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Abstract
Concept Bottleneck Models (CBMs) propose to
enhance the trustworthiness of AI systems by
constraining their decisions on a set of human-
understandable concepts. However, CBMs typi-
cally assume that datasets contains accurate con-
cept labels—an assumption often violated in prac-
tice, which we show can significantly degrade per-
formance (by 25% in some cases). To address this,
we introduce the Concept Preference Optimiza-
tion (CPO) objective, a new loss function based
on Direct Preference Optimization, which effec-
tively mitigates the negative impact of concept
mislabeling on CBM performance. We provide an
analysis on some key properties of the CPO objec-
tive showing it directly optimizes for the concept’s
posterior distribution, and contrast it against Bi-
nary Cross Entropy (BCE) where we show CPO
is inherently less sensitive to concept noise. We
empirically confirm our analysis finding that CPO
consistently outperforms BCE in three real-world
datasets with and without added label noise. We
make our code available on Github1.

1. Introduction
It is a well-known adage, etched in the memory of any com-
puting student, that “garbage in” leads to “garbage out.” Yet,
when designing new machine learning (ML) methods whose
success hinges on the availability of high-quality labeled
data, this consideration is usually left undiscussed. We
show that this oversight affects Concept Bottleneck Models
(CBMs) (Koh et al., 2020), a popular but label-hungry fam-
ily of interpretable neural architectures, when trained with
mislabeled concepts. As a remedy, we propose a learning
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objective that aids CBMs to learn tasks even in the presence
of label noise.

CBMs have emerged as a promising solution to the opacity
of traditional Deep Neural Networks (DNNs). By leverag-
ing human-understandable concepts as intermediate repre-
sentations during inference, CBMs can explain their pre-
dictions using high-level concepts (e.g., “has tail”, “has
whiskers”, etc.) relevant to their downstream task (e.g.,

“cat”). This hierarchical formulation enables experts inter-
acting with a CBM at test time to intervene, or correct, a
mispredicted concept and trigger an update to the CBM’s
output prediction (Shin et al., 2023). With their intervenabil-
ity (Marcinkevičs et al., 2024) and interpretability, CBMs
are ideal model candidates for high-stakes tasks where veri-
fiability is paramount.

Although promising, CBMs come with a significant con-
straint: their training requires the set of correct concept
annotations for all samples. In practice, it is unrealistic
to assume that potentially a hundred concepts per datum
would be correctly labeled. As a point of reference, a recent
study concludes that 12% of the ImageNet-1K animal val-
idation images have an incorrect label (and “some classes
having > 90% of images incorrect labels”) (Luccioni &
Rolnick, 2023). We might expect those percentages to be
even higher for concept labels. Further, within real-world
domains where CBMs are intended to be deployed, such as
healthcare, datasets are inherently noisy (Sylolypavan et al.,
2023) and plagued with subjective labels (Wei et al., 2024).
Additionally, regardless of the correctness of the labeled
data, the training pipeline of CBMs depends on data aug-
mentations (e.g., random crops/flips, see Figure 1) that can
obscure concepts. Such a training pipeline makes some con-
cept mislabelling inevitable in CBMs, potentially affecting
them even under optimal labels. Thus, developing CBMs
that are robust to concept-label noise can significantly en-
hance their usability in real-world tasks (even when task
labels are correct).

In this work, we take inspiration from the field of Preference
Optimization (PO), which relaxes the assumption made in
traditional supervised ML that their training data is sampled
from the optimal data distribution. PO algorithms only
assume preference of the preferred training labels, rather
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Figure 1. Visualization of the behavior of LCPO and LBCE under
different scenarios, where the concepts are sampled from the opti-
mal policy π∗, the empirical data µ and the amortized sampling
policy πθ . In detail the scenarios for the concepts are: Beak color
where the not-optimal, but not worst concept (orange) is preferred
over incorrectly sampled (red). Throat color where sampled and
empirical data align as optimal (green). Beak shape where both
are incorrect. We analyze how this impacts LBCE and LCPO gradi-
ents: LCPO may sample incorrect concepts, leading to no gradient
updates and reduced sensitivity to noise, while LBCE updates on
all samples, regardless of correctness.

than their correctness, a relaxation that has been found to be
particularly useful in noisy settings, such as recommender
and information retrieval systems (Kaufmann et al., 2023;
Bengs et al., 2021).

We propose Concept Preference Optimization (CPO), a pol-
icy optimization-inspired objective loss for CBMs. Figure 1
illustrates how CPO leverages pairwise comparisons of con-
cept preferences to guide updates toward preferred concepts
while mitigating the impact of incorrect gradients. Unlike
traditional likelihood-based learning, which updates on all
samples regardless of correctness, CPO selectively adjusts
based on sampled preferences. This reduces sensitivity to
noise by being able to mitigate incorrect gradient updates
when incorrect concepts are sampled. Our analysis shows
that CPO is equivalent to learning the posterior distribution
over concepts, leading to more robust training. Empirically,
we demonstrate that CPO not only improves CBM perfor-
mance in noise-free settings but also significantly alleviates
the impact of concept mislabeling.

2. Related Work
Concept Learning (CL) Concept Learning is a subfield
of eXplainable AI (XAI) where models are designed to
explain their prediction using human-understandable units
of information, or concepts (Bau et al., 2017; Kim et al.,
2018), that are relevant for a task of interest (Poeta et al.,
2023). While CL methods use diverse approaches to pro-
duce concept-based explanations, most can be framed within

the context of a Concept Bottleneck Model (CBM) (Koh
et al., 2020). A CBM is a neural architecture composed
of (1) a concept predictor πθ(c | x), which maps input
features x to a predicted distribution c over a set of pre-
defined concepts, and (2) a label predictor fϕ(c), which
maps the set of predicted concepts c to a downstream label
y. By conditioning its task predictions on a set of concepts,
CBMs can explain their prediction through their predicted
concepts. They also allow for concept interventions, where,
at test time, an expert interacting with the CBM can correct
a handful of its mispredicted concepts leading to significant
improvements in task accuracy (Shin et al., 2023).

Recent approaches have expanded the reach of CBMs across
varying real-world setups. Concept Embedding Models
(CEMs) (Espinosa Zarlenga et al., 2022) enhance the ex-
pressivity of concept representations to enable CBMs to
be competitive in datasets with incomplete (Yeh et al.,
2020) concept annotations. Post-hoc CBMs (Yuksekgonul
et al., 2023), LaBOs (Yang et al., 2023), and Label-free
CBMs (Oikarinen et al., 2023) instead address the diffi-
culty of sourcing concept labels and retraining models by
exploiting foundation and pretrained models. Further works
improve the effectiveness of concept interventions by intro-
ducing new training losses (Espinosa Zarlenga et al., 2023),
intervention policies (Chauhan et al., 2022), or considering
inter-concept relationships (Havasi et al., 2022; Steinmann
et al., 2023; Vandenhirtz et al., 2024; Raman et al., 2024).

Among these, the closest to our work are Probabilistic
CBMs (ProbCBM) (Kim et al., 2023) and Stochastic CBMs
(SCBMs) (Vandenhirtz et al., 2024). Both approaches frame
CBMs probabilistically and learn to amortize the posterior
distribution of an auxiliary latent variable between the con-
cepts and the input data. ProbCBMs amortize the latent’s
posterior using a diagonal covariance matrix to estimate
concept uncertainty. In contrast, SCBMs amortize the full
covariance matrix and use it to estimate joint concept distri-
butions for more efficient interventions. Both approaches
have their benefits, but they both approximate the posterior
of a latent variable and not the concept distributions. Con-
versely, we show how the CPO objective is equivalent to
learning the posterior distribution of the concepts.

Preference Optimization (PO) PO is a powerful learning
framework when the training labels are suboptimal, such as
in recommender and information retrieval systems (Yue &
Joachims, 2009; Shivaswamy & Joachims, 2012; Radlinski
et al., 2008; Dudı́k et al., 2015). At their core, PO algo-
rithms focus on learning a policy in setups where we lack an
explicit reward signal but instead have access to relative pref-
erences between pairs of labels – a weaker constraint. PO
has become particularly important in the training of Large
Language Models (LLMs) in the form of Reinforcement
Learning from Human Feedback (RLHF), which is used
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to guide policy optimization based on qualitative feedback
(Ouyang et al., 2022b; team, 2024). While powerful, this ap-
proach is computationally expensive as the reward function
and policy are trained separately. To alleviate this, Rafailov
et al. (2023) introduce the Direct Preference Optimization
(DPO) objective, which streamlines the process by jointly
training both the reward function and policy.

Akin to traditional likelihood-based optimization ap-
proaches, DPO has the added benefit of being differentiable.
In contrast to likelihood-based learning, however, DPO does
not require a set of training labels sampled from the opti-
mal data distribution, instead only assuming that a prefer-
ence exists between any pair of labels (Bengs et al., 2021).
Assuming optimal labels makes likelihood-based methods
prone to overfitting to simple patterns (Arpit et al., 2017),
making them vastly less robust to label noise (Goodfellow
et al., 2016). Such a limitation is particularly relevant for
traditional CBM training pipelines, which often include data
augmentations and sample mislabels that can lead to con-
cept labels differing from the optimal ones. To alleviate
this, we extend the DPO objective to CBMs. We find that,
as in language and retrieval tasks, training CBMs with our
objective alleviates the effect of label noise.

3. Background
In this work, we approach learning CBMs through the use
of PO and thus, adapt our notation accordingly.

Concept Bottleneck Models Concept Bottleneck Mod-
els (CBMs) (Koh et al., 2020) assume their training sets
(X, C, Y) are sampled i.i.d. from an empirical distribution
µ(c, x, y), where x ∈ X are the input features, c ∈ C are
the binary concepts labels c = {c1, ..., ck}, and y ∈ Y are
the task labels. We assume that µ(c, x, y) may not necessar-
ily be the same as d∗(c, x, y), the optimal data distribution
sampled from the optimal policy π∗. Specifically, we as-
sume that they only differ at the concept level, meaning the
empirical distribution’s concept labels may be noisy while
the task labels are always correct. We argue, however, that
this difference is likely in practice as concept-specific noise
may be accidentally added during training because of com-
mon data augmentations that may occlude concepts (e.g.,
random crops or shifts, see Figure 1). Moreover, concept-
specific noise may naturally arise from subjective or fatigued
labeling (Sylolypavan et al., 2023; Wei et al., 2024).

CBMs consist of two sub-models. First, a concept predictor,
πθ : X→ Ck, maps the input x onto an interpretable layer
composed of predicted concepts, ĉ. The concept predic-
tor is usually initialized using a pretrained image encoder
kθ. Then, a task predictor, fϕ : Ck → Ym, maps these
predicted concepts to the task labels ŷ. In this work, we
focus on jointly trained CBMs, which are trained end-to-
end by minimizing the following objective weighted by a

hyperparameter λ ∈ R:

LCBM = LCE(y, fϕ(c)) + λLBCE(c, πθ(c|x)).

The concept objective above optimizes the binary cross
entropy (BCE) between the policy’s predictions and the em-
pirical data, which is known to be suboptimal under noisy
settings (Goodfellow et al., 2016). Due this sensitivity, we
take inspiration from modern PO algorithms, deriving a sim-
ple and computationally efficient objective that is equivalent
to approximating the concept’s posterior distribution and is
more robust to noise compared to BCE.

Direct Preference Optimization (DPO) Traditionally,
preference optimization using RLHF algorithms (Kauf-
mann et al., 2023) relies on learning a reward function
through the Bradley-Terry preference model (Ouyang et al.,
2022a; Kaufmann et al., 2023). Given a preference dataset
(cw, cl, x, y) ∼ µp one can learn a reward function capable
of distinguishing preferred concepts cw from dispreferred
ones cl by optimizing

max
rψ

E(cw,cl,x)∼µp [log σ(rψ(cw, x)− rψ(cl, x))]

Where rψ is a parameterized reward function learnt through
the optimization process and σ is the sigmoid function. Us-
ing this learned reward function, a policy can be trained
with any RL algorithm. Most commonly employed is the
proximal policy optimization (Schulman et al., 2017) algo-
rithm, which imposes a KL constraint with a prior π0(c|x)
on the standard reward maximization objective,

max
πθ

Ex∼µ,c∼πθ [rψ(x, c)] − βDKL (πθ(c|x) ∥ π0(c|x)) (1)

where β is a hyperparameter controlling the prior’s strength.
However, this two-step procedure is computationally expen-
sive and unstable. To address this, Rafailov et al. (2023)
proposed the Direct Preference Optimization (DPO) algo-
rithm. Showing that the optimal policy for this optimization
problem can be expressed as

π∗(c|x) = 1
Z(x)π0(c|x) exp

(
1
β

r∗(x, c)
)

(2)

where Z(x) =
∑
c π0(c|x) exp

(
1
β r∗(x, c)

)
is the partition

function, and r∗(x, c) represents the optimal reward. Con-
sequently, the optimal reward function can be expressed in
terms of the optimal policy:

r∗(x, c) = β log π∗(c|x)
π0(c|x) + β log Z(x) (3)

Using this formulation, Equation 1 simplifies to

max
πθ

E(cw,cl,x)∼µ

[
log σ

(
log πθ(cw|x)

π0(cw|x) − log πθ(cl|x)
π0(cl|x)

)]
(4)

which is an offline objective that jointly trains the policy
and reward functions.
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4. Preference Optimization for CBMs
Although one could directly optimize the objective in Equa-
tion 4, doing so for CBMs would require a labeled dataset
where preferences in concepts are explicitly specified. To
circumvent this issue, we can leverage the empirical dataset
and state its preference over a concept set sampled from πθ.
The preference over a pair of concepts should hold specif-
ically early on in training, where the policy is suboptimal
compared to the empirical data. Throughout the rest of this
section, we formally describe this algorithm, showing some
key similarities and differences between it and LBCE.

4.1. Concept Bottleneck Preference Optimization

To leverage DPO to learn πθ, we re-formalize it as an online
learning algorithm. We collect negative concept sets by
sampling from the policy conditioned on the input features
c′ ∼ πθ(c|x).2 We can then compare these negatively sam-
pled concept sets with those sampled from the empirical
data c ∼ µ, where we assume that the empirical set is pre-
ferred over the sampled set (i.e., c ≻ c′). Note that this is
a weaker assumption than that of traditional CBMs, as we
only assume a preference over c rather than its correctness.
Using this, we introduce the Concept Preference Optimiza-
tion (CPO) objective, an online formulation of Equation 4:

LCPO = −E(x,c)∼µ
c′∼πθ

[
log σ

(
log πθ(c|x)

π0(c|x) − log πθ(c′|x)
π0(c′|x)

)]
.

(5)

When used in language modeling, π0 is defined as the model
after a supervised fine-tuning procedure. Here, we train the
model from scratch. In practice, we could impose a prior on
the concept labels which relate to either the input or the task
label e.g., π0(c|x, y). We briefly explore such applications
in § 5.4, but otherwise assume a uniform prior unless oth-
erwise stated, leaving further explorations as future work.
These assumptions simplify the CPO algorithm as follows:

Proposition 4.1. Assuming that π0(c|x) follows a uniform
distribution over binary concepts, we have:

LCPO ∝ −Ec,x∼D,c′ ̸=c∼πθ
[

log(πθ(c|x))
]
. (6)

A proof for this proposition is given in App. C.1. Simply put,
the above states that LCPO is proportional to optimizing the
binary cross-entropy when πθ samples concepts that differ
from those in the empirical distribution. LCPO is propor-
tional to the objective in Equation 6, and not equal, because
when the sampled concepts are equal to the empirical ones,
the objective is constant, i.e., log πθ(c|x)

π0(c|x) − log πθ(c′|x)
π0(c′|x) = 0

in Equation 5. The equivalence to the log-likelihood when

2In practice, we use hard Gumbel-Softmax sampling (Jang
et al., 2017) to ensure end-to-end differentiability. Here, we sample
a single concept for each image in each iteration, but one could
potentially sample multiple per image to increase performance.

the sampled concepts are not equal to the empirical ones
relies on assuming a uniform prior.

Gradient Analysis Proposition 4.1 highlights a similarity
between LCPO and LBCE. Therefore, we can study their
gradients to understand their key differences better. Under
our previous assumptions, we can express the expected
gradient of LCPO as

E[∇θLCPO] = 1
N

∑
(c,x)∼µ
c′∼πθ

(πθ(c|x) − 1)πθ(c′|x)∇θkθ

= 1
N

∑
(c,x)∼µ

(πθ(c|x) − 1) (1 − πθ(c|x)) ∇θkθ

where kθ refers to the pre-trained image encoder tradi-
tionally used to generate concept representations. A full
derivation of this equality, which exploits the fact that
we only have a nonzero gradient when c′ ̸= c and thus
π(c′|x) = 1− π(c|x), is given in App. C.1.

This result shows that LCPO’s gradient is LBCE’s gradient
weighted by how confident the policy is in the sampled con-
cept. This yields the following bound on the CPO gradient:

Proposition 4.2. Under the same assumption as Proposi-
tion 4.1, the expected norm of the LCPO’s gradient is a lower
bound of LBCE’s expected gradient. That is:∥∥E[∇θLCPO]

∥∥
2 ≤

∥∥E[∇θLBCE]
∥∥

2

Proof. As 0 ≤ π(c|x) ≤ 1, we have that∥∥ ∑
(c,x)∼µ

(π(c|x) − 1)(1 − π(c|x))
∥∥

2
≤

∥∥ ∑
(c,x)∼µ

(π(c|x) − 1)
∥∥

2

Notice how the right-hand side is equivalent to ∇θLBCE
with equality only holding when ci ̸= c′

i for all i. Thus, we
can see that an implication of not assuming the correctness
of the concepts is that LCPO is more conservative in its gra-
dient updates than LBCE. This means that LCPO has a larger
gradient when πθ is confident in the sampled concepts and
is more conservative when it is uncertain. A visualization
of the differences in the gradients is given in App. D. Next,
we discuss the direct implications of these results and the
relationship to the improved label noise robustness.

4.2. Noisy Concept Labels

To improve performance, CBMs are traditionally trained by
randomly augmenting input images with transformations,
such as cropping or blurring, which may obscure the repre-
sented concept. As a result, CBMs are often trained with
some level of concept noise, regardless of the reliability of
the empirical data. Moreover, commonly used benchmark
datasets for CBMs, such as CUB (Wah et al., 2011) and
AwA2 (Xian et al., 2019), are designed so that their images
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Figure 2. Comparison of graphical models for Bayesian CBMs.
Dashed outlines indicate the variable over which an amortized
posterior is taken. On the left (a), it can be seen that optimizing a
CBM using LCPO directly approximates the posterior distribution
of the concepts. On the right (b), it can be seen how other methods
instead obtain the posterior over a latent variable z.

may not accurately reflect their concept labels. Intuitively,
LCPO dropping the assumption of correctness towards prefer-
ences should help under both noisy and optimal conditions.
To illustrate why this is the case, we analyze the gradients
of LCPO and LBCE in the presence of noise.

Empirical Best Gradient To show why LCPO is more
resilient to noise, we examine both losses’ gradients under
noisy conditions and compare them to their optimal counter-
parts. To do so, we first make the assumption that d∗(c, x) is
one if x and c are the ground truth concepts in the image and
zero otherwise. Then, given the empirical and optimal dis-
tributions µ and d∗, respectively, we can derive the expected
gradient that approximates the ground truth as:

E(c∗,x)∼d∗ [∇θL] = E(c,x)∼µ

[d∗(c, x)
µ(c, x) ∇θL(c, πθ(c|x))

]
= E(c∗,x)∼µ+

[
∇θL(c∗, πθ(c|x))

]
.

Here, d∗(c,x)
µ(c,x) is an importance sampling coefficient that

equals 1 when c exists in both d∗ and µ, and 0 otherwise,
as we assume both µ and d∗ are deterministic, and µ+ ∈ µ
is the subset containing only optimal concepts. Conversely,
µ− ∈ µ is the subset containing only suboptimal concepts
c−. The resulting gradient on the empirical data is

E(c,x)∼µ
[
∇θL

]
=E(c∗,x)∼µ+

[
∇θL(c∗, πθ(c∗|x)

]
+ E(c−,x)∼µ−

[
∇θL(c−, πθ(c−|x)

]
.

It is a linear combination of the gradients on the noisy con-
cepts c− and the optimal ones c∗. This formulation allows
us to analyze the difference between the optimal gradient
and the gradient produced on a noisy distribution for both
LCPO and LBCE:

Theorem 4.3. The gradient of LCPO under a constant level
of noise is closer in distance to its noise-free counterpart
than the gradient of LBCE under the same noise is to its

Concept: white underparts    

Uncertainty Scores (σ):  

  BCE: 0.00 (c-val: 1.00)

  CPO: 0.82 (c-val: 0.71)

  ProbCBM: 0.68 (c-val: 1.00)

Concept:  white underparts  

Uncertainty Scores (σ):

  BCE: 0.00 (c-val: 1.00)

  CPO: 0.53 (c-val: 0.84)

  ProbCBM: 0.76 (c-val: 1.00)

Concept: white underparts

Uncertainty Scores (σ):

  BCE: 0.04 (c-val: 0.01)

  CPO: 1.00 (c-val: 0.53)

  ProbCBM: 0.67 (c-val: 1.00)

Figure 3. Example of uncertainty estimates for different mod-
els analyzing the bird’s white underbelly. We measure uncer-
tainty (σ) and model predictions (c-val) before and after two
augmentations—cropping and blocking—across three models: a
CBM trained with LCPO, one with LBCE, and a ProbCBM. The
BCE model is consistently confident, even after both augmenta-
tions. The ProbCBM’s uncertainty stays fairly constant, increasing
slightly when zoomed in. In contrast, the LCPO model becomes
more certain with cropping and most uncertain when the concept
is blocked.

respective noise-free counterpart. In other words:∥∥E(c∗,x)∼d[∇θLCPO]− E(c,x)∼µ[∇θLCPO]
∥∥

2

≤
∥∥E(c∗,x)∼d[∇θLBCE]− E(c,x)∼µ[∇θLBCE]

∥∥
2

We prove this theorem in App. C.2. Intuitively, Theo-
rem 4.3 says that when examining the difference between
optimal and noisy gradients, only terms from noisy ob-
servations remain. Thus, according to Proposition C.1,∥∥Ec−∼µ− [∇θLDPO]

∥∥
2 ≤

∥∥Ec−∼µ− [∇θLBCE]
∥∥

2. This im-
plies that LCPO’s gradient updates more closely approximate
their optimal gradients, resulting in better noise robustness.

A simpler explanation lies in the update mechanisms, where
CPO only modifies the policy when concepts are incor-
rectly sampled, creating situations where sampled concepts
c′ align with c− and, thus, minimizing noise impact. In
contrast, BCE updates continuously unless πθ(c|x) exactly
equals 1 or 0, making it inherently more susceptible to noise.
Figure 1 illustrates these results.

4.3. Relationship to Amortized Posterior Approximation

Given their relationship, we seek to understand the funda-
mental difference between optimizing LCPO and LBCE.

Control as Inference The bottleneck nature of CBMs
is similar to that of a Variational Auto-Encoder
(VAE) (Kingma & Welling, 2022). Traditionally, such
Bayesian methods introduce a “bottleneck” in their infer-
ence that is formed by latent variables that are learned in
an unsupervised fashion (Doersch, 2016). The graphical
model representing a CBM often resembles this relation-
ship, with the key difference that CBMs directly specify the
factors within the bottleneck in the form of known concepts.
One important outcome of this difference is that CBMs
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Table 1. Task and concept performances. The highest and second-highest values in each column are bolded and underlined, respectively.
We find that LCPO consistently achieves improved task accuracy and concept AUC.

CUB AwA2 CelebA

Task Accuracy Concept AUC Task Accuracy Concept AUC Task Accuracy Concept AUC

ProbCBM Sequential 0.742 ± 0.004 0.900± 0.007 0.891 ± 0.003 0.960 ± 0.003 0.302 ± 0.008 0.878 ± 0.006

ProbCBM Joint 0.766 ± 0.012 0.943 ± 0.006 0.860 ± 0.017 0.945 ± 0.007 0.288 ± 0.023 0.863 ± 0.005

CoopCBM 0.760 ± 0.004 0.936 ± 0.001 0.888 ± 0.006 0.950 ± 0.003 0.288 ± 0.011 0.878 ± 0.002

CBM BCE 0.753 ± 0.009 0.937 ± 0.001 0.900 ± 0.008 0.959 ± 0.003 0.283 ± 0.007 0.873 ± 0.002

CBM CPO (Ours) 0.800 ± 0.003 0.952 ± 0.001 0.915 ± 0.004 0.971 ± 0.001 0.310 ± 0.009 0.857 ± 0.003

CEM BCE 0.800 ± 0.003 0.946 ± 0.001 0.889 ± 0.001 0.953 ± 0.000 0.351 ± 0.006 0.875 ± 0.004

CEM CPO (Ours) 0.807 ± 0.004 0.931 ± 0.003 0.917 ± 0.003 0.965 ± 0.001 0.352 ± 0.004 0.853 ± 0.003

are traditionally trained to optimize the likelihood of the
empirical concepts, which is fundamentally different from
approximating the concept’s posterior distribution (Koller &
Friedman, 2009). On the other hand, Haarnoja et al. (2017)
show that Equation 1 — and Equation 5 by extension — is
equivalent to training an amortized posterior approximation
of the actions (concepts in our contexts). This derivation
relies on introducing an optimality latent variable o whose
relationship to x and c is visualized in Figure 2 (Eysenbach
& Levine, 2022; Levine, 2018). This optimality variable
denotes whether or not the given state-action pair sampled
from π is optimal o = 1 (c is the best visually represented
concept in x) or not o = 0. The distribution over this vari-
able is then given as:

p(o = 1|x, c) = exp(r∗(c, x)) (7)

where r∗(c, x) ∈ (−∞, 0] in our case is an unknown reward
function indicating how well a given concept set is repre-
sented in an image. Here, one can interpret p(o = 1|x, c)
as the probability that the given concept set c is correct, or
optimal, for input x, and p(o = 1|x) as how optimal, on
average, the concept sets sampled from π are for a given x.
Given this, a posterior over the concepts is:

π(c|o = 1, x) = p(o = 1|c, x)π0(c|x)
p(o = 1|x) (8)

= 1
Z(o)π0(c|x) exp

(
1
β

r∗(x, c)
)

(9)

where Z(o) = p(o = 1|x). This objective is equivalent to
that in Equation 2 as Z(o) must be equivalent to Z(x) for
π(c|o = 1, x) to be a valid probability distribution. Hence,
optimizing πθ using the objective in Equation 1 - and Equa-
tion 5 by extension - directly approximates the optimal con-
cept posterior distribution where π∗(c|x) = π(c|o = 1, x).

We provide a comprehensive analysis of uncertainty quan-
tification in App. G, where we evaluate the uncertainty per-
formance of LCPO against baselines. Overall, both quanti-
tative and qualitative results show that LCPO offers better

uncertainty estimates than other models, being more sensi-
tive to obstructions of the target object/concept. Figure 3
presents a brief case study on an example image, compar-
ing a vanilla CBM trained with LCPO, one trained with
LBCE, and a ProbCBM (Kim et al., 2023), which amor-
tizes the posterior over a hidden variable (see the right side
of Figure 2). We analyze the uncertainty scores σ—the
normalized variance scores for each model (variance of a
Bernuilli variable for CBMs and determinant of covariance
for ProbCBM)—and the c-val, representing the predictions
of πθ(c|x). This example illustrates a common trend from
our quantitative analysis: LCPO more effectively increases
its uncertainty when the target object (in this case, the bird)
is obstructed, compared to other baselines.

5. Experiments
Here, we validate the LCPO objective in three different set-
tings. First, we studyLCPO in clean, optimal data, then under
concept label noise, and finally in a streaming data context
where we leverage a prior when computing our updates.

Datasets We study our proposed objective on three real-
world image datasets: Caltech-UCSD Birds-200-2011
(CUB) (Wah et al., 2011), Large-scale CelebFaces Attributes
(CelebA) (Liu et al., 2015), and Animals with Attributes 2
(AwA2) (Xian et al., 2019). For CUB, we use the 200 class
labels and 112 concept labels used by (Koh et al., 2020). For
AwA2, we use the original 50 classes and each sample’s 85
attributes as concept labels. Finally, for CelebA, we use the
256 classes and six concepts selected by Espinosa Zarlenga
et al. (2022). The latter dataset is included to study our
approach in a setting where the concept set is not fully de-
scriptive (i.e., complete) of the downstream task. Further
details of each dataset can be found in App. B.

Baselines We evaluate LCPO against LBCE on the follow-
ing CBM-based architectures: (1) standard joint CBMs
with sigmoidal concept representations (CBM), Concept
Embedding Models (CEMs) (Espinosa Zarlenga et al.,
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Figure 4. CUB Interventions without added label noise. In CUB and CelebA, LCPO models lead to the best intervention performance.
While in AwA2, a substantial (∼8-15) number of interventions must be performed for LBCE-based models to outperform LCPO ones.

2022), which employ more expressive concept representa-
tions to increase model capacity, (3) Coop-CBMs (Sheth &
Ebrahimi Kahou, 2024), which use an auxiliary head to im-
prove a CBM’s information bottleneck, and (4) ProbCBMs
(Kim et al., 2023), which introduce a latent parameter be-
tween inputs and concepts (Figure 2). ProbCBMs, in partic-
ular, allow us to compare amortizing the concepts’ posterior
distribution instead of a latent variable’s. However, while
ProbCBMs traditionally use sequential training, we jointly
train them to ensure a fair comparison across baselines. We
do not evaluate training traditional ProbCBMs with LCPO
as their loss function optimizes an evidence-lower-bound
on the latent variables’ posterior, which explicitly requires
maximizing concept likelihood. We note that while LCPO
introduces a new parameter β, we choose not to tune it and
set β = 1 for all experiments. Overall, this means we tune
the same number of hyper-parameters for CBMs trained
with LCPO and LBCE. We discuss other hyperparameters and
implementation details in App. A.

5.1. Un-noised Evaluation

We first evaluate the task accuracy and mean concept AUC-
ROC of models trained with LCPO under the traditional
CBM setting, where no additional label noise is added.
Thereafter, we analyze intervention performance.

Base Performance Table 1 summarizes performance met-
rics for each baseline and dataset. Our results suggest that
training with theLCPO objective enhances the base task accu-
racy of both standard CBMs and CEMs with minimal-to-no-
loss in mean concept AUC. Most notably, we observe that,
in CUB and AwA2, CPO-trained CBMs match/outperform
CEMs trained with BCE, a significant result since these
benefits from CPO come without any additional parameters
or significant computational overheads (see App. I). Finally,
we find that Coop CBM performs similarly to traditional
CBMs, finding no significant difference between them. Due

to this and similar findings in preliminary results, we do
not evaluate this method in the remaining experiments and
further discuss Coop CBM’s performance in App. B.1.

Interventions A key advantage of CBMs is their ability
to improve their task performance through test-time concept
interventions. In § 4.3 we show that LCPO directly optimizes
for the concept posterior. Thus, an advantage of this is
that we can obtain accurate uncertainty estimates from the
predicted concept values. To test the effectiveness of this
uncertainty estimate, we study the effect of interventions
when we choose the order in which concepts are intervened
on based on their uncertainties, i.e., more uncertain concepts
are intervened on first. We do this for similar approaches
by using the concept prediction as an uncertainty estimate
for CBMs and the determinant of the covariance matrix for
ProbCBMs (as done by Kim et al. (2023)).

Figure 4 illustrates the responsiveness of models to inter-
ventions. Here, we see that, across all datasets, CEMs and
standard CBMs trained with LCPO exhibit better accura-
cies as they are intervened on than their LBCE counterparts.
This suggests that directly modeling the concept posterior
distribution provides better uncertainty estimates, leading
to more effective interventions. Additionally, CBMs and
CEMs trained with LCPO achieve stronger intervention per-
formance than ProbCBMs on CUB, while CEMs usingLCPO
outperform ProbCBMs on CelebA. The only exception is
AwA2, where ProbCBMs, on average, still require approxi-
mately eight interventions before surpassing LCPO models.

5.2. Noised Evaluation

Next, we empirically study LCPO under various amounts of
noise. To do this, we randomly flip each training concept
label with probability p and study the resulting models.

Base Performance Under Noise Figure 5 shows our base-
lines’ task accuracies and concept AUCs as we ablate the
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Figure 5. Performance metrics for all tasks across varying degrees
of label noise. We find that across all noise levels, LCPO consis-
tently alleviates performance loss.

label noise probability p across {0.1, 0.2, 0.3, 0.4}. We ob-
serve that, under noisy label conditions, training CBMs and
ProbCBMs (see App. F.2) with LBCE leads to a significant
drop in task accuracy and concept AUC (except for AwA2).
Interestingly, we see that CEMs trained with LBCE are much
more resilient to noise in comparison to CBMs. However,
we still observe significant drops in concept AUCs in CEMs
trained withLBCE in all tasks but CelebA. We believe CEMs’
more robust performance in CelebA is due to the bottleneck
imposed by this dataset being small (only 6 concepts), mak-
ing any additional capacity extremely helpful. In contrast,
we see that models trained with LCPO are very resilient to
noise. Specifically, we find that in terms of task accuracy,
CBMs trained with LCPO are the least affected by noise and
largely surpass the performance of CEMs. Moreover, we
find that LCPO-trained models have their concept AUCs bet-
ter preserved, consistently holding the best or second-best
ranks in concept AUC, often attaining significantly better
concept AUCs than LBCE-based models. Most interestingly,
we find that even at rather noisy levels (p = 0.4), CBMs
trained with LCPO can outperform more complex models
trained with LBCE and, in some cases, are largely unaffected
by the noise. Overall, we find that using LCPO is an effective
way to counteract concept label noise.

Interventions Under Noise While we find that in the
presence of label noise models trained with LCPO achieve
better performances, such findings are less meaningful if
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Figure 6. Intervention performance under noisy settings. We find
that LCPO is generally less affected by concept label noise in terms
of interventionality. This finding is specifically relevant to CUB
and CelebA where we find little to no performance degradation
when compared to the un-noised setting.

they come at the cost of a CBM’s intervenability. To this
end, in Fig. 6 we report the intervention performance as we
vary training label noise. We observe that models trained
with LBCE have their intervenability significantly affected
by noise, with CEM the occasional exception (particularly
in CelebA). In App. F.1 we visualize the intervention perfor-
mance for all p ∈ {0.1, 0.2, 0.3, 0.4} finding that in stark
contrast to LBCE, models trained with LCPO remain inter-
venable under the presence of noise, only being to severely
impacted at high noise rates (e.g., p = 0.4).

5.3. Noise by Labeler Confidence

While randomly noising the concept labels provides allows
us to analyze how models may perform under noise without
any prior on the structure of the noise, this may sometimes
not be the most realistic scenario as noise is often structured.
For this we here we analyze noising based on the confidence
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score of the labeler provided for each concept in each image
in the CUB dataset. This allows us to apply noise based on
perceived uncertainty. The dataset provides a confidence
rating from 1 to 4, where 1 is the least confident and 4
is the most. We apply noise proportionally to this score:
a rating of 4 corresponds to p = 0.1, 3 to p = 0.2, and
so on. Additionally, in App. H another structured noising
procedures, where we noise concepts at the concept group
level.

Table 2 shows the results when concepts are noised accord-
ing to their confidence levels. Interestingly, much like in
the randomly noised setting, we find that LCPO again out-
performs the LBCE counterparts in both task accuracy and
concept AUC greatly reducing the impact of noise.

Model Task Accuracy Concept AUC

CBM BCE 0.733 ± 0.032 0.876 ± 0.012
CBM CPO 0.793 ± 0.002 0.913 ± 0.000
CEM BCE 0.704 ± 0.053 0.831 ± 0.048
CEM CPO 0.757 ± 0.004 0.846 ± 0.006

Table 2. Noising proportionally to the confidence level of the la-
beler (e.g certainty of 4 equals 0.1 noise 3, 0.2 and so forth). We
find that LCPO is substantially able to alleviate the effects of this
noise specifically on task accuracy.

5.4. Learning on Streaming Data

A byproduct of LCPO optimizing for an approximate poste-
rior is its ability to leverage a prior. So far, we have assumed
a uniform prior over concepts, but here we explore adjusting
it. One key benefit of CBMs is that practitioners can scru-
tinize concept representations at test time, enhancing trust,
accuracy, and enabling the ability to collect new training
data through interventions. Specifically, when a CBM is
intervened on, it obtains a new concept label that can be
used to improve the system further (an idea that has been
explored in other fields (Stephan et al., 2024; Shi et al.,
2024)). To explore this, we first partition the training data of
CUB into four evenly sized blocks, of which we use the first
block (25% of the data) to train a joint CBM using LCPO on
the task labels y and the concepts c. Thereafter, we analyze
training on the remaining data blocks only using concept
labels in three different ways: using LBCE, LCPO with a uni-
form prior and LCPO with the previous checkpoint as the
prior. The main idea is that a prior can help prevent the
model from drifting too far from the policy jointly trained
with the task predictor fϕ.

Figure 7 evaluates models using k% ∈ {50%, 100%} of
total concepts. Curiously, we find that LCPO using a uniform
prior performs worse when using more concept labels. We
believe this is due to the policy drifting further from that of
the initial checkpoint. We find that indeed by using a prior

25% 50% 75% 100%
Percentage of Training Data

0.50

0.55

0.60

0.65

0.70

Ta
sk

 A
cc

ur
ac

y

25% 50% 75% 100%
Percentage of Training Data

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

Co
nc

ep
t A

UC

k% = 50%
k% = 100%

Prior
No Prior

CPO BCE

Figure 7. Updating a CBM with streaming concept labels (no task
labels). We compare LBCE, LCPO (No Prior), and LCPO (Prior)
using a LCPO-trained initial policy with k% ∈ {50%, 100%} of
concept groups. We find updating LCPO with a prior leverages all
concept labels in this setting.

one can alleviate this drift and enable LCPO to leverage all
new concept labels. While here we findLBCE underperforms
LCPO, in App. 7 we show this gap narrows—though not
fully closes—when the initial policy is trained with LBCE.

6. Discussion
Future Work In this work, we aim to maintain end-to-end
differentiability by leveraging a DPO-like objective, but this
requirement is not strictly necessary. Differentiability is
mainly needed due to the absence of a reward function; how-
ever, one could instead employ variable rewards (e.g., based
on visual consistency) or learn a reward function from pref-
erence pairs (as done in language modeling). Overall, we
believe RL techniques offer a promising direction for CBM
training—potentially enhancing robustness and enabling
diverse behaviors through non-differentiable objectives.

Conclusion We present a DPO-inspired training objective
for CBMs called LCPO. Our loss directly optimizes for the
concept’s posterior distribution, with concept representa-
tions that explicitly encode uncertainty, leading to improved
intervention performance. We provide analysis demonstrat-
ing that LCPO exhibits greater robustness to noise compared
to LBCE and empirically show that a simple CBM trained
with the LCPO objective can consistently outperform com-
peting methods without any additional parameters. More-
over, our experiments complement our analysis on LCPO’s
behaviour under noise by showing that LCPO yields better
concept AUC and task accuracy than BCE-based models
while maintaining its intervention performance. Further-
more, we demonstrate how the LCPO objective’s prior can
be leveraged to learn more efficiently from streaming data.
Ultimately, LCPO offers numerous benefits for CBM and
CBM-like methods with minimal computational overhead.
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Impact Statement
Concept bottleneck models (CBMs) have emerged as a
promising approach to increasing the trustworthiness and
transparency of AI systems, areas where modern machine
learning methods often fall short. This work takes a step
toward improving the robustness of such models. While
CBMs enhance the interpretability of AI systems, we
demonstrate that they are highly sensitive to concept mis-
labeling—a significant limitation in high-impact domains
like healthcare and law enforcement, where labels are often
noisy and inherently subjective. We show that our proposed
objective effectively addresses this issue, enabling CBMs
to perform more reliably in real-world applications and ex-
panding their potential for meaningful impact.
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A. Implementation Details
A.1. Tuning

We employ a ResNet34 (He et al., 2015) as the backbone image encoder kθ, pretrained on ImageNet-1k (Russakovsky
et al., 2015). Following standard procedures, we apply random cropping and flipping to a portion of the images during
training. This augmentation process may introduce non-zero noise levels, as some concepts could be removed from the
images after transformation. We use a batch size of 512 for the Celeb dataset and 256 for for CUB and AwA2. We train all
models using RTX8000 Nvidia-GPU. In all datasets we train for up to 200 epochs and early stop if the validation loss has
not improved in 15 epochs. For fair evaluation across methods, we tune the learning rate for CEMs, CBMs, and ProbCBM.
Specifically, for CUB and AwA2 datasets, we explore learning rates ∈ {0.1, 0.01}, while for CelebA, we expand the search
to ∈ {0.1, 0.01, 0.05, 0.005} due to the observed instability of CEMs at higher learning rates. Additionally, we set the
hyper-parameter λ ∈ {1, 5, 10} for all methods. For CEMs and models trained using LDPO, we found RandInt beneficial,
which randomly intervenes on 25% of the concepts during training. ProbCBM introduce a few extra hyperparameters which
in this work we did not tune and directly use the hyper-parameters provided by the original authors. Similar to other models,
ProbCBM employs RandInt at 50%, making it particularly sensitive to interventions, especially in concept-complete tasks
such as AwA2 and CUB. The only model for which we tune additional hyper-parameters is Coop-CBM, where we adjust
the weight parameter for the auxiliary loss we discuss more in detail in App B.1. All experiments are ran using a forked
version of the Github3 repository used by Espinosa Zarlenga et al. (2022).

B. Datasets
CUB (Wah et al., 2011). In CUB we use the standard dataset used in (Koh et al., 2020) madeup of k = 112 concept
annotations representing bird attributes (e.g., beak type, wing color) and use the bird class (m = 200) as the downstream
task. Our only departure from Koh et al. (2020) is that we group the concepts into 28 semantic concept groups, following
Espinosa Zarlenga et al. (2022). We use the same image processing as in (Koh et al., 2020) and by randomly flipping and
cropping some images during training. The final dataset is composed of ∼ 6,000 RGB images of dimension (3, 299, 299),
and split into a standard 70%-10%-20% train-validation-test split.

AwA2 (Xian et al., 2019). For AwA2 we use the same data processing as Xu et al. (2024). Which are made up of
where the k = 85 concepts correspond to visual animal attributes (e.g., has wings, has claws) which are grouped into 28
semantic concept groups. We apply standard rotation and cropping augmentations throughout training and use the standard
70%-10%-20% train-validation-test split.

CelebA (Liu et al., 2015). For this dataset, we closely follow the data processing done by (Espinosa Zarlenga et al., 2022),
where they select the 8 most balanced attributes out a total of 40 binary attributes. Where they generate m = 256 classes by
assign them a value based on the base-10 representation of their attribute label. We construct the incomplete concept set
using the same 6 attributes selected by (Espinosa Zarlenga et al., 2022). We follow the same subsampling procedure as
(Espinosa Zarlenga et al., 2022) and randomly select 1

12 th of the images for training. This results in a final dataset composed
of 16,900 RGB images where we use the same 70%-10%-20% train-validation-test split.

B.1. Coop CBM

Here, we briefly outline the training procedure for Coop-CBM which we found to perform similarly to CBMs trained with
LBCE. Similar to other methods, we tune the learning rate and the concept loss weight λ. However, Coop-CBM is the only
model for which we conduct more extensive hyper-parameter tuning, as we observed minimal differences between it and a
standard CBM trained with LBCE. Specifically, we tune the additional hyper-parameter γ ∈ {0.01, 1, 5, 10}, which controls
the strength of the auxiliary head4. In our setup, the optimal values for γ were found to be γ = 5 for CUB, γ = 10 for
AwA2, and γ = 0.01 for CelebA. We observed negligible differences between Coop-CBM and standard CBMs in terms
of base and intervention performance (see Figure 8), except for in AwA2 where it improves intervention performance but
outperforms ProbCBM at higher number of interventions. As a result, we did not include Coop-CBM in the remaining
experiments.

3https://github.com/mateoespinosa/cem
4Referred to as β in their work, but we change the notation to avoid confusion with our β parameter.
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Figure 8. Intervention performance including Coop CBMs.

C. Analysis
While prior work has shown that under mild conditions, offline RL performs (equivalent CPO) better than likelihood-based
training under noisy labels (Kumar et al., 2022; Rashidinejad et al., 2021), it still does not fully answer the question as to
why specifically CPO should perform better in our context.

C.1. Gradient Derivations

Assumption: For all derivations, we assume binary labels and that π0 follows a uniform distribution. Additionally to reduce
clutter, in all gradient derivations, we drop the ∇kθ as it does not affect the gradients of the loss functions. We note to
simplify the proofs we will assume conditional independence of the concepts i.e., ci ⊥ cj |x ∀ i ̸= j, but this is not strictly
necessary. One could derive the same conclusions using an autoregresive decomposition of the joint density of the concepts.

Derivation of the CPO objective

LCPO = −Ec,x∼D,c′∼πθ(c|x)[log σ(log πθ(c|x)− log πθ(c′|x)] (10)

= −Ec,x∼D,c′∼πθ(c|x)[log σ( πθ(c|x)
πθ(c′|x) )] (11)

= −Ec,x∼D,c′∼πθ(c|x)[log 1− log(1 + exp(− log πθ(c|x)
πθ(c′|x) ))] (12)

= Ec,x∼D,c′∼πθ(c|x)[log(1 + exp(− log( πθ(c|x)
πθ(c′|x) ))] (13)

= Ec,x∼D,c′∼πθ(c|x)[log(1 + πθ(c′|x)
πθ(c|x) )] (14)

(15)

Thus in this case, we can see if c′ is not equivalent to c, this loss reduces to cross entropy.

LCPO = Ec,x∼D,c′ ̸=c∼πθ [log(πθ(c|x) + (1− πθ(c|x))
πθ(c|x) )] (16)

= Ec,x∼D,c′ ̸=c∼πθ [log( 1
πθ(c|x) )] (17)

= −Ec,x∼D,c′ ̸=c∼πθ [log(πθ(c|x))] (18)
(19)

Otherwise, it reduces to a constant:
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LCPO = Ec,x∼D,c′=c∼πθ [log(πθ(c|x) + πθ(c|x))
πθ(c|x) )] (20)

= − log(1
2) (21)

(22)

CPO Gradient Derivation

∇θLCPO = Ec,x∼D,c′ ̸=c∼πθ [∇θ log(πθ(c|x) + (1− πθ(c′|x))
πθ(c|x) )] (23)

(24)

Due to the gradient being zero when c = c′, the expected gradient of the CPO objective simplifies to:

∇θLCPO = 1
N

∑
(c,x)∼µ,c′ ̸=c∼πθ(c|x)

(πθ(c|x)− 1)πθ(c′|x) (25)

= 1
N

∑
(c,x)∼µ,c′ ̸=c∼πθ(c|x)

(πθ(c|x)− 1) (1− πθ(c|x)) (26)

That is, the CPO objective only takes a gradient step for sampled concepts that do not equal the empirical concepts.

C.2. Bounding the gradients

Proposition C.1. The expected gradient given by LCPO under binary labels is strictly less than or equal to the gradient of
the LBCE.

Proof: This proof relies strictly on the notion that 1− π(c|x) ≤ 1 thus:

1
N

∥∥ ∑
(c,x)∼µ,

(πθ(c|x)− 1)(1− πθ(c|x))
∥∥

2 ≤
1
N

∥∥ ∑
(c,x)∼µ

(πθ(c|x)− 1)
∥∥

2 (27)

Observe how the right-hand side is equivalent to the expected cross-entropy loss. The above proposition also takes into
account the maximum gradient possible for the LCPO, which is when ci = c′

i for all i.
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Theorem C.2. The expected squared difference between the optimal gradient and one computed under noisy labels for
direct preference optimization is less than or equal to that for binary cross entropy.

Proof: The optimal gradient to take under noisy labels is given by:

E(c∗,x)∼d[∇θL] = E(c,x)∼µ[ d(c, x)
µ(c, x)∇θL(c, πθ(c|x)] (28)

= E(c,x)∼µ[ d(c, x)
µ(c, x)∇θL(c, πθ(c|x)] (29)

= E(c∗,x)∼µ+ [∇θL(c∗, πθ(c|x)] (30)
(31)

We observe that when we do not adjust for the importance weight, the gradient under noisy labels is:

E(c,x)∼µ[∇θL] = E(c∗,x)∼µ+ [∇θL(c∗, πθ(c∗|x)] + E(c−,x)∼µ− [∇θL(c−, πθ(c−|x)] (32)

(33)

Thus the difference in the expected value of the gradients is:

∥∥E(c∗,x)∼d[∇θL]− E(c,x)∼µ[∇θL]
∥∥

2 =
∥∥E(c−,x)∼µ− [∇θL(c−, πθ(c−|x)]

∥∥
2 (34)

Therefore, using Proposition C.1 we can observe that :∥∥E(c−,x)∼µ− [∇θLCPO(c−, πθ(c−|x))]
∥∥

2 ≤
∥∥E(c−,x)∼µ− [∇θLBCE(c−, πθ(c−|x))]

∥∥
2 (35)

And thus: ∥∥E(c∗,x)∼d[∇θLCPO]− E(c,x)∼µ[∇θLCPO]
∥∥

2 ≤
∥∥E(c∗,x)∼d[∇θLBCE]− E(c,x)∼µ[∇θLBCE]

∥∥
2 (36)

D. Gradient Visualizations:
We empirically verify the results posed in Theorem 4.3. For this, we train a standard CBM where the total loss function
is Ltotal = 1

2 (LCPO + LBCE) and do not optimize the task loss. We train this model over 100 gradient steps and visualize
their gradients throughout training. The optimal gradient for each loss L∗ is computed using the empirical concepts and the
full loss L− is computed over both noisy and non-noisy data points. To minimize the effects of noise on the labeled data
and gain a better approximation, we explicitly do not augment the data in any way. Figure 9 visualizes these results for
p ∈ {0.1, 0.3}, which empirically confirms the proposed theoretical results showing how even under low amounts of noise
p = 0.1 LCPO is a better approximation to its optimal gradient when compared to LBCE. We find that in higher noise settings
p = 0.3, L−

CPO deviates substantially less to L∗
CPO compared to L−

BCE against L∗
BCE. This difference is specifically evident

early on in training. We hypothesize providing better gradients early on in training potentially improves the generalization of
the model being a possible explanation for the improved performance of LCPO under noise seen in the empirical evaluation.
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Figure 9. Visualization of noisy (indicated by a −) and optimal (indicated with a *) gradients for ∇θLCPO and ∇LBCE. We can observe
that even in low noise settings p = 0.1, LCPO better approximates its optimal gradient, with this difference growing as noise level increases
especially at the beginning of training. We note that while visually it may seem that the squared difference for LCPO is smaller for p = 0.3
than that for p = 0.1, this is mainly due to scale.
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E. Relationship to Amortized Posterior Approximation
In this appendix, we provide an additional formulation of how the maximum entropy RL objective is equivalent to training
an amortized approximator of the concept’s posterior distribution. We primarily summarize the derivations found in sections
2.2-2.4 of (Levine, 2018) and the appendix of (Korbak et al., 2022) using our notation.

The main deviation is that here we directly show their equivalence as an optimization of an evidence lower bound, given that
one wants to optimize over log p(o = 1|x). That is

log p(o = 1|x) = log
∑
c

p(o = 1, c|x) (37)

= log
∑
c

p(o = 1|x, c)π0(c|x) (38)

= log
[∑

c

πθ(c|x)p(o = 1|x)π0(c|x)
πθ(c|x)

]
(39)

≥
∑
c

πθ(c|x) log
[
p(o = 1|x)π0(c|x)

πθ(c|x)

]
← via Jensen’s inequality (40)

(41)

Using the fact that p(o = 1|x, c) = exp(r∗(x, c)) we have :

log p(o = 1|x) ≥ Ec∼πθ log
[
exp (r∗(c, x)) π0(c|x)

πθ(c|x)

]
(42)

Therefore, maximizing the above objective is equivalent to:

max
πθ

Ec∼πθ [r∗(c, x)]− DKL(πθ(c|x) ∥ π0(c|x)) (43)

Since optimizing LCPO is equivalent to optimizing Equation 43, it is also thereby equivalent to directly optimizing the
posterior distribution of the concepts π(c|x).
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F. Additional Continual Experiments
Here, we examine the impact of using a model trained with LBCE as the starting point for the experiments in § 5.4. Figure 10
compares the performance of CBMs trained on streaming data when initialized with LBCE (left) versus LDPO (right, same as
Figure 7). Overall, we find that updating a LBCE-initialized model with LBCE yields the best results for LBCE. However,
while this improves performance, it still falls short of the results achieved when both initialization and training are done with
LDPO. We note in the leftmost plot, we exclude the LDPO model updated without a prior to improve clarity of the plot, but
note we find it yields approximately equal results to training with a prior.
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(a) Initialized using a LBCE model.
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(b) Initialized using a LDPO model.

Figure 10. Task Accuracy/Concept AUC vs the percentage of data the model has been trained on. We find that updating models initialized
with a LBCE policy yields improved results for LBCE with detrimental ones for LCPO (A). In (B) we again visualize the result for updating
the models using a LDPO- initialized policy (same as Figure 7). We find that the best result is given by using LDPO to update a LDPO-
initialized policy.
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F.1. Intervention Plots at All Noise Levels

Here we provide an extension of our prior analysis in § 5.2 including intervention performance for all values of p ∈
{0.1, 0.2, 0.3, 0.3}. We find that again even at low noise levels LCPO models consistently outperform their LBCE counterparts.
The one model not holding to that is ProbCBMs which outperform LDPO consistently on AwA2. We note while this behaviour
comes at a cost for ProbCBMs as we show in § 5.2, their concept AUC is severely affected by noise, making the requirement
to intervene on these models much harsher.
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Figure 11. Intervention performance for all noise levels. We find that overall methods trained with LDPO yield better intervention
performance under noise. These findings are specifically relevant to CUB and Celeb where we see all other methods are harshly impacted.
We find the only model to consistently outperform LCPO are ProbCBMs on AwA2, but have comes at the cost of having their initial
concept AUC and task performance severely affected requiring practitioners to intervene far more often.
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F.2. Full Evaluation

In addition to comparing vanilla CBMs and CEMS, Figure 12 provides the full restulst including both joint and sequential
ProbCBMs under noise. We generally find that ProbCBMs are extremely senstive to noisy data with their performence cut
by half in some metrics such as CUB concept AUC. We find that the uncertainty estimates provided by LCPO not only yield
better gains in intervention, but also comes with the property of being much more robust to noise.
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Figure 12. Performance metrics for all tasks across varying degrees of label noise. We find that across all noise levels, LCPO ourperforms
all other models, including both joint and sequential ProbCBMs
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G. Additional Analysis on Uncertainty
In this Appendix, we provide a more in depth analysis of how different CBM models handle uncertainty estimation. We
focus on the CUB dataset and visually inspect the baseline uncertainty estimate of various sampled images, observe how
different data augmentations affect the uncertainty and quantitatively evaluate how each model’s uncertainty changes when
the target bird is randomly obscured.

G.1. Uncertainty Analysis

We display randomly sampled images from the test set. Figure 13 shows these images along with their corresponding
uncertainty scores. In this and all subsequent experiments, we define uncertainty as the scaled variance of the model’s
certainty. For ProbCBM, this corresponds to the product of the diagonal entries in the covariance matrix, following (Kim
et al., 2023). ForLCPO andLBCE, uncertainty is computed as the variance of a Bernoulli random variable, σCPO/BCE = c(1−c).
To enable fair comparison across models, we scale all variance values to lie within the range [0, 1].

For each image, we highlight the concept for which the model exhibits the highest uncertainty and report the uncertainty
scores from each model. We observe that LCPO tends to report higher uncertainty across most concepts, particularly when
the concept in the image is ambiguous or unclear. In contrast, ProbCBM often reports low uncertainty even for visually
uncertain concepts. While these examples provide useful intuition, they are limited in scope. In the following experiment,
we provide a more thorough quantitative analysis of model uncertainty.

G.2. Uncertainty Under Augmentations

A standard practice in training vision models (and consequently CBMs) is to apply augmentations during training. These
augmentations can obstruct or alter the way concepts are represented in images. To assess whether LCPO more reliably
models uncertainty under such conditions, we evaluate model behavior under two augmentations: cropping and obscuring.
Figure 14 shows examples of images under these transformations. Interestingly, we find that zooming in (via cropping)
often increases model confidence in concept predictions. In particular, LCPO frequently exhibits a larger boost in confidence
compared to other models. Conversely, when the object in the image is obscured, LCPO generally becomes much more
uncertain, often reaching the maximum uncertainty score when the concept is fully blocked. This contrasts with other
models, which tend to remain overconfident in the presence of the concept, even when it is visually occluded.
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BCE: Has wing pattern = multi-colored (Label:0.0)
U: BCE = 0.98 (P: 0.58) | CPO = 1.00 (P: 0.47) | ProbCBM = 0.88 (P: 0.00)

CPO: Has bill color = black (Label:0.0)
U: BCE = 0.48 (P: 0.14) | CPO = 1.00 (P: 0.48) | ProbCBM = 0.78 (P: 0.00)

ProbCBM: Has breast color = white (Label:0.0)
U: BCE = 0.02 (P: 0.01) | CPO = 0.88 (P: 0.33) | ProbCBM = 0.85 (P: 0.82)

BCE: Has forehead color = white (Label:0.0)
U: BCE = 0.96 (P: 0.60) | CPO = 1.00 (P: 0.47) | ProbCBM = 0.49 (P: 0.85)

CPO: Has back color = grey (Label:0.0)
U: BCE = 0.76 (P: 0.26) | CPO = 1.00 (P: 0.49) | ProbCBM = 0.77 (P: 0.90)

ProbCBM: Has back pattern = solid (Label:1.0)
U: BCE = 0.13 (P: 0.97) | CPO = 0.95 (P: 0.61) | ProbCBM = 0.69 (P: 0.49)

BCE: Has upperparts color = white (Label:1.0)
U: BCE = 0.93 (P: 0.64) | CPO = 0.77 (P: 0.74) | ProbCBM = 0.94 (P: 0.74)

CPO: Has breast pattern = striped (Label:0.0)
U: BCE = 0.00 (P: 0.00) | CPO = 0.95 (P: 0.39) | ProbCBM = 1.00 (P: 0.00)

ProbCBM: Has wing shape = rounded-wings (Label:1.0)
U: BCE = 0.62 (P: 0.19) | CPO = 0.39 (P: 0.89) | ProbCBM = 0.93 (P: 0.51)

BCE: Has leg color = buff (Label:1.0)
U: BCE = 1.00 (P: 0.47) | CPO = 0.88 (P: 0.67) | ProbCBM = 0.80 (P: 0.99)

CPO: Has bill color = grey (Label:1.0)
U: BCE = 0.28 (P: 0.08) | CPO = 1.00 (P: 0.50) | ProbCBM = 0.00 (P: 0.00)

ProbCBM: Has back color = black (Label:1.0)
U: BCE = 0.62 (P: 0.19) | CPO = 0.99 (P: 0.45) | ProbCBM = 0.26 (P: 0.93)

BCE: Has tail pattern = multi-colored (Label:1.0)
U: BCE = 1.00 (P: 0.50) | CPO = 0.93 (P: 0.63) | ProbCBM = 0.00 (P: 0.00)

CPO: Has head pattern = plain (Label:0.0)
U: BCE = 0.82 (P: 0.29) | CPO = 1.00 (P: 0.49) | ProbCBM = 0.00 (P: 0.00)

ProbCBM: Has wing color = yellow (Label:1.0)
U: BCE = 0.63 (P: 0.80) | CPO = 0.91 (P: 0.65) | ProbCBM = 0.90 (P: 0.68)

BCE: Has belly color = white (Label:0.0)
U: BCE = 1.00 (P: 0.49) | CPO = 0.99 (P: 0.55) | ProbCBM = 0.37 (P: 0.00)

CPO: Has size = medium (9 - 16 in) (Label:0.0)
U: BCE = 0.01 (P: 0.00) | CPO = 1.00 (P: 0.50) | ProbCBM = 0.75 (P: 0.00)

ProbCBM: Has throat color = grey (Label:1.0)
U: BCE = 1.00 (P: 0.51) | CPO = 0.96 (P: 0.60) | ProbCBM = 0.49 (P: 0.58)

BCE: Has leg color = grey (Label:1.0)
U: BCE = 1.00 (P: 0.50) | CPO = 0.94 (P: 0.62) | ProbCBM = 0.09 (P: 0.00)

CPO: Has tail pattern = multi-colored (Label:1.0)
U: BCE = 0.27 (P: 0.07) | CPO = 1.00 (P: 0.50) | ProbCBM = 0.50 (P: 0.00)

ProbCBM: Has belly color = yellow (Label:1.0)
U: BCE = 1.00 (P: 0.48) | CPO = 0.98 (P: 0.57) | ProbCBM = 0.49 (P: 0.55)

BCE: Has upperparts color = grey (Label:1.0)
U: BCE = 1.00 (P: 0.52) | CPO = 0.93 (P: 0.63) | ProbCBM = 0.64 (P: 1.00)

CPO: Has back pattern = solid (Label:0.0)
U: BCE = 0.86 (P: 0.31) | CPO = 1.00 (P: 0.50) | ProbCBM = 0.61 (P: 0.00)

ProbCBM: Has shape = perching-like (Label:1.0)
U: BCE = 0.83 (P: 0.70) | CPO = 0.97 (P: 0.41) | ProbCBM = 0.56 (P: 0.42)

BCE: Has upperparts color = grey (Label:1.0)
U: BCE = 0.98 (P: 0.56) | CPO = 1.00 (P: 0.49) | ProbCBM = 0.79 (P: 1.00)

CPO: Has throat color = yellow (Label:1.0)
U: BCE = 0.45 (P: 0.13) | CPO = 1.00 (P: 0.50) | ProbCBM = 0.57 (P: 0.99)

ProbCBM: Has underparts color = white (Label:0.0)
U: BCE = 0.94 (P: 0.38) | CPO = 0.97 (P: 0.42) | ProbCBM = 0.54 (P: 0.13)

Figure 13. Visualization of different images and concept uncertainty score. We display for each model the concept with the highest
uncertainty alongside the label for that concept. For each model we display the uncertainty score alongside the probability of the concept
being active given by each model. We find that LCPO generally has higher uncertainty for more ambiguous concepts and is more certain
than other concepts for concepts that are clearly visible.
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Model: BCE
Concept: Has eye color = black
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.87 (pred: 0.68)
   ProbCBM: 0.00 (pred: 1.00)

Model: BCE
Concept: Has eye color = black
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.76 (pred: 0.74)
   ProbCBM: 0.08 (pred: 1.00)

Model: BCE
Concept: Has eye color = black
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.93 (pred: 0.63)
   ProbCBM: 0.00 (pred: 1.00)

Model: CPO
Concept: Has bill color = black
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.24 (pred: 0.94)
   ProbCBM: 0.88 (pred: 1.00)

Model: CPO
Concept: Has bill color = black
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.14 (pred: 0.96)
   ProbCBM: 0.63 (pred: 1.00)

Model: CPO
Concept: Has bill color = black
True Value: 1
Scores:
   BCE: 0.99 (pred: 0.56)
   CPO: 0.97 (pred: 0.58)
   ProbCBM: 0.00 (pred: 0.99)

Model: ProbCBM
Concept: Has belly pattern = solid
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.63 (pred: 0.80)
   ProbCBM: 0.77 (pred: 1.00)

Model: ProbCBM
Concept: Has belly pattern = solid
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.40 (pred: 0.89)
   ProbCBM: 0.53 (pred: 1.00)

Model: ProbCBM
Concept: Has belly pattern = solid
True Value: 1
Scores:
   BCE: 0.01 (pred: 1.00)
   CPO: 0.98 (pred: 0.57)
   ProbCBM: 0.12 (pred: 1.00)

Model: BCE
Concept: Has underparts color = white
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.82 (pred: 0.71)
   ProbCBM: 0.68 (pred: 1.00)

Model: BCE
Concept: Has underparts color = white
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.53 (pred: 0.84)
   ProbCBM: 0.76 (pred: 1.00)

Model: BCE
Concept: Has underparts color = white
True Value: 1
Scores:
   BCE: 0.04 (pred: 0.01)
   CPO: 1.00 (pred: 0.53)
   ProbCBM: 0.67 (pred: 1.00)

Model: CPO
Concept: Has head pattern = plain
True Value: 1
Scores:
   BCE: 0.15 (pred: 0.96)
   CPO: 0.43 (pred: 0.88)
   ProbCBM: 0.00 (pred: 0.00)

Model: CPO
Concept: Has head pattern = plain
True Value: 1
Scores:
   BCE: 0.01 (pred: 1.00)
   CPO: 0.04 (pred: 0.99)
   ProbCBM: 0.00 (pred: 0.00)

Model: CPO
Concept: Has head pattern = plain
True Value: 1
Scores:
   BCE: 0.68 (pred: 0.78)
   CPO: 0.96 (pred: 0.40)
   ProbCBM: 0.33 (pred: 0.00)

Model: ProbCBM
Concept: Has eye color = black
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.79 (pred: 0.73)
   ProbCBM: 0.00 (pred: 1.00)

Model: ProbCBM
Concept: Has eye color = black
True Value: 1
Scores:
   BCE: 0.01 (pred: 1.00)
   CPO: 0.75 (pred: 0.75)
   ProbCBM: 0.16 (pred: 1.00)

Model: ProbCBM
Concept: Has eye color = black
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.68 (pred: 0.78)
   ProbCBM: 0.00 (pred: 0.99)

Model: BCE
Concept: Has throat color = white
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.65 (pred: 0.79)
   ProbCBM: 0.87 (pred: 1.00)

Model: BCE
Concept: Has throat color = white
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.39 (pred: 0.89)
   ProbCBM: 0.96 (pred: 1.00)

Model: BCE
Concept: Has throat color = white
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.69 (pred: 0.78)
   ProbCBM: 0.99 (pred: 1.00)

Model: CPO
Concept: Has bill shape = dagger
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.41 (pred: 0.89)
   ProbCBM: 0.99 (pred: 1.00)

Model: CPO
Concept: Has bill shape = dagger
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.13 (pred: 0.97)
   ProbCBM: 1.00 (pred: 1.00)

Model: CPO
Concept: Has bill shape = dagger
True Value: 1
Scores:
   BCE: 0.28 (pred: 0.92)
   CPO: 0.58 (pred: 0.82)
   ProbCBM: 0.99 (pred: 1.00)

Model: ProbCBM
Concept: Has belly color = white
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.80 (pred: 0.72)
   ProbCBM: 0.81 (pred: 1.00)

Model: ProbCBM
Concept: Has belly color = white
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.50 (pred: 0.85)
   ProbCBM: 0.94 (pred: 1.00)

Model: ProbCBM
Concept: Has belly color = white
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.76 (pred: 0.75)
   ProbCBM: 0.98 (pred: 1.00)

Model: BCE
Concept: Has breast color = yellow
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.45 (pred: 0.87)
   ProbCBM: 0.87 (pred: 1.00)

Model: BCE
Concept: Has breast color = yellow
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.48 (pred: 0.86)
   ProbCBM: 0.98 (pred: 1.00)

Model: BCE
Concept: Has breast color = yellow
True Value: 1
Scores:
   BCE: 0.09 (pred: 0.02)
   CPO: 1.00 (pred: 0.48)
   ProbCBM: 0.00 (pred: 0.63)

Model: CPO
Concept: Has wing pattern = multi-colored
True Value: 1
Scores:
   BCE: 0.52 (pred: 0.85)
   CPO: 0.35 (pred: 0.90)
   ProbCBM: 0.00 (pred: 0.28)

Model: CPO
Concept: Has wing pattern = multi-colored
True Value: 1
Scores:
   BCE: 0.97 (pred: 0.59)
   CPO: 0.44 (pred: 0.87)
   ProbCBM: 0.47 (pred: 0.15)

Model: CPO
Concept: Has wing pattern = multi-colored
True Value: 1
Scores:
   BCE: 0.82 (pred: 0.29)
   CPO: 0.90 (pred: 0.35)
   ProbCBM: 0.33 (pred: 0.00)

Model: ProbCBM
Concept: Has shape = perching-like
True Value: 1
Scores:
   BCE: 0.01 (pred: 1.00)
   CPO: 0.88 (pred: 0.67)
   ProbCBM: 0.59 (pred: 1.00)

Model: ProbCBM
Concept: Has shape = perching-like
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.98 (pred: 0.57)
   ProbCBM: 0.86 (pred: 1.00)

Model: ProbCBM
Concept: Has shape = perching-like
True Value: 1
Scores:
   BCE: 0.00 (pred: 1.00)
   CPO: 0.65 (pred: 0.80)
   ProbCBM: 0.28 (pred: 1.00)

Figure 14. Grid visualization of different images before and after applying a cropping and blocking augmentations. For each model
we display the concept with the highest certainty score alongside the scores of other models. Overall we find that LCPO increases the
confidence of the score the most when cropping causes a zooming effect and decreases the most when blocking the target object.

G.3. Quantitative Uncertainty Analysis

While we previously presented examples where LCPO offers improved uncertainty quantification, we now aim to provide a
more systematic evaluation. To do this, we apply random blocking augmentations across the entire training set of CUB
images. These augmentations are designed to obscure parts of the image and should, in general, increase concept uncertainty
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Figure 15. Distribution of changes in certainty (δaug) for correct concepts under increasing block sizes. Higher area under the curve above
zero indicates a more appropriate increase in uncertainty. LCPO and LBCE respond more consistently to occlusion than ProbCBM, whose
uncertainty remains relatively unchanged.
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Figure 16. Per-concept AUC values under 4 × 4 blocking. LBCE concentrates uncertainty increases on a few concepts, while LCPO

distributes uncertainty more evenly across concepts, suggesting better alignment with the effects of occlusion.

by reducing visual access to relevant features. We vary the blocking size, with larger blocks expected to result in greater
uncertainty due to a higher likelihood of obstructing the object.

Figure 15 shows the distribution of δaug, defined as the change in certainty for correct concepts before and after blocking,
across three different blocking sizes. We report the area under the curve above zero—higher values indicate that the model
tends to become more uncertain after blocking, as desired. Overall, we find that both LCPO and LBCE increase uncertainty
more consistently following augmentation. In contrast, ProbCBM’s uncertainty appears largely unaffected by the occlusion,
with its scores fluctuating in a seemingly random manner regardless of whether the object is visible.

While LCPO tends to yield better uncertainty estimates—particularly at the 0.4× 0.4 blocking size—the differences between
LCPO and LBCE remain modest in aggregate. To better understand the nature of these uncertainty shifts, we examine how
they are distributed across individual concepts. Figure 16 presents the per-concept AUC values under 4× 4 blocking. We
find that LBCE concentrates its uncertainty increases on a small subset of concepts, leaving many concepts largely unaffected
by the augmentation. In contrast, LCPO exhibits a more balanced distribution, suggesting it more evenly attributes uncertainty
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increases across concepts, thus better capturing the effect of occlusion.

H. Concept Group Noise
A straightforward way to introduce structured noise across datasets is to flip labels between related concepts. This approach
mirrors realistic labeling errors, such as a human annotator labeling a bird as having brown wings instead of red due to
factors like lighting, zoom, or viewing angle. We explore this form of structured noise in both the CUB and AwA2 datasets.
Following our previous setup, we examine four noise levels: p ∈ {0.1, 0.2, 0.3, 0.4} where p here refers to the probability
of having a concept group’s label be altered.

The results found in Table 3 are consistent with our earlier findings, where we observe that LCPO is significantly less
robust to noise compared to LBCE. Specifically, on the CUB dataset, models trained with LCPO achieve substantially higher
task and concept accuracies than their LBCE-based counterparts. In the AwA2 dataset, LCPO-based models better preserve
concept AUC; for example, CBM models trained with LCPO consistently maintain concept AUC above 0.84, while all other
models drop below 0.8. These results suggest that LCPO performs better not only under uniform noise but also in the more
challenging setting of structured noise.

Noise Level
CUB AwA2

Task Accuracy Concept AUC Task Accuracy Concept AUC

p = 0.1

CBM BCE 0.741 ± 0.047 0.914 ± 0.020 0.879 ± 0.003 0.922 ± 0.002

CBM CPO 0.796 ± 0.005 0.941 ± 0.005 0.894 ± 0.003 0.943 ± 0.003

CEM BCE 0.728 ± 0.039 0.888 ± 0.016 0.886 ± 0.004 0.937 ± 0.006

CEM CPO 0.766 ± 0.003 0.875 ± 0.012 0.895 ± 0.001 0.931 ± 0.003

p = 0.2

CBM BCE 0.719 ± 0.039 0.851 ± 0.018 0.880 ± 0.001 0.877 ± 0.001

CBM CPO 0.793 ± 0.005 0.893 ± 0.006 0.889 ± 0.006 0.901 ± 0.003

CEM BCE 0.674 ± 0.027 0.796 ± 0.011 0.884 ± 0.013 0.896 ± 0.002

CEM CPO 0.757 ± 0.002 0.844 ± 0.002 0.887 ± 0.004 0.873 ± 0.009

p = 0.3

CBM BCE 0.681 ± 0.027 0.757 ± 0.010 0.880 ± 0.002 0.815 ± 0.002

CBM CPO 0.784 ± 0.012 0.804 ± 0.007 0.883 ± 0.005 0.845 ± 0.018

CEM BCE 0.671 ± 0.002 0.704 ± 0.005 0.864 ± 0.005 0.735 ± 0.006

CEM CPO 0.744 ± 0.002 0.809 ± 0.003 0.882 ± 0.002 0.772 ± 0.010

p = 0.4

CBM BCE 0.682 ± 0.029 0.652 ± 0.006 0.878 ± 0.003 0.735 ± 0.004

CBM CPO 0.780 ± 0.013 0.695 ± 0.006 0.877 ± 0.003 0.889 ± 0.003

CEM BCE 0.667 ± 0.021 0.610 ± 0.009 0.870 ± 0.012 0.652 ± 0.007

CEM CPO 0.736 ± 0.005 0.715 ± 0.003 0.883 ± 0.005 0.685 ± 0.008

Table 3. Task Accuracy and Concept AUC for noising group groups at p ∈ {0.1, 0.2, 0.3, 0.4}. We find that like our prior results, LCPO

significantly aids with concept noise across both CUB and AwA2 datasets.

I. Computational Analysis
Previously, we noted that LCPO adds minimal computational overhead to CBM-based models. Here, we provide a quantitative
analysis of the additional compute it requires. Table 4 shows the average training time per epoch using a single RTX-4800
GPU (the same setup used for all reported experiments). We find that LCPO adds a negligible amount of additional time per
epoch—approximately 0.05 minutes. This additional clock time is significantly lower than that of other models such as
CEM or ProbCBM, which roughly double the training time.

Furthermore, we use PyTorch’s built-in implementation of LBCE, which is optimized for performance, whereas our LCPO
implementation is hand-written and unoptimized. This suggests that further optimization of LCPO could reduce the already
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small performance gap even more.

Model Avg. Minutes per Epoch

CBM BCE 1.132 ± 0.012

CBM CPO 1.185 ± 0.014

CEM BCE 1.403 ± 0.055

CEM CPO 1.448 ± 0.080

ProbCBM 2.310 ± 0.035

Table 4. Average Time per Epoch

Table 5 reports the total number of parameters for each model, showing that LCPO does not introduce any additional
parameters. In contrast, models like CEM and ProbCBM increase the parameter count significantly, with ProbCBM
requiring roughly four times more parameters.

Model Trainable Parameters

CBM BCE 21,364,728
CBM CPO 21,364,728
CEM BCE 25,743,889
CEM CPO 25,743,889
ProbCBM 89,764,996

Table 5. Trainable Parameters

J. Sequential CBMs
While in § 5.1 we explored using LCPO with joint CBMs, this is not a requirement. Here, we investigate the use of LCPO
with sequential CBMs. The results in Table 6 demonstrate that LCPO outperforms LBCE for training sequential CBMs. This
trend holds across all datasets, with a particularly notable improvement in task accuracy on CelebA. We hypothesize this is
due to the uncertainty estimate coming from LCPO, which enables more expressive modeling by the decoder.

Dataset Category Task Accuracy Concept AUC

CUB
SEQCBM BCE 0.730 ± 0.007 0.928 ± 0.003

SEQCBM CPO 0.741 ± 0.003 0.931 ± 0.002

AWA2
SEQCBM BCE 0.898 ± 0.005 0.964 ± 0.000

SEQCBM CPO 0.906 ± 0.001 0.964 ± 0.000

CELEB
SEQCBM BCE 0.297 ± 0.019 0.879 ± 0.001

SEQCBM CPO 0.325 ± 0.007 0.880 ± 0.000

Table 6. Task Accuracy and concept AUC of Sequential CBMs using LCPO and LBCE across all datasets. Consistent to joint CBMs, we
find LCPO can increase the unnoised performance. We hypothesize this is due to improved uncertainty estimates of the concepts.
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