31.6±0.2

LoRA-Ppl 65.6±0.9 47.0±0.7 79.0±0.4 46.0±0.6 58.9±0.8 82.5±0.8 51.9±0.7 43.9±1.0 52.5±0.4 30.4±0.3

LoRA-F 69.4±0.9 54.9±0.4 80.6±0.4 50.4±0.5 72.0±0.8 91.2±0.5 51.9±0.9 64.3±1.0 57.0±0.3 31.6±0.3

LoRSU-Ppl 72.4±0.6 49.2±0.4 83.2±0.7 56.4±0.9 75.5±0.6 91.8±0.9 51.6±0.5 61.0±0.8 57.7±0.3 31.6±0.3

CL-50

LoRA-L 73.8±0.1 51.6±0.2 80.9±0.2 56.9±0.1 74.9±0.2 91.3±0.3 51.7±0.2 61.2±0.3 58.0±0.1 32.4±0.1

LoRA 66.8±0.2 47.8±0.3 82.3±0.2 55.7±0.0 52.0±0.3 91.0±0.3 51.7±0.3 61.6±0.2 60.2±0.0 31.6±0.1

LoRSU 75.0±0.2 51.8±0.1 84.0±0.4 58.5±0.2 72.7±0.3 91.9±0.3 51.7±0.1 62.3±0.4 58.1±0.0 31.7±0.1

LoRA-Ppl 56.2±0.4 36.4±0.0 80.9±0.1 48.5±0.3 54.1±0.3 78.1±0.2 53.6±0.4 62.3±0.3 48.4±0.1 32.4±0.1

LoRA-F 69.2±0.2 52.0±0.2 80.6±0.1 53.7±0.3 74.4±0.1 90.7±0.2 51.8±0.4 66.5±0.0 58.7±0.1 31.4±0.1

LoRSU-Ppl 74.9±0.4 49.7±0.4 83.7±0.0 42.5±0.4 74.9±0.2 91.2±0.3 51.2±0.3 52.2±0.4 58.5±0.2 32.3±0.2

Table 23: Exact accuracy scores (%) for each baseline used to fine-tune the model on the AIR dataset under
three different continual learning (5, 10, 50 shots) settings. We include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LoRA-L 75.6±0.7 54.4±0.5 81.8±1.1 58.7±0.9 75.7±1.4 92.0±1.4 51.6±0.9 61.0±0.6 59.1±0.3 32.2±0.5

LoRA 70.9±0.9 52.7±0.6 79.0±0.7 61.7±0.5 48.8±0.7 90.6±0.6 52.0±0.9 62.5±0.8 60.0±0.3 31.1±0.2

LoRSU 76.2±0.8 53.4±1.4 82.5±1.0 65.2±1.3 76.0±0.9 91.8±0.8 51.6±0.8 62.1±1.1 59.0±0.4 31.2±0.3

LoRA-Ppl 74.9±0.8 54.2±1.2 79.1±0.5 59.7±0.9 68.5±0.9 90.8±1.3 51.8±0.7 62.0±0.7 55.1±0.5 31.1±0.5

LoRA-F 72.3±0.5 50.6±1.3 78.7±1.4 70.0±1.3 64.4±0.9 90.9±0.6 54.9±1.3 57.7±1.1 62.0±0.6 32.2±0.5

LoRSU-Ppl 75.6±1.0 54.6±1.2 79.8±1.0 66.2±0.5 76.4±1.1 90.6±1.3 51.7±1.3 60.1±0.9 58.8±0.4 31.1±0.4

CL-20

LoRA-L 75.4±0.3 53.6±0.4 82.2±1.0 64.1±1.0 75.7±0.5 92.2±0.3 51.5±0.5 61.5±0.8 58.9±0.2 31.9±0.3

LoRA 71.8±0.9 51.1±0.8 78.6±0.3 65.7±0.4 63.4±0.8 89.9±1.0 51.7±0.3 62.3±0.3 56.2±0.2 31.5±0.2

LoRSU 75.7±0.9 52.6±0.9 81.4±0.7 66.3±0.7 73.0±0.8 90.9±0.8 51.9±0.8 61.8±0.8 56.9±0.1 31.6±0.3

LoRA-Ppl 72.1±0.5 48.0±0.8 72.7±0.4 65.2±1.0 65.1±0.5 90.4±0.3 51.8±0.6 61.5±0.8 55.8±0.1 31.7±0.1

LoRA-F 74.5±0.8 53.0±0.3 82.0±0.6 76.7±0.6 74.9±0.9 91.1±0.3 52.4±0.6 59.3±0.8 59.6±0.4 31.3±0.3

LoRSU-Ppl 76.1±0.8 55.5±0.5 78.7±0.8 66.4±0.6 75.7±0.6 91.6±1.0 51.5±0.3 59.8±0.5 58.1±0.4 31.2±0.4

CL-50

LoRA-L 75.6±0.2 53.8±0.1 83.5±0.1 65.0±0.0 75.7±0.1 92.0±0.0 51.8±0.2 61.1±0.1 58.7±0.1 32.3±0.0

LoRA 69.8±0.0 54.7±0.0 77.0±0.3 68.2±0.3 51.6±0.1 90.0±0.1 52.0±0.4 62.4±0.0 57.1±0.1 31.5±0.1

LoRSU 75.4±0.4 52.7±0.3 81.6±0.2 68.6±0.3 69.7±0.3 91.5±0.2 51.7±0.4 62.2±0.1 58.7±0.1 31.1±0.1

LoRA-Ppl 74.4±0.1 50.9±0.4 76.8±0.2 66.6±0.3 65.4±0.2 91.3±0.1 51.6±0.1 57.2±0.2 53.7±0.1 31.5±0.1

LoRA-F 74.6±0.3 53.2±0.2 80.7±0.4 78.3±0.1 71.4±0.2 91.4±0.0 52.9±0.4 60.0±0.2 57.4±0.0 31.1±0.2

LoRSU-Ppl 75.1±0.2 54.5±0.1 78.0±0.4 69.3±0.1 75.7±0.1 91.5±0.1 51.7±0.0 61.5±0.1 58.2±0.0 30.8±0.0
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Table 24: Exact accuracy scores (%) for each baseline used to fine-tune the model on the ESAT dataset
under three different continual learning (5, 10, 50 shots) settings. We include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LoRA-L 75.4±0.7 52.2±1.4 82.8±0.6 60.6±1.5 75.9±1.1 91.7±0.9 51.5±0.6 60.2±0.8 57.6±0.5 31.6±0.4

LoRA 73.2±1.3 49.3±1.2 80.6±0.9 60.4±1.1 74.5±0.8 92.3±1.3 52.0±1.1 61.6±1.1 57.4±0.4 31.4±0.3

LoRSU 76.2±1.0 53.6±1.1 82.5±1.2 60.8±0.8 82.9±1.0 91.5±0.9 51.6±0.9 61.3±0.7 57.7±0.4 31.9±0.4

LoRA-Ppl 76.0±0.7 52.6±1.0 82.6±1.3 60.4±1.4 75.5±0.9 91.9±1.0 51.8±0.9 62.8±0.8 59.0±0.4 31.6±0.5

LoRA-F 74.3±1.3 51.5±1.4 81.1±1.0 60.3±1.1 81.5±1.2 90.8±1.2 51.9±1.2 61.9±1.2 57.7±0.2 31.3±0.5

LoRSU-Ppl 75.6±1.4 52.3±0.6 82.0±1.2 60.5±1.0 79.8±1.1 92.3±0.5 51.8±1.2 62.2±1.4 57.7±0.4 31.3±0.4

CL-20

LoRA-L 75.9±0.8 52.4±0.9 82.7±0.7 60.8±1.0 76.8±0.3 91.3±0.5 51.7±0.5 60.4±0.9 61.5±0.3 31.6±0.3

LoRA 71.1±0.7 50.9±0.5 80.3±1.0 59.4±0.7 64.6±0.7 91.1±0.7 52.0±0.4 62.3±0.6 62.3±0.2 31.3±0.1

LoRSU 75.3±1.0 53.7±0.8 82.8±0.4 60.7±0.8 82.7±0.7 91.6±0.6 51.6±0.4 61.5±0.4 58.4±0.2 31.4±0.2

LoRA-Ppl 75.5±0.9 51.6±0.7 82.0±0.4 59.3±0.6 74.9±0.3 91.6±0.5 51.7±0.6 62.8±0.5 57.0±0.1 32.1±0.1

LoRA-F 74.8±0.7 52.7±1.0 81.6±0.8 59.4±0.9 71.5±0.7 91.0±0.8 51.7±0.7 63.4±0.8 58.9±0.2 31.0±0.2

LoRSU-Ppl 74.1±1.0 52.0±0.9 82.5±0.7 59.8±0.8 79.0±0.7 92.1±0.7 51.8±0.9 61.8±0.4 58.7±0.4 31.6±0.3

CL-50

LoRA-L 75.6±0.2 53.0±0.1 82.7±0.3 60.6±0.3 77.1±0.2 91.5±0.2 51.7±0.1 60.7±0.0 59.8±0.1 31.4±0.1

LoRA 62.8±0.3 47.2±0.4 72.4±0.4 54.4±0.2 61.6±0.4 90.2±0.3 51.7±0.2 62.0±0.1 60.8±0.0 30.9±0.1

LoRSU 75.4±0.3 53.9±0.1 83.1±0.2 60.3±0.1 83.1±0.1 92.1±0.1 51.6±0.2 61.2±0.0 57.6±0.0 31.1±0.0

LoRA-Ppl 74.9±0.3 51.7±0.3 81.9±0.2 59.8±0.2 77.8±0.1 92.1±0.3 51.8±0.2 62.9±0.3 59.4±0.2 31.9±0.1

LoRA-F 73.6±0.0 51.8±0.3 81.2±0.0 58.1±0.1 66.6±0.3 90.7±0.1 51.6±0.1 63.7±0.3 58.4±0.1 30.5±0.0

LoRSU-Ppl 72.9±0.1 51.1±0.3 81.3±0.4 59.4±0.4 75.4±0.2 91.6±0.2 51.7±0.1 62.7±0.4 57.5±0.1 32.1±0.0

Table 25: Exact accuracy scores (%) for each baseline used to fine-tune the model on the VSR dataset under
three different continual learning (5, 10, 50 shots) settings. We include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LoRA-L 75.3±0.7 59.9±1.4 81.0±1.1 56.2±0.5 66.8±1.3 90.1±1.3 68.3±1.1 65.0±1.4 57.6±0.3 32.5±0.4

LoRA 72.6±1.3 49.5±1.5 78.2±0.8 57.5±1.5 55.0±0.9 88.8±0.7 52.0±1.0 61.9±1.5 59.7±0.3 30.4±0.5

LoRSU 75.6±0.7 52.2±1.4 82.2±0.6 60.1±0.9 77.9±0.6 91.1±1.1 51.9±1.3 62.2±1.5 58.4±0.3 31.7±0.3

LoRA-Ppl 65.8±0.7 48.7±0.8 65.4±1.3 33.8±1.4 48.8±0.5 81.7±1.2 61.7±0.5 56.2±0.7 43.6±0.2 32.8±0.4

LoRA-F 76.0±0.9 64.5±0.8 81.2±1.3 57.6±0.6 69.7±1.5 89.4±0.8 69.5±1.0 12.8±0.5 30.3±0.5 13.0±0.3

LoRSU-Ppl 73.6±0.7 57.5±1.1 80.3±1.1 57.8±1.3 73.1±1.3 90.7±1.1 62.0±1.5 57.4±0.5 57.9±0.6 30.3±0.4

CL-20

LoRA-L 77.1±0.8 54.7±0.9 84.5±0.9 61.4±0.5 75.5±0.7 90.9±0.8 73.7±0.5 64.5±0.8 56.9±0.2 32.6±0.4

LoRA 72.6±0.7 54.5±0.9 76.6±0.8 57.4±0.7 57.3±0.4 87.9±0.8 51.9±0.7 59.0±0.5 57.6±0.2 31.3±0.4

LoRSU 74.9±0.6 54.6±0.5 82.1±0.8 58.5±0.7 75.5±0.5 91.6±0.5 51.6±0.6 62.4±0.7 57.5±0.2 30.9±0.2

LoRA-Ppl 74.9±0.4 62.2±0.4 82.4±0.3 58.2±0.7 70.5±0.7 89.0±0.6 71.0±0.8 64.8±0.5 55.8±0.2 28.6±0.2

LoRA-F 75.4±0.5 60.6±0.5 80.9±0.9 56.6±0.9 63.1±0.7 88.2±0.6 74.8±0.5 48.7±0.9 50.1±0.4 20.2±0.2

LoRSU-Ppl 72.6±0.8 52.7±0.5 81.6±0.8 60.3±0.5 69.4±0.7 89.6±0.5 74.4±0.9 62.5±0.8 57.1±0.3 29.7±0.4

CL-50

LoRA-L 77.2±0.3 56.5±0.1 84.5±0.0 61.4±0.2 76.4±0.2 91.5±0.3 73.4±0.1 65.3±0.2 54.4±0.1 31.5±0.1

LoRA 73.4±0.1 53.8±0.0 74.6±0.4 56.7±0.1 56.2±0.1 87.0±0.2 51.9±0.0 59.2±0.2 57.6±0.1 30.8±0.0

LoRSU 75.3±0.1 54.7±0.1 81.6±0.1 58.3±0.2 75.7±0.1 91.4±0.4 53.8±0.2 62.1±0.3 57.3±0.1 30.8±0.0

LoRA-Ppl 71.7±0.1 48.7±0.1 75.1±0.2 46.3±0.4 64.6±0.3 87.9±0.2 71.7±0.4 61.9±0.2 55.1±0.1 30.9±0.0

LoRA-F 76.3±0.3 64.2±0.2 84.5±0.4 58.1±0.3 69.6±0.1 90.1±0.1 72.5±0.3 64.6±0.1 61.4±0.1 30.6±0.1

LoRSU-Ppl 72.1±0.2 49.8±0.1 74.8±0.3 57.6±0.0 71.0±0.4 88.2±0.1 74.9±0.1 58.3±0.2 55.4±0.2 30.0±0.2
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Table 26: Exact accuracy scores (%) for each baseline used to fine-tune the model on the HM dataset under
three different continual learning (5, 10, 50 shots) settings. We include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LoRA-L 76.5±1.0 51.5±1.1 83.2±1.2 60.5±0.8 75.7±1.0 90.9±0.9 51.6±0.9 68.6±0.7 34.4±0.5 31.1±0.5

LoRA 68.8±0.8 47.0±1.0 70.5±0.8 51.7±1.1 54.1±0.6 89.1±0.8 52.2±1.5 60.8±0.8 54.7±0.6 30.5±0.3

LoRSU 75.7±1.2 54.1±1.1 82.9±0.6 60.7±1.0 76.3±1.1 92.2±0.6 51.5±0.9 61.8±1.2 58.1±0.2 31.9±0.5

LoRA-Ppl 76.2±0.6 48.4±1.4 82.5±1.2 57.2±0.9 72.8±0.9 90.9±0.9 51.8±1.0 60.0±1.0 56.4±0.4 33.1±0.4

LoRA-F 71.8±1.1 47.8±0.8 79.9±1.5 57.6±1.0 63.2±1.1 90.1±1.0 48.0±0.7 67.2±0.9 49.0±0.3 31.5±0.2

LoRSU-Ppl 76.6±1.0 51.7±1.3 83.6±1.4 60.3±0.6 75.2±0.8 90.8±1.0 51.7±1.3 60.4±1.4 60.7±0.5 31.2±0.2

CL-20

LoRA-L 75.1±0.9 50.5±0.3 82.1±0.9 59.3±0.8 65.1±0.6 91.8±0.4 51.9±0.5 71.8±0.8 52.8±0.3 31.7±0.2

LoRA 68.1±1.0 46.8±0.8 76.3±0.4 56.4±0.8 49.6±0.7 87.3±0.6 51.7±0.4 59.4±0.4 59.7±0.3 31.4±0.3

LoRSU 76.1±0.8 53.0±0.7 82.7±0.5 60.4±0.6 75.7±0.4 92.1±0.7 51.8±0.8 61.9±0.5 58.4±0.2 31.5±0.2

LoRA-Ppl 77.0±0.9 52.0±0.4 83.9±0.5 63.6±0.7 73.4±0.5 90.5±0.3 53.1±0.7 71.9±0.7 54.1±0.2 31.1±0.4

LoRA-F 75.6±0.4 50.9±0.5 80.6±0.5 60.8±0.5 71.2±0.7 90.9±0.7 52.2±0.7 72.9±0.7 53.6±0.3 31.6±0.1

LoRSU-Ppl 76.1±0.8 49.8±0.9 83.5±0.9 59.8±0.6 76.1±0.9 91.0±0.9 51.7±0.6 72.1±0.4 59.5±0.2 30.5±0.4

CL-50

LoRA-L 75.8±0.2 49.5±0.3 83.4±0.3 59.9±0.3 71.1±0.3 89.9±0.3 51.7±0.1 71.4±0.2 48.7±0.1 31.1±0.0

LoRA 72.7±0.3 47.1±0.2 72.6±0.2 56.7±0.3 60.4±0.1 89.7±0.3 51.9±0.1 61.9±0.1 57.1±0.2 31.1±0.0

LoRSU 75.3±0.3 53.2±0.1 83.3±0.2 60.5±0.1 74.9±0.1 92.2±0.1 51.6±0.2 61.5±0.0 58.9±0.1 31.3±0.0

LoRA-Ppl 76.6±0.2 49.3±0.4 81.9±0.3 60.3±0.4 72.7±0.2 89.8±0.3 52.5±0.2 73.7±0.3 52.7±0.0 30.9±0.1

LoRA-F 74.1±0.1 52.0±0.3 80.6±0.2 57.0±0.1 63.5±0.3 88.7±0.1 53.0±0.4 73.5±0.2 46.0±0.1 31.8±0.0

LoRSU-Ppl 76.0±0.1 50.4±0.1 83.4±0.1 60.6±0.4 76.4±0.1 91.4±0.2 51.9±0.1 73.4±0.4 59.8±0.1 32.0±0.1

Table 27: Exact accuracy scores (%) for each baseline used to fine-tune the model on the MMVP dataset
under three different continual learning (5, 10, 50 shots) settings. We include error bars over 3 runs.

VQA Datasets (Acc %)
Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL

LoRA-L 75.5 52.8 82.0 60.5 76.0 91.5 51.5 63.6 57.7 30.6
LoRA-Ppl 75.5 53.6 83.0 60.3 75.6 91.1 51.5 63.1 60.7 31.7
LoRA-F 75.2 52.9 81.3 60.5 74.3 90.4 51.6 63.6 60.0 31.4

LoRSU-Ppl 75.1 52.0 81.2 57.4 75.2 90.2 51.7 63.9 60.3 30.8
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Table 28: Exact accuracy scores (%) for each baseline used to fine-tune the model on the VisOnly dataset
under three different continual learning (5, 10, 50 shots) settings. We include error bars over 3 runs.

VQA Datasets (Acc %)

Setting Method GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

CL-5

LoRA-L 76.5±1.2 51.9±0.7 82.4±1.4 60.5±1.5 76.1±1.0 91.5±0.6 51.6±0.9 60.3±1.0 57.6±0.3 31.3±0.4

LoRA 70.9±1.4 52.1±1.2 77.5±1.3 55.6±0.6 52.6±0.8 89.3±0.6 51.7±0.8 61.7±0.7 56.9±0.6 30.9±0.5

LoRSU 75.9±0.7 53.1±0.8 82.5±0.7 60.4±1.0 76.1±1.5 91.9±0.8 51.5±1.3 61.3±1.2 58.9±0.4 31.5±0.2

LoRA-Ppl 76.3±1.1 50.7±1.1 82.2±0.9 61.0±1.3 73.4±0.9 91.7±1.3 52.1±1.1 59.3±1.3 58.0±0.2 35.0±0.5

LoRA-F 76.0±0.8 51.1±1.4 82.9±1.1 59.9±0.7 71.2±1.2 91.7±1.1 51.6±1.3 60.8±0.7 58.4±0.2 34.9±0.4

LoRSU-Ppl 76.2±1.1 53.0±0.9 83.4±0.7 61.3±1.4 76.6±0.8 92.3±0.5 52.0±1.0 61.6±0.7 60.7±0.3 32.0±0.5

CL-20

LoRA-L 77.8±1.0 53.0±0.8 83.4±0.4 62.1±0.6 75.5±0.8 91.6±0.4 52.4±0.9 61.2±0.6 55.6±0.3 32.5±0.3

LoRA 73.3±0.9 49.3±0.4 77.9±0.6 56.4±0.6 47.7±0.8 91.2±0.6 51.8±0.8 61.5±0.6 57.0±0.3 32.8±0.1

LoRSU 75.7±0.5 53.3±0.7 82.0±0.5 60.0±0.5 76.1±0.6 91.9±0.9 51.7±0.6 61.6±0.3 58.2±0.3 31.5±0.4

LoRA-Ppl 78.0±0.4 52.8±0.4 83.7±0.6 60.9±0.7 74.3±0.4 91.5±0.7 51.9±0.5 61.7±0.7 56.0±0.2 32.8±0.3

LoRA-F 77.4±0.6 51.7±0.9 83.7±0.6 59.7±0.7 73.9±0.9 91.2±0.5 53.4±0.4 62.0±0.9 56.9±0.4 31.0±0.3

LoRSU-Ppl 76.7±0.5 53.7±0.4 83.8±0.6 61.4±0.3 75.5±0.6 91.2±0.8 51.8±0.3 61.9±0.9 59.6±0.4 31.3±0.2

CL-50

LoRA-L 76.4±0.4 54.5±0.3 84.1±0.3 61.3±0.0 73.9±0.1 91.5±0.1 51.9±0.3 62.8±0.1 55.4±0.0 32.1±0.1

LoRA 70.0±0.1 46.8±0.0 70.5±0.1 51.0±0.2 50.9±0.0 88.1±0.0 52.0±0.3 61.2±0.3 57.8±0.2 31.7±0.1

LoRSU 75.6±0.4 53.1±0.1 81.7±0.3 58.2±0.1 75.3±0.2 91.8±0.3 51.7±0.1 62.1±0.1 58.3±0.1 31.9±0.0

LoRA-Ppl 76.9±0.4 54.6±0.1 84.1±0.3 60.5±0.2 74.9±0.4 91.2±0.3 51.8±0.3 62.5±0.3 56.0±0.1 33.0±0.0

LoRA-F 77.1±0.0 53.0±0.2 83.9±0.4 60.9±0.1 73.1±0.1 92.2±0.3 51.9±0.2 61.4±0.4 58.0±0.0 32.5±0.1

LoRSU-Ppl 76.1±0.3 51.5±0.2 81.6±0.1 60.2±0.0 75.6±0.2 92.2±0.3 52.0±0.2 61.2±0.3 58.3±0.0 33.5±0.1

Table 29: Ablation study over the effect of the rank r used by LoRSU to fine-tune the image encoder,
CLIP-L-14. We report the VQA accuracies of the last session in the 50-shot CL setting. The accuracies on
the target dataset are in red color. For this experiment, we use two attention heads to fine-tune with LoRSU.

VQA Datasets (Acc %)
FT Dataset rank (r) GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

GTS

8 83.0 53.2 81.3 60.9 61.0 91.2 51.5 61.6 60.0 31.6
16 83.9 53.4 81.5 60.2 54.0 91.4 51.5 62.1 60.7 31.6
32 84.8 53.1 81.9 60.5 58.0 90.6 51.6 61.8 58.7 31.5
64 84.9 53.2 81.3 60.7 61.7 90.9 51.5 61.9 59.3 31.3

128 84.3 53.2 81.8 60.6 56.8 91.5 51.6 61.8 58.7 31.2
256 84.5 53.1 81.5 61.1 51.5 90.3 51.6 62.0 58.7 31.6

TSI

8 75.2 67.2 82.0 59.2 71.6 91.1 51.5 61.6 58.0 31.5
16 75.4 68.0 82.3 59.1 71.0 90.6 51.6 61.6 56.7 31.2
32 74.9 68.9 81.8 59.3 70.1 91.2 51.5 61.6 58.0 31.6
64 75.3 72.1 82.0 59.3 72.3 90.5 51.6 61.4 58.0 31.6

128 75.1 65.8 81.7 59.0 70.0 90.6 51.5 62.1 56.7 31.6
256 75.4 66.4 82.3 59.6 72.0 91.2 51.5 62.1 56.7 31.5

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3
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Table 30: Ablation study over the effect of the number of attention heads used by LoRSU to fine-tune the
image encoder. We report the VQA accuracies of the last session in the 50-shot CL setting. The accuracies
on the target dataset are in red color. For this experiment, we use r = 64 for the rank of LoRSU.

VQA Datasets (Acc %)
FT Dataset # heads GTS TSI CAn AIR ESAT DALLE VSR HM MMVP VisOnly

GTS

0 83.1 52.7 82.2 60.8 60.6 91.1 51.6 61.7 59.3 31.6
1 83.9 53.8 82.0 60.7 55.4 91.2 51.6 61.6 60.0 31.8
2 84.9 53.2 81.3 60.7 61.7 90.9 51.5 61.9 59.3 31.3
4 84.7 53.5 81.0 60.5 60.5 90.6 51.5 61.8 58.7 31.5
8 84.9 52.9 81.2 60.5 58.8 90.5 51.5 61.6 59.3 31.5

16 85.0 53.1 81.3 60.0 59.2 90.6 51.5 61.6 56.7 31.3

TSI

0 75.1 64.2 82.1 59.3 72.2 90.8 51.5 61.8 57.3 31.5
1 75.3 64.8 81.9 59.5 74.0 90.5 51.5 61.6 58.0 32.0
2 75.3 72.1 82.0 59.3 72.3 90.5 51.6 61.4 58.0 31.6
4 74.9 66.8 82.2 58.9 74.0 90.5 51.5 62.1 58.0 31.4
8 74.7 67.4 81.7 59.1 71.5 91.2 51.5 62.2 58.0 31.7

16 75.3 65.2 81.8 59.9 69.1 90.5 51.5 61.6 58.0 31.3

Zr-Shot 75.6 53.1 82.7 60.4 76.1 91.1 51.5 61.2 58.0 31.3

Table 31: Robustness comparison of LoRSU with respect to the number of training epochs. We consider
LoRSU, LoRSU-Rand where the k attention heads are chosen randomly and LoRSU-AAH where all the
attention heads are chosen for fine tuning. We use 50 shots on the GTS for each method and we report
the Target Improvement (TI ) on this dataset and the Control Change (CC ) using only ESAT as a control
dataset. We include error bars over 3 runs.

# Epochs LoRSU-Rand LoRSU-AAH LoRSU
TI (↑) CC (↑) TI (↑) CC (↑) TI (↑) CC (↑)

2 5.2±0.9 −11.1±1.1 6.1±0.3 −11.6±0.7 5.6±0.4 −9.7±0.8

5 7.6±0.8 −15.0±0.9 9.3±0.4 −15.6±0.6 8.6±0.3 −12.6±0.5

10 7.8±0.5 −18.1±0.8 9.1±0.1 −19.6±0.5 9.7±0.1 −14.3±0.7

20 5.9±0.6 −20.0±0.7 8.1±0.1 −21.5±0.6 7.4±0.2 −15.7±0.6

Table 32: Comparison of the importance of choosing a small subset of attention heads. The GTS dataset is
used for fine-tuning. We include error bars over 3 runs. The highest accuracies across methods are underlined.

Setting Scores LoRSU-Rand LoRSU-AAH LoRSU

CL-5 TI (↑) 4.1 ±0.4 5.9 ±0.8 6.4 ±1.3

CC (↑) -1.0 ±0.5 -0.9 ±0.3 -0.7 ±0.6

CL-20 TI (↑) 6.2 ±0.6 7.5 ±0.6 8.6 ±0.9

CC (↑) -1.4 ±0.3 -0.7 ±0.4 -1.0 ±0.5

CL-50 TI (↑) 7.8 ±0.4 9.1 ±0.1 9.7 ±0.1

CC (↑) -1.7 ±0.2 -0.9 ±0.2 -1.3 ±0.1
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(a) TSI (b) DALLE

Figure 5: Instances of the ‘Use Laptop’ action.
E.3 Robustness on the Choice of Attention Heads

We show in Table 31 that LoRSU’s mechanism of choosing the most important attention heads provides a
clear advantage in terms of robustness over the other two LoRSU’s variants, LoRSU-Rand and LoRSU-AAH.
We can see that TI and CC decline in a lower rate compared to that of LoRSU-RAnd and LoRSU-AAH,
as we increase the number of training epochs.. As expected, LoRSU-Rand appears to be the least robust
method since the random choice of the attention heads constitute it more unstable.

F TSI vs. DALLE

In Figures 5 through 8, we present examples of images from TSI and DALLE for different actions. In general,
we observe that TSI comprised of natural, unposed images of senior individuals performing daily tasks,
reflecting real-life scenarios. The images are broader, showing the surrounding environment, which is crucial
for context. On the other hand, DALLE images are idealized or stylized images. The focus is narrower, with
emphasis on the object of the action (e.g. tablet, glass, etc.).

G Limitations

LoRSU is highly efficient, but it comes with a few key caveats. First, to date LoRSU has only been evaluated
on CLIP-based encoders within LLaVA; extending it to other VLM architectures and image encoders remains
future work, as does integrating smaller LLM proxies to reduce compute further . Finally, because it relies on
binary masks to isolate updates, scaling LoRSU’s masking strategy to much larger parameter spaces (e.g.,
full LLMs) poses challenges, and more scalable masking or parameter-selection mechanisms will be needed to
apply it beyond vision encoders.
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(a) TSI (b) DALLE

Figure 6: Instances of the ‘Watching TV’ action.

(a) TSI (b) DALLE

Figure 7: Instances of the ‘Use Tablet’ action.

(a) TSI (b) DALLE

Figure 8: Instances of the ‘Use a telephone’ action.
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