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Abstract

We present a novel Bayesian learning framework for interacting particle systems
with discrete latent states, addressing the challenge of inferring dynamics from
partial, noisy observations. Our approach learns a variational posterior path mea-
sure by parameterizing the generator of the underlying continuous-time Markov
chain. We formulate the problem as a multi-marginal Schrödinger bridge with
aligned samples, employing a two-stage learning procedure. Our method incorpo-
rates an emission distribution for decoding latent states and uses a scalable varia-
tional approximation.

1 Introduction

Many real-world phenomena, from epidemics to wildfires, can be modeled as systems of interacting
components evolving in continuous time, where the underlying dynamics are governed by discrete
latent states. This paradigm extends the concept of hidden Markov models [Baum and Petrie, 1966,
Kouemou and Dymarski, 2011] to spatially structured, continuous-time processes. Interacting par-
ticle systems (IPSs) [Liggett, 1985, Lanchier, 2024] offer a powerful mathematical framework for
describing local propagation dynamics. However, inferring the rules governing these systems from
partial, noisy observations remains a significant challenge. We propose a novel Bayesian approach
that addresses this challenge by learning a variational posterior path measure on the space of IPS tra-
jectories. Our approach parameterizes the rate matrix of the continuous-time Markov chain (CTMC)
of the latent IPS using neural networks and incorporates an emission model that can decode internal
discrete states to continuous data and noisy observations. Key contributions of our approach include:

• Framing the problem as a multi-marginal discrete Schrödinger bridge, solved by a two-
stage procedure: learning an endpoint-conditioned process for trajectory reconstruction,
followed by distillation to an unconditional process for prediction.

• A scalable variational approximation using site-wise factorization of time-marginals and
assuming independent particle evolution in infinitesimal time intervals conditionally on
the present global configuration, enabling efficient learning for high-dimensional spatio-
temporal processes.

• Flexibility in incorporating domain knowledge through informative priors on rate matrix
entries and neural architectures with desirable inductive biases.

We demonstrate preliminary results of our approach on two simulated datasets for the following
tasks: reconstructing the trajectory of an epidemic on a network and predicting wildfire spread on a
lattice. For a description of the notation, see Appendix A. An overview of the relevant literature is
presented in Appendix B, while proofs and other derivations are provided in Appendix C.
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Figure 1: An illustration of our methodology on a simulated noiseless dataset of wildfire propaga-
tion. The first model approximates a Markov bridge interpolating between the observations, enabling
to reconstruct the unobserved trajectory. The second model, approximating the unconditional pro-
cess, can predict beyond the last observation. Results shown for a held-out example.

2 Background

Interacting particle systems Consider a graph G = (V,E), and denote i ∼ j if there is an edge
between the vertices i, j, i.e., {i, j} ∈ E. Following Liggett [1985], we refer to vertices i ∈ V as
sites. For a countable local state space S, consider the configuration space Z := {z | z : V → S}.
For our analysis, we assume both V and S to be finite. An IPS adds a continuous-time dimension
to this setting. Specifically, we obtain a CTMC z(t) on Z restricted to a time interval [0, T ], whose
path space we denote Ω[0,T ]. We define zi(t) ∈ S as the state of site i at time t. We consider a
scenario where the dynamics of each site are described by local transition rates that depend on the
graph’s connectivity [Lanchier, 2017], corresponding to

λs→s̃
t (i, z(t)) := lim

∆t→0

1

∆t
P
(
zi(t+∆t) = s̃ | zi(t) = s, zj(t) : i ∼ j

)
,

for s to s′ ̸= s at site i and time t ∈ [0, T ], and set λs→s
t (i, z(t)) := −

∑
s′ ̸=s λ

s→s′

t (i, z(t)). The
local transition rates for each site can be compactly represented as matrices λt(i, z(t)).
Definition 1 (Local generator). A mapping Λt : Z × [0, T ]→ R|V |×|S|×|S| assigning to each con-
figuration z(t) a three-dimensional array containing the local transition rate matrices λt(i, z(t))
for all sites i ∈ V .

One can characterize the CTMC on the space of configurations by making the additional assumption
that updates at each site happen independently from one another. Then, for an arbitrarily small ∆t
and z̃ ∈ Z ,

pt+∆t|t(z̃|z) ≈ δz,z̃ +∆t
∑
i∈V

λz
i→z̃i

t (i, z(t))
∏
j ̸=i

δzj ,z̃j + o(∆t). (1)

For brevity, we denote these transition rates as Λt(z̃ | z) :=
∑

i∈V λ
zi→z̃i

t (i, z(t))
∏

j ̸=i δzj ,z̃j . A
detailed derivation can be found in Appendix C.3. We refer to endpoint-conditioned processes as
Markov bridges, and we provide a quick overview in Appendix C.1 for noisy data.

3 Variational Discrete Interacting Particle Systems

We consider a dataset of sequences of observations in a space X and observation times
{x (j)

1:Kj
, t

(j)
1:Kj
}j=1:N . We assume these are noisy observations of a latent IPS (z(j)(t))

t∈[t
(j)
1 ,t

(j)
Kj

]
∈

Ω
[t

(j)
1 ,t

(j)
K ]

. Pairwise conditional independence is assumed for any couple of observations in a se-

quence, i.e. x(j)
k ⊥⊥ x

(j)

k̃
| z(j)(t) for t ∈ [t

(j)
k , t

(j)

k̃
] and t(j)k < t

(j)

k̃
. The discrete set of measurement

times t(j)1 < · · · < t
(j)
Kj

is allowed to be arbitrarily defined for each sequence, e.g., at random or
regularly spaced. For ease of illustration, we present our results for a fixed set of observation times
t1, . . . , tK , but the extension to irregularly sampled time series is straightforward and presented in
Appendix C.2. We assume that the graph determining the particles’ dependence structure is fixed
for each realization and directly deducible from the observed sequences.

Consider an emission distribution pt(x | z) ∈ P(X ) and a prior path measure P ∈ P(Ω[t1,tK ]) for
the latent IPS. This can be specified directly on the entries of a prior local generator, encoding possi-
ble constraints in the latent dynamics, and by an initial prior distribution. Let P ∈ P(XK×Ω[t1,tK ])
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denote the reference measure constructed by gluing the prior and emission probabilities at each ob-
served timestep, i.e. P(dx1:K , (dz(t))t∈[t1,tK ]) =

∏K
k=1 ptk(dxk | z(tk))P ((dz(t))t∈[t1,tK ]).

The marginal distribution of the data at an observation time tk is denoted as πk ∈ P(X ), for
k = 1, . . . ,K. For a given sequence of distributions {πk}k=1:K , we can express a multi-marginal
discrete Schrödinger bridge problem with noisy observations as

Q∗ := argmin
Q∈P(XK×Ω[t1,tK ])

{DKL(Q ||P) | qtk = πk, k = 1, . . . ,K}, (2)

where qtk ∈ P(X ) correspond to marginalizations of Q at each observed timepoint in the space of
observations X .

Our goal is twofold:

• Trajectory reconstruction, by learning the conditional local generator Λt(· |x1:K) of the
Markov bridge Q⋆

·|x1:K
∈ P(Ω[t1,tK ]);

• Prediction, by learning the local generator Λt of the Markov process Q⋆ ∈ P(Ω[t1,tK ]),
enabling extrapolation beyond an observed time window or with no past observations at all
for a given graph.

We show that the second goal can be achieved by distilling knowledge from a model trained for the
first goal into a model that does not glance at future observations.

3.1 Trajectory reconstruction

Let π1:K denote the coupling solving the static version of (2), that is

π1:K = argmin
q1:K∈P(XK)

{DKL(qt1:K || pt1:K ) | qk = πk, k = 1, . . . ,K}, (3)

where p1:K ∈ P(XK) is the marginal of the observed trajectories obtained from the reference
measure P. Similarly to the setting considered in Somnath et al. [2023], we assume that our dataset
is comprised of trajectories of aligned samples, in the sense that each observed trajectory x1:K

is sampled from the coupling π1:K . By the additive property of the Kullback-Leibler divergence
[Léonard, 2013], the dynamic problem in equation 2 can be rewritten as

argmin
Q∈P(Ω[t1:tK ])

Eπ1:K

[
DKL(Q·|x1:K

||P·|x1:K
)
]
. (4)

As samples from π1:K are available, we can treat this stage as a smoothing problem, and perform
approximate posterior inference.

3.1.1 Noiseless data

In the special case where observations are noiseless snapshots of the IPS, i.e. xk = z(tk), the latent
variables in the model correspond to the unobserved portions of the stochastic process of the form
(z(t))t∈(tk,tk+1). The emission distribution corresponds to the transition probability ptk(x | z) =
limt→t−k+1

P(z(tk) = x | z(t) = z), obtained from the prior rates using equation 1. We learn a

variational posterior Qθ ∈ P(Ω[t1,tK ]) through amortization [Amos et al., 2023], by parameterizing
the local generator of the approximate Markov bridge with a neural model Λθ, having parameters
θ ∈ Θ.
Proposition 2. Let (3) admit a solution π1:K . Moreover, let x1:K be noiseless observations of
(z(t)) ∈ Ω[0,T ], and let P ∈ P(Ω[0,T ]). Then, the amortized version of the problem in equation 2
reduces to

argmin
θ∈Θ

K−1∑
k=1

Eπk,k+1

[
DKL(Q

θ
·|xk,xk+1

||P )− EQθ
·|xk,xk+1

[log ptk+1
(xk+1 | z(t−k+1))]

]
, (5)

where πk,k+1 ∈ P(X 2) is obtained by marginalizing π1:K , and z(t−k+1) = limt→t−k+1
z(t).

Notice that this parameterization is highly scalable as it allows mini-batching across segments of
time. The KL divergence of two CTMCs can be estimated using Monte Carlo integration, using the
analytic form derived in Opper and Sanguinetti [2007], see Appendix C.4 for a derivation.
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3.1.2 Noisy data

In order to learn a conditional model with noisy data, we propose to parameterize our variational pos-
terior in an autoregressive fashion, extending the method proposed in Seifner and Sánchez [2023].
The authors propose to compute a single hidden representation of the entire sequence via an ODE-
RNN model [Rubanova et al., 2019], and then condition the inference model at every time step using
that variable. We extend their approach by letting the conditioning variable change through time,
only capturing dependence on future observations. Note that the option to drop conditioning on past
observations follows naturally from the conditional independence assumption. We do not need to
train multiple models to accomplish this, as it is enough to checkpoint the ODE-RNN model at the
observation times. We can express the variational posterior as

qθt1(dz(t1) |ht1(x1:K))

K−1∏
k=1

dQθ((dz(t))t∈(tk,tk+1] | z(tk), h
θ
tk
(xk+1:K)), (6)

where qθt1 is a Categorical distribution parameterized by an encoder. The model can be learned by
minimizing the negative evidence lower bound

LAR(θ) := Eπ1:K

[
DKL(Q

θ
·|x1:K

||P )− EQθ
·|x1:K

[
K∑

k=1

log ptk(xk | z(tk))

]]
. (7)

3.1.3 Simulation

While at sampling time any exact stochastic simulation algorithm (e.g. Gillespie 2001) can be
employed, at training time we are limited to differentiable approximations. We propose two options,
trading off assumptions on the variational family for scalability.

Forward simulation This approach involves fixing a time-discretization grid tk < tk + ∆t <
· · · < tk+1 − ∆t < tk+1 and sampling iteratively from a Gumbell-softmax approximation [Jang
et al., 2017] to equation 1, updating the latent state z(t + ∆t) = z(t) + Nθ

t (∆t, z(t)), where Nθ
t

is the jump process describing the latent CTMC. While this method is exact in the limit ∆t → 0
and requires no additional restrictions to the variational family, its cost scales linearly with respect
to the number of jumps [Jia and Benson, 2019]. However, we are not required to compute inflow
rates (of the form λs→zi

), but only outflow rates (like λz
i→s), making the output of our local rates

model scale linearly with respect to |S|.

Neural master equation Techniques from the literature on neural ODEs [Chen et al., 2021] can
be applied if we consider a factorized posterior qt(z | x1:K) =

∏
i∈V q

i
t(z

i | x1:K). Note that
spatial dependence is still propagated through time, as the local rates model depends on the global
configuration (or a neighborhood restriction). For notational simplicity we omit conditioning on
x1:K , but note that this applies to conditional and unconditional settings alike. We can then simulate
from the system of marginal master equations given initial conditions qi1(z

i
1), i ∈ V, as

∂tq
i
t(z

i(t)) =
∑

s̸=zi(t)

(
Eq−i

t

[
λ
s→zi(t)
t (i, z(t))

]
qit(s)− Eq−i

t

[
λ
zi(t)→s
t (i, z(t))

]
qit(z

i(t))
)
, i ∈ V.

(8)
This variational approximation was introduced for continuous-time Bayesian networks in Linzner
and Koeppl [2018] under the name of star-approximation. This is to be distinguished from the mean-
field approach, where the approximation entails either a fixed rate for each site or compartmental
models directly describing the mean-field behaviour of the system [Seifner and Sánchez, 2023, Op-
per and Sanguinetti, 2007, Cohn et al., 2010]. As the solution to equation 8 is a continuous function,
one can use the memory-efficient adjoint method [Chen et al., 2021, Seifner and Sánchez, 2023] at
training time, making this approach extremely scalable.

3.2 Prediction

The trajectory reconstruction model learned in Section 3.1 approximates the Schrödinger bridge
Q⋆ through an endpoint-conditioned scheme for the latent trajectories, leveraging the factorization
Qθ

·|x1:K
((dz(t))t∈[t1,tK ])π1:K(dx1:K). However, for many applications, we require the ability to
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generate predictions beyond observed time intervals. Given an initial observation x1 at time t1,
we aim to predict observations at arbitrary times t̃ ∈ (t1, tK ]. This prediction task leverages an
alternative factorization of Q⋆:

q⋆t̃ (dxt̃ | z(t̃ ))Q⋆
·|x1

((dz(t))t∈[t1,tK ])π1(dx1).

While it can be shown that q⋆
t̃
(xt̃ | z(t̃ )) = pt̃(xt̃ | z(t̃ )) using the additive property of the KL, the

models developed thus far are constrained by their dependence on endpoint conditions. To overcome
this limitation, we propose learning an unconditional amortized posterior Qϕ by minimizing the KL
divergence

LKL(ϕ) := DKL(Q
⋆ ||Qϕ) ∝ Eπ1:K

[
DKL(Q

⋆
·|x1:K

, ||, Qϕ)
]
. (9)

A direct computation of this loss is intractable due to the unavailability ofQ⋆ andQ⋆
·|x1:K

, hence we
employ the surrogate loss function

L̂θ
KL(ϕ) := Eπ1:K

[
DKL(Q

θ
·|x1:K

, ||, Qϕ)
]
. (10)

The absolute difference between these quantities can be upper bounded in terms of the total varia-
tion distance between the solution to equation 2 and our conditional approximation. We provide a
detailed analysis of the bound in Appendix C.6.

4 Experiments

We demonstrate our methodology on two simulated scenarios: epidemic trajectory inference on
networks and wildfire spread prediction on lattices. We parameterize the neural models for the local
generators with a novel architecture, detailed in Appendix D. Results and details of the simulations
are reported in Appendix E.

5 Conclusion

We introduce a variational inference method to fit partially observed trajectories whose dynamics can
be modeled by a continuous-time latent process, parameterized as an interacting particle system. Our
solution is an approximation to a multi-marginal Schrödinger bridge, that we obtain by first fitting
an endpoint-conditioned model and then distilling it into an unconditional one. This methodology
enables both trajectory reconstruction and prediction of future states. In future work we aim at
testing our models on real data, comparing with state-of-the-art methods.
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A Notation

Let Ω[0,T ] be the space of Z-valued cadlag functions over a time interval [0, T ], and denote by
P(Ω[0,T ]) the space of probability measure on the path space. We denote by Ω[t,t′] time restrictions
of Ω[0,T ] to [t, t′], for 0 ≤ t < t′ ≤ T . We denote the cartesian product ×k∈[K]X of observations
at K times as XK . Consider the Polish space Q := XK × Ω[0,T ] and probability measures Q,P ∈
P(Q). We introduce the following notation:

• The marginal probability measures over observations, given by the canonical projection
ϕ : Q → XK and denoted as q1:K := ϕ#Q, p1:K := ϕ#P.

• The marginal path measures over latent trajectories, given by the canonical projection φ :
Q → Ω[0,T ] and denoted as Q := φ#Q, P := φ#P.

• The conditional path measures over latent trajectories, given by measurable mappings
x1:K ∈ XK 7→ Q·|x1:K

∈ P(Ω[0,T ]) and x1:K ∈ XK 7→ P·|x1:K
∈ P(Ω[0,T ])

For a path measure Q ∈ P(Ω[0,T ]), we assume that the time-marginal and transition probability
measures are absolutely continuous w.r.t. the counting measure. Their Radon-Nikodym derivative
can then be expressed by the probability mass function qt(z) and the transition probability qt′|t(z̃ |
z) for timesteps 0 ≤ t < t′ ≤ T and configurations z, z̃ ∈ Z .

B Related work

B.1 Learning interacting particle systems

The dynamics of many physical systems can be described through the local interaction laws of their
constituent components. This principle has inspired computational frameworks that directly param-
eterize these governing interactions, both deterministically and stochastically. A prime example is
cellular automata [Wolfram, 1986, Grinstein et al., 1985]. Early developments focused on study-
ing the emergence of global patterns from a fixed set of rules on the evolution of individual cells.
The inverse problem —inferring such rules from observations— has been of historical interest in
the machine learning community [Wulff and Hertz, 1992, Mordvintsev et al., 2020], with recent
developments incorporating attention-based architectures, graph neural networks, and black-box
variational inference [Tesfaldet et al., 2022, Kang et al., 2024, Grattarola et al., 2021, Palm et al.,
2022]. Models that learn interaction rules find applications across many domains, including physical
simulators, multi-agent dynamics, dynamic graphs, as well as deep generative modeling [Kalkhof
et al., 2024].

Within this context, most existing methods have proposed iterative updating schemes by param-
eterizing transition rules in discrete time. Interacting particle systems (IPSs) offer an alternative
mathematical formalism that extends cellular automata to continuous time. Interacting particle sys-
tems are structured CTMCs whose states evolve with dependence on neighbors within a topology,
typically established by a graph. Lanchier [2017] provides a modern introduction to this field. Clas-
sical literature focused on systems with finite states and often countably many sites [Bramson and
Griffeath, 1980, Liggett, 1985, Durrett, 2006], while more recent work has focused on systems with
finitely many sites [Aldous, 2013]. These systems have found applications in multi-agent modeling
[Comas et al., 2023] and have been extended to systems of stochastic differential equations (SDEs)
in Euclidean space. This extension has seen increased attention recently [Lu et al., 2021, Yang et al.,
2022, Feng et al., 2022, Liu et al., 2023, Lang et al., 2024, Kümmerle et al., 2024, Boffi and Vanden-
Eijnden, 2024]. The learnability and identifiability of interaction rules in these systems have also
been explored [Bongini et al., 2017, Li et al., 2021].

B.2 Inference for CTMCs

Inference methods for Markov jump processes (MJPs) have been extensively studied. Maxi-
mum likelihood estimation for time-homogeneous MJPs is discussed in Jackson [2011], Bladt
and Sørensen [2005], McGibbon and Pande [2015]. Expectation-maximization techniques for
continuous-time hidden Markov models have been developed in Liu et al. [2015], and an overview
of the topic can be found in Wang [2021]. Bayesian approaches include Markov chain Monte Carlo
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methods [Boys et al., 2008, Hobolth and Stone, 2009, Rao and Teh, 2013] and variational meth-
ods. The latter include mean-field [Opper and Sanguinetti, 2007, Cohn et al., 2010], moment-based
methods [Wildner and Koeppl, 2019], combinations with MCMC [Zhang et al., 2017], and exten-
sions to hybrid processes [Köhs et al., 2021]. Novel methods include black-box variational inference
with neural networks [Seifner and Sánchez, 2023], foundation models [Berghaus et al., 2024], and
expectation propagation [Alt and Koeppl, 2023]. Another directly related line of research focuses
on simulation methods for Markov bridges, notably Corstanje et al. [2023], Corstanje and van der
Meulen [2023] and Golightly and Sherlock [2019]. While less directly related, it’s worth noting
recent work discrete flow matching and diffusion methods [Campbell et al., 2022, Igashov et al.,
2023, Lou et al., 2023, Campbell et al., 2024]. Concurrently to our work, a similar formulation of
discrete Schrödinger bridges as CTMCs for two endpoint marginals contraints has been proposed in
the context of discrete generative modelling by Kim et al. [2024].

B.3 Trajectory Inference

Trajectory inference is a crucial component of our work, with connections to several recent devel-
opments. The Schrödinger bridge (SB) problem with multi-marginal constraints has been explored
by Chen et al. [2019], Lavenant et al. [2021]. Recent advances in SB methods with a source and
a target are presented in Vargas et al. [2021] and De Bortoli et al. [2021], with extensions to the
multi-marginal setting by Shen et al. [2024]. Our approach shares similarities with Somnath et al.
[2023], Shi et al. [2024], and Peluchetti [2023] in that it relies on samples from couplings solving
the static SB problem. However, our methodology differs in that we learn the Markovian bridge and
recover the unconditional path measure by distillation, rather than relying on closed-form endpoint-
conditioned diffusions. The concept of Markov bridge by interpolation with a fictitious dynamic, as
proposed by Igashov et al. [2023], is related to stochastic interpolants [Albergo and Vanden-Eijnden,
2022, Tong et al., 2023, Lipman et al., 2022, Liu et al., 2022] for probabilistic forecasting [Chen
et al., 2024]. Ad-hoc variants for dynamical systems have also been developed [Rühling Cachay
et al., 2024]. Our methodology also shares connections with flow matching using Gaussian process
and Kalman filter interpolants [Tamir et al., 2023], in the fact that we are interested in model-based
interpolants in a Bayesian framework.

C Proofs

C.1 Markov bridges

Consider a sequence of observations {xk}k∈[K] ∈ XK recorded at times {tk}k∈[K] ∈ RK , and
assume conditional independence with respect to a Markov process (z(t))t∈[0,T ]. For t ∈ [t0, tK−1],
let x>t = {xk | tk > t, k = 1, . . . ,K} and x≤t = {xk | tk ≤ t, k = 1, . . . ,K}. The next
observation after t is at time t′ := min{tk : tk > t, k = 1, . . . ,K}, and we assume t + ∆t < t′

for ∆t ≈ 0, by right-continuity of the transition probabilities. We can then denote the conditional
transition rates for z̃ ̸= z as

Λt(z̃ | z, x0:K) = lim
∆t↓0

(∆t)−1 [P(z(t+∆t) = z̃ | z(t) = z,x0:K)]

= lim
∆t↓0

(∆t)−1

[
P(z(t+∆t) = z̃, z(t) = z,x>t | x≤t)

P(z(t) = z,x>t | x≤t)

]
= lim

∆t↓0
(∆t)−1

[
P(x>t+∆t | z(t+∆t) = z̃)P(z(t+∆t) = z̃ | z(t) = z)

P(x>t | z(t) = z)

]
= Λt(z̃ | z)

P(x>t | z(t) = z̃)

P(x>t | z(t) = z)
,

and similarly

Λt(z | z, x0:K) = −
∑
z̃ ̸=z

Λt(z̃ | z)
P(x>t | z(t) = z̃)

P(x>t | z(t) = z)
. (11)

We refer the reader to Fitzsimmons et al. [1992] for a detailed construction.
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C.2 Irregularly sampled time series

The problem in equation 2 considers a fixed number of time steps K and a set of observation times
t1, . . . , tK . In this section, we provide an extension to irregular an arbitrary observation times.

We assume that the number of timesteps is i.i.d. for each trajectory, and drawn from K ∼ p(K).
The same goes for observation times, that are in turn drawn from t1:K | K ∼ p(t1:K | K), and
x1:K |t1:K ∼ π1:K . We do not model these probabilities, and instead express equation 2 as a solution
in expectation, i.e.

Q∗
·|t1:K := argmin

Q∈P(XK×Ω[t1,tK ])

{DKL(Q ||P) | qtk = πk, k = 1, . . . ,K}, Q∗ = EK,t1:K

[
Q∗

·|t1:K

]
.

(12)
The amortized problem can be written as

argmin
θ∈Θ

EK,t1:K{DKL(Q
θ ||P) | qtk = πk, k = 1, . . . ,K}, (13)

where Qθ,P ∈ P(XK × Ω[t1,tK ]).

C.3 From local interactions to a global dynamics

Consider a stochastic process (z(t)) ∈ Ω[0,T ], whose dynamics at each site are driven by a system of
CTMCs

(
zi(t)

)
, for i ∈ V . In this section we illustrate that, under an independence assumption of

jumps in infinitesimal time intervals, a global description of the dynamics can be deduced. This cor-
responds to an CTMC on the global state space Z := SV , hence a global master equation (ME) can
be derived. This equivalence is well-known in the literature on continuous-time Bayesian networks
[Nodelman et al., 2002, Linzner, 2021].

Local dynamics. Let z̃i,s ∈ Z be z ∈ Z where we substitute site i ∈ V to be s ∈ S, and denote

p
i|−i
t (s | z) := pit

(
zi(t) = s | {zt(j) = z(j), j ̸= i}

)
,

pit+∆t|t(s | z) := pit (zt+∆t(i) = s | {zt = z}) ,

p−i
t (z) :=

∑
s∈S

pt(z̃
i,s).

Let the initial distribution of z0 be p0 ∈ P(Z), and let each one-dimensional CTMC (zi(t)) have a
local generator λt(i, z) := [λs→s′

t (i, z̃i,s)]s,s′∈S , that is a mapping λ : [0, T ]×V ×Z → R|S|×|S|.
Local transition rates are defined as

λz
i→s

t (i, z) =

{
lim∆t↓0 p

i
t+∆t|t(s | z), s ̸= zi,

−
∑

s′ ̸=zi λz
i→s′

t (i, z), s = zi.

As we are interested in working with non-homogeneous Markov chains, recovering the Markov
kernels from the rate matrix is non-trivial and requires commutativity assumptions of the rate matrix
[Norris, 1998]. For simplicity, we only consider arbitrarily small time intervals 0 < ∆t ≪ 1
and adopt a “piece-wise” approximation to the rate matrix, such that it is constant for the interval
[t, t + ∆t). A similar approximation is adopted in the context of generative modelling, by both
discrete diffusion [Sun et al., 2022] and flow matching [Campbell et al., 2024]. We can then express
each site-marginal Markov transition kernel as

qit+∆t|t(s | z) ≈ δs,zi +∆tλz
i→s

t (i, z) + o(∆t), i ∈ V. (14)
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The dynamics at each site i ∈ V can be described by full conditional master equations, i.e. defined
conditionally on a global configuration fixed at all sites but i. These correspond to

∂tq
i|−i
t (zi | z)

= lim
∆t→0

∆t−1
[
q
i|−i
t+∆t(z

i | z)− qi|−i
t (zi | z)

]
= lim

∆t→0
∆t−1

[∑
s∈S

qit+∆t|t(z
i | z̃i,s)q

i|−i
t (s | z)− qi|−i

t (zi | z)

]
= lim

∆t→0
∆t−1

∑
s̸=zi

[
qit+∆t|t(z

i | z̃i,s)q
i|−i
t (s | z)− qit+∆t|t(s | z)q

i|−i
t (zi | z)

]
=
∑
s̸=zi

[
λs→zi

t (i, z̃i,s)q
i|−i
t (s | z)− λz

i→s
t (i, z)q

i|−i
t (zi | z)

]
. (15)

In matrix form, this can be written as ∂tq
i|−i
t (− |z) = λt(i, z)

⊤q
i|−i
t (− |z) for the probability

vector qi|−i
t (− |z) ∈ ∆|S|.

Independent infinitesimal transitions. Consider two global configurations z̃, z ∈ Z , such that
z̃ ̸= z. At time t ∈ [0, 1] and for 0 < ∆t ≪ 1, we assume independent transitions along each
coordinate and adopt the approximation in (14), so that

qt+∆t|t(z̃ | z) =
∏
i∈V

qit+∆t|t(z̃
i | z)

≈
∏
i∈V

[
δzi,z̃i +∆tλz

i→z̃i

t (i, z) + o(∆t)
]

= δz,z̃ +∆t
∑
i∈V

λz
i→z̃i

t (i, z)
∏
j ̸=i

δz̃j ,zj + o(∆t). (16)

Notice that the appropriateness of this assumption is highly dependent on the process we are mod-
eling. It is probably a safe assumption for models of propagation on a graph, but it might not be for
scenarios where sites are strongly coupled, such as object tracking. In this latter case, a site switching
to a state of occupancy would imply that a neighboring site has switched to a state of inoccupancy
at the exact same time, which couldn’t be captured by the dependence structured described by (16).

Global master equation. We can characterize the generator of a CTMC Λt = [Λt(z̃ | z)]z̃,z∈Z
by populating it with asynchronous site-wise transitions

Λt(z̃ | z) =
∑
i∈V

λz
i→z̃i

t (i, z)
∏
j ̸=i

δz̃j ,zj (17)

and letting Λt(z | z) = −
∑

z̃ ̸=z Λt(z̃ | z). In other words, the only non-zero entries of the
generator are those representing transitions at a single site, and there are at most |V | × |S| × |S| of
those, as compared to the |S||V | × |S||V | entries of the matrix. The ME can then be expressed as

∂tqt(z) =
∑
z̃ ̸=z

[Λt(z | z̃)qt(z̃)− Λt(z̃ | z)qt(z)]

=
∑
i∈V

∑
s̸=zi

[
λs→zi

t (i, z̃i,s)q
i|−i
t (s | z)− λz

i→s
t (i, z)q

i|−i
t (zi | z)

]
q−i
t (z)

=
∑
i∈V

∂tq
i|−i
t (zi | z)q−i

t (z). (18)

(19)

C.4 Derivation of DKL(Q ||P )

Consider two CTMCs with path measuresQ, P ∈ P(Ω[0,T ]), and denote their respective rate matri-
ces entries with Λt(z̃ | z) and Ψt(z̃ | z) for z, z̃ ∈ Z . Their KL divergence, as discussed in Opper
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and Sanguinetti [2007], Seifner and Sánchez [2023], can be derived from the limit of discrete-time
transitions with step size h := T/K as

DKL(Q||P )

= lim
K→∞

∑
z0:K

q0(z0)

K−1∏
k=0

qk+h|k(zk+h | z(tk)) log
q0(z0)

∏K−1
k=0 qk+h|k(zk+h | z(tk))

p0(z0)
∏K−1

k=0 pk+h|k(zk+h | z(tk))

=
∑
z0

q0(z0) log
q0(z0)

p0(z0)
+ lim

K→∞

K−1∑
k=0

Eqk(z)

∑
zk+h

qk+h|k(zk+h | z) log
qk+h|k(zk+h | z)
pk+h|k(zk+h | z)


(20)

= DKL(q0||p0) +
∫ T

0

Eqt(z)

∑
z̃ ̸=z

{
Ψt(z̃ | z) + Λt(z̃ | z)

(
log

Λt(z̃ | z)
Ψt(z̃ | z)

− 1

)}
dt,

where the last line follows from dividing and multiplying each summand in (20) by h, and substitut-
ing the transition probabilities with rates,

qk+h|k(zk+h | z)
h

log
qk+h|k(zk+h | z)
pk+h|k(zk+h | z)

h→0−→

{
Λt(zk+h | z) log Λt(zk+h|z)

Ψt(zk+h|z) zk+h ̸= z,∑
z̃ ̸=z [Ψt(z̃ | z)− Λt(z̃ | z)] zk+h = z.

By assuming transition probabilities of the form qt+h|t(z̃ | z) =
∏

i∈V qt+h|t(z̃(i) | Ni(z)) where
we define a neighborhood Ni(z) := {zi, z(j) : i ∼ j}, we can rewrite each summand in (20) as

Eqk(z)

∑
zk+h

qk+h|k(zk+h | z) log
qk+h|k(zk+h | z)
pk+h|k(zk+h | z)


= Eqk(z)

[∑
i∈V

∑
s∈S

qik+h, k(s | Ni(z)) log
qik+h, k(s | Ni(z))

pik+h, k(s | Ni(z))

]
.

Letting K →∞ and plugging (8), we get

DKL(Q||P )

= DKL(q0||p0) +
∫ T

0

Eqt(z)

∑
i∈V

∑
s̸=zi

{
ψzi→s
t (i, z)− λz

i→s
t (i, z)

+ λz
i→s

t (i, z)

(
log

λz
i→s

t (i, z)

ψzi→s
t (i, z)

)}
dt.

(21)

C.5 Derivation of the evidence lower bound

We start by proving a simple but fundamental property of the solution to equation 2, by showing
that the optimal paths in latent space are Markovian, provided our reference process P ∈ P(Ω[0,T ])
is Markovian. This motivates our parameterization of such process as a CTMC.

Lemma 3 (Q⋆ is Markov). If P ∈ P(Ω[0,T ]) is Markov, then Q⋆ := φ#Q
⋆ solving equation 2

with reference measure P((dz(t))t∈[0,T ], dx1:K) :=
∏

k∈[K] p(dxk | z(tk))P ((dz(t))t∈[0,T ]) is
Markov.

Proof. The proof is a simple extension of Léonard [2013, Prop. 2.10] to the case where the process
is latent, and we restate it here for completeness.

We consider an arbitrary time t ∈ [0, T ]. When it is an observation time, i.e. t = tk for
some k = 1, . . . ,K, we consider a fixed time-marginal at tk in observation space, denoted
q̂k ∈ P(X ), a conditional measure at tk in latent space q̂tk(·|xk) ∈ P(Z), and conditional path
measures on both latent trajectories and observations, before and after t. These can be denoted
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as Q̂<
·|z(tk)

:= Q̂
[0,tk)
·|z(tk) ∈ P(Ω[0,tk) × X[0,tk)) and Q̂>

·|z(tk)
:= Q̂

(tk,T ]
·|z(tk) ∈ P(Ω(tk,T ] × X(tk,T ]),

where we denote, with a slight abuse of notation, X[0,tk) and X(tk,T ] to be the product space of
observations happening before and after tk. When t is not an observation time, we simply con-
sider a prescribed time-marginal in latent space q̂t ∈ P(Z) and the conditional path measures
Q̂<

·|z(t) := Q̂
[0,t)
·|z(t) ∈ P(Ω[0,t) × X[0,t)) and Q̂>

·|z(t) := Q̂
(t,T ]
·|z(t) ∈ P(Ω(tk,T ] × X(tk,T ]). As the proof

in this case naturally follows from that of Léonard [2013, Prop. 2.10], we focus our attention to the
case where t is an observation time tk.

We want to prove that, among all the joint measures Q that satisfy qk = q̂k, qtk(·|xk) = q̂tk(·|xk),
Q<

·|z(tk) = Q̂<
·|z(tk) and Q>

·|z(tk) = Q̂>
·|z(tk), a minimum in the KL divergence is attained by

∫
X

∫
Z
Q̂<

·|z(tk) ⊗ Q̂>
·|z(tk)q̂tk(dz(tk)|xk)q̂k(dxk), (22)

i.e. the latent process is Markov [Léonard, 2013]. By arbitrariness of tk and of the measures we fix,
this is also true for the solution to equation 2. This can be shown by applying the additive property
of the KL divergence twice, conditioning on a xk and z(tk) first,

DKL(Q ||P) = DKL(q̂tk(·|xk)q̂k || ptk(·|xk)pk)+

∫
X

∫
Z
DKL(Q·|zk

||P·|zk
)q̂tk(dz(tk)|xk)q̂k(dxk),

and then on the prescribed half path Q̂<
·|z(tk), obtaining

DKL(Q·|zk
||P·|zk

) = DKL(Q̂
<
·|z(tk) ||P

<
·|z(tk))+

∫
Ω(tk,T ]

DKL

(
Q

[tk,T ]
·|(z(t))t∈[0,tk]

||P>
·|z(tk)

)
dQ̂<

·|z(tk).

By Jensen’s inequality, we get

DKL(Q
>
·|z(tk) ||P

>
·|z(tk)) = DKL

(∫
Ω(tk,T ]

Q
[tk,T ]
·|(z(t))t∈[0,tk]

dQ̂<
·|z(tk)

∣∣∣∣∣∣∣∣P>
·|z(tk)

)

≤
∫
Ω(tk,T ]

DKL

(
Q

[tk,T ]
·|(z(t))t∈[0,tk]

||P>
·|z(tk)

)
dQ̂<

·|z(tk),

and equality is achieved if and only if the process is Markov, i.e. Q
[tk,T ]
·|(z(t))t∈[0,tk]

= Q̂>
·|z(tk). This

proves that a minimum satisfying the prescribed marginals is achieved by a Markov process, i.e.
satisfying equation 22.

Next, we derive the evidence lower bound for noiseless data, as presented in Proposition 2, and
for noisy data. Alternative derivations for the latter can be found in Opper and Sanguinetti [2007],
Wildner and Koeppl [2019].

Our derivation follows by analyzing the limit of discretized processes, following an approach analo-
gous to the derivation of the KL divergence between two CTMCs in Opper and Sanguinetti [2007].
Specifically, we consider probability mass functions corresponding to marginal and conditionals of
a discretized CTMC (z(t))t∈[t1,tK ] on a uniform grid tk = τ0k < τ1k < · · · < τTk−1

k < τTk

k = tk+1,
where Tk = (tk+1 − tk)/∆t, for k = 1, . . . ,K − 1. We then let ∆t → 0, and simultaneously
Tk →∞. We denote the latent process at a discrete time τ as zτ := z(τ).
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C.5.1 Noiseless data - Proof of Proposition 2

When x1:K is a noiseless observation of a Markov process (z(t))t∈[t1,tK ] at times t1:K , we can
leverage the Markov property and obtain at any time τ jk , for j = 1, . . . , Tk−2 and k = 1, . . . ,K−1

p̄τj
k
(z) := pτj

k
(z |x1:K)

= pτj
k
(z |xk,xk+1)

= pτj
k | tk(z |xk)

ptk+1 | τj
k
(xk+1 | z)

ptk+1 | tk(xk+1 |xk)
,

p̄τj+1
k | τj

k
(z̃ | z) := pτj+1

k | τj
k
(z̃ | z, x1:K)

= pτj+1
k | τj

k
(z̃ | z,xk+1)

= pτj+1
k | τj

k
(z̃ | z)

ptk+1 | τj+1
k

(xk+1 | z̃)
ptk+1 | τj

k
(xk+1 | z)

.

Hence,

p(z
τ1
k :τ

Tk−1

k

| x1:K) = p̄τ1
k
(zτ1

k
)

Tk−2∏
j=1

p̄τj+1
k | τj

k
(zτj+1

k
| zτj

k
)

= pτ1
k | tk(zτ1

k
|xk)

Tk−2∏
j=1

pτj+1
k | τj

k
(zτj+1

k
| zτj

k
)
p
tk+1 | τTk−1

k

(xk+1 | zτTk−1

k

)

ptk+1 | tk(xk+1 |xk)
.

It follows that

DKL

(
Qθ

·|x1:K
||P·|x1:K

)
=

K−1∑
k=1

Eqθ
τ1
k
:τ

Tk−1
k

(· |xk,xk+1)

log qθ
τ1
k :τ

Tk−1

k

(z
τ1
k :τ

Tk−1

k

|xk,xk+1)

p̄τ1
k
(zτ1

k
)
∏Tk−2

j=1 p̄τj+1
k | τj

k
(zτj+1

k
| zτj

k
)


=

K−1∑
k=1

Eqθ
τ1
k
:τ

Tk−1
k

(· |xk,xk+1)

log qθ
τ1
k :τ

Tk−1

k

(z
τ1
k :τ

Tk−1

k

|xk,xk+1)

pτ1
k | tk(zτ1

k
|xk)

∏Tk−2
j=1 pτj+1

k | τj
k
(zτj+1

k
| zτj

k
)


− Eqθ

τ
Tk−1
k

(· |xk,xk+1)

[
log p

tk+1 | τTk−1

k

(xk+1 | zτTk−1

k

)
]
+ log ptk+1 | tk(xk+1 |xk)

Denoting logZ =
∑K−1

k=1 log ptk+1 | tk(xk+1 |xk) and as ∆t→ 0 and Tk →∞, we get

= logZ +

K−1∑
k=1

DKL

(
Qθ

·|xk,xk+1
||P·|xk

)
− Eqθ

t
−
k+1

(·|xk,xk+1)

[
log ptk+1 | t−k+1

(xtk+1
| z(t−k+1))

]
,

where each KL term is restricted to the time interval (tk, tk+1) and z(t−k+1) = limt→t−k
z(t).

C.5.2 Noisy data

When x1:K is a noisy observation of (z(t))t∈[t1,tK ] at times t1:K , at any time τ jk for j = 1, . . . , Tk−
1 and k = 1, . . . ,K − 1,

p̄τj
k
(zτj

k
) := pτj

k
(zτj

k
| x1:K) (23)

= pτj
k
(zτj

k
)
p≤τj

k |τ
j
k
(x≤τj

k
| zτj

k
)p>τj

k |τ
j
k
(x>τj

k
| zτj

k
)

p1:K(x1:K)
, (24)

p̄τj+1
k |τj

k
(zτj+1

k
| zτj

k
) := pτj+1

k |τj
k
(zτj+1

k
| zτj

k
, x1:K) (25)

= pτj+1
k |τj

k
(zτj+1

k
| zτj

k
)
p>τj

k |τ
j+1
k

(x>τj
k
| zτj+1

k
)

p>τj
k |τ

j
k
(x>τj

k
| zτj

k
)

. (26)
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At the last step before an observation time, we can further decompose

p
>τ

Tk−1

k |τTk
k

(x
>τ

Tk−1

k

| z
τ
Tk
k

) = p≥tk+1|tk+1
(x≥tk+1

| ztk+1
)

= ptk+1
(xk+1 | ztk+1

)p>tk+1|tk+1
(x>tk+1

| ztk+1
).

Hence, denoting t1 : tk = {t1, τ11 , . . . , τ
TK−1−1
K−1 , tK}, we get

pt1:tk(zt1:tk | x1:K) = p̄t1(zt1)

K−1∏
k=1

Tk−1∏
j=0

p̄τj+1
k | τj

k
(zτj+1

k
| zτj

k
)

=
pt1(zt1)pt1(x1 | zt1)

p1:K(x1:K)

K−1∏
k=1

ptk+1
(xk+1 | ztk+1

)

Tk−1∏
j=0

pτj+1
k | τj

k
(zτj+1

k
| zτj

k
).

and

qθt1:tK (zt1:tK | x1:K) = qθt1(zt1 | x1:K)

K−1∏
k=1

qθτ1
k :tk+1

(zτ1
k :tk+1

| ztk ,x>tk).

Denoting logZ = log p1:K(x1:K), the KL can be expressed as

DKL

(
Qθ

·|x1:K
||P·|x1:K

)
= Eqθt1:tK

(· |x1:K)

[
log

qθt1:tK (zt1:tK | x1:K)

pt1:tk(zt1:tk | x1:K)

]

= logZ + Eqθt1:tK
(· |x1:K)

[
log

qθt1:tK (zt1:tK | x1:K)

pt1:tk(zt1:tk)

]
− Eqθt1:tK

(· |x1:K)

[
K∑

k=1

log ptk(xk | ztk)

]
.

As ∆t→ 0 and Tk →∞, we get

= logZ +DKL(Q
θ
·|x1:K

||P )− EQθ
·|x1:K

[
K∑

k=1

log ptk(xk | ztk)

]

C.6 Unconditional loss

In this section, we aim at justifying the choice of the surrogate loss in Section 3.2. We do so by
bounding its distance to the ideal loss, with respect to the Markov process Q⋆ ∈ P(Ω[t1,tK ]) that is
unavailable.
Definition 4. For a given time t, we define:

• The total variation distance:∥∥q⋆t − qθt ∥∥TV = Eπ1:K(x1:K)

[∑
z∈Z

∣∣q⋆t (z | x1:K)− qθt (z | x1:K)
∣∣ ],

• The expected Lambda difference:

εΛt (θ) := Eqθt (z,x>t)

∑
z̃ ̸=z

∣∣Λ⋆
t (z̃|z,x>t)− Λθ

t (z̃|z,x>t)
∣∣ .

Theorem 5. The following bound holds:∣∣∣LKL(ϕ)− L̂θ
KL(ϕ)

∣∣∣ ≤ ∫ tK

t1

∥∥q⋆t − qθt ∥∥TV ·At(θ, ϕ) dt,

where

At(θ, ϕ) = Eqθt (z,x1:K)

[
εΛt (θ)max

z̃ ̸=z

∣∣∣log Λϕ
t (z̃|z)

∣∣∣− Λϕ
t (z|z)

]
.

Proof.
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Lemma 6.
DKL(Q

⋆ |Qϕ) ∝ Eπ1:K

[
DKL(Q

⋆
·|x1:K

|Qϕ)
]
. (27)

Proof. Let Qϕ have rates Λϕ
t (−|−), Q⋆ have rates Λ⋆

t (−|−), and Q⋆
·|x1:K

have rates Λ⋆
t (−|−,x>t),

where we use the shorthand x>t := {xk : tk > t, k ∈ 1, . . . ,K}. Then,

Eπ1:K

[
DKL(Q

⋆
·|x1:K

|Qϕ)
]

∝ Eπ1:K

∫ tK

t1

Eq⋆t (z|x1:K)

∑
z̃ ̸=z

{
Λϕ
t (z̃ | z)− Λ⋆

t (z̃ | z,x>t) log Λ
ϕ
t (z̃ | z)

}
dt


= Eπ1:K

∫ tK

t1

Eq⋆t (z|x1:K)

∑
z̃ ̸=z

{
Λϕ
t (z̃ | z)− Λ⋆

t (z̃ | z)
q⋆>t|t(x>t | z̃)
q⋆>t|t(x>t | z)

log Λϕ
t (z̃ | z)

}
dt


=

∫ tK

t1

Eπ1:K
Eq⋆t (z|x1:K)

∑
z̃ ̸=z

{
Λϕ
t (z̃ | z)− Λ⋆

t (z̃ | z)
q⋆>t|t(x>t | z̃)
q⋆>t|t(x>t | z)

log Λϕ
t (z̃ | z)

}
dt.

Applying Fubini’s theorem for interchanging integrals,

=

∫ tK

t1

Eq⋆t (z)
Eq⋆

1:K|t(x1:K |z)
∑
z̃ ̸=z

{
Λϕ
t (z̃ | z)− Λ⋆

t (z̃ | z)
q⋆>t|t(x>t | z̃)
q⋆>t|t(x>t | z)

log Λϕ
t (z̃ | z)

}
dt

=

∫ tK

t1

Eq⋆t (z)

∑
z̃ ̸=z

{
Λϕ
t (z̃ | z)− Eq⋆

1:K|t(x1:K |z)

[
q⋆>t|t(x>t | z̃)
q⋆>t|t(x>t | z)

]
Λ⋆
t (z̃ | z) log Λ

ϕ
t (z̃ | z)

}
dt

=

∫ tK

t1

Eq⋆t (z)

∑
z̃ ̸=z

{
Λϕ
t (z̃ | z)− Λ⋆

t (z̃ | z) log Λ
ϕ
t (z̃ | z)

}
dt

∝ DKL(Q
⋆ ||Qϕ).

However, we do not have access to Λ⋆(−|−,x>t) and q⋆t (−|x1:K), but to their approximations
Λθ(−|−,x>t) and qθt (−|x1:K). Let q⋆t (z,x1:K) := q⋆t (z|x1:K)π(x1:K). For simplicity, we break
down each KL term into parts, so to get

Eπ1:K

[
DKL(Q

⋆
·|x1:K

|Qϕ)
]
=

∫ tK

t1

Eq⋆t (z,x1:K)

∑
z̃ ̸=z

Λϕ
t (z̃ | z)︸ ︷︷ ︸

L
(1)
t (x1:K)

+Eq⋆t (z,x1:K)

∑
z̃ ̸=z

Λ⋆
t (z̃ | z,x>t)︸ ︷︷ ︸

L
(2)
t (x1:K)

− Eq⋆t (z,x1:K)

∑
z̃ ̸=z

Λ⋆
t (z̃ | z,x>t) log Λ

ϕ
t (z̃ | z)︸ ︷︷ ︸

−L
(3)
t (x1:K)

dt,

Eπ1:K

[
DKL(Q

θ
·|x1:K

|Qϕ)
]
=

∫ tK

t1

Eqθt (z,x1:K)

∑
z̃ ̸=z

Λϕ
t (z̃ | z)︸ ︷︷ ︸

L̂
(1)
t (x1:K)

+Eqθt (z,x1:K)

∑
z̃ ̸=z

Λθ
t (z̃ | z,x>t)︸ ︷︷ ︸

L̂
(2)
t (x1:K)

− Eqθt (z,x1:K)

∑
z̃ ̸=z

Λθ
t (z̃ | z,x>t) log Λ

ϕ
t (z̃ | z)︸ ︷︷ ︸

−L̂
(3)
t (x1:K)

dt.

Finally, we let

Eπ1:K

[
DKL(Q

⋆
·|x1:K

|Qϕ)−DKL(Q
θ
·|x1:K

|Qϕ)
]
=

∫ tK

t1

3∑
i=1

L
(i)
t (x1:K)− L̂(i)

t (x1:K)︸ ︷︷ ︸
D(i)(x1:K)

dt.
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We quantify the error in terms of total variation distance and expected absolute error of the generator
at each time t ∈ [t1, tK ],∥∥q⋆t − qθt ∥∥TV

:= Eπ1:K(x1:K)

[∑
z∈Z

∣∣q⋆t (z | x1:K)− qθt (z | x1:K)
∣∣ ]

= Eqθt (z,x1:K)

∣∣∣∣q⋆t (z,x1:K)

qθt (z,x1:K)
− 1

∣∣∣∣ ,
εΛt (θ) := Eqθt (z,x>t)

∑
z̃ ̸=z

∣∣Λ⋆
t (z̃|z,x>t)− Λθ

t (z̃|z,x>t)
∣∣ .

Then, we are interested in isolating the terms in
∣∣∣LKL(ϕ)− L̂θ

KL(ϕ)
∣∣∣ that depend on ϕ,

∣∣∣Eπ1:K

[
DKL(Q

⋆
·|x1:K

|Qϕ)−DKL(Q
θ
·|x1:K

|Qϕ)
]∣∣∣ ≤ ∫ tK

t1

∣∣D(1)(x1:K)
∣∣+ ∣∣D(3)(x1:K)

∣∣dt.
By applying Jensen’s inequality and the Cauchy-Schwarz inequality, we can further bound these
quantities as ∣∣D(1)(x1:K)

∣∣ = ∣∣∣∣Eqθt (z,x1:K)

[(
q⋆t (z,x1:K)

qθt (z,x1:K)
− 1

)∑
z̃ ̸=z

Λϕ
t (z̃ | z)

]∣∣∣∣
≤
∥∥q⋆t − qθt ∥∥TV

Eqθt (z,x1:K)

[
−Λϕ

t (z | z)
]
,

∣∣D(3)(x1:K)
∣∣

=

∣∣∣∣Eqθt (z,x1:K)

[(
1− q⋆t (z,x1:K)

qθt (z,x1:K)

)∑
z̃ ̸=z

(
Λ⋆
t (z̃|z,x>t)− Λθ

t (z̃|z,x>t)
)
log Λϕ

t (z̃ | z)
]∣∣∣∣

≤
∥∥q⋆t − qθt ∥∥TV

Eqθt (z,x1:K)

∣∣∣∣∑
z̃ ̸=z

(
Λ⋆
t (z̃|z,x>t)− Λθ

t (z̃|z,x>t)
)
log Λϕ

t (z̃ | z)
∣∣∣∣

≤ εΛt (θ)
∥∥q⋆t − qθt ∥∥TV

Eqθt (z,x1:K)

[
max
z̃ ̸=z

∣∣∣log Λϕ
t (z̃ | z)

∣∣∣] .
Hence,∣∣∣LKL(ϕ)− L̂θ

KL(ϕ)
∣∣∣

≤
∫ tK

t1

∥∥q⋆t − qθt ∥∥TV

(
εΛt (θ)Eqθt (z,x1:K)

[
max
z̃ ̸=z

∣∣∣log Λϕ
t (z̃ | z)

∣∣∣]− Eqθt (z,x1:K)

[
Λϕ
t (z | z)

])
dt

D Implementation details

D.1 Architecture

Self-Omitted Attention Given a configuration z ∈ Z , observation and next observation times
t, tnext ∈ R, a representation of future observations xnext, and context c, we parameterize condi-
tional local generators of the form (t, tnext, z,xnext, c) 7→ Λt,tnext(z,xnext, c) ∈ R|V |×|S|×|S|. We
denote the output at a specific site i ∈ V as λs→s̃,θ

t,tnext
(i, z,xnext, c). For a given hidden dimension

d, we use multi-layer perceptrons to compute site-wise representations ei = f
(
xinext, c

i
)
∈ Rd and

ẽi = f
(
zi, xinext, c

i
)
∈ Rd, that we collect in matrices E, Ẽ ∈ R|V |×d. The unconditional setting

reflects that of the conditional model, but without the tnext and xnext terms. We group the columns
of each matrix into H attention heads E1, . . . ,EH and Ẽ1, . . . , ẼH (such that d mod H = 0), and
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denote the representations of site i in head h as eih, ẽih. Moreover, we let τ = h(t, tnext) be a time
embedding.

We modify the attention mechanism so that the output at each site i ∈ V is invariant to the input state
zi at that site. This naturally follows from the fact that we are trying to parameterize transition rates
for each site from any given (local) state to any other, while capturing neighborhood interactions.
We do so by considering the usual query-key weight matrices WQh

,WKh
∈ Rd×d/H , the value

matrix WV ∈ Rd×d, and an additional matrix WK̃h
∈ Rd×d/H . We denote the site-specific queries

and keys as qi
h = eihWQh

, ki
h = eihWKh

in Rd/H , and an additional term k̃i
h = ẽihWK̃h

∈ Rd/H

that includes state information, for i ∈ V and h = 1, . . . ,H . We then compute the matrix Ah ∈
R|V |×|V | by letting each element be

aijh = softmax
({
âilh/

√
d/H, l ∈ V

})
, âijh =


⟨qi

h, k̃
j
h⟩, i ∼ j,

⟨qi
h,k

j
h⟩, i = j,

0, otherwise.

When the neighborhood structure is that of a lattice (and denoting M = |Ni| for any i), we use
the method proposed in the Vision Transformer Cellular Automata [Tesfaldet et al., 2022] to lo-
calize attention, reducing computations from O(|V |2) to O(|V |M). For graphs with an arbitrary
neighborhood structure, we perform element-wise masking of A with the adjacency matrix.

Considering the values Vh = EhWVh
∈ R|V |×d/H , the self-omitted attention output SOAh ∈

R|V |×d/H is then computed and information across heads is combined by concatenating them, as

O = concat [SOA1, . . . , SOAH ] ∈ R|V |×d, SOAh = AhVh ∈ R|V |×d/H .

The off-diagonal elements of the rate matrix for each site are then computed by passing each oi

through an MLP mapping to R|S|×(|S|−1). Filling the diagonals with the row-wise sum and con-
catenating the matrices yields the local generator in R|V |×|S|×|S|.

D.2 Training

The simulation algorithms that can be used at training time for trajectory reconstruction are reported
in Algorithm 1 and Algorithm 2. Notice that it is also possible to learn the unconditional generator at
the same time as the unconditional one, by freezing the gradients of θ before updating the L̂θ

KL loss.
While all datapoints in a batch are processed in parallel, we might need to evolve the solver through
different time points for each batch. This is feasible by applying the tricks for parallel solving of
neural ODEs with varying time-intervals presented in Chen et al. [2021].

While training the conditional generator, we often observed the model converge to a local minima
where the next observed state is reached in a very short time right after the previous observation,
and rates are then zeroed until the next observation time. This biases the distribution of samples
seen at training time by the unconditional model, that might then experience ”mode collapse” and
predict all of the transition rates to be zero. This reflects the insight given by Theorem 5. We
found that choosing priors that bias the conditional model towards performing fewer transitions
helps addressing this issue, as they tend to regularize the path.

D.3 Computational considerations

Our method is not simulation-free, in the sense that learning is made possible by backpropagating
through a solver. In doing so, a practitioner can incur in two fundamental problems, inaccurate
gradients and memory-intensive training steps. The choice of a backpropagation technique can
trade off one disadvantage for the other. In our experiments we use continuous adjoint methods,
that provide memory-efficient numerical solutions (constant w.r.t. the time discretization grid) at the
cost of incurring numerical errors that accumulate into potentially inaccurate gradient estimates. An
overview of other possible approaches is presented in [Kidger, 2021].
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Algorithm 1 Forward simulation, conditional
Require: Observations x1, . . . ,xK at times t1, . . . , tK , step size ∆t, future encoder ht, initial

encoder q1, conditional local generator Λt, prior p0, P . Optional: context c1, . . . , cK .
Ensure: Latent states z(t1), . . . ,z(tK), KL of the path

1: Sample z(t1) ∼ q1(·|x1, ht1(x>t1), c)
2: tlast ← t1
3: KL← DKL(q1 || p0)
4: for t ∈ (t1, tK ] do
5: Sample z from qt+∆t|t, approximating equation 1 using Λt(z | ht(x>t), ctlast)
6: Compute contribution dKLt to equation 21 at time t, using Λt(z | ht(x>t), ctlast)
7: KL← KL + dKLt∆t
8: if t = tk for k = 1, . . . ,K then
9: z(tk)← z

10: tlast ← t
11: end if
12: end for

Algorithm 2 Neural master equation
Require: Observations x1, . . . ,xK at times t1, . . . , tK , step size ∆t, future encoder ht, initial

encoder q1, conditional local generator Λt, prior p0, P . Optional: context c1, . . . , cK .
Ensure: Latent states z(t1), . . . ,z(tK), KL of the path

1: Sample z(t1) ∼ q1(·|x1, ht1(x>t1), c)
2: tlast ← t1
3: KL← DKL(q1 || p0)
4: for t ∈ (t1, tK ] do
5: Sample z ∼ qt =

∏
i q

i
t using the Gumbell-Softmax trick

6: Compute d
dtq

i
t for all i ∈ V , using Λt(z | ht(x>t), ctlast) and qit

7: Compute contribution dKLt to equation 21 at time t, using Λt(z | ht(x>t), ctlast)
8: KL← KL + dKLt∆t
9: if t = tk for k = 1, . . . ,K then

10: z(tk)← z
11: tlast ← t
12: end if
13: end for

E Experiments

E.1 Datasets

Epidemics The dataset is comprised of a collection of 250 random graphs with 128 nodes each
and a given expected degree of 3, where edges are generated at random. Two covariates ci1, c

i
2 are

generated for each node i ∈ V by sampling from a standard normal distribution. An epidemic is then
spread according to a Susceptible-Infected-Recovered (SIR) model [Keeling and Eames, 2005, Paré
et al., 2020, Dolgov and Savostyanov, 2024]. Initially, all nodes are set to be susceptible (S) with
the exception of p0 nodes set to be infected (I) at random. Each graph in the dataset is evolved in the
continuous-time interval [0, 19], where a time-homogeneous functional form for the local transition

Figure 2: First 5 observations in time of a sequence from the wildfires dataset, with the correspond-
ing covariates.
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Figure 3: First 5 observations in time of a sequence from the epidemics dataset.

Figure 4: True and generated SIR curves in a time interval observed only at the two endpoints, in an
held-out graph of 128 nodes.

rates from S to I and from I to recovered (R) is specified as

λS→I(i,x) = β exp
(
sin(ci1) + cos(ci2)

) ∣∣N I
i

∣∣ ,
λI→R(i,x) = γ,

whereN I
i := {j ∈ V |x(j) = I, j ∼ i}, β = 6 and γ = 0.2. These parameters do not correspond to

physically meaningful quantities, and adjusting them to reflect real-world spread dynamics remains
an interesting avenue for future work. Each graph is observed at K = 20 regularly spaced time
points, with no observation noise (i.e., X ≡ Y). The data is simulated using τ−leaping [Gillespie,
2001], with τ = 1× 10−2. A sample observed in its first 5 time steps is displayed in Figure 3.

Wildfires We consider 250 observations of 322−dimensional lattice-valued data represented as
images, where each pixel can take three possible values: unburned (U ), burning (B), or extinguished
(E). Spatially structured covariates corresponding to wind fields w and ground-level fuel f are
generated at the same resolution. At time zero, each pixel is set to B with a probability pB0 = 0.005
(i.e., we expect 5 pixels to be burning), while all the others are set to U . The dynamic is then evolved
in the continuous-time interval [0, 19] by local transition rates with time-homogeneous functional
forms

λU→B(i,x) = ReLU(a0 + a1f
i)× ReLU

b0 + b1
∑

j∈NB
i

aij

 ,

λE→B(i,x) = ReLU(c0 + c1f
i)× ReLU

d0 + d1
∑

j∈NB
i

aij

 ,

λB→E(i,x) = γ,

where NB
i := {j ∈ V |x(j) = I, j ∼ i}, and aij is a wind alignment value obtained by the dot

product between the relative position of the neighbor j w.r.t. i and the value of the wind field at
j. For our simulation, we set a0 = b0 = c0 = d0 = 0.1, a1 = 5, b1 = 1, c1 = d1 = 0.01, and
γ = 0.5. Similarly to the first setting, each wildfire is observed at K = 20 regularly spaced time
points with no observation noise. A sample observed in its first 5 time steps, as well as the related
covariates, is displayed in Figure 2.
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Figure 5: Evolution of an epidemic on an held-out graph. Endpoint-conditioned generation (left),
unconditional generation (center), trajectory observed only at the endpoints (right).
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Figure 6: Initial conditions (top) and generated trajectories from the conditional (left) and uncondi-
tional (center) models, and true sequence observed only at the endpoints(right). Results shown for
an held-out example.
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E.2 Model

Since there is no observation noise, all we need to parameterize in our experiments are the condi-
tional and unconditional generators. Both can be thought of as mappings X → R|V |×|S|×|S|

≥0 , i.e.
the output shall be a local transition rate matrix at each site i ∈ V . For the wildfires experiment
we simply consider a 3× 3 Moore neighborhood, whereas for the epidemics we mask the attention
matrix with the adjacency matrix of each observation. We constrain the output to be positive by ap-
plying a softmax function. We specify the prior path measure by a prior rate matrix, where we set to
zero physically impossible transitions (e.g. U → E for wildfires, or S → R for epidemics) and the
remaining off-diagonal elements to a constant value c. More complex functional forms are possible,
and shall be chosen for example by simulating from the prior predictive distribution [Gelman et al.,
2020].

E.3 Results

We provide a qualitative overview of the results we have obtained so far. These shall be considered
preliminary, and a quantitative comparison with other baselines (e.g. the mean-field approximation
from Seifner and Sánchez [2023]) will be carried out in future work. For the epidemics dataset, we
display generated trajectories on an held-out graph in Figure 5, as well as the aggregated SIR curves
for the same example in Figure 4. Notice how the conditional model tends to converge quickly to the
end solution, while the unconditional model mirrors the true unobserved trajectory more closely. For
the wildfires experiments, we display results on held-out examples in Figure 6 and Figure 7. Despite
the lack of information at the initial time, the unconditional model can still predict an evolution very
close to the ground truth final configuration.
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Figure 7: Same as Figure 6 but at a different stage of the simulated wildfire propagation, results
shown for an held-out example.
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