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Abstract

Workforce optimization plays a crucial role in efficient orga-
nizational operations where decision-making may span sev-
eral different administrative and time scales. For instance,
dispatching personnel to immediate service requests while
managing talent acquisition with various expertise sets up
a highly dynamic optimization problem. Existing work fo-
cuses on specific sub-problems such as resource allocation
and facility location, which are solved with heuristics like
local-search and, more recently, deep reinforcement learning.
However, these may not accurately represent real-world sce-
narios where such sub-problems are not fully independent.
Our aim is to fill this gap by creating a simulator that mod-
els a unified workforce optimization problem. Specifically,
we designed a modular simulator to support the development
of reinforcement learning methods for integrated workforce
optimization problems. We focus on three interdependent as-
pects: personnel dispatch, workforce management, and per-
sonnel positioning. The simulator provides configurable pa-
rameterizations to help explore dynamic scenarios with vary-
ing levels of stochasticity and non-stationarity. To facilitate
benchmarking and ablation studies, we also include heuristic
and RL baselines for the above mentioned aspects.

Introduction
Uncovering strategies to achieve operational efficiency and
fairness in service delivery or management has been a topic
of longstanding research, with ubiquitous applications rang-
ing from supply chain logistics to healthcare delivery [(Jail-
let, Loke, and Sim 2022)]. The past several years have seen
the development of digital twins that model operational in-
frastructure for their service operations, and use heuristics or
other developed methods to discover potential workflow im-
provements. Such efforts span multiple domains such as ser-
vice delivery with offerings from ServiceNow, ServiceMax,
Oracle, supply chain from IBM and LightSource, industry
from Siemens and GE, and hospital operations from Palan-
tir, LeanTaaS among others. In most cases, however, the fo-
cus is often on the data mapping and providing interfaces for
user driven analysis. While this leads to improvements in de-
sired KPIs (Key Performance Indicators), the impact is often
limited since these decisions are made in silos to keep data
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complexity manageable. For instance, the task responding
to service requests is often analyzed separately from having
sufficient service personnel with desired experience at de-
sired locations. In reality, however, these are strongly cou-
pled with ensuring service quality over a period. Keeping
this in mind, we believe that having an AI gym-like environ-
ment for the management of service resources that incorpo-
rates dynamic and non-stationary aspects of the real world
would enable researchers to develop AI solutions that bring
greater positive impact.

Workforce management scenarios can vary significantly
in scale, and thus having a modular simulation environ-
ment is key to accommodating various scenarios. Further-
more, real-world conditions of workforce management are
highly dynamic and it is important for the environment to
support a high degree of fidelity. Finally, it is essential that
the environment supports the development of reinforcement
learning (RL) for high-dimensional optimization problems -
it has been shown that RL achieves state-of-the-art perfor-
mance on long-horizon problems in large-scale dynamic en-
vironments that have multiple objectives [(Lau and Sengupta
2022)], and it aligns well with the workforce optimization
formulation that would typically entail multiple objectives.

In this work, we aim to bridge the gap between RL
and workforce management. We introduce a parameterized
modular environment that can be configured to simulate a
range of scenarios while also providing granular control over
stochasticity, non-stationarity, and scale of the simulation.
Additionally, we provide baseline heuristics for each task
in the environment to facilitate ablated performance com-
parison of different subsets of tasks measured by a set of
workforce-related metrics. Finally, we benchmark RL ap-
proaches and show promising results that perform favorably
against the heuristics but with room for improvement in fu-
ture research. We also compare performance to methods de-
veloped in isolation on a subset of tasks to highlight the ad-
vantages of solving workforce optimization as a joint prob-
lem in the integrated setup.

Related Work
Managing service workforce to deliver reliable and timely
service to a large number of facilities involves addressing
several different aspects, many of which has been researched
albeit often in silos. A key aspect is to optimize the as-



Table 1: Comparison of various simulation environments for operations management.

Environment Supports Short-Term Supports Collective Long-Term
Single-Agent Decisions Multi-Agent Decisions Decisions

OR-gym ✓ ✓ ✗ ✗ ✗
ORL [AAAI’20] ✓ ✓ ✗ ✗ ✗
ORSuite [SIGMETRICS’22] ✓ ✓ ✗ ✗ ✗
MARO [AAMAS’19] ✓ ✓ ✓ ✗ ✗
OFCOURSE [NeurIPS’23] ✓ ✓ ✓ ✓ ✗
Our work ✓ ✓ ✓ ✓ ✓

signment of personnel to service requests to achieve a high
throughput, which can be formulated as an assignment prob-
lem [(Pathan and Shrivastava 2021)]. Another aspect is that
of managing workforce personnel (such as making hiring
decisions) which addresses the trade-off between workforce
utilization and cost, and can be viewed as the well-studied
bin packing problem while minimizing the number of bins.
Since facilities are often distributed over a large geographi-
cal area, positioning of new personnel to reduce travel while
ensuring a low aggregate workforce cost is similar to the fa-
cility location problem [(Guo, Xu, and Jin 2023)]. Another
aspect of managing workforce training and qualifications is
tied to the RL literature on churn analysis [(Panjasuchat and
Limpiyakorn 2020)]. While such formulations help address
one aspect of workforce optimization, they often result in
sub-optimal performance metrics in others.

Recent literature on resource optimization has seen a
growth in development of simulation environments that
model the interdependence between various aspects and en-
able researchers to develop and evaluate RL algorithms for
operations research (OR). [(Hubbs et al. 2020)]’s OR-Gym
provide environments for the knapsack, bin packing, supply
chain, and asset allocation (assignment) problems. OR-Suite
by [(Archer et al. 2022)] aims to facilitate RL research on
OR problems such as ambulance routing, fair resource allo-
cation for food-banks, vaccine allocation in pandemics, and
ridesharing. [(Jiang et al. 2020)] introduced MARO (Multi
Agent Resource Optimization) benchmark for RL as a Ser-
vice for real-world resource optimization and includes dif-
ferent usecases such as container inventory management in
logistics and bike repositioning in transportation. Recent
work by [(Zhu et al. 2023)] recognized the limitations of
these frameworks on still being limited in terms of cover-
ing the holistic nature of these scenarios, and presented OF-
COURSE, a holistic environment to model the entire supply
chain, with emphasis on the order fulfillment problem. How-
ever, unlike order fulfillment, a holistic workforce optimiza-
tion environment needs to model both high frequency deci-
sions on dispatch as well as low frequency decision on work-
force changes and their long term interdependence. While
the existing frameworks are not well-suited to support holis-
tic workforce optimization, there have been valuable in pro-
gressing RL research. For instance, the MARO benchmark
was leveraged by [(Sinclair et al. 2023)] for hindsight learn-
ing that uses optimization solver on hindsight data as an ora-
cle to train an RL that outperforms state-of-the-art methods.
Our aim with providing a simulator for workforce optimiza-

tion is to further facilitate such research to address the prob-
lems more holistically. A feature-wise comparison with the
other simulation environments is shown in Table 1.

Simulator design
Motivating Example: Service workforce
management
Consider an organization that provides a service to maxi-
mize the machine uptime of equipment such as radiology
machines at hospitals or energy management equipment at
hotels. Such organizations have a workforce of service en-
gineers trained and qualified to operate such machinery,
and are at different levels of experience and certification
[(Blokdyk 2018; DecisionBrain 2019; Oracle 2021)]. Under
ideal settings where equipment is perfectly reliable and has
no downtime, these engineers are waiting idle at their base
office location. When an equipment is under distress or mal-
functions, a qualified engineer that is available is dispatched
to conduct repairs on-site. While dispatching the engineer, it
is important to factor in their experience level in addition to
their travel time to the facility location. Engineers with more
experience often would address the issue in one (or a few)
visits compared to novice ones who may need multiple visits
to have time to consult with experts, retrieve the right mate-
rials, rework their previously failed service, etc.. Needless to
say, the availability of an engineer, who is also strategically
at a favorable location, is also tied to the number of service
personnel in the organization. Hence, dealing with task of
ensuring high uptime for equipment involves simultaneous
optimization of the dispatch strategy, staff count, their ex-
pertise and location, among other factors. Furthermore the
mean time between such malfunctions across all equipment
in the field can not be reliably estimated and likely follows
a non-stationary distribution, which further complicates the
optimization process.

Problem formulation
Simulation Entities Workforce Service personnel that
execute service requests at facilities, represented by engi-
neers in the above example. They have an experience level
that affects their efficiency, while also altering their work-
force cost. Each personnel has a fixed home office location
that is determined upon hiring. They return to their home
office location after each dispatch to a facility.
Facility Entities with fixed locations that require servicing
by the workforce, represented by equipment in the above



Figure 1: A simulated run of the workforce management environment. Each time-step has a corresponding environment state
showing the workforce (Nt circles), facilities (Mt squares) and assignments (lines). Notice that personnel dispatch agent take
frequent actions (Nt x Mt assignments) to dispatch personnel to appropriate facilities. The workforce management agent, on
the other hand, often takes no action, and when it does, the impact of the action is observed several time steps later.

example. New facilities can become active and active ones
can go offline throughout a simulation.

Metrics We describe the 3 metrics used as key perfor-
mance indicators (KPIs) that assess the trade-offs between
facility downtime, personnel costs and balanced workload.

Workforce cost (WC) The cost associated with maintain-
ing a certain number of personnel on the workforce. The or-
ganization would aim to minimize this cost while balancing
the other objectives. We compute this metric as the size of
the workforce in log scale.

WC = log(|Personnel |) (1)

Personnel utilization rate (PUR) This metric is associ-
ated with workload distribution fairness and utilization of
working hours. An employee should not be overworked and
utilized around some threshold e.g., 75%. We modify this
metric using a rolling window to accommodate long-horizon
episodes - in such cases, the full-episode metric would sat-
urate as the horizon increases since any actions would have
diminishing influences. We measure this using the formula
below where Work is the number active working (i.e., travel
or service) time-steps within the rolling window and TPUR

is the size of the rolling window for this metric.

PUR =
Work

TPUR
(2)

Average facility downtime (AFD) This is a facility met-
ric that provides a measure of downtime and is analogous
to meeting demand and customer satisfaction. Similar to the
personnel utilization rate, we consider a rolling window to
balance short and long term effects. In the formula below
used to measure this metric, Downtime is the active wall-
clock time while the service request remained unfulfilled
within the rolling window and TAFD is the size of the rolling
window for this metric.

AFD =
Downtime

TAFD
(3)

Action space We model 3 aspects of control, each of
which is provided with a heuristic baseline that can be used
to train models for other aspects only. Additionally, these
heuristic baselines can be configured to simulate determin-
istic behavior which would help in studying the steady-state
characteristics of the simulation.
Personnel dispatch Assigning workforce personnel to facil-
ity service requests. This can be repair engineers responding
to machine failures or even radiology centers responding to
patient appointments. The decision-making for this aspect
revolves around a many-to-many assignment.
Workforce management Changing the size of the work-
force - the decision for this aspect is only concerned with
when to change the size of the workforce, and whether to
increase or decrease at specific levels of expertise.



Figure 2: Process flow for personnel dispatch to service requests generated by facilities.

Personnel positioning Decision-making about where to
make changes to the workforce. This aspect is only applica-
ble when a workforce management action is triggered mak-
ing them strongly coupled.

Discrete-Event Modeling
There is a long-standing history of using Discrete-Event
Simulation (DES) to model various business and industrial
processes [(Mockett et al. 2008; Amrouni et al. 2021; Zi-
noviev 2024)]. DES allows for control over the realism of
the simulation through the complexity of the modeled pro-
cesses. We leverage the DES formalism for workforce opti-
mization. We abstract some aspects of the motivating exam-
ple and aim to design a general simulator for different work-
force optimization scenarios. However, we keep some key
components to help capture basic aspects of the problem.

DES operates by processing triggering events and updat-
ing the state of the simulation accordingly. For our simu-
lator, the primary trigger is for a facility to request service
e.g., machine in need of maintenance. Figure 2 illustrates the
control flow for this trigger. We model these service events
by a Poisson process with a controllable inter-arrival rate.
The DES then receives a personnel dispatch action (whether
for a learned or heuristic policy) which it updates the state
of the simulation while handling action validation and race
conditions e.g., cannot dispatch the same person to multiple
facilities simultaneously. At each time-step, the DES sim-
ulates personnel travel between facility locations and their
home office locations.

The service requests and personnel dispatch operate at a
high frequency. At a lower frequency, the DES also receives
workforce management actions to alter the size of the work-
force e.g., hire new personnel. Figure 3 illustrates the control
flow for these actions. Alongside this action is a positioning
action which specifies where to alter the workforce. These
actions are not triggered but initiated by the policy. Work-
force management and positioning actions have a delay be-
fore they are executed to simulate on/off-boarding process.

Another trigger in the environment is a change in facilities
to simulate acquiring or losing clients. We also model this
by a Poisson process controlling the frequency of facilities

entering or exiting the state of the simulation.

Environment parameterization DES provides a power-
ful tool to investigate a system under different conditions
and what-if scenarios. To facilitate such study of the work-
force optimization problem, we design our simulator with
parameters to control different aspects of the simulated en-
vironment.

Our simulator allows running scenarios with varying
number of facilities and personnel. We model service re-
quests as a Poisson process which parameterizes the inter-
arrival rate of requests. For facilities we model entering and
leaving the simulation, also parameterized by a Poisson pro-
cess. The size of the rolling window controls the effective
horizon of the metrics, allowing a trade-off between myopic
and saturated behavior. Finally, we parameterize the envi-
ronment grid size to explore the aspects of spatial scaling.

Experiment design
To showcase the functionality of the simulator and the effec-
tiveness of RL in solving the joint optimization objective, we
describe two baseline approaches (heuristic-based and RL)
in this section along with some experimental results.

Baselines: Heuristics
Personnel dispatch We design a greedy distance-based
heuristic where service personnel are assigned to their near-
est facility with an open service request. We implement a
stochastic variant with weighted sampling inversely propor-
tional to the distance. This variant is useful to study the
steady-state of dispatch, especially in a deterministic setting.
Workforce management We design a greedy threshold-
based heuristic that triggers an increase in the number of
personnel if the resources are over-utilized and a decrease in
the number of personnel if they are under-utilized. Similar
to the dispatch heuristic, this has a stochastic variant that
implements an ϵ-greedy sampling between the threshold-
based decision and a random decision (increase, decrease,
do-nothing). With multiple levels of personnel experience,
this heuristic chooses the level of experience randomly while
being biased towards the middle level of experience.



Figure 3: Process flow for workforce management and personnel positioning agents to add or remove personnel. Note that when
a new personnel needs to be added, the personnel positioning agent identifies the area where to hire, and when personnel count
needs to be reduced, the personnel positioning agent selects the personnel by identifying the area where reduction would help.

Personnel positioning We design a greedy spatial averag-
ing heuristic corresponding to workforce personnel increase
or decrease. Each facility computes a service demand metric
modeled on it’s history of service requests and downtime.
We use this service demand as the weighing metric i.e., map
of service quality, to position newly hired personnel. Simi-
lar to the previous heuristics, this baseline has a stochastic
variant that samples around a smoothed Gaussian instead
of a deterministic singular point which can be seen in the
heatmap in Figure 3.

Baselines: Reinforcement Learning
Observations The observation space comprises of features
from both the facilities and the workforce. For the facilities,
the observation space is a matrix of size Mx7 where M is
the number of facilities. Each facility feature vector consists
of (1-2) the facility’s XY location, (3-5) whether it is oper-
ational, requests service, or has a personnel assigned, (6) as-
signed personnel identifier, and (7) rolling-window of down-
time. Similarly for the workforce, the observation space is an
Nx9 matrix where N is the number of personnel. The fea-
ture vector for each personnel consists of (1-2) home office
XY location, (3-4) current travel XY location, (5) level of
expertise, (6) whether idle or assigned, (7) assigned facility
identifier, (8) whether traveling to facility or to home office,
and (9) rolling-window of utilization rate.
Rewards To train multi-objective RL, we scalarize our met-
rics into a singular value using Nash Social Welfare [(Fan
et al. 2023)] which has desirable properties such as mono-
tonicity and Pareto optimality. This generalizes to other sets
of metrics. For our experiments the reward is:

R =
3
√
WC ∗PUR ∗AFD (4)

Actions There are three distinct actions associated with the
RL model:

Personnel dispatch: Each facility requesting service re-
ceives one personnel from the available workforce, in ad-
dition to a no-op action.

Workforce management: Choice to increase or decrease
personnel for each level of experience, in addition to a no-
op action.

Personnel positioning: Given a workforce management
action, each facility provides a weight in the range [0,1] that
is used to compute a location heat-map for either increasing
or decreasing the workforce.
Joint Model The transformer-based network architecture
that is used here is shown in Figure 4. Beginning with the
facility and workforce observations, these inputs are individ-
ually passed through a multi-layer projection and non-linear
positional encoder to create dense embedded feature sets.
Each row (facility or workforce) is processed independently.

These embedded feature sets are then passed through a
series of transformers to ensure that the entire state at that
time-step is attended to before being incorporated into a re-
current memory (Long short-term memory or LSTM). The
stateful transformers consist of layers of facility-facility and
workforce-workforce self-attention layers as well as facility-
workforce and workforce-facility cross-attention layers.

After passing through the LSTM, the outputs are con-
catenated with the original embedded feature sets and then
passed through another series of self-attention layers to fuse
the historical features with the current time-step state [(Lim
et al. 2019)]. The final layers consist of four multi-layer pro-
jection heads - three for actions related to the action space
described in section 3.3.3, and a value output to set up a typ-
ical actor-critic mechanism. We train the model using PPO
[(Schulman et al. 2017)].
Dispatch-only Model To study the effectiveness of model-
ing the integrated workforce optimization problem, we im-
plement a variant of our model for the personnel dispatch
problem. We use an identical architecture to the joint model
expect that it has only the dispatch action head. We train this
model to solve the personnel dispatching problem without
considering any workforce changes. We modify the reward
by removing the Workforce Cost from the geometric mean.
We then deploy this trained model along the heuristic base-
lines for the Workforce Management and the Personnel Po-
sitioning to see how well it integrates.

Results
Experiment settings The simulation environment imple-
ments the service workflows, as referred to in the literature



Figure 4: Network Architecture. Note that the spatial output head does not leverage the workforce features since it only involves
a voting mechanism among the facility locations.

(Blokdyk 2018), (DecisionBrain 2019), (Oracle 2021). Per-
sonnel have 3 levels of expertise (novice, mid-level, expert).
The simulator implements the environment as service over a
local geographical area as a uniform grid with a given num-
ber of facilities and service personnel. Personnel expertise
levels are initialized with a symmetric distribution favor-
ing mid-level and equally weighing novice and expert with
probabilities (0.25, 0.5, 0.25) respectively. Facilities enter
and exit the system exogenously with an inter-arrival rate of
100 time-steps. Similarly, facilities require service with an
inter-arrival rate of 40 time-steps. The base first visit repair
rate is set to 0.7 which corresponds to (0.49, 0.7. 0.84) for
novice, mid-level, and expert respectively. Finally, we set the
rolling-window size for computing metrics to 50.

To validate the simulator implementation and association
with the KPIs, we conducted several experiments to study
the performance trends with varying grid/area size, number
of personnel and facilities, and the performance trends ap-
pear to be consistent with the variations. Table 2 summarizes
these trends, averaged over 50 runs, and appear to correlate
with expected trends with increasing service personnel for a
given number of facilities and vice versa.

Quantitative comparison between policies To study the
performance of our joint RL method compared to one
trained on an isolated task and heuristic baselines, we con-
sider the following environment parameterization - we set
the grid size to 64x64 with a maximum of 50 facilities and
50 personnel initialized around 25 each.

Table 3 shows a quantitative comparison between multi-
ple RL algorithms (PPO (Schulman et al. 2017), IMPALA
(Espeholt et al. 2018)) as well as heuristics against the base-
line where decisions are being made randomly. As expected,
commonly used field heuristics outperform the baseline sig-
nificantly. Notice that both PPO (on-policy) and IMPALA
(off-policy) algorithms performed similarly but better than
heuristics method, with PPO performing marginally better.

Figure 5 shows a compare the evolution of the KPIs over
a period using methods 4, 5 and 6 from Table 2. We report
the 25th to 75th percentiles for the 3 metrics using the differ-

ent methods over a horizon of 800 time-steps for 50 random
episodes. All 3 methods perform well on the average facility
downtime, where lower is better, with a marginal improve-
ment for the heuristic baseline. As for the personnel utiliza-
tion rate, where being closer to the gray band is better, both
RL models perform better than the heuristic baseline with
lower variance and more centered around the desired band.
The workforce cost is lower for the joint RL model com-
pared to the dispatch-only model.

As the dispatch-only model was trained in isolation from
the integrated optimization problem, it is less adaptive to a
dynamically changing workforce. We hypothesize that such
a model tries to balance personnel utilization on average,
without considering long-term personnel changes and how
they affect utilization. On the other hand, a model trained to
optimize the joint problem considers more diverse strategies
such as hiring new personnel to balance utilization.

Discussion
While we have used the example of service workforce man-
agement to demonstrate the effectiveness of modeling and
training agents for workforce optimization, our framework
can be adapted to other similar service domains. One such
example is of an organization responsible for delivering
healthcare service to patients after they are discharged from
hospital but need to cared for at their home. Facility in this
example maps to the patient home locations, and service per-
sonnel maps to the healthcare provider staff i.e., physicians
and nurses who travel to patient’s home to assess and treat
them. Similar to the example of service workforce manage-
ment where a facility goes in distress and needs service, pa-
tient’s health may deteriorate and need to be visited by the
healthcare staff.

Another example is of an organization that is providing
radiology staff to several radiology centers over a geograph-
ical area (e.g., city) to help them obtain medical scans for the
incoming patients. The facility in this example maps to the
radiology equipment at a hospital, and service personnel are
the radiology staff that are trained to obtain medical scans.



Table 2: Nash social welfare (averaged over 50 runs) for varying grid size, number of service personnel (S) and facilities (F).
Notice that for any given grid size, increasing service personnel with 25 facilities (first 3 columns) improves the KPI.

Grid size 25F x 5S 25F x 10S 25F x 25S 50F x 25S 100F x 25S
32 x 32 5.53 3.16 2.96 2.91 6
64 x 64 6.37 4.41 3.12 5.14 6.73
128 x 128 6.7 6.05 3.65 6.37 7.17
256 x 256 6.86 6.35 4.57 6.78 7.25

Table 3: Quantitative comparison of algorithms for each agent. KPIs are averaged over 50 runs, and reported as ”mean (25% -
75%)”.

Method # Dispatch Workforce Personnel Workforce Personnel Facility Nash social
mgmt positioning cost util. rate downtime welfare

1 Random Random Random 75 (59-95) 0.6 (0.4-0.8) 0.3 (0.2-0.4) 5.9 (2.4-11.1)
2 Random Heuristic Heuristic 57 (48-66) 0.8 (0.5-0.9) 0.3 (0.2-0.4) 3.7 (1.8-5.7)
3 Heuristic Heuristic Random 45 (35-57) 0.6 (0.3-1) 0.2 (0.1-0.4) 4.9 (2-7.5)
4 Heuristic Heuristic Heuristic 46 (42-50) 0.6 (0.5-0.8) 0.2 (0.2-0.3) 4.1 (3-5.1)
5 PPO Heuristic Heuristic 57 (51-61) 0.7 (0.7-0.8) 0.3 (0.3-0.4) 3.5 (2.4-4.4)
6 PPO PPO PPO 45 (37-55) 0.7 (0.7-0.8) 0.4 (0.3-0.4) 3.1 (2.2-3.7)
7 IMPALA IMPALA IMPALA 49 (40-56) 0.6 (0.6-0.7) 0.4 (0.3-0.5) 3.1 (2.5-3.5)

Note that unlike previous examples, the service requests are
generated when a physician orders a medical scan of patients
after examining them. However, the strategic management,
positioning and dispatch of the radiology staff is necessary
to achieve a balanced workforce cost and utilization while
ensuring low patient wait time.

Conclusion and Future Work
We presented an integrated simulation environment for
workforce optimization and demonstrated that jointly
training RL agents simultaneously addressing different
aspects of the problem outperforms agents that are trained
to optimize a single aspect (e.g., personnel dispatch). While
the approach with jointly trained agents also outperforms
manually designed heuristics, we envision that the provided
simulation environment would facilitate RL research to
bring further improvements in terms of scale (world size
as well as number of facilities), thus leading to increased
usage and value added by of RL in this space. Moving
forward we intend to extend the framework to further
include additional aspects of workforce environment such
as personnel routing to optimize visits to multiple facilities,
as well as, analyzing the tolerance of the jointly trained
models to non-stationary variations in facility downtime
frequency and travel durations. Other future extensions
include accounting for hybrid scenarios, wherein personnel
can provide on-site or remote service depending on the
facility’s need, which reflect certain service scenarios. With
the growing trend of tackling large joint optimization spaces
with RL, combined with the ever-increasing complexity
of modern service organizations, we strongly believe that
this work provides a meaningful step towards enabling the
next-generation of AI for workforce management.

Disclaimer: The concepts and information presented in this

paper are based on research results that are not commercially
available. Future commercial availability cannot be guaran-
teed.
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