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Abstract

In this work, we explore combining automatic hyperparameter tuning and opti-1

mization for federated learning (FL) in an online, one-shot procedure. We apply2

a principled approach on a method for adaptive client learning rate, number of3

local steps, and batch size. In our federated learning applications, our primary4

motivations are minimizing communication budget as well as local computational5

resources in the training pipeline. Conventionally, hyperparameter tuning meth-6

ods involve at least some degree of trial-and-error, which is known to be sample7

inefficient. In order to address our motivations, we propose FATHOM (Federated8

AuTomatic Hyperparameter OptiMization) as a one-shot online procedure. We9

investigate the challenges and solutions of deriving analytical gradients with respect10

to the hyperparameters of interest. Our approach is inspired by the fact that we11

have full knowledge of all components involved in our training process, and this12

fact can be exploited in our algorithm impactfully. We show that FATHOM is13

more communication efficient than Federated Averaging (FedAvg) with optimized,14

static valued hyperparameters, and is also more computationally efficient overall.15

As a communication efficient, one-shot online procedure, FATHOM solves the16

bottleneck of costly communication and limited local computation, by eliminat-17

ing a potentially wasteful tuning process, and by optimizing the hyperparamters18

adaptively throughout the training procedure without trial-and-error. We show19

our numerical results through extensive empirical experiments with the Federated20

EMNIST-62 (FEMNIST) and Federated Stack Overflow (FSO) datasets, using21

FedJAX as our baseline framework.22

1 Introduction23

Federated learning (FL) for on-device applications has its obvious social implications, due to its24

inherent privacy-protection feature. It opens up a broad range of opportunities to allow a massive25

number of devices to collaborate in developing a shared model by retaining private data on the26

devices. The ubiquity of machine learning (ML) on consumer data, coupled with the growth of privacy27

concerns, has pushed researchers and developers to look for new ways to protect and benefit end-users.28

In order for FL to deliver its promise in deployed applications, there are still many open challenges29

remained to be solved. We are especially interested in the overall communication efficiency of the FL30

pipeline for it to be realistically deployed in a unique communication environment over expensive31

links. To begin, consider a typical step in a machine learning (ML) pipeline: hyperparameter tuning.32

Whether it is in a centralized, distributed or federated setting, it is an essential step to achieve an33

optimal operation for the training process. At the heart of an ML training process is the optimization34

algorithm. In particular, we are interested in using Federated Averaging (FedAvg) as our baseline35
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federated optimization algorithm for our work. This is because, despite all the recent innovations in36

FL since its introduction in 2016 by McMahan et al. [2016], FedAvg remains the de facto standard in37

federated optimization for both research and practice, due to its simplicity and empirical effectiveness.38

In order for FedAvg to operate effectively, it requires properly tuned hyperparameter values.39

Our work focuses specifically on hyperparameter optimization (HPO) of: 1) client learning rate,40

2) number of local steps, as well as 3) batch size, for FedAvg. We propose FATHOM (Federated41

AuTomatic Hyperparameter OptiMization), which is an online algorithm that operates as a one-shot42

procedure. In the rest of this paper, we will go through a few notable recent state-of-the-art works on43

this topic, and make justifications for our new approach. Then we will derive a few key steps for our44

algorithm, followed by a theoretical convergence bound for adaptive learning rate and number of local45

steps in the non-convex regime. Lastly, we present numerical results on our empirical experiments46

with neural networks on the FEMNIST and FSO datasets.47

Our contributions are as follows:48

• We derive gradients with respect to client learning rate and number of local steps for FedAvg,49

for an online optimization procedure. We propose FATHOM, a practical one-shot procedure50

for joint-optimization of hyperparameters and model parameters, for FedAvg.51

• We derive a new convergence upper-bound with a relaxed condition (see Section 4 and52

remark 2), to highlight the benefits from the extra degree-of-freedom that FATHOM delivers53

for performance gains.54

• We present empirical results that show state-of-the-art performance. To our knowledge,55

we are the first to show gain from an online HPO procedure over a well-tuned equivalent56

procedure with fixed hyperparameter values.57

2 Related Work and Justifications for FATHOM58

We explore the question whether the FATHOM approach is justified over the more recent, state-of-59

the-art methods that are designed for the same goal: a single-shot online hyperparamter optimization60

procedure for FL. Zhou et al. [2022] proposed Federated Loss SuRface Aggregation (FLoRA), a61

general single-shot HPO for FL, which works by treating HPO as a black-box problem and by62

performing loss surface aggregation for training the global model. Khodak et al. [2021] draws63

inspiration from weight-sharing in Neural Architectural Search (Pham et al. [2018], Cai et al. [2019]),64

and proposed FedEx, which is an online hyperparameter tuning algorithm that uses exponentiated65

gradients to update hyperparameters. On the other hand, Mostafa [2019]’s RMAH and Guo et al.66

[2022]’s Auto-FedRL both use REINFORCE (Williams [1992]) in their agents to update hyperparam-67

eters in an online manner, by using relative loss as their trial rewards. One basic assumption among68

these methods, is that at least some of the gradients with respect to the hyperparameters are unavail-69

able directly. Generalized techniques are used to update these quantities, involving Monte-Carlo70

sampling and evaluation with held-out data. One key benefit with techniques such as these is their71

generalizability for a wide range of different hyperparameters. On the other hand, we identify a few72

areas with these methods that we would like to improve on. One, information about the internals of73

the procedure can and should be exploited. Two, communication overhead becomes a concern, since74

sufficient Monte-Carlo sampling is required for some of these techniques to converge, an example75

being the re-parametrization trick (Kingma and Welling [2013]) which is used for FedEx, RMAH and76

Auto-FedRL. From initial observations of their empirical results, while these methods are successful77

in hyperparameter tuning and reaching target model accuracy as shown in these works, these goals are78

achieved in unspecified numbers of total communication rounds from works based on RL approaches79

such as Mostafa [2019] and Guo et al. [2022].80

The above observations justify exploring our problem differently from previous approaches. Our81

method exploits full knowledge of the training process, and it does not require sufficient trials82

at potential expense of communication budget. Inspired by the hypergradient descent techniques83

developed by Baydin et al. [2017] and Amid et al. [2022] for centralized optimization learning rate,84

we develop FATHOM by directing deriving analytical gradients with respect to the hyperparameters85

of interest. The result is a sample efficient method which offers both improvements in communication86

efficiency and reduced local computation in a single-shot online optimization procedure. Meanwhile,87

FATHOM is not as flexibly applicable in optimizing a wide range of hyperparameters, since each88
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gradient needs to be derived separately to take advantage of our full knowledge of the training process.89

We believe this approach is a performance advantage, at the expense of its flexibility.90

There are other notable relevant works. Charles and Konečný [2020] and Li et al. [2019] proved that91

reducing the client learning rate during training is necessary to reach the true objective. Yet, a line of92

interesting works, such as Dai et al. [2020] and Holly et al. [2021]) applies Bayesian Optimization93

(BO) on federated hyperparamter tuning, by treating it as a closed-box optimization problem. Dai94

et al. [2021] further updates their use of BO in FL by incorporating differential privacy. However,95

these BO-based works do not consider adaptive hyperparameters. Yet, another work (Wang and Joshi96

[2018]) shares similarity to our approach of optimally adapting the number of local steps, with their97

adaptive communication strategy, AdaComm, in the distributed setting. However, their main interest98

is reducing wall-clock time. Lastly, around the same time of this writing, Wang et al. [2022] publishes99

their benchmark suite for FL HPO, called FedHPO-B, which would be valuable to our future work.100

3 Methodology101

In this section we formalize the problem of hyperparameter optimization (HPO) for FL. We first102

review FedAvg, a de facto standard of federated optimization methods for research baseline and103

practice. Then, we present our method for online-tuning of its hyperparameters, specifically client104

learning rate, number of local steps, and batch size. We call our method FATHOM (Federated105

AuTomatic Hyperparameter OptiMization).106

3.1 Problem Definition107

In this paper, we consider the empirical risk minimization (ERM) across all the client data, as an108

unconstrained optimization problem:109

f
⇤ := min

x2Rd

"
f(x) :=

1

m

mX

i=1

fi(x)

#
(1)

where fi : Rd
! R is the loss function for data stored in local client index i with d being the110

dimension of the parameters x, m is number of clients, and f
⇤ = f(x⇤) where x⇤ is a stationary111

solution to the ERM problem in eq(1).112

To facilitate some of the discussions that follow, it helps to define assumptions here as we do113

throughout the rest of this paper:114

Assumption 1. (Unbiased Local Gradient Estimator) Let gi(x) be the unbiased, local gradient115

estimator of rfi(x), i.e., E[gi(x)] = rfi(x), 8x, and i 2 [m].116

3.2 Federated Optimization and Tuning of Hyperparameters117

Federated Averaging (FedAvg) We describe the operations of FedAvg from McMahan et al.118

[2016], as follows. At any round t, each of the m clients takes a total of Ki local SGD steps, where119

Ki = bE⌫i/Bc, and where ⌫i is the number of data samples from client index i, B is batch size,120

with epoch number E = 1 being a common baseline. In this version of FedAvg, heterogeneous data121

size is accommodated across clients, and the number of local steps can be manipulated via E and122

B as hyperparameters. Each local SGD step updates the local model parameters of each client i as123

follows: xi
t,k+1 = x

i
t,k � ⌘Lgi(xi

t,k), where ⌘L is the local learning rate and k 2 [K] is the local step124

index. To conclude each round, these clients return the local parameters xi
t,Ki

to the server where125

it updates its global model, with xt+1 =
P

i ⌫ix
i
t,K/⌫ where ⌫ =

P
i ⌫i. To facilitate some of the126

discussions that follow, we define the following quantities:127

�t , xt+1 � xt =
mX

i=1

⌫i

⌫
�i

t where �i
t , �

Ki�1X

k=0

⌘L,tgi(x
i,k
t ) (2)

Offline Hyperparameter Tuning Offline tuning is best to be summarized as follows. We first128

define U = {u 2 R | u � 0} with ⌘L 2 U , and V = {v 2 I | v � 1} with K 2 V . We also define129

C = U ⇥ V , and c = (⌘L,K), where c 2 C. Offline tuning would have the following objective:130
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minc2C fvalid(x, c) s.t. x = argminz2Rd ftrain(z, c) . With abuse of notation, we use fvalid for the131

objective function calculated from a validation dataset which is usually held-out before the procedure,132

and ftrain for the objective from training data which usually is just local client data. A few notable133

offline tuning methods are as follows. Global grid-search from Holly et al. [2021] is an example134

of offline tuning that iterates over the entire search grid defined as C, completing an optimization135

process for each grid point and evaluating the result with a held-out validation set. Global Bayesian136

Optimization from Holly et al. [2021] is another similar example of offline tuning that follows the137

same template and objective. Instead of brute-force grid-search, c is sampled from a distribution DC138

over C, i.e. c ⇠ DC , that updates after every iteration.139

Online Hyperparameter Optimization We are interested in an online procedure that combines140

hyperparameter optimization and model parameter optimization, with the following objective:141

min
x2Rd

c2C

ftrain(x, c) (3)

This formulation is the objective of our method, FATHOM, which we will discuss shortly in detail. It142

has the advantage of joint optimization in a one-shot procedure. Furthermore, it does not assume the143

availability of a validation dataset.144

3.3 Our Method: FATHOM145

In this section we will introduce our method, FATHOM (Federated AuTomatic Hyperparameter146

OptiMization). Recall from our joint objective, eq(3), that both the model parameters, x, and147

hyperparameters of the optimization algorithm, c, are optimized jointly to minimize our objective148

function. An alternative view is to treat c as part of the parameters being optimized in a classic149

formulation, i.e. minyf(y) with y = (x, c). As previously mentioned, our method is inspired by150

hypergradient descent from Baydin et al. [2017] and by exponentiated gradient from Amid et al.151

[2022], both proposed for centralized learning rate optimization. We will present how FATHOM152

exploits our knowledge of analytical gradients to update client learning rate, number of local steps, as153

well as batch size, for an online, one-shot optimization procedure.154

Assumption 2. (Convexity w.r.t. ⌘L and K) We assume Et(f(xt)) is convex w.r.t. ⌘L and K, even155

though we assume non-convexity w.r.t. xt). Specifically, convexity w.r.t. K follows the definition in156

Murota [1998], to accommodate the integer space where K is defined.157

Remark 1. Assumption 2 is necessary to guarantee the existence of subgradients derived in Theorems158

1 and 2, and it will be assumed for this work. In problems dealing with deep neural networks, it is159

reasonable to not assume convexity w.r.t. hyperparameters. However, from our empirical results, we160

claim that the proposed algorithm is still able to operate as desired under this condition.161

3.3.1 Hypergradient for Client Learning Rate162

In this section, we derive the hypergradient for client learning rate in a similar fashion as Baydin et al.163

[2017], with the difference being that they are mainly concerned with the centralized optimization164

problem, and that we are concerned with the distributed setting where clients take local steps. We165

derive the following hypergradient of the objective function as defined in eq(1), taken with respect to166

the learning rate ⌘L,t�1 such that it can be updated to obtain ⌘L,t:167

Ht =
@f(xt)

@⌘L,t�1
=

@f(xt)

@xt
·
@(xt�1 +�t�1)

@⌘L,t�1
= rf(xt) ·

@�t�1

@⌘L,t�1
(4)

where �t is the update step for the global parameters xt as defined in eq(2), leading to @�t
@⌘L,t

= �t
⌘L,t

=168

�
Pm

i=1
⌫i
⌫

PK�1
k=0 gi(x

i,k
t ). We also make the approximation xt+1 � xt = �t ⇡ �⌘L,trf(xt). We169

can then write the normalized update, Ht, similar to Amid et al. [2022], as follows:170

Ht =
rf(xt)

krf(xt)k
·

⇣
@�t�1

@⌘L,t�1

.���
@�t�1

@⌘L,t�1

���
⌘
⇡ �

�t

k�tk
·

�t�1

k�t�1k
(5)

The resulting hypergradient is a scalar, as expected, and can be used efficiently as part of the update171

rule for ⌘L, which we will see in Section 3.3.4. The implementation is communication efficient, since172

in each round, each client needs one extra scalar to send back to the server, and likewise the server173

needs to broadcast one extra scalar back to the clients. It is also computationally efficient since it174

avoids calculating the full local gradient rf(xt).175
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3.3.2 Hypergradient for Number of Local Steps176

Since the number of local steps is an integer, i.e. K = {k 2 I | k � 1}, this means f(xt) does not177

exist for non-integer values of K. We formulate a subgradient as a surrogate of the hypergradient178

@f(xt)/@K, as follows. We will call this a hyper-subgradient.179

Theorem 1. When a piecewise function Lt is defined for every value of K0 2 [K] on l, such that180

0.0  l < 1.0, we claim, under Assumption 2, that the following is a subgradient of f(xt) at181

Kt = K0:182

@Lt

@l
= rf(xt) ·

�
� ⌘L,t

mX

i=1

gi(x
i,Kt�1
t�1 )

⌫i

⌫

�
(6)

where l represents the marginal fraction of local steps beyond K0. We leave the proof (with an183

illustration in Figure 2) in the Appendix section beginning in eq(20).184

The result from Theorem 1 is not sufficiently communication-efficient for implementing an update185

rule for K. This is because it would require the quantity gi(x
i,Kt�1
t�1 ) to be communicated from186

each client i to the server. To save communication, let us reuse what the server has in memory:187

�t =
�
� ⌘L

Pm
i=1

⌫i
⌫

PKt�1
k=0 gi(x

i,k
t )
�
. If we let:188

St = rf(xt) ·
�
� ⌘L,t

mX

i=1

⌫i

⌫

Kt�1X

k=0

gi(x
i,k
t�1)

�
l (7)

Nt =
@St

@l
= rf(xt) ·

�
� ⌘L,t

mX

i=1

⌫i

⌫

Kt�1X

k=0

gi(x
i,k
t�1)

�
= rf(xt) ·�t�1 (8)

N t =
rf(xt)

krf(xt)k
·

�t�1

k�t�1k
⇡ �

�t

k�tk
·

�t�1

k�t�1k
(9)

where eq(9) is the normalized update as in Amid et al. [2022]. We claim that eq(8) is a positively-189

biased version of eq(6), which has its practical importance due to the fact that the last term in eq(6)190

from Theorem 1 results in zero-mean, noisy gradients, when the local functions are nearing their local191

solutions, when in fact, this is the area where more local work is not needed. Thus, a positive bias is192

desirable to drive the number of local steps down. This result is also useful from a communication193

efficiency perspective in its implementation, because the server has all the components to calculate194

this quantity, and would not require additional communication.195

3.3.3 Regularization for Number of Local Steps196

One of the goals for FATHOM is savings in local computation. To avoid excessive number of local197

steps, we further develop a regularization term for local computation against excessive K, which is a198

proxy for the hypergradient of the local client functions at the end of each round : @fi(xi,K
t )/@K.199

Theorem 2. When a piecewise function Jt is defined for every value of K0 2 [K] on l, such that200

0.0  l < 1.0, we claim, under Assumption 2, that the following is a subgradient of
Pm

i=1 fi(x
i,Kt
t )201

at Kt = K0:202

@Jt

@l
= �⌘L,t

mX

i=1

⌫i

⌫
E
⇥
gi(x

i,K0�1
t )

⇤
· gi(x

i,Kt
t ) ⇡ �⌘L,t

mX

i=1

⌫i

⌫

Kt�1X

k=0

gi(x
i,k
t ) · gi(x

i,Kt
t ) (10)

where l represents the marginal fraction of local steps beyond K0. We leave the proof in the Appendix203

section beginning in eq(24).204

In our algorithm, we use the normalized update based on the following biased proxy, since eq(10)205

tends to be noisy from gi(x
i,Kt
t ).206

Gt = �⌘L,t

mX

i=1

⌫i

⌫
min
KKt

⇣K�1X

k=0

gi(x
i,k
t ) · gi(x

i,K
t )

⌘
(11)

Gt = �⌘L,t

mX

i=1

⌫i

⌫
min
KKt

 PK�1
k=0 gi(x

i,k
t )

��PK�1
k=0 gi(x

i,k
t )
�� ·

gi(x
i,K
t )

kgi(x
i,K
t )k

!
(12)
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where Gt is the normalized update. The proxy yields a bias towards smaller number of local steps,207

which is desirable for reducing local computation. We use this biased proxy against using a more208

typical regularization such as L2 for the number of local steps, based on initial empirical results for209

better performance..210

3.3.4 Normalized Exponentiated Gradient Updates211

For the update rules of the hyperparameters ⌘L (client learning rate) and K (number of client local212

steps), we use the normalized exponentiated gradient descent method (EGN) with no momentum,213

rather than a conventional linear update method such as the additive update of hypergradient descent214

proposed in Baydin et al. [2017]. It is reasonable to use exponentiated gradient (EG) methods for215

updates of hyperparameters that are strictly positive in value. EG methods also enjoy significantly216

faster convergence properties when only a small subset of the dimensions are relevant, according to217

Amid et al. [2022].218

EG methods have been proposed in previous works for a variety of applications (Khodak et al. [2021],219

Amid et al. [2022], Li et al. [2020]), and analyzed in depth (Ghai et al. [2019]), where its convergence220

has been studied and validated (Li and Cevher [2018]). Recently, Amid et al. [2022] showed that EGN221

is the same as the multiplicative update for hypergradient descent proposed in Baydin et al. [2017],222

when the approximation exp(·) ⇡ 1 + · is made. From our observations, we believe that momentum223

is not needed for the effectiveness of EGN in our application, as validated in our numerical results.224

We also opted-out of adding further complexity such as extra weights and activation functions to225

model the relationships between ⌘L,t and Kt, because it would require more samples to optimize and226

because FATHOM is a one-shot procedure. Furthermore, due to the non-stationary nature of these227

values, we opt for a simpler scheme for faster performance.228

Hence, for the update rule of client learning rate, ⌘L, we have:229

⌘L,t+1 = ⌘L,t exp
�
� �⌘Ht

�
(13)

where Ht is as defined in eq(5). For number of local steps, we observe that it is related to batch230

size in round t, Bt, as follows. To accommodate heterogeneity of local dataset sizes among clients,231

we have number of local data samples from client i to be ⌫i. The number of local steps for client i232

is Ki = b⌫iEt/Btc, where Et is number of epochs, with Et = 1 meaning the entire local dataset233

for each client to be processed once per round. We derive update rules for Et and Bt globally to234

optimize the number of local steps, without having to make any changes to our theoretical analysis to235

accommodate the heterogeneity of local dataset sizes:236

Et+1 = Et exp
�
� �E

�
N t +Gt

��
(14)

and237

Bt+1 = Bt exp
�
� �B

�
�Gt

��
(15)

where Nt and Gt are defined in eq(9) and eq(12), respectively. These update rules accomplish the goal238

of updating the number of local steps via Et/Bt with Et+1

Bt+1
= Et

Bt
exp

�
� �EN t �

�
�E � �B

�
Gt

�
.239

Typically, with �B � �E , (�B � �E)Gt becomes a tunable regularization term as discussed at the240

end of Section 3.3.3.241

3.3.5 Client Sampling242

We present our method, FATHOM, as shown in Algorithm 1. One practical factor we have not243

considered in our discussions is partial client sampling. For our implementation to handle the244

stochastic nature of client sampling, the metric �t�1 for calculating Ht in eq(5) and N t in eq(9) is245

modified by a smoothing function for noise filtering, i.e. �t,sm = ↵�t�1,sm+(1�↵)�t, which is a246

single-pole infinite impulse response filter (Oppenheim and Schafer [2009]Oppenheimer et al. [2009])247

with no bias compensation. We use the notation "sm" for smoothed, and after many experiments, we248

decide to use ↵ = 0.5 for all of our numerical results.249
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Algorithm 1: FATHOM : gi(x) is defined in Assumptions 1, and m is the number of clients.
Input: Server initializes global model xt=1, T as the end communication round, and:

�t=0,sm = 0 ; ↵ = 0.5 ; �⌘ = 0.01 ; �E = 0.01 ; �B = 0.1

Output: xT , as well as ⌘L,t, Et and Bt for all t 2 [T ]
for t = 1, . . . , T do

Sample client set St out of m clients.
For each client i 2 St, initialize: xi,k=0

t = xt and Kt,i = b⌫iEt/Btc .
Set �i = 0, and �i = +1.
for k = 0, . . . ,Kt,i � 1 do

For each client i, compute in parallel an unbiased stochastic gradient gi(xi,k
t ).

For each client i, calculate �i = min(�i, gi(x
i,k
t ) ·�i) where �i = x

i,k
t � xt

For each client i, update in parallel its local solution: xi,k+1
t = x

i,k
t � ⌘L,tgi(x

i,k
t )

end
Server calcualtes ⌫ =

P
i2St

⌫i, where ⌫i is the size of client i dataset.
Server calculates �t =

P
i2St

�i(⌫i/⌫); see eq(2)
Server updates global model xt+1 = xt ��t

Server calculates Ht = N t = �
�t

k�tk
·

�t�1,sm

k�t�1,smk , modified from eq(5) and eq(9)

Server calculates Gt; see eq(12
Server updates client learning rate ⌘L,t+1, epochs, Et+1, and batch size Bt+1 for the next

round; see eq(13), eq(14), and eq(15).
Server updates �t,sm = (1� ↵)�t + ↵�t�1,sm for the next round

end

250

4 Theoretical Convergence251

A standard approach to theoretical analysis of an online optimization method such as ours, is through252

analyzing the regret bound (Zinkevich [2003], Khodak et al. [2019], Kingma and Ba [2014], and253

Mokhtari et al. [2016]). Nonetheless, this approach does not tell us the impact on communication254

efficiency by the online updates introduced from FATHOM. Therefore, we take an alternative255

approach by extending the guarantees of FedAvg performance (Wang et al. [2021], Reddi et al.256

[2020], Gorbunov et al. [2020], Yang et al. [2021], Li et al. [2019], etc) to include both adaptive257

learning rate and adaptive number of local steps. We assume the special case in our analysis to have258

full client participation. We prove that adaptive learning rate and adaptive number of local steps does259

not impact asymptotic convergence, despite the given relaxed conditions.260

4.1 Assumptions261

Assumption 3. (L-Lipschitz Continuous Gradient for Parameters xt) There exists a constant L > 0,262

such that krfi(x) � rfi(y)k  Lkx � yk, 8x, y 2 Rd, and i 2 [m], where x and y are the263

parameters in eq(1.264

Assumption 4. (Bounded Local Variance) There exist a constant �L > 0, such that the variance of265

each local gradient estimator is bounded by Ekrfi(x)� gi(x)k2  �
2
L, 8x, and i 2 [m].266

Assumption 5. (Bounded Second Moment) There exists a constant G > 0, such that Etkrfi(xt)k 267

G, i 2 [m], 8xt.268

4.2 Convergence Results269

Theorem 3. Under Assumptions 1-5 and with full client participation, when FATHOM as shown270

in Algorithm 1 is used to find a solution x⇤ to the unconstrained problem defined in eq(1), the271

sequence of outputs {xt} satisfies the following upper-bound, where, with slight abuse of notation,272

E = mint2[T ] Etkrf(xt)k22:273

Efathom = O

✓s
�
2
L +G2

mKT
+

3

s
�
2
L

KT 2
+

3

r
G2

T 2

◆
(16)
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with the following conditions: ⌘L = min

 
q

2�0mD
�1KLT (�2

L+G2)
, 3

q
�0D

2.5�2K
2
L2�2

LT
, 3

q
�0D

2.5�3K
3
L2G2T

!
274

and ⌘L,t  1/L for all t, where275

⌘L , 1

T

TX

t=1

⌘L,t and K , 1

T

TX

t=1

Kt (17)

and where276

�0 =

P
t ⌘L,tKt

T [ 1T
P

t ⌘L,t][
1
T

P
t Kt]

, �1 =

P
t ⌘L,tKt

⇥
1
T

P
t ⌘L,t

⇤
P

t ⌘
2
L,tKt

(18)

�2 =

P
t ⌘L,tKt

⇥
1
T

P
t ⌘L,t

⇤2⇥ 1
T

P
t Kt

⇤
P

t ⌘
3
L,tK

2
t

, �3 =

P
t ⌘L,tKt

⇥
1
T

P
t ⌘L,t

⇤2⇥ 1
T

P
t Kt

⇤2
P

t ⌘
3
L,tK

3
t

(19)

We leave the proof in the Appendix beginning in eq(29).277

The values of �0, �1, �2, �3, and �4 are dependent on the relative changes over the adaptive process278

of these components, according to Chebyshev’s Sum Inequalities (Hardy et al. [1988]). A special279

case is when these quantities equal to 1 when both ⌘L,t and Kt are constant, which recovers the280

standard upperbound for FedAvg from eq(16).281

Remark 2. The definitions in eq(17) combined with the conditions for ⌘L above is called the relaxed282

conditions in this paper for the hyperparameters ⌘L,t and Kt. The values of ⌘L,t and Kt are adaptive283

during the optimization process between rounds t = 1 and t = T , as long as the above conditions are284

satisfied for the guarantee in eq(31) to hold. This relaxation presents opportunities for a scheme such285

as FATHOM to exploit for performance gain. For example, suppose T approaches 1 for a prolonged286

training session. Then ⌘L would necessarily be sufficiently small for Efathom to be bounded by287

eq(16). However, for early rounds i.e. small t values, ⌘L,t  T⌘L can be reasonably large and still288

can satisfy eq(17), for the benefit of accelerated learning and convergence progress early on. Similar289

strategy can be used for number of local steps to minimize local computations towards later rounds.290

In any case, these strategies are mere guidelines meant to remain within the worst case guarantee.291

However, Theorem 3 offers the flexibility otherwise not available. We will now show the empirical292

performance gained by taking advantage of this flexibility.293

Figure 1: Test Accuracy Performance with various values of initial client learning rate (LR_0), initial
batch size (BatchSize_0), and number of clients per round (NumClients). Top row: FSO sims. Bottom
row: FEMNIST sims. Baseline values for FEMNIST: LR_0=0.1, BatchSize_0=20, NumClients=10.
Baseline values for FSO: LR_0=0.32, BatchSize_0=16, NumClients=50.
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5 Empirical Evaluation and Numerical Results294

We present an empirical evaluation of FATHOM proposed in Section 3 and outlined in Algorithm295

1. We conduct extensive simulations of federated learning in character recognition on the federated296

EMNIST-62 dataset (FEMNIST) (Cohen et al. [2017]) with a CNN, and in natural language next-word297

prediction on the federated Stack Overflow dataset (FSO) (TensorFlow-Federated-Authors [2019])298

with a RNN. We defer most of the details of the experiment setup in Appendix Section C.1. Our299

choice of datasets, tasks and models, are exactly the same as the "EMNIST CR" task and the "SO300

NWP" task from Reddi et al. [2020]. See Figure 1 and Table 1 and their captions for details of the301

experiment results. Our evaluation lacks comparison with a few one-shot FL HPO methods discussed302

earlier in the paper because of a lack of standardized benchmark (until FedHPO- B Wang et al. [2022]303

was published concurrently as this work) to be fair and comprehensive.304

The underlying principle behind these experiments is evaluating the robustness of FATHOM versus305

FedAvg under various initial settings, to mirror realistic usage scenarios where the optimal hyperpa-306

rameter values are unknown. For FATHOM, we start with the same initial hyperparameter values307

as FedAvg. The test accuracy progress with respect to communication rounds is shown in Figure 1308

from these experiments. We also pick test accuracy targets for the two tasks. For FEMNIST CR we309

use 86% and for FSO NWP we use 23%. Table 1 shows a table of resource utilization metrics with310

respect to reaching these targets in our experiments, highlighting the communication efficiency as311

well as reduction in local computation from FATHOM in comparison to FedAvg. To our knowledge,312

we are the first to show gain from an online HPO procedure over a well-tuned equivalent procedure313

with fixed hyperparameter values.314

The federated learning simulation framework on which we build our algorithms for our experiments315

is FedJAX (Ro et al. [2021]) which is under the Apache License. The server that runs the experiments316

is equipped with Nvidia Tesla V100 SXM2 GPUs.317

Table 1: Resource utilization in communication and local computation to reach specified test
accuracy target for each task. All evalutions are run for ten trials. Bold numbers highlight better
performance. NA means target was not reached within 1500 rounds for FSO NWP and 2000 rounds
for FEMNIST CR, in any of our trials. LR_0 is initial client learning rate, BS_0 is initial batch size,
and NCPR is number of clients per round. All experiments use baseline initial values except where
indicated. For clarification, M is used in place for "million", and K for "thousand".
Baseline_fso : (LR_0 = 0.32, BS_0 = 16, NCPR = 50)
Baseline_femnist : (LR_0 = 0.10, BS_0 = 20, NCPR = 10)

Tasks Experiments
Number of Rounds To

Reach Target Test Accuracy
Local Gradients Calculated To
Reach Target Test Accuracy

FATHOM FedAvg FATHOM FedAvg

FSO NWP
Target@23%

Baseline_fso 562 ± 12 971 ± 11 85M ± 1.2M 124M ± 1.3M
LR_0 = 0.05 871 ± 7 NA 138M ± 3.2M NA
BS_0 = 4 758 ± 43 580 ± 18 93M ± 2.8M 74M ± 2.5M
BS_0 = 256 801 ± 28 NA 174M ± 18M NA
NCPR = 25 970 ± 49 1283 ± 33 63M ± 2.7M 82M ± 3.8M
NCPR = 200 396 ± 17 684 ± 26 280M ± 45M 350M ± 13M

FEMNIST CR
Target@86%

Baseline_femnist 739 ± 24 1098 ± 15 1.5M ± 36K 2.2M ± 64K
LR_0 = 0.05 905 ± 21 1574 ±19 1.7M ± 28K 3.1M ± 28K
BS_0 = 4 708 ± 17 885 ± 41 1.2M ± 28K 1.7M ± 88K
BS_0 = 256 736 ± 20 NA 2.0M ± 44K NA
NCPR = 100 777 ± 16 1436 ± 18 22M ± 0.27M 28M ± 0.39K
NCPR = 200 790 ± 16 1481 ± 33 57M ± 1.0M 59M ± 1.3M

6 Conclusion and Future Work318

In this work, we propose FATHOM for adaptive hyperparameters in federated optimization, specifi-319

cally for FedAvg. We analyze theoretically and evaluate empirically its potential benefits in conver-320

gence behavior as measured in test accuracy, and in reduction of local computations, by automatically321

adapting the three main hyperparameters of FedAvg: client learning rate, and number of local steps322

via epochs and batch size. An example of future efforts to extend this work is using a standardized323

benchmark such as Wang et al. [2022] for performance comparison against other FL HPO methods.324
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