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Abstract

We present a novel Bayesian learning framework for interacting particle systems1

with discrete latent states, addressing the challenge of inferring dynamics from2

partial, noisy observations. Our approach learns a variational posterior path mea-3

sure by parameterizing the generator of the underlying continuous-time Markov4

chain. We formulate the problem as a multi-marginal Schrödinger bridge with5

aligned samples, employing a two-stage learning procedure. Our method incorpo-6

rates an emission distribution for decoding latent states and uses a scalable varia-7

tional approximation.8

1 Introduction9

Many real-world phenomena, from epidemics to wildfires, can be modeled as systems of interacting10

components evolving in continuous time, where the underlying dynamics are governed by discrete11

latent states. This paradigm extends the concept of hidden Markov models [Baum and Petrie, 1966,12

Kouemou and Dymarski, 2011] to spatially structured, continuous-time processes. Interacting par-13

ticle systems (IPSs) [Liggett, 1985, Lanchier, 2024] offer a powerful mathematical framework for14

describing local propagation dynamics. However, inferring the rules governing these systems from15

partial, noisy observations remains a significant challenge. We propose a novel Bayesian approach16

that addresses this challenge by learning a variational posterior path measure on the space of IPS tra-17

jectories. Our approach parameterizes the generator of the continuous-time Markov chain (CTMC)18

of the latent IPS using neural networks and incorporates an emission model that can decode internal19

discrete states to continuous data and noisy observations. Key contributions of our approach include:20

• Framing the problem as a multi-marginal Schrödinger bridge with aligned samples [Som-21

nath et al., 2023], solved by a two-stage procedure: learning an endpoint-conditioned gen-22

erator for trajectory reconstruction, followed by distillation to an unconditional generator23

for prediction.24

• A scalable variational approximation using site-wise factorization of time-marginals and25

assuming independent particle evolution in infinitesimal time intervals conditionally on26

the present global configuration, enabling efficient learning for high-dimensional spatio-27

temporal processes.28

• Flexibility in incorporating domain knowledge through through informative priors on rate29

matrix entries and neural architectures with desirable inductive biases.30

We demonstrate preliminary results of our approach on two simulated datasets, for the following31

tasks: reconstructing the trajectory of an epidemic on a network and predicting wildfire spread on a32

lattice. For a description of the notation, see Appendix A. An overview of the relevant literature is33

presented in Appendix B, whereas proofs and other derivations are provided in Appendix C.34
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Figure 1: An illustration of our methodology on a simulated noiseless dataset of wildfire propa-
gation. The first model approximates a Markovian bridge interpolating between the observations,
enabling to reconstruct the unobserved trajectory. The second model, approximating the uncondi-
tional process, can predict beyond the last observation. Results shown for a held-out example.

2 Background35

Interacting particle systems Consider a graph G = (V,E), and denote i ∼ j if there is an edge36

between nodes i, j, i.e., {i, j} ∈ E. Following Liggett [1985], we refer to vertices i ∈ V as sites.37

For a countable state space S, consider the configuration space X := {x | x : V → S}. For38

our analysis, we assume both V and S are finite. An IPS adds a continuous-time dimension to this39

setting. Specifically, we obtain a CTMC (xt) on X restricted to a time interval [0, T ], whose path40

space we denote Ω[0,T ]. We define xt(i) as the state of site i at time t. We consider a scenario41

where the dynamics of each site are described by local transition rates that depend on the graph’s42

connectivity [Lanchier, 2017], corresponding to43

λs→s′

t (i,xt) := lim
h↓0

h−1P (xt+h(i) = s′ | xt(i) = s, xt(j) : i ∼ j) ,

for s to s′ ̸= s at site i and time t ∈ [0, T ], and set λs→s
t (i,xt) := −

∑
s′ ̸=s λ

s→s′

t (i,xt). The local44

transition rates are aggregated into a generator Λt(xt) = [λs→s′

t (i,xt)]i∈V ;,s,s′∈S . Note that this45

is a mapping Λ·(·) : X × R+ → R|V |×|S|×|S|. For brevity, we denote the collection of transition46

rates between two fixed configurations x, x′ ∈ X as Λt(x
′ | x) := [λ

x(i)→x′(i)
t (i,x)]i∈V . The47

path measure Π ∈M(Ω[0,T ]) of a realization (xt)t∈[0,T ] can then be described by the solution to an48

initial value problem with starting condition πt(x0) = π0, evolving according to the master equation49

∂tπt(xt) =
∑

x′ ̸=xt

(Λt(xt | x′)πt(x
′)− Λt(x

′ | xt)πt(xt)) . (1)

Markovian bridges Let {yk}k∈[K] ∈ YK be a sequence recorded at times {tk}k∈[K] ∈ RK ,50

where 0 = t0 < · · · < tK−1 = T , and assume that each value in the sequence is independent51

conditionally on the Markov process (xt)t∈[0,T ] ∈ Ω[0,T ]. The conditioned Markov process with52

path measure Π·|{yk}k∈[K]
∈M(Ω[0,T ]) is known as a Markovian bridge. At any time t ∈ (tk, tk+1]53

and for states s and s′ (s ̸= s′), the transition rate is:54

λs→s′

t (i,xt | {yk}k∈[T ]) = λs→s′

t (i,xt)
P(yk+1 | xt = s′)

P(yk+1 | xt = s)
. (2)

Hence, the conditional generator Λt(xt | {yk}k∈[T ]) of Π·|{yk}k∈[K]
is equivalent to the generator55

Λt(xt | ytk+1
) of the Markovian bridge Π·|ytk

,ytk+1
at any time t ∈ (tk, tk+1]. See Appendix C.156

for an overview of Markovian bridges, and we refer the reader to Fitzsimmons et al. [1992] for a57

detailed construction.58

3 Variational Discrete Interacting Particle Systems59

We consider sequences of observations {yi
k}k∈[K] ∈ YK recorded at times {tik}k∈[K] ∈ RK and60

assumed to be independent conditionally on the interacting particle system (xi
t)t∈[0,T i] ∈ Ω[0,T i],61

for i = 1, . . . , N . The discrete set of measurement times 0 = ti0 < · · · < tiK−1 = T i are allowed62

to be arbitrarily defined for each sequence, e.g., at random or regularly spaced. We assume that63
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the graph determining the particles’ dependence structure is fixed for each realization and directly64

deducible from the observed sequences, for example if the observations are noisy measurements65

of the IPS. We consider an emission distribution pt(y | x) ∈ P(Y) for the observations, and a66

prior path measure P ∈ M(Ω[0,T ]) for the latent IPS. This can be specified directly on the entries67

of a prior generator, encoding possible constraints in the latent dynamics, and by an initial prior68

distribution. The marginal distribution of the data at any time t ∈ [0, T ] is denoted as πt ∈ P(Y),69

and we are interested in parameterizing a variational path measure Q ∈ M(Ω[0,T ]) and an encoder70

qt(x | y) ∈ P(X ). To make inference tractable, we detail specific choices of our variational71

approximation in Section 3.1. Considering a single sequence {yk}k∈[K], our goal is twofold:72

• Trajectory reconstruction, by learning the conditional generator Λt(· | {yk}k∈[T ]) of the73

Markovian bridge Q·|{yk}k∈[K]
;74

• Prediction, by learning the generator Λt(·) of Q, enabling extrapolation beyond an ob-75

served time window or with no past observations at all for a given graph.76

Inference for both models can be conveniently amortized by parameterizing the generators with77

neural cellular automata, as detailed in Section 3.2. We show that the second goal can be achieved78

by distilling knowledge from a model trained for the first goal into a model that does not glance at79

future observations. Sampling is discussed in Appendix D.2.80

3.1 Variational approximations81

Contrary to previous work [Opper and Sanguinetti, 2007, Cohn et al., 2010, Seifner and Sánchez,82

2023] we do not adopt a mean-field approximation, but rather the star-approximation introduced83

for continuous-time Bayesian networks in Linzner and Koeppl [2018]. While still assuming site-84

wise factorization of the time-marginals as qt(x) =
∏

i∈V q
i
t(x(i)), we couple sites by letting the85

generator depend on the present global configuration xt. This is achieved by considering a system86

of marginal master equations87

∂tq
i
t(xt(i)) =

∑
s′ ̸=xt(i)

(
λs

′→xt(i)(i,xt)q
i
t(s

′)− λxt(i)→s′(i,xt)q
i
t(xt(i))

)
, i ∈ V. (3)

Under these assumptions, the explicit form for the Kullback-Leibler (KL) divergence of two CTMCs88

with path measures Q, P ∈M(Ω[0,T ]) is tractable, see Appendix C.2 for a derivation.89

3.2 Multi-marginal aligned Schrödinger bridges90

Let P ∈ P(YK×Ω[0,T ]) denote the reference measure constructed by gluing the prior and emission91

probabilities at each observed timestep. For a given sequence of distributions {πtk}k∈[K] on P(Y),92

we can express a multi-marginal Schrödinger bridge problem with noisy observations as93

Q∗ := argmin
Q∈P(YK×Ω)

{DKL(Q ||P) | qtk = πtk , k ∈ [K]}, (4)

where qtk ∈ P(Y) correspond to marginalizations of the variational distribution at each observed94

timepoint. Let πt0:T−1
denote the coupling solving the static version of (4), that is95

πt0:T−1
= argmin

qt0:T−1
∈P(YK)

{DKL(qt0:T−1
|| pt0:T−1

) | qtk = πtk , k ∈ [K]}, (5)

where pt0:T−1
∈ P(YK) is the marginal of the observed trajectories obtained from the reference96

measure P. Similarly to the setting considered in Somnath et al. [2023], we assume that our dataset97

is comprised of trajectories of aligned samples, in the sense that each observed trajectory {yk}k∈[T ]98

is sampled from the coupling πt0:T−1
. We denote its marginals at any pair of observed time points99

as πtk,tk+1
∈ P(Y × Y), for k ∈ [K − 1].100

Proposition 1 Let (5) admit a solution πt0:T−1
. Moreover, assume conditional independence of101

{yk}k∈[K] given (xt) ∈ Ω[0,T ], and let P ∈M(Ω[0,T ]). Then, the problem in (4) reduces to102

argmin
q·|y0

, {Q·|yk,yk+1
}
Eπt0

[
DKL(q·|y0

|| p·|y0
)
]
+
∑

k∈[K]

Eπtk,tk+1

[
DKL(Q·|yk,yk+1

||P·|yk,yk+1
)
]
, (6)

where q·|y0
∈ P(X ) and Q·|yk,yk+1

∈M(Ω(tk,tk+1]) for k ∈ [K − 1].103

3



Trajectory reconstruction As any conditional path measure can be fully characterized by its gen-104

erator and an initial distribution, we leverage the correspondence explored in Section 2 to specify105

Q·|{yk}k∈[K]
by a sequence of Markovian bridges Q·|yk,yk+1

and conditional distributions qtk(· |106

yk), for k ∈ [K − 1]. We parameterize the former with a neural model Λθ
t (· |yk+1), and the latter107

with a probabilistic encoder qi,θt (· | yk) = Categorical(gθt (i, yk)), where gθ : R+×V ×Y → ∆|S|108

and ∆|S| denotes the |S|−dimensional simplex. Moreover, we parameterize the emission distribu-109

tion with a probabilistic decoder pξt (y | x). We learn θ and ξ by minimizing an evidence lower110

bound derived from (6), given by111

L1(θ, ξ) :=
∑

k∈[K−1]

Eπtk,tk+1
(yk,yk+1)[L

k
1(θ, ξ,yk, yk+1)]−Eqθt0

(xt0 |y0),πt0 (y0)[log p
ξ
t0(y0 | xt0)],

(7)
where112

Lk
1(θ, ξ,yk, ytk+1

) := DKL(Q
θ
·|yk,yk+1

||P )− Eqθtk+1
(xtk+1

|yk,yk+1)
[log pξtk(yk+1 | xtk+1

)]. (8)

See Appendix C.4 for a derivation, and Wildner and Koeppl [2019] for an alternative proof. A similar113

result is derived in Lavenant et al. [2021] for diffusion processes. At training time, we start by sam-114

pling a minibatch of pairs yk, yk+1. The sequence of variational distributions {(qi,θt )t∈[tk,tk+1]}i∈V115

is then obtained by numerically solving a system of marginal master equations as in (3), according116

to the neighborhood dynamic established by Λθ
t (xt |ytk+1

), for t ∈ (tk, tk+1]. This step can be117

achieved by using adaptive solvers, but for illustration purposes we remind the reader that an Euler118

update with step size 0 < ϵ≪ 1 can be performed as119

qi,θt+ϵ = qi,θt + ϵ[Λθ
t (xt |ytk+1

)]⊤i q
i,θ
t , i ∈ V. (9)

As we are interested in evolving the entire vector of probability mass functions at each timestep, we120

sample xt for t ∈ (tk, tk+1] from qi,θt using the Gumbell-Softmax trick [Jang et al., 2017]. Addi-121

tional details are reported in Appendix D.1, and considerations of computational cost are discussed122

in Appendix D.4.123

Prediction We fix the conditional process Qθ, and learn the unconditional IPS by distillation to a124

Markovian generator Λϕ
t (xt). This can be achieved by minimizing a mean squared error loss on the125

rates, given by126

L2(ϕ) :=
∑

k∈[K−1]

Eπtk,tk+1
(yk,yk+1)

[
Lk
2(ϕ,yk,ytk+1

)
]
, (10)

where127

Lk
2(ϕ,yk,ytk+1

) :=

∫ tk+1

tk

Eqθt (xt|yk,yk+1)

∑
x′ ̸=xt

∥∥∥Λθ
t (xt |ytk+1

)−Λϕ
t (xt)

∥∥∥2
2
dt. (11)

If the conditional generator Λθ
t is unbiased and qθt ≈ q∗t , the minimizer of (10) recovers the Markov128

process Q ∈ P(Ω[0,T ]) obtained by marginalizing Q∗ in (4) to Ω[0,T ]. A derivation is provided in129

Appendix C.5.130

4 Experiments131

We demonstrate our methodology on two simulated scenarios: epidemic trajectory inference on132

networks and wildfire spread prediction on lattices. We parameterize the neural models for the133

generators with a Vision Transformer Cellular Automata [Tesfaldet et al., 2022]. Results and details134

of the simulations are reported in Appendix E.135

5 Conclusion136

We introduce a variational inference method to fit partially observed trajectories whose dynamic137

can be modeled by a continuous-time latent process, parameterized to be an interacting particle138

system. Our solution is an approximation to a multi-marginal Schrödinger bridge, that we obtain139

by first fitting an endpoint-conditioned model and then distilling it into an unconditional one. This140

methodology enables both trajectory reconstruction and prediction of future states. In future work141

we aim at testing our models on real data, comparing with state-of-the-art methods.142
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Christian Kümmerle, Mauro Maggioni, and Sui Tang. Learning transition operators from sparse235

space-time samples. IEEE Transactions on Information Theory, 2024.236

Nicolas Lanchier. Stochastic modeling. Springer, 2017.237

Nicolas Lanchier. Stochastic interacting systems in life and social sciences, volume 5. Walter de238

Gruyter GmbH & Co KG, 2024.239

Quanjun Lang, Xiong Wang, Fei Lu, and Mauro Maggioni. Interacting particle systems on networks:240

joint inference of the network and the interaction kernel. arXiv preprint arXiv:2402.08412, 2024.241

Hugo Lavenant, Stephen Zhang, Young-Heon Kim, and Geoffrey Schiebinger. Towards a mathe-242

matical theory of trajectory inference. arXiv preprint arXiv:2102.09204, 2021.243
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A Notation317

Let Ω[0,T ] be the space of X -valued cadlag functions over a time interval [0, T ], and denote by318

P(Ω[0,T ]) the space of probability measure on the path space. For a path measure Q ∈ P(Ω[0,T ]),319

timesteps v, t ∈ [0, T ] s.t. v > t, and configurations x, x′ ∈ X , we assume that time-marginal and320

transition probability measures are absolutely continuous w.r.t. the counting measure. Their Radon-321

Nikodym derivative can then be expressed by the probability mass function qt(x) and the transition322

probability qs|t(x′ | x). We denote by Ω(tk,tk+1] time restrictions of Ω[0,T ] to (tk, tk+1] ⊆ [0, T ].323

We denote the index set of N−many elements as [N ] = 0, . . . , N − 1. Denote the cartesian product324

×k∈[K]Y of observations at K times as YK . Moreover, let M(Ω[0,T ]) ⊂ P(Ω[0,T ]) denote the325

space of Markovian probability measures on Ω[0,T ].326

B Related work327

B.1 Learning interacting particle systems328

The dynamics of many physical systems can be described through the local interaction laws of their329

constituent components. This principle has inspired computational frameworks that directly param-330

eterize these governing interactions, both deterministically and stochastically. A prime example is331

cellular automata [Wolfram, 1986, Grinstein et al., 1985]. Early developments focused on study-332

ing the emergence of global patterns from a fixed set of rules on the evolution of individual cells.333

The inverse problem —inferring such rules from observations— has been of historical interest in334

the machine learning community [Wulff and Hertz, 1992, Mordvintsev et al., 2020], with recent335

developments incorporating attention-based architectures, graph neural networks, and black-box336

variational inference [Tesfaldet et al., 2022, Kang et al., 2024, Grattarola et al., 2021, Palm et al.,337

2022]. Models that learn interaction rules find applications across many domains, including physical338

simulators, multi-agent dynamics, dynamic graphs, as well as deep generative modeling [Kalkhof339

et al., 2024].340

Within this context, most existing methods have proposed iterative updating schemes by param-341

eterizing transition rules in discrete time. Interacting particle systems (IPSs) offer an alternative342

mathematical formalism that extends cellular automata to continuous time. Interacting particle sys-343

tems are structured CTMCs whose states evolve with dependence on neighbors within a topology,344

typically established by a graph. Lanchier [2017] provides a modern introduction to this field. Clas-345

sical literature focused on systems with finite states and often countably many sites [Bramson and346

Griffeath, 1980, Liggett, 1985, Durrett, 2006], while more recent work has focused on systems with347

finitely many sites [Aldous, 2013]. These systems have found applications in multi-agent modeling348

[Comas et al., 2023] and have been extended to systems of coupled stochastic differential equations349

(SDEs) in Euclidean space. This extension has seen increased attention recently [Lu et al., 2021,350

Yang et al., 2022, Feng et al., 2022, Liu et al., 2023, Lang et al., 2024, Kümmerle et al., 2024, Boffi351

and Vanden-Eijnden, 2024]. The learnability and identifiability of interaction rules in these systems352

have also been explored [Bongini et al., 2017, Li et al., 2021].353

B.2 Inference for CTMCs354

Inference methods for Markov jump processes (MJPs) have been extensively studied. Maxi-355

mum likelihood estimation for time-homogeneous MJPs is discussed in Jackson [2011], Bladt356

and Sørensen [2005], McGibbon and Pande [2015]. Expectation-maximization techniques for357

continuous-time hidden Markov models have been developed in Liu et al. [2015], and an overview358

of the topic can be found in Wang [2021]. Bayesian approaches include Markov chain Monte Carlo359

methods [Boys et al., 2008, Hobolth and Stone, 2009, Rao and Teh, 2013, Golightly and Sher-360

lock, 2019] and variational methods. The latter include mean-field [Opper and Sanguinetti, 2007,361

Cohn et al., 2010], moment-based methods [Wildner and Koeppl, 2019], combinations with MCMC362

[Zhang et al., 2017], and extensions to hybrid processes [Köhs et al., 2021]. Novel methods include363

black-box variational inference with neural networks [Seifner and Sánchez, 2023] and foundation364

models (i.e., meta-learning) [Berghaus et al., 2024]. While less directly related, it’s worth noting re-365

cent work on guidance and conditioning for Markovian bridges [Corstanje et al., 2023] and discrete366

flow matching and diffusion methods [Campbell et al., 2022, Igashov et al., 2023, Lou et al., 2023,367

Campbell et al., 2024].368
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B.3 Trajectory Inference369

Trajectory inference is a crucial component of our work, with connections to several recent devel-370

opments. The Schrödinger bridge (SB) problem with multi-marginal constraints has been explored371

by Chen et al. [2019], Lavenant et al. [2021]. Recent advances in SB methods with a source and372

a target are presented in Vargas et al. [2021] and De Bortoli et al. [2021], with extensions to the373

multi-marginal setting by Shen et al. [2024]. Our approach shares similarities with Somnath et al.374

[2023], Shi et al. [2024], and Peluchetti [2023] in that it relies on samples from couplings solving375

the static SB problem. However, our methodology differs in that we learn the Markovian bridge and376

recover the unconditional path measure by distillation, rather than relying on closed-form endpoint-377

conditioned diffusions. The concept of Markov bridge by interpolation with a fictitious dynamic, as378

proposed by Igashov et al. [2023], is related to stochastic interpolants [Albergo and Vanden-Eijnden,379

2022, Tong et al., 2023, Lipman et al., 2022, Liu et al., 2022] for probabilistic forecasting [Chen380

et al., 2024]. Ad-hoc variants for dynamical systems have also been developed [Rühling Cachay381

et al., 2024]. Our methodology also shares connections with flow matching using Gaussian process382

and Kalman filter interpolants [Tamir et al., 2023], in the fact that we are interested in model-based383

interpolants in a Bayesian framework.384

C Proofs385

C.1 Markovian bridges386

Consider a sequence of observations {yk}k∈[K] ∈ YK recorded at times {tk}k∈[K] ∈ RK , and387

assume conditional independence with respect to a Markov process (xt)t∈[0,T ]. For t ∈ [t0, tK−1],388

let y>t = {yk | tk > t, k = 1, . . . ,K} and y≤t = {yk | tk ≤ t, k = 1, . . . ,K}. The next389

observation after t is at time t′ := min{tk : tk > t, k = 1, . . . ,K}, and we assume t + h < t′390

for h ≈ 0, by right-continuity of the transition probabilities. We can then denote the conditional391

transition rates for x′ ̸= x as392

Λ(x′ | x, y0:K) = lim
h↓0

h−1 [P(xt+h = x′ | xt = x,y0:K)]

= lim
h↓0

h−1

[
P(xt+h = x′,xt = x,y>t | y≤t)

P(xt = x,y>t | y≤t)

]
= lim

h↓0
h−1

[
P(y>t+h | xt+h = x′)P(xt+h = x′ | xt = x)P(xt = x | y≤t)

P(y>t | xt = x)P(xt = x | y≤t)

]
= lim

h↓0
h−1

[
P(yt′ | xt+h = x′)P(xt+h = x′ | xt = x)

P(yt′ | xt = x)

]
= Λt(x

′ | x, t)P(yt′ | xt = x′)

P(yt′ | xt = x)
,

and similarly393

Λ(x | x, y0:K) = −
∑
x′ ̸=x

Λt(x
′ | x, t)P(yt′ | xt = x′)

P(yt′ | xt = x)
= Λt(x | x, t)

1− P(yt′ | xt = x)

P(yt′ | xt = x)
. (12)

C.2 Derivation of DKL(Q ||P )394

Consider two CTMCs with path measures Q, P ∈ P(Ω[0,T ]), and denote their respective rate ma-395

trices entries with Λt(x
′ | x) and Ψt(x

′ | x) for x, x′ ∈ X . Their KL divergence, as discussed396

in Opper and Sanguinetti [2007], Seifner and Sánchez [2023], can be derived from the limit of397
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discrete-time transitions with step size h := T/K as398

DKL(Q||P )

= lim
K→∞

∑
x0:K

q0(x0)

K−1∏
k=0

qk+h|k(xk+h | xk) log
q0(x0)

∏K−1
k=0 qk+h|k(xk+h | xk)

p0(x0)
∏K−1

k=0 pk+h|k(xk+h | xk)

=
∑
x0

q0(x0) log
q0(x0)

p0(x0)
+ lim

K→∞

K−1∑
k=0

Eqt(x)

∑
xk+h

qk+h|k(xk+h | xk) log
qk+h|k(xk+h | xk)

pk+h|k(xk+h | xk)


(13)

= DKL(q0||p0) +
∫ T

0

Eqt(x)

∑
x′ ̸=x

{
Ψt(x

′ | x) + Λt(x
′ | x)

(
log

Λt(x
′ | x)

Ψt(x′ | x)
− 1

)}
dt,

where the last line follows from dividing and multiplying each summand in (13) by h, and substitut-399

ing the transition probabilities with rates,400

qk+h|k(xk+h | xk)

h
log

qk+h|k(xk+h | xk)

pk+h|k(xk+h | xk)

h→0−→

{
Λt(xk+h | xk) log

Λt(xk+h|xk)
Ψt(xk+h|xk)

xk+h ̸= xk,∑
x′ ̸=x [Ψt(x

′ | x)− Λt(x
′ | x)] xk+h = xk.

By assuming:401

• Site-wise factorization of the time marginals qt(x) =
∏

i∈V q
i
t(x(i)),402

• Coupled transitions qt+h|t(x
′ | x) =

∏
i∈V qt+h|t(x

′(i) | N i
t (x)) where we define a403

neighborhood N i
t (x) := {x(i),x(j) : i ∼ j},404

we can rewrite each summand in (13) as405

Eqk(xk)

∑
xk+h

qk+h|k(xk+h | xk) log
qk+h|k(xk+h | xk)

pk+h|k(xk+h | xk)


= Eqk(xk)

[∑
i∈V

qik+h, k(xk+h(i) | N i
t (xk)) log

qik+h, k(xk+h(i) | N i
t (xk))

pik+h, k(xk+h(i) | N i
t (xk))

]
.

Letting K →∞ and plugging (3), we get406

DKL(Q||P )

= DKL(q0||p0) +
∫ T

0

Eqt(xt)

∑
i∈V

∑
s ̸=xt(i)

{
ψ
xt(i)→s
t (i,xt)− λxt(i)→s

t (i,xt)

+ λ
xt(i)→s
t (i,xt)

(
log

λ
xt(i)→s
t (i,xt)

ψ
xt(i)→s
t (i,xt)

)}
dt.

(14)

Moreover, notice that if we let p0 be a uniform distribution the KL between initial distributions407

reduces to DKL(q0||p0) = H(q0)− log(|X |), where H(·) is the entropy.408

C.3 Proof of Proposition 1409

The additive property of the KL divergence [Léonard, 2013] states that for a Polish space Q :=410

YK × Ω[0,T ], the canonical projecting onto the trajectory coordinates ϕ : Q → YK , a measurable411

mapping y0:K−1 ∈ YK 7→ Q·|y0:K−1
∈ P(Ω[0,T ]), and Q,P ∈ P(Q), we get412

DKL(Q ||P) = DKL(ϕ#Q ||ϕ#P) +
∫
YK

DKL(Q·|y0:K−1
||P·|y0:K−1

)ϕ#Q(dy0:K−1), (15)
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where ϕ#Q(A) = Q(ϕ−1(A)) for any Borel set A ⊆ YK denotes a pushforward measure. Denote413

by qt0:K−1
(y0:K−1) the p.m.f. associated to qt0:K−1

:= ϕ#Q, and pt0:K−1
(y0:K−1) the p.m.f. for414

pt0:K−1
:= ϕ#P. For clarity, we rewrite (15) as415

DKL(Q ||P) = Eqt0:K−1
(y0:K−1)

[
log

qt0:K−1
(y0:K−1)

pt0:K−1
(y0:K−1)

+DKL(Q·|y0:K−1
||P·|y0:K−1

)

]
. (16)

Now consider the canonical projection φ : Q → Ω[0,T ], and assume that P := φ#P ∈ M(Ω[0,T ]).416

It follows from Léonard [2013, Prop. 2.10] that Q∗ := φ#Q
∗ ∈ M(Ω[0,T ]), where Q∗ is the417

solution to (4). Hence, without loss of generality we restrict our analysis to measures Q s.t. Q :=418

φ#Q ∈M(Ω[0,T ]).419

Moreover, consider the case where Q and P are fully specified by their YK−projection and disinte-420

grations, such that421

dQ = dq·|y0
(x0)dQ·|y0,y1

((xt)t∈(0,1]) . . . dQ·|yT−2,yT−1
((xt)t∈(K−2,K−1])dqt0:K−1

(y0:K−1)

for any Borel set B ∈ Q, and the same for P. This property can be described as conditional422

independence of y0:K−1 given (xt) ∈ Ω[0,T ]. Then, we can decompose (16) as423

DKL(Q ||P) = J1 + J2,

where424

J1 = Eqt0:K−1
(y0:K−1)

[
log

qt0:K−1
(y0:K−1)

pt0:K−1
(y0:K−1)

]
,

J2 = Eqt0

[
DKL(q·|y0

|| p·|y0
)
]
+
∑

k∈[K]

Eqtk,tk+1

[
DKL(Q·|yk,yk+1

||P·|yk,yk+1
)
]
.

If we have access to the coupling πt0:K−1
solving (5), then the only term left depending on Q is J2,425

hence we recover (6).426

C.4 Derivation of L1427

For ease of illustration, we start by considering a loss L1 with a single component defined in the428

time frame [0, T ] between two observations y0 and yT . We might be interested in parameterizing429

emission distributions pt|t(y |x), hence we denote them in short as pt(y |x). We are interested in430

proving that431

DKL

(
Q ||P·|y0,yT

)
= DKL (Q ||P )− Ex∼q0 [log p0(y0 | x)]− Ex∼qT [log pT (yT | x)] + log p0,T (y0,yT ).

We now consider a time-discretization at 0 = τ0 < · · · < τK−1 = T of the path measures Q and432

P·|y0,yT
. For τk+1, τk ∈ [0, T ] and xk+1,xk ∈ X , by the Markov property of (xt)t∈[0,T ] under433

P and conditional independence of y0, yT given xk, we can express the marginal and transition434

probability mass functions conditionally on y0, yT as435

p̄τk(xk) = pτk(xk)
p0|τk(y0 | xk)pT |τk(yT | xk)

p0,T (y0,yT )
, (17)

p̄τk+1|τk(xk+1 | xk) = pτk+1|τk(xk+1 | xk)
pT |τk+1

(yT | xk+1)

pT |τk(yT | xk)
. (18)

Notice that436

p̄τ0(x0)

K−2∏
k=0

p̄τk+1|τk(xk+1 | xk) = pτ0(x0)

K−2∏
k=0

pτk+1|τk(xk+1 | xk)
p0(y0 | x0)pT (yT | xT )

p0,T (y0,yT )
.

Notice that every marginal and transition probability derived from the variational path measure Q ∈437

P(Ω[0,T ]) can depend on the observations y0, y1, but we omit them from the notation for brevity.438
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We can then write qτ0:τT (x0:T ) = qτ0(x0)
∏K−2

k=0 qτk+1|τk(xk+1 | xk), and it follows that439

DKL

(
Q ||P·|y0,yT

)
= Eqτ0:τT

[
log

qτ0:τK (x0:T )

p̄τ0(x0)
∏K−2

k=0 p̄τk+1|τk(xk+1 | xk)

]

= Eqτ0:τK

[
log

qτ0:τK (x0:T )

pτ0(x0)
∏K−2

k=0 pτk+1|τk(xk+1 | xk)
− log

p0(y0 | x0)pT (yT | xT )

p0,T (y0,yT )

]
= DKL (Q ||P )− Eqτ0 (x|y0) [log p0(y0 | x0)]− EqτT (x|yT ) [log pT (yT | xT )] + log p0,T (y0,yT ).

(19)

This formulation can trivially be extended for a sequence of observations {yk}k∈[K] at times 0 =440

t1 < · · · < tT−1 = T , resulting in441

DKL

(
Q ||P·|{yk}k∈[K]

)
= DKL (Q ||P )−

∑
k∈[K]

Eqtk (xtk
|yk),πtk

(yk)[log ptk(yk | xtk)] + logZ,

(20)
where Z = pt0:K−1

({yk}k∈[K]). Taking the expectation w.r.t. {yk}k∈[K] ∼ πt0:K−1
on both sides442

recovers (6) on the LHS, and (7) on the RHS plus a term independent of Q. In practice, we might443

be interested in learning the emission distribution at the same time as we are learning the variational444

path measure, in which case we can interpret the objective in (7) as an evidence lower bound.445

C.5 Derivation of L2446

Once again, for ease of illustration we consider two observations y0, yT at the endpoints of a time447

interval [0, T ]. We are interested in learning the generator of a CTMC (xt)t∈[0,T ] by approximating448

it with a neural model Λϕ
t (x

′ | x). We are only given access to its endpoint-conditioned generator449

Λt(x
′ | x,yT ), and by Bayes rule we can recover the unconditional one as450

Λt(x
′ | x) =

∫
Y×Y

Λt(x
′ | x,yT )q0,T |t(y0,yT | x)dy0dy1 (21)

=

∫
Y×Y

Λt(x
′ | x,yT )

qt|0,T (x | y0,yT )π0,T (y0,yT )

qt(x)
dy0dy1. (22)

First, we want to show that the intractable unconditional loss451

LU (ϕ) :=

∫ T

0

Eqt(x)

∑
x′ ̸=x

∥∥∥Λt(x
′ | x)− Λϕ

t (x
′ | x)

∥∥∥2
2
dt (23)

is equivalent to the tractable conditional one452

LC(ϕ) :=

∫ T

0

Ey0,yT∼π0,T ,x∼qt|0,T (·|y0,yT )

∑
x′ ̸=x

∥∥∥Λt(x
′ | x,yT )− Λϕ

t (x
′ | x)

∥∥∥2
2
dt (24)

up to a constant independent of ϕ. This proof is not novel, as it mirrors the proof of Lipman et al.453

[2022, Theorem 2] adapted to transition rate matrices in discrete spaces rather than vector fields in454

Euclidean spaces.455

First, notice that each component Eqt(x)

∥∥∥Λt(x
′ | x)− Λϕ

t (x
′ | x)

∥∥∥2
2

for x′ ̸= x can be expressed456

as457

Eqt(x) ∥Λt(x
′ | x)∥22 − 2Eqt(x)

〈
Λt(x

′ | x),Λϕ
t (x

′ | x)
〉
+ Eqt(x)

∥∥∥Λϕ
t (x

′ | x)
∥∥∥2
2
. (25)
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Of the two summands that depend on ϕ, plugging (21) into the first term yields458

Eqt(x)

〈
Λt(x

′ | x),Λϕ
t (x

′ | x)
〉

=

∫
X

〈∫
Y×Y

Λt(x
′ | x,yT )

qt|0,T (x | y0,yT )π0,T (y0,yT )

qt(x)
dy0dy1,Λ

ϕ
t (x

′ | x)
〉
qt(x)dx

=

∫
X

∫
Y×Y

〈
Λt(x

′ | x,yT )qt|0,T (x | y0,yT )π0,T (y0,yT ),Λ
ϕ
t (x

′ | x)
〉
dy0dy1dx

= Eπ0,T (y0,yT ), qt|0,T (x|y0,yT )

〈
Λt(x

′ | x,yT ),Λ
ϕ
t (x

′ | x)
〉
.

Next, it follows by the law of total expectation that the second term is459

Eqt(x)

∥∥∥Λϕ
t (x

′ | x)
∥∥∥2
2
= Eπ0,T (y0,yT ), qt|0,T (x|y0,yT )

∥∥∥Λϕ
t (x

′ | x)
∥∥∥2
2
.

Combining the terms, it follows from the linearity of expectation that∇ϕLU (ϕ) = ∇ϕLC(ϕ). Next,460

we want to show that if we approximate the true conditional generator with an estimator Λθ
t (x

′ |461

x,yT ) such that Eπ0,T (y0,yT ), qt|0,T (x|y0,yT )[Λ
θ
t (x

′ | x,yT )] = Λt(x
′ | x,yT ), we recover L2 as462

specified in (10) and a component independent of ϕ. To show this, add and subtract Λθ
t (x

′ | x,yT )463

from LC(ϕ) and complete the square to get464

LC(ϕ)

=

∫ T

0

Eπ0,T , qt|0,T

∑
x′ ̸=x

∥∥∥Λθ
t (x

′ | x,yT )− Λϕ
t (x

′ | x)
∥∥∥2

2
+

∥∥∥Λt(x
′ | x,yT )− Λθ

t (x
′ | x,yT )

∥∥∥2

2
dt

=

∫ T

0

Eπ0,T , qt|0,T

∑
x′ ̸=x

∥∥∥Λθ
t (x

′ | x,yT )− Λϕ
t (x

′ | x)
∥∥∥2

2
dt+Kθ.

In order to retrieve L2(ϕ), we perform a change of measure by importance sampling with proposal465

qθt (x | y0,yT ), and approximate the importance weights qt/qθt ≈ 1 to get466

LC(ϕ) ∝
∫ T

0

Eπ0,T , qt|0,T

∑
x′ ̸=x

∥∥∥Λθ
t (x

′ | x,yT )− Λϕ
t (x

′ | x)
∥∥∥2
2
dt

≈
∫ T

0

Eπ0,T , qθ
t|0,T

∑
x′ ̸=x

∥∥∥Λθ
t (x

′ | x,yT )− Λϕ
t (x

′ | x)
∥∥∥2
2
dt = L2(ϕ).

D Implementation details467

D.1 Training468

The training algorithms for the trajectory reconstruction and prediction tasks are reported in Al-469

gorithm 1 and Algorithm 2 respectively. Notice that it is also possible to learn the unconditional470

generator at the same time as the unconditional one, by freezing the gradients of θ before updating471

the L2 loss. For illustration purposes we do not explicit the numerical solver we are using, but for472

our experiments we use a Dormand-Prince solver of order 5 [Dormand and Prince, 1980] from the473

torchdiffeq library [Chen, 2018]. While all datapoints in a batch are processed in parallel, we474

might need to evolve the solver through different time points for each batch. This is feasible by ap-475

plying the tricks for parallel solving of neural ODEs with varying time-intervals presented in Chen476

et al. [2021].477

Overall, we found training of the unconditional model quite straightforward to implement. On the478

other hand, training the unconditional model seems to be quite challenging, mainly due to vanishing479

gradients when backpropagating through the solver. A trick we found quite helpful in addressing480

this problem is annealing the time discretization grid, from very coarse to a finer and finer one.481

Moreover, if the prior tends to push the model towards ”high activity”, we found the states generated482

by the conditional model to converge to the next observed state pretty quickly. This can hamper the483

training of the unconditional model, as trajectories generated by the conditional model will converge484
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very quickly and then stay still for a long amount of time. This biases the distribution of samples485

seen at training time by the conditional model, that might then experience ”mode collapse” and486

predict all of the transition rates to be zero. We found that choosing priors that bias the conditional487

model towards performing fewer transitions helps addressing this issue.488

Algorithm 1 Training for trajectory reconstruction
Require: Dataset D = {{tk,yi

k, CGi
k
}k∈[Ki]}i∈[N ], prior path measure P , OPTIMIZER, step size ϵ

Ensure: Learned parameters θ, ξ, for conditional generator Λθ
t and emission distribution pξt

1: Initialize parameters θ, ξ and loss L1 = 0
2: while not converged do
3: Sample minibatch of pairs (yk,yk+1) from D
4: for each pair (yk,yk+1) do
5: Encode xtk ∼ qθtk(·|yk) = Categorical(tk, gθtk(i,yk))
6: for t ∈ (tk, tk+1] do
7: Sample xt from qi,θt using Gumbel-Softmax trick
8: Evolve qi,θt using Λθ

t (xt|yk+1) as in (9)
9: end for

10: Compute L1 ← L1 + Lk
1(θ, ξ,yk,yk+1) using (8)

11: end for
12: Update θ, ξ ← OPTIMIZER(∇L1(θ, ξ)).
13: end while

Algorithm 2 Training for prediction
Require: Dataset D = {{tk,yi

k, CGi
k
}k∈[Ki]}i∈[N ], conditional generator Λθ

t , OPTIMIZER, step
size ϵ

Ensure: Learned parameters ϕ for unconditional generator Λϕ
t

1: Initialize parameters ϕ and loss L1 = 0
2: while not converged do
3: Sample minibatch of pairs (yk,yk+1) from D
4: for each pair (yk,yk+1) do
5: Encode xtk ∼ qθtk(·|yk) = Categorical(tk, gθtk(i,yk))
6: for t ∈ (tk, tk+1] do
7: Sample xt from qi,θt using Gumbel-Softmax trick
8: Evolve qi,θt using Λθ

t (xt|yk+1) as in (9)

9: Compute L2 ← L2 +
∥∥∥Λθ

t (xt|yk+1)−Λϕ
t (xt)

∥∥∥2
2

10: end for
11: end for
12: Update ϕ← OPTIMIZER(∇L2(ϕ)).
13: end while

D.2 Sampling489

For sampling, we compute transitions directly in sample space, in order to respect possible con-490

straints encoded in the generator. Denoting a neural encoder as qt and the entries of a generator Λt491

as Λt (regardless of it being conditional or unconditional), we initialize x0 ∼ q0(· | y0) and employ492

a first-order approximation of the transition probability as493

qt+ϵ|t(x
′ | x) ≈

{
ϵΛt(x

′ | x), x′ ̸= x,

1− ϵ
∑

x′ ̸=x Λt(x), x′ = x.
(26)

written in short as xt+ϵ ∼ Categorical (δxt + ϵΛt(xt)). This method, despite being a crude ap-494

proximation, is typically employed in discrete flow matching [Campbell et al., 2024] for its high495

scalability.496
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Figure 2: First 5 observations in time of a sequence from the wildfires dataset, with the correspond-
ing covariates.

D.3 Alternative parameterization497

The analytical form of the Markovian bridge in (2) suggests a potential unification of our two-stage498

approach into a single stage. This would involve fitting the conditional generator by minimizing the499

evidence lower bound in (7) and specifying the model as:500

Λθ
t (xt |ytk+1

) = Λθ
t (xt)H

θ
t (ytk+1

,xt). (27)

This approach is analogous to that taken by Somnath et al. [2023] for diffusion Schrödinger bridges,501

where they learn to approximate a target comprising a guidance term that ensures the diffusion pro-502

cess reaches the prescribed yk+1 at time tk+1. However, their method relies on the availability of503

a closed-form for the endpoint-conditioned prior processes, which is not available in our setting.504

Both guidance approaches can be viewed as instances of Doob’s h-transform [Rogers and Williams,505

2000], and we refer the reader to Corstanje et al. [2023] for a detailed discussion. However, our506

preliminary experiments suggest that this single-stage approach may yield inferior unconditional507

models compared to the two-stage method, possibly due to identifiability issues. We leave a thor-508

ough investigation of single-stage methods to future work.509

D.4 Computational considerations510

Our method is not simulation-free, in the sense that learning is made possible by backpropagating511

through a solver. In doing so, a practitioner can incur in two fundamental problems, inaccurate512

gradients and memory-intensive training steps. The choice of a backpropagation technique can513

trade off one disadvantage for the other. In our experiments we use continuous adjoint methods,514

that provide memory-efficient numerical solutions (constant w.r.t. the time discretization grid) at the515

cost of incurring numerical errors that accumulate into potentially inaccurate gradient estimates. An516

overview of other possible approaches is presented in [Kidger, 2021].517

E Experiments518

E.1 Datasets519

Epidemics The dataset is comprised of a collection of 250 random graphs with 128 nodes each520

and a given expected degree of 3, where edges are generated at random. Two covariates ci1, c
i
2 are521

generated for each node i ∈ V by sampling from a standard normal distribution. An epidemic is then522

spread according to a Susceptible-Infected-Recovered (SIR) model [Keeling and Eames, 2005, Paré523

et al., 2020, Dolgov and Savostyanov, 2024]. Initially, all nodes are set to be susceptible (S) with524

the exception of p0 nodes set to be infected (I) at random. Each graph in the dataset is evolved in the525

continuous-time interval [0, 19], where a time-homogeneous functional form for the local transition526

rates from S to I and from I to recovered (R) is specified as527

λS→I(i,x) = β exp
(
sin(ci1) + cos(ci2)

) ∣∣N I
i

∣∣ ,
λI→R(i,x) = γ,

whereN I
i := {j ∈ V |x(j) = I, j ∼ i}, β = 6 and γ = 0.2. These parameters do not correspond to528

physically meaningful quantities, and adjusting them to reflect real-world spread dynamics remains529

an interesting avenue for future work. Each graph is observed at K = 20 regularly spaced time530

points, with no observation noise (i.e., X ≡ Y). The data is simulated using τ−leaping [Gillespie,531

2001], with τ = 1× 10−2. A sample observed in its first 5 time steps is displayed in Figure 3.532
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Figure 3: First 5 observations in time of a sequence from the epidemics dataset.

Figure 4: True and generated SIR curves in a time interval observed only at the two endpoints, in an
held-out graph of 128 nodes.

Wildfires We consider 250 observations of 322−dimensional lattice-valued data represented as533

images, where each pixel can take three possible values: unburned (U ), burning (B), or extinguished534

(E). Spatially structured covariates corresponding to wind fields w and ground-level fuel f are535

generated at the same resolution. At time zero, each pixel is set to B with a probability pB0 = 0.005536

(i.e., we expect 5 pixels to be burning), while all the others are set to U . The dynamic is then evolved537

in the continuous-time interval [0, 19] by local transition rates with time-homogeneous functional538

forms539

λU→B(i,x) = ReLU(a0 + a1f
i)× ReLU

b0 + b1
∑

j∈NB
i

aij

 ,

λE→B(i,x) = ReLU(c0 + c1f
i)× ReLU

d0 + d1
∑

j∈NB
i

aij

 ,

λB→E(i,x) = γ,

where NB
i := {j ∈ V |x(j) = I, j ∼ i}, and aij is a wind alignment value obtained by the dot540

product between the relative position of the neighbor j w.r.t. i and the value of the wind field at541

j. For our simulation, we set a0 = b0 = c0 = d0 = 0.1, a1 = 5, b1 = 1, c1 = d1 = 0.01, and542

γ = 0.5. Similarly to the first setting, each wildfire is observed at K = 20 regularly spaced time543

points with no observation noise. A sample observed in its first 5 time steps, as well as the related544

covariates, is displayed in Figure 2.545

E.2 Model546

Since there is no observation noise, all we need to parameterize in our experiments are the condi-547

tional and unconditional generators. Both can be thought of as mappings X → R|V |×|S|×|S|
≥0 , i.e. the548

output shall be a local transition rate matrix at each site i ∈ V . In order to constrain the dependence549

structure of each local transition rate to the neighborhood of that site, we use the attention-based550

neural cellular automata presented in Tesfaldet et al. [2022]. This can be thought of as a depth-one551

vision transformer whose attention matrix is (efficiently) masked to attend only to a neighborhood552

of embedded input sites. For the wildfires experiment we simply consider a 3× 3 Moore neighbor-553

hood, whereas for the epidemics we mask the attention matrix with the adjacency matrix of each554

observation. We obtain 512-dimensional input embeddings by a two-layer MLP of width 512. The555
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Figure 5: Evolution of an epidemic on an held-out graph. Endpoint-conditioned generation (left),
unconditional generation (center), trajectory observed only at the endpoints (right).
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Figure 6: Initial conditions (top) and generated trajectories from the conditional (left) and uncondi-
tional (center) models, and true sequence observed only at the endpoints(right). Results shown for
an held-out example.
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embedding is then split into 4 attention heads, combined by another two-layer MLP with 512 hid-556

den units that returns the off-diagonal values of the local transition rate matrices. We constrain the557

output to be positive by applying a ReLU function. We specify the prior path measure by a prior rate558

matrix, where we set to zero physically impossible transitions (e.g. U → E for wildfires, or S → R559

for epidemics) and the remaining off-diagonal elements to a constant value c. More complex func-560

tional forms are possible, and shall be chosen for example by simulating from the prior predictive561

distribution [Gelman et al., 2020].562

E.3 Results563

We provide a qualitative overview of the results we have obtained so far. These shall be considered564

preliminary, and a quantitative comparison with other baselines (e.g. the mean-field approximation565

from Seifner and Sánchez [2023]) will be carried out in future work. For the epidemics dataset, we566

display generated trajectories on an held-out graph in Figure 5, as well as the aggregated SIR curves567

for the same example in Figure 4. Notice how the conditional model tends to converge quickly to the568

end solution, while the unconditional model mirrors the true unobserved trajectory more closely. For569

the wildfires experiments, we display results on held-out examples in Figure 6 and Figure 7. Despite570

the lack of information at the initial time, the unconditional model can still predict an evolution very571

close to the ground truth final configuration.572
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Figure 7: Same as Figure 6 but at a different stage of the simulated wildfire propagation, results
shown for an held-out example.
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