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Abstract

The rapid advancement of multimodal large lan-001
guage models (MLLMs) has significantly en-002
hanced performance across benchmarks. How-003
ever, data contamination—unintentional mem-004
orization of benchmark data during model train-005
ing—poses critical challenges for fair evalua-006
tion. Existing detection methods for unimodal007
large language models (LLMs) are inadequate008
for MLLMs due to multimodal data complexity009
and multi-phase training. We systematically an-010
alyze multimodal data contamination using our011
analytical framework, MM-DETECT, which de-012
fines two contamination categories—unimodal013
and cross-modal—and effectively quantifies014
contamination severity across multiple-choice015
and caption-based Visual Question Answering016
tasks. Evaluations on twelve MLLMs and five017
benchmarks reveal significant contamination,018
particularly in proprietary models and older019
benchmarks. Crucially, contamination some-020
times originates during unimodal pre-training021
rather than solely from multimodal fine-tuning.022
Our insights refine contamination understand-023
ing, guiding evaluation practices and improving024
multimodal model reliability.025

1 Introduction026

The development of MLLMs has exceeded expec-027

tations (Liu et al., 2023a; Lin et al., 2023), show-028

casing extraordinary performance on various mul-029

timodal benchmarks (Lu et al., 2022; Liu et al.,030

2023b; Song et al., 2024), even surpassing human031

performance. However, due to the partial obscurity032

associated with MLLMs training (OpenAI, 2023;033

Reid et al., 2024), it remains challenging to defini-034

tively ascertain the impact of training data on model035

performance, despite some works showing the em-036

ployment of the training set of certain datasets (Liu037

et al., 2023a; Chen et al., 2023; Bai et al., 2023b).038

The issue of data contamination, occurring when039

training or test data of benchmarks is exposed dur-040

ing the model training phase (Xu et al., 2024),041
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Figure 1: An analytical breakdown illustrating different
forms and origins of multimodal data contamination
across distinct training stages of MLLMs.

could potentially instigate inequitable performance 042

comparisons among models. This not only creates 043

a dilemma for users in model selection but also 044

poses a significant hurdle to further advancements 045

in this domain. 046

Existing contamination detection methods pri- 047

marily focus on LLMs (Yeom et al., 2018; Deng 048

et al., 2024; Dong et al., 2024), showing limitations 049

when applied to MLLMs, due to their multimodal 050

data complexity and multi-stage training processes 051

(Liu et al., 2023a; Li et al., 2023). Thus, system- 052

atic analytical frameworks tailored explicitly for 053

multimodal contamination are urgently needed. 054

In this study, we address three key questions: 055

• How can we effectively quantify and detect 056

multimodal data contamination? 057

• What is the degree of contamination across 058

different MLLMs and benchmark datasets? 059

• When is contamination predominantly intro- 060

duced—during unimodal pre-training or mul- 061

timodal fine-tuning? 062

To comprehensively answer these questions, we 063

first define Multimodal Data Contamination, as 064

it pertains to the modality of data sources exposed 065
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to the MLLMs, into two categories: Unimodal Con-066

tamination and Cross-modal Contamination, as il-067

lustrated in Figure 1. Subsequently, we unveil a068

detection framework designed explicitly as an an-069

alytical tool, MM-DETECT, which incorporates070

two methods, Option Order Sensitivity Test and071

Slot Guessing for Perturbed Caption, designed to072

handle two common types of Visual Question An-073

swering (VQA) tasks: multiple-choice and caption-074

based questions, respectively.075

To corroborate the validity and sensitivity of076

our approach, we deliberately induce contamina-077

tion in MLLMs, simulating realistic contamina-078

tion scenarios. Experimental results demonstrate079

the effectiveness of MM-DETECT in identifying080

varying contamination degrees. Our evaluations081

on twelve widely-used MLLMs across five preva-082

lent VQA datasets reveal significant contamination083

among both proprietary and open-source models.084

Critically, contamination is not only prevalent in085

multimodal training data but also can originates086

from unimodal pre-training phases, impacting older087

benchmarks disproportionately.088

In summary, this work provides the first sys-089

tematic analytical examination of multimodal data090

contamination, making the following explicit ana-091

lytical contributions:092

• We analytically characterize multimodal con-093

tamination into clearly defined unimodal and094

cross-modal categories, introducing MM-095

DETECT as an essential analytical tool.096

• We systematically quantify how benchmark097

leakage inflates performance metrics, provid-098

ing clear insights into dataset and model sus-099

ceptibility to contamination.100

• We present novel analytical insights indicating101

that contamination not solely emerges during102

the multimodal training stage but could also103

from unimodal pre-training stage, critically104

refining current understandings of contamina-105

tion dynamics.106

2 Preliminaries107

We formally define the multimodal data contamina-108

tion and outline the unique challenges associated109

with its detection.110

2.1 Definition of Multimodal Data 111

Contamination 112

In contrast to single-modal contamination, mul- 113

timodal contamination may arise from both uni- 114

modal and multimodal data sources, as depicted 115

in Figure 1. The training data for MLLMs gener- 116

ally consists of pure text pre-training data Dpretrain 117

and multimodal alignment or instruction-following 118

data Dvision. Consider an instance (x, i, y) from a 119

benchmark dataset D, where x represents the text 120

input, i is the image input, and y is the label. Data 121

contamination in MLLMs can be categorized into 122

the following two cases: 123

• Unimodal Contamination: The pair (x, y) 124

or the input x appears in Dpretrain. 125

• Cross-modal Contamination: The triplet 126

(x, i, y) appears in Dvision. 127

In both cases, models trained on these data may 128

gain an unfair advantage. 129

2.2 Challenges in Multimodal Detection 130

The challenges of multimodal contamination detec- 131

tion mainly arise from two aspects. 132

Challenge I: Inefficiency of Unimodal Methods. 133

Despite the prevalence of unimodal detection meth- 134

ods, their application in multimodal scenarios of- 135

ten encounters difficulties. For example, retrieval- 136

based methods (Brown et al., 2020; Touvron et al., 137

2023a) attempt to detect contamination by retriev- 138

ing large-scale corpora used for model training. 139

Yet, they struggle when retrieving multimodal in- 140

formation. Similarly, logits-based methods (Shi 141

et al., 2024; Yeom et al., 2018) rely on observ- 142

ing the distribution of low-probability tokens in 143

model outputs, but the disparity in token probabil- 144

ity distributions is less pronounced in instruction- 145

tuned MLLMs. Masking-based methods (Deng 146

et al., 2024), which assess training contamination 147

by evaluating a model’s ability to predict specific 148

missing or masked text, face challenges when im- 149

ages in multimodal samples provide clues, leading 150

to overestimated contamination detection. Finally, 151

comparison-based methods (Dong et al., 2024) 152

that measure contamination by comparing model 153

outputs with benchmark data prove to be ineffective 154

for image caption tasks due to low output similarity. 155

To validate these inefficiencies, we have conducted 156

comprehensive experiments with compelling re- 157

sults, which are detailed in Appendix A. 158
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Figure 2: The overview of proposed MM-DETECT framework.

Challenge II: Multi-stage Training in MLLMs.159

Another challenge in detecting contamination in160

MLLMs is the multi-stage nature of their train-161

ing (Yin et al., 2023). Each stage may be subject162

to data contamination. 1) Initially, the pretrain-163

ing corpus could contain the textual components164

of questions from benchmark samples. Moreover,165

in certain native multimodal model training (Reid166

et al., 2024), samples may be entirely exposed. 2)167

Subsequently, during multimodal fine-tuning, the168

model may utilize training samples of some bench-169

marks, leading to skewed performance improve-170

ments. 3) Furthermore, some models employ ex-171

tensive mixed image-text data from the internet for172

modality alignment training (Lin et al., 2023; Bai173

et al., 2023b), potentially introducing additional174

contamination. Given the challenges, the develop-175

ment of an effective detection framework for multi-176

modal contamination becomes an urgent need.177

Based on the discussion above, we have designed178

a detection method specifically tailored for multi-179

modal contamination, with a particular focus on180

VQA tasks. Additionally, we have developed a181

heuristic method to trace the introduction of con-182

tamination across different training phases.183

3 Detection Framework: MM-DETECT184

We introduce the multimodal contamination detec-185

tion framework, MM-DETECT, designed explic-186

itly to support our systematic analysis of contami-187

nation phenomena. The core philosophy of MM-188

DETECT is to detect the unusual discrepancies189

in model performance before and after semantic-190

irrelevant perturbations. As depicted in Figure 2,191

this framework operates in two primary steps:192

• The first step is to generate perturbed datasets193

using two methods: Option Order Sensitivity194

Test (§3.1) and Slot Guessing for Perturbed195

Captions (§3.2), tailored for multiple-choice 196

and image captioning tasks, respectively. 197

• The second step involves the application of 198

predefined metrics to detect contamination 199

(§3.3), conducting thorough analyses at both 200

the dataset and instance levels. 201

3.1 Option Order Sensitivity Test 202

This method is based on a reasonable and intuitive 203

premise that if the model’s performance is highly 204

sensitive to the order of the options, as shown in 205

Figure 3, it indicates potential contamination, lead- 206

ing the model to memorize a certain canonical or- 207

der of the options. 208

Figure 3: An example of Option Order Sensitivity
Test applied to a contaminated model.

Method Formulation. Let D be a dataset con- 209

sisting of n datapoints. Each datapoint di (i ∈ 210

{1, . . . , n}) comprises a question Qi, an asso- 211

ciated image Ii, and a set of answer choices 212

Ai = {a1i , a2i , . . . , ami }, where m is the number 213

of choices and the correct answer is denoted by aci . 214

To introduce positional variation, the set Ai is 215

randomly shuffled to obtain a new set A′
i, ensur- 216

ing that the index of the correct answer aci in A′
i 217

differs from its original position in Ai. The final 218

prompts, before and after shuffling, are constructed 219

by concatenating the image, question and choices: 220

P = Concat(Ii, Qi, Ai), 221
222

P ′ = Concat(Ii, Qi, A
′
i), 223
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where P and P ′ are the inputs to the model, and Qi224

and Ii remain unchanged throughout this process.225

3.2 Slot Guessing for Perturbed Caption226

This method is based on the intuition that if a227

model can predict a missing and important part of a228

sentence but fails with the back-translated version229

(from English to Chinese, then back to English), it230

likely indicates that the model has encountered the231

original sentence during training.232

Figure 4: A simple example shows the procedure.

As shown in Figure 4, the keywords identified233

are “woods” and “bike”. Since the image contains234

“woods”, a correct guess by the model may stem235

from its multimodal capabilities rather than data236

contamination. However, if the model fails to pre-237

dict “bike”, which is also present in the image, this238

may indicate potential leakage of this instance.239

Method Formulation. Let D be a dataset con-240

taining n datapoints. Each datapoint di (i ∈241

{1, . . . , n}) consists of an image-caption pair,242

where the caption Si describes the visual fea-243

tures of the corresponding image Ii. We first ap-244

ply a back-translation function, where we use the245

Google Translate API for Python to implement246

back-translation, to Si:1247

S′
i = fback-translate(Si).248

resulting in a paraphrased version S′
i. Next, we249

perform keyword extraction2 on both Si and S′
i:250

Ki = fkeyword(Si), K ′
i = fkeyword(S

′
i),251

where Ki and K ′
i denote the extracted keywords252

from Si and S′
i, respectively. We then apply a253

1A quantitative analysis of the semantic and lexical sim-
ilarity between the original and back-translated captions is
provided in Appendix B.1.

2We employ the Stanford POS Tagger (Toutanvoa and
Manning, 2000), targeting nouns, adjectives, and verbs, as
they encapsulate the core meaning of the sentences.

masking function fmask to replace the extracted 254

keywords with a placeholder token [MASK]: 255

Si,mask = fmask(Si,Ki), S
′
i,mask = fmask(S

′
i,K

′
i). 256

The final prompt guiding the model to complete 257

the masked-word prediction can be represented as: 258

Pi = Concat(Ii, Qi, Si,mask), 259

260P ′
i = Concat(Ii, Qi, S

′
i,mask). 261

3.3 Detection Metrics 262

Detection Metrics serve as the core analytical in- 263

struments within MM-DETECT. Having intro- 264

duced two detection methods, we now delineate 265

the atomic metrics for the detection pipeline, which 266

consists of two primary steps. 267

Step 1: Correct Rate Calculation. This step 268

assesses the model’s performance on benchmark 269

D before and after perturbation. We denote the 270

correct rate (CR) and perturbed correct rate (PCR) 271

uniformly for both Option Order Sensitivity Test 272

(using Accuracy) and Slot Guessing (using Exact 273

Match). Here, N and N ′ are the counts of correct 274

answers before and after perturbation, respectively. 275

They are calculated as: 276

CR =
N

|D|
, PCR =

N ′

|D|
. 277

Step 2: Contamination Degree Analysis. This 278

step quantifies the model’s contamination degree 279

based on the performance variation pre- and post- 280

perturbation. Specifically, we introduce two met- 281

rics to evaluate contamination at both dataset and 282

instance levels. 283

Dataset Level Metric. We evaluate the reduc- 284

tion in atomic metrics, denoted as ∆: 285

∆ = PCR− CR 286

This reduction indicates the model’s familiarity or 287

memory of the original benchmark relative to the 288

perturbed set, thereby offering insights into poten- 289

tial contamination at the dataset level. A signifi- 290

cant negative ∆ suggests potential extensive leak- 291

age in the benchmark dataset, leading to highly 292

perturbation-sensitive model performance. 293

Instance Level Metric. Despite a non- 294

significant or positive ∆, contamination may still 295

occur at the instance level, as some instances may 296

still have been unintentionally included during 297

training. To identify such instances, we compute 298
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X , the count of cases where the model provided299

correct answers before perturbation but incorrect300

answers after. The instance leakage metric Φ is301

then obtained by dividing X by the dataset size:302

Φ =
X

|D|
,303

where a larger Φ indicates a higher likelihood of304

instance leakage.305

Compared to methods relying solely on accuracy306

or perplexity, MM-DETECT explicitly highlights307

performance drop after perturbations, preventing308

exaggeration or underestimation of contamination.309

Moreover, it offers advantages of lower computa-310

tional overhead, higher sensitivity, and effective311

black-box applicability, thus serving as an essential312

analytical toolkit in our study.313

4 Evaluating MM-DETECT with314

Intentional Contamination315

This section tackles our first overarching research316

question— How can we effectively quantify and317

detect multimodal data contamination? To op-318

erationalise this goal, we break RQ1 into three319

subquestions:320

SQ1 (Effectiveness) Is MM-DETECT able to detect321

contamination regardless of where it is injected?322

SQ2 (Sensitivity) How finely can MM-DETECT323

measure different leakage levels?324

SQ3 (Bias Diagnostic) When training-set data leak,325

can MM-DETECT reveal the evaluation bias?326

We answer these sub-questions by adopting the327

LLaVA framework and training a suite of 7B-328

parameter models with intentionally contaminated329

data during the visual-instruction tuning phase. The330

contamination protocol and data split follow §5.1.331

4.1 MM-DETECT is An Effective Detector332

We reproduced the LLaVA-1.5-7B experiment to333

obtain a baseline model without contamination.334

Recognizing that contamination can occur any-335

where in the training data, we inserted contami-336

nated samples into the visual instruction tuning337

dataset (Dtuning) at three positions, early, mid, and338

late, creating two groups of contaminated training339

sets using 1340 ScienceQA test samples or 1000340

NoCaps validation samples. Corresponding mod-341

els, termed Early Cont., Mid Cont., and Late Cont.,342

were then trained for comparison with the baseline.343

Table 1 shows that incorporating contaminated344

data during training increases both the model’s per-345

Models
ScienceQA Test Set NoCaps Val. Set
CR PCR ∆ CR PCR ∆

Baseline 61.4 61.5 0.01 33.0 32.1 -0.9
Early Cont. 71.5 68.1 -3.4 37.5 32.0 -5.5
Mid Cont. 69.4 67.3 -2.1 38.5 35.1 -3.4
Late Cont. 70.2 66.9 -3.3 38.7 32.6 -6.1

Table 1: Detection results on contamination using the
ScienceQA test set and NoCaps validation set.

formance and its sensitivity to perturbations. Com- 346

pared with the baseline, ScienceQA-contaminated 347

models exhibit average increases in CR and PCR of 348

9.0% and 5.9%, while NoCaps-contaminated mod- 349

els show increases of 5.2% and 1.1%. Moreover, 350

all contaminated models demonstrate a marked de- 351

crease in ∆, confirming that MM-DETECT effec- 352

tively identifies data contamination. 353

4.2 MM-DETECT is Sensitive and 354

Fine-grained 355

We evaluated MM-DETECT’s sensitivity by vary- 356

ing leakage levels in the training set. Using the fully 357

contaminated model as our baseline, we trained 358

additional models with moderate and minimal con- 359

tamination, by inserting reduced amounts (10% and 360

50%) of contaminated data at the late position of 361

the training set, to assess leakage impact. 362
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Figure 5: Performance and atomic metrics evaluated
under varying leakage levels on the ScienceQA test set
and NoCaps validation set.

As illustrated in Figure 5, increasing contami- 363

nation from 10% to 50% to 100% results in cor- 364

responding increases in CR and PCR, alongside 365

progressively larger ∆ values. The findings con- 366

firm that our framework can accurately differentiate 367

between varying leakage levels in datasets. 368

4.3 MM-DETECT Diagnoses Evaluation Bias 369

from Training-set Leakage 370

We investigated whether MM-DETECT can detect 371

training set leakage by comparing models trained 372

with and without benchmark data contamination. 373

For the ScienceQA experiment, we appended 2000 374

ScienceQA training samples to the training dataset, 375
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creating a contaminated model. For the COCO376

experiment, we removed the COCO-Caption2017377

training data from the original training dataset, re-378

sulting in a model without leakage.379

Model Dataset CR PCR ∆

Clean ScienceQA 61.4 61.5 0.01
Leaked ScienceQA 64.3 63.8 -0.5

Clean COCO-Caption2017 32.5 31.9 -0.6
Leaked COCO-Caption2017 38.1 34.9 -3.2

Table 2: Performance of models trained without (Clean)
and with (Leaked) training set contamination.

Table 2 compares the models’ performance. On380

the ScienceQA test set, the contaminated model381

outperforms the clean model by 2.9% in CR and382

2.3% in PCR, with a ∆ of -0.5. On the COCO-383

Caption2017 validation set, the model trained with384

COCO data shows a ∆ of -3.2. The results indicate385

that training set leakage inflates performance and386

that MM-DETECT effectively detects it.387

Takeaways
Both training and test set leakage can result in un-
fairness, and the degree of contamination can be
detected through MM-DETECT effectively.

5 Assessing the Extent of Contamination388

in MLLMs389

In this section, we systematically quantify the ex-390

tent of contamination across various MLLMs and391

benchmarks, addressing our second research ques-392

tion—What is the degree of contamination?393

5.1 Setup394

Models. We conducted extensive evaluations on395

nine open-source MLLMs, including LLaVA-1.5-396

7B (Liu et al., 2023a), VILA1.5-3B (Lin et al.,397

2023), Qwen-VL-Chat (Bai et al., 2023b), fuyu-398

8b3, idefics2-8b (Laurençon et al., 2024), Phi-3-399

vision-128k-instruct (Abdin et al., 2024), Yi-VL-400

6B (AI et al., 2024), InternVL2-8B (Chen et al.,401

2023, 2024b), DeepSeek-VL2-Tiny (Wu et al.,402

2024), as well as three proprietary MLLMs: GPT-403

4o-2024-08-06 (OpenAI, 2023), Gemini-1.5-Pro-404

002 (Reid et al., 2024), and Claude-3.5-Sonnet-405

2024-06-204.406

Benchmark Datasets. Our analysis leverages407

two multi-choice datasets: ScienceQA (Lu et al.,408

2022) and MMStar (Chen et al., 2024a), along with409

3https://www.adept.ai/blog/fuyu-8b
4https://www.anthropic.com/news/

claude-3-5-sonnet

three caption datasets: COCO-Caption2017 (Lin 410

et al., 2015), NoCaps (Agrawal et al., 2019), and 411

Vintage5. MMStar and Vintage, owing to their 412

recent inception, serve to contrast leakage levels 413

with other datasets. We randomly selected 2000 414

and 1340 samples from ScienceQA’s training and 415

test sets, respectively, with 1000 samples from the 416

other datasets. Given the unavailability of public 417

test labels for COCO-Caption2017 and NoCaps, 418

we used their validation sets. 419

5.2 Main Results 420

Multi-choice Datasets. Table 3 yields several 421

conclusions: (1) Both open-source and propri- 422

etary models exhibit contamination. For exam- 423

ple, on the ScienceQA training set, both open- 424

source models like LLaVA-1.5-7B and idefics2-8b 425

and proprietary model Gemini-1.5-Pro show minor 426

contamination degree. (2) Proprietary models are 427

more contaminated. Claude-3.5-Sonnet, for in- 428

stance, registers a severe ∆ with higher Φ values 429

on both ScienceQA training and test sets, indicat- 430

ing extensive leakage. (3) Training set leakage is 431

more pronounced than test set leakage. On the 432

ScienceQA dataset, models generally exhibit larger 433

∆ values in the training set, for instance, Claude- 434

3.5-Sonnet shows ∆ = −5.3 on training versus 435

∆ = −2.4 on the test set, while most models have 436

near-zero ∆ on the test set. (4) Older benchmarks 437

are more prone to leak. The older ScienceQA 438

test set shows more severe leakage compared to the 439

newer MMStar validation set. 440

Caption Datasets. Table 4 yields several con- 441

clusions: (1) Both open-source and propri- 442

etary models exhibit contamination on caption 443

datasets. For example, in the COCO Validation 444

Set, open-source models such as DeepSeek-VL2- 445

Tiny and proprietary models like GPT-4o record 446

a significant contamination degree. (2) Leakage 447

levels vary significantly by benchmark. For ex- 448

ample, on the NoCaps Validation Set, open-source 449

models exhibit more pronounced contamination de- 450

gree than proprietary models, whereas the trend 451

5https://huggingface.co/datasets/
SilentAntagonist/vintage-artworks-60k-captioned

6Based on intentional contamination experiments in §4.1,
the degrees on multi-choice datasets are defined as follows:
∆ ∈ (−1.6,−0.2] for minor leakage, ∆ ∈ (−2.9,−1.6] for
partial leakage, and ∆ ≤ −2.9 for severe leakage.

7Based on intentional contamination experiments in §4.1,
the degrees on caption datasets are defined as follows: ∆ ∈
(−2.4,−1.1] for minor leakage, ∆ ∈ (−5.0,−2.4] for partial
leakage, and ∆ ≤ −5.0 for severe leakage.

6
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Model ScienceQA Training Set ScienceQA Test Set MMStar Validation Set

Metric CR PCR ∆ Φ CR PCR ∆ Φ CR PCR ∆ Φ

Open-source MLLMs
LLaVA-1.5-7B 59.7 58.6 -1.1 12.7 60.3 61.6 1.3 10.5 38.9 41.7 2.8 11.0
VILA1.5-3B 57.7 58.3 0.6 14.5 60.3 59.8 -0.5 14.8 38.6 37.6 -1.0 13.9
Qwen-VL-Chat 58.4 60.8 2.5 13.3 60.3 60.4 0.1 13.7 40.9 44.2 3.3 13.2
fuyu-8b 36.5 37.5 1.0 13.4 37.4 36.9 -0.5 14.9 28.2 27.0 -1.2 17.7
idefics2-8b 85.1 84.0 -1.2 3.7 84.0 84.3 0.3 2.8 48.2 49.3 1.1 7.9
Phi-3-vision-128k-instruct 90.5 90.4 -0.1 4.6 88.4 89.1 0.7 3.9 48.7 51.9 3.2 7.2
Yi-VL-6B 60.5 61.8 1.3 10.0 59.5 61.3 1.8 9.6 38.8 44.0 5.2 9.3
InternVL2-8B 94.1 93.9 -0.3 2.0 92.3 93.1 0.8 1.7 56.9 60.1 3.2 5.1
DeepSeek-VL2-Tiny 86.4 86.5 0.1 5.3 87.1 86.9 -0.2 5.3 51.1 52.1 1.0 10.7

Proprietary MLLMs
GPT-4o 69.9 70.0 0.1 2.7 69.1 69.7 0.6 2.8 48.6 50.5 1.9 9.4
Gemini-1.5-Pro 68.5 67.9 -0.6 6.6 66.5 66.2 -0.3 7.1 45.7 45.5 -0.2 9.9
Claude-3.5-Sonnet 70.3 65.0 -5.3 15.3 67.3 64.9 -2.4 12.4 36.3 36.4 0.1 15.9

Table 3: Comparison of MLLMs on multi-choice datasets. Bold values represent the most significant ∆ or Φ; color
codes denote contamination degree: green for minor leakage, yellow for partial leakage, and red for severe leakage.6

Model COCO Validation Set NoCaps Validation Set Vintage Training Set

Metric CR PCR ∆ Φ CR PCR ∆ Φ CR PCR ∆ Φ

Open-source MLLMs
LLaVA-1.5-7B 34.6 34.0 -0.6 19.0 30.9 28.5 -2.4 17.9 10.8 10.1 -0.7 9.0
VILA1.5-3B 19.1 20.5 1.4 13.0 19.1 20.5 1.4 13.0 1.5 2.2 0.7 1.5
Qwen-VL-Chat 32.2 30.3 -1.9 19.2 28.7 27.3 -1.4 16.7 15.1 15.4 0.3 12.4
fuyu-8b 9.6 10.6 1.0 7.8 10.0 9.8 -0.2 8.3 2.4 3.3 0.9 2.3
idefics2-8b 43.5 42.3 -1.2 21.2 42.6 37.5 -5.1 23.3 18.5 17.0 -1.5 14.5
Phi-3-vision-128k-instruct 38.8 39.3 0.5 19.4 36.9 33.3 -3.6 19.7 17.4 11.7 -5.7 14.3
Yi-VL-6B 43.9 43.3 -0.6 19.4 37.2 36.1 -1.1 17.5 3.3 4.2 0.9 2.8
InternVL2-8B 53.3 51.9 -1.4 20.4 48.0 46.2 -1.8 20.9 28.0 28.7 0.7 18.8
DeepSeek-VL2-Tiny 23.8 21.4 -2.4 13.5 19.3 18.1 -1.2 12.2 7.5 6.9 -0.6 6.3

Proprietary MLLMs
GPT-4o 58.1 54.4 -3.7 23.1 54.2 55.1 0.9 19.4 36.3 38.4 2.1 20.1
Gemini-1.5-Pro 57.5 55.3 -2.2 21.6 51.2 52.0 0.8 18.7 46.3 41.0 -5.3 28.3
Claude-3.5-Sonnet 53.7 51.0 -2.7 21.8 50.8 51.5 0.7 20.0 35.2 33.0 -2.2 21.3

Table 4: Comparison of MLLMs on caption datasets. Bold values represent the most significant ∆ or Φ; color codes
denote contamination degree: green for minor leakage, yellow for partial leakage, and red for severe leakage.7

reverses on the COCO Validation Set. These find-452

ings confirm that caption datasets are vulnerable to453

leakage, with proprietary models generally exhibit-454

ing more pronounced contamination effects.455

Takeaways
Multimodal data contamination, at both dataset and
instance levels, is prevalent in open-source and pro-
prietary MLLMs across multi-choice and image cap-
tion datasets.

6 Identifying the Origin of456

Contamination in MLLMs457

In this section, we address our third research ques-458

tion—When is contamination predominantly459

introduced? Although the training data for some460

MLLMs is openly documented, an important ques-461

tion remains: if contamination does not arise dur-462

ing the multimodal training phase, could it stem463

from the unimodal (pre-training) phase, as defined464

in §2.1? To address this possibility, we examined 465

the underlying LLMs of the evaluated MLLMs and 466

conducted a series of experiments (§6.1). We also 467

explored the origins of cross-modal contamination 468

arising during visual instruction tuning (§6.2). 469

6.1 Heuristic Detection of Unimodal 470

Pre-training Contamination 471

We employed a heuristic approach based on the 472

intuition that if an LLM can correctly answer an 473

image-required question without the image when 474

random guessing is effectively inhibited, it may 475

indicate the leakage of that instance. 476

Experiment Setup. We used MMStar as the 477

benchmark, where every question relies on vi- 478

sual input for correct answers. The tested mod- 479

els include LLaMA2-7B (Touvron et al., 2023b) 480

(used by LLaVA-1.5 and VILA), Qwen-7B (Bai 481

et al., 2023a) (used by Qwen-VL), Mistral-7B-v0.1 482
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(Jiang et al., 2023) (used by idefics2), Phi-3-small-483

128k-instruct (Abdin et al., 2024) (used by Phi-3-484

vision), Yi-6B (AI et al., 2024) (used by Yi-VL),485

and Internlm2-7B (Cai et al., 2024) (used by In-486

ternVL2). To inhibit random guessing, we ap-487

pended the prompt “If you do not know the answer,488

output I don’t know” to the instructions. A sanity489

check in Appendix B.2 confirms that this uncer-490

tainty clause effectively suppresses lucky guesses,491

validating its inclusion in our main protocol. Ac-492

curacy — the frequency with which models cor-493

rectly answer questions without image input— is494

reported as the primary metric. Note that we did495

not evaluate Fuyu-8B and proprietary models since496

their unimodal LLM components and training data497

remain undisclosed.498

Model Accuracy ΦM

LLaMA2-7b (LLaVA-1.5 & VILA) 25.6 11.0
Qwen-7B (Qwen-VL) 13.2 13.2
Internlm2-7B (InternVL2) 11.0 5.1
Mistral-7B-v0.1 (idefics2) 10.7 7.9
Phi-3-small-128k-instruct (Phi-3-vision) 6.1 7.2
Yi-6B (Yi-VL) 3.4 9.3

Table 5: Contamination rates of LLMs used by MLLMs.
ΦM denotes the Φ of the respective MLLMs.
Main Results. Table 5 yields several conclusions:499

(1) Contamination occurs in LLM. All models500

exhibit varied contamination rates, indicating that501

their pre-training data likely included text from502

multimodal benchmarks. (2) Elevated LLM con-503

tamination correlates with increased MLLM504

leakage. For instance, VILA1.5-3B and Qwen-VL-505

Chat exhibit significant Φ values that mirror their506

underlying LLM contamination levels. These find-507

ings suggest that contamination in these MLLMs508

may originate partly from the LLMs’ pre-training509

phase, rather than solely from multimodal training.510

6.2 Analyzing Cross-modal Contamination in511

Multimodal Fine-tuning512

To investigate the origins of cross-modal contami-513

nation, we scrutinize the visual instruction tuning514

data of MLLMs. We delve into the construction515

process of three benchmark datasets: ScienceQA,516

COCO Caption, and Nocaps, comparing them with517

the training data and its sources of various open-518

source MLLMs to analyze the degree of overlap.519

As Table 6 illustrates, MLLMs marked in red520

and yellow typically exhibit a significant contami-521

nation degree. Yet, even MLLMs labeled in green522

aren’t exempt from the risk of cross-modal con-523

tamination. This is because some models have524

been trained on large-scale interleaved image-text525

Model ScienceQA COCO Caption Nocaps

Phi-3-Vision 0.7 0.5 -3.6
VILA -0.5 1.4 1.4

Idefics2 0.3 -1.2 -5.1
LLaVA-1.5 1.3 -0.6 -2.4

Yi-VL 1.8 -0.6 -1.1
DeepSeek-VL2 -0.2 -2.4 -1.2
Qwen-VL-Chat 0.1 -1.9 -1.4

InternVL2 0.8 -1.4 -1.8

Table 6: Depiction of the overlap between the training
data of MLLMs and the benchmarks, as well as the
contamination degree ∆ of MLLMs on benchmarks.
Green signifies no overlap, yellow suggests potential
overlap, and Red indicates partial or entire overlap.

datasets (e.g., OBELICS (Laurenon et al., 2023)), 526

datasets derived from online sources (e.g., Concep- 527

tual Caption (Sharma et al., 2018)), or in-house 528

data. Furthermore, some models haven’t fully dis- 529

closed their training data, which may lead to over- 530

looked potential leaks in benchmark datasets. 531

Takeaways
The contamination in MLLMs may not only stem
from cross-modal contamination but also from uni-
modal contamination, both of which can signifi-
cantly impact the overall performance.

7 Conclusion and Future Work 532

In this study, we systematically analyzed multi- 533

modal data contamination in MLLMs through our 534

proposed detection framework, MM-DETECT. We 535

demonstrated that MM-DETECT effectively quan- 536

tifies and detects varying contamination degrees, 537

revealing significant performance biases induced 538

by benchmark leakage. Importantly, we identified 539

that contamination originates notably from both 540

unimodal pre-training and multimodal fine-tuning 541

phases, impacting the reliability and fairness of 542

multimodal evaluations. 543

Future work will focus on two key areas: 544

• Firstly, standardizing the use of multimodal 545

datasets and reporting potential contamination 546

impacts to minimize contamination, thereby 547

enhancing data consistency and quality. 548

• Secondly, creating a continuously updated 549

benchmarking system for the ongoing eval- 550

uation of multimodal model performance. 551

This will support advancements and broader appli- 552

cations in this field. 553
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Limitations554

We acknowledge several limitations in our work.555

First, this work is limited to discussions around vi-556

sual modalities, and does not yet cover other modal-557

ities such as audio or video. Second, we only se-558

lected widely used and representative multimodal559

datasets for detection, including multiple-choice560

datasets and caption datasets, without testing ad-561

ditional datasets, such as open-ended generation562

and cloze questions. However, we speculate that563

the method Slot Guessing for Perturbed Caption564

may also apply to other types of image-feature-565

analyzing benchmarks. Third, the effectiveness of566

Option Order Sensitivity Test can be undermined567

by option shuffling, which, while potentially im-568

proving model performance, is computationally ex-569

pensive and may increase the training cost. Fourth,570

as a perturbation-based black-box detector, MM-571

DETECT might underestimate contamination if a572

model generalizes sufficiently to answer perturbed573

questions correctly. Although dataset-level evalua-574

tions reduce this risk, completely eliminating such575

false-negative cases remains an open challenge.576
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A Inefficiency of Unimodal Methods 862

We demonstrate the results of traditional uni- 863

modal contamination detection methods applied 864

to MLLMs. 865

A.1 Logits-base 866

These methods determine contamination by observ- 867

ing the distribution of low-probability tokens in 868

model outputs. However, MLLMs typically un- 869

dergo instruction fine-tuning, which enhances their 870

instruction-following capabilities, leading to less 871

significant differences in token probability distri- 872

butions. As shown in Table 7, LLaVA-1.5-13b 873

exhibits extremely low perplexity on multimodal 874

benchmark datasets. 875

Dataset Perplexity Split

ScienceQA 1.4498 Training Set
MMStar 1.4359 Validation Set

COCO-Caption2017 1.7530 Validation Set
NoCaps 1.8155 Validation Set

Table 7: Perplexity of LLaVA-1.5-13b on various mul-
timodal benchmarks (100 samples randomly selected
from each dataset).

A.2 Masking-base 876

These methods involve masking phrases or sen- 877

tences and providing data from the benchmark to 878

guide the model in filling in the missing parts. How- 879

ever, multimodal datasets often contain images that 880

include the masked portions of sentences, effec- 881

tively providing answers to the model. This results 882
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in significantly higher success rates for MLLMs883

in predicting missing parts compared to unimodal884

language models, leading to exaggerated contam-885

ination detection. As shown in Table 8, LLaVA-886

1.5-13b has a high probability of Exact Match for887

predicting the masked word.888

Dataset Exact Match ROUGE-L F1 Split

COCO-Caption2017 0.24 0.36 Validation Set
NoCaps 0.22 0.29 Validation Set

Table 8: Contamination detection of LLaVA-1.5-13b
using TS-Guessing (question-based) on various mul-
timodal benchmarks (100 samples randomly selected
from each dataset).

A.3 Comparison-base889

These methods identify contamination by compar-890

ing the similarity between models’ outputs and891

benchmark data. However, MLLMs often undergo892

data augmentation, causing their outputs to diverge893

significantly from the labels in benchmark data,894

making effective contamination detection challeng-895

ing. From Table 9, we can see that CDD (Contami-896

nation Detection via Output Distribution) indicates897

a contamination metric of 0% across all multimodal898

benchmark datasets.899

Dataset Contamination Metric Split

COCO-Caption2017 0.0000% Validation Set
NoCaps 0.0000% Validation Set

Table 9: Contamination detection of LLaVA-1.5-13b us-
ing CDD (Contamination Detection via Output Distribu-
tion) on various multimodal benchmarks (100 samples
randomly selected from each dataset).

B Other Experiments900

B.1 Semantic & Lexical Similarity After901

Back-Translation902

Setup. To quantify how much meaning and word-903

ing change during our caption perturbation step904

(§3.2), we applied an English→Chinese→English905

back-translation to every caption in three validation906

splits – COCO-Caption, NoCaps, and our Vintage907

dataset. For each original (c) and back-translated908

caption (c̃) we computed909

• SBERT cosine similarity (Reimers and910

Gurevych, 2019) as a sentence-level semantic911

score, and912

• BLEU-4 (Papineni et al., 2002) as a token- 913

overlap lexical score. 914

We additionally report the Pearson correlation be- 915

tween the two metrics across captions within each 916

dataset. 917

Dataset Avg. SBERT ↑ Avg. BLEU ↑ Correlation r

COCO Caption 0.894 0.236 0.386
NoCaps 0.887 0.264 0.410
Vintage 0.914 0.441 0.423

Table 10: Average semantic (SBERT) and lexi-
cal (BLEU-4) similarity between original and back-
translated captions, together with their Pearson correla-
tion (r).

Key Observations. 918

• High semantic preservation. All three 919

datasets record SBERT scores close to 0.9, 920

indicating that back-translation keeps the 921

meaning of captions largely intact; the VIN- 922

TAGE split achieves the strongest preservation 923

(0.914). 924

• Substantial lexical variation. BLEU-4 val- 925

ues are comparatively low, showing that 926

wording and surface forms differ consider- 927

ably—consistent with the presence of syn- 928

onym substitutions and syntactic reshuffling 929

introduced by back-translation. 930

• Weak yet positive coupling. Pearson correla- 931

tions between the two metrics lie in the 0.38- 932

0.42 band, suggesting only a mild positive 933

relationship: captions that keep more tokens 934

also tend to retain semantics, but plenty of 935

cases preserve meaning even with low lexical 936

overlap. 937

These results justify using back-translation as a 938

semantics-preserving yet lexically diversifying per- 939

turbation in our contamination-detection pipeline. 940

B.2 Sanity Check for the “I don’t know” 941

Instruction 942

Setup. To verify that appending the uncertainty 943

clause “If you do not know the answer, output 944

“I don’t know”.” effectively suppresses random 945

guessing, we performed a pilot experiment on 1 000 946

randomly sampled questions from MMSTAR. All 947

images were removed, so a truly vision-grounded 948

model should either fail or explicitly abstain. We 949
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evaluated the unimodal LLaMA2-7B language950

model under two settings:951

• Deter: deterministic decoding with the uncer-952

tainty instruction;953

• Non-Deter: deterministic decoding without954

the instruction.955

Results. Table 11 shows that the instruction956

causes the model to respond “I don’t know” 238957

times and reduces apparent accuracy from 44.8%958

to 25.6% (a drop of 19.2%). This confirms that959

nearly half of the seemingly correct answers in the960

uninstructed setting are likely due to lucky guesses961

rather than genuine reasoning, justifying our deci-962

sion to include the clause in all main experiments.963

Setting Accuracy (%) # “I don’t know”

Deter (+ instruction) 25.6 238
NonDeter (- instruction) 44.8 0

Table 11: Effect of the uncertainty instruction on
LLaMA2-7B.

“I don’t know” will therefore be treated as an964

explicit abstention in the main study, ensuring re-965

ported accuracies reflect genuine visionlanguage966

capabilities rather than random chance.967
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