
Training Language Model Agents to Find
Vulnerabilities with CTF-Dojo

Terry Yue Zhuo1,2∗ Dingmin Wang2 Hantian Ding2 Varun Kumar2 Zijian Wang2

1 Monash University 2 AWS AI Labs

terry.zhuo@monash.edu
{wdimmy, dhantian, kuvrun, zijwan}@amazon.com

https://github.com/amazon-science/CTF-Dojo

Abstract

Large language models (LLMs) have demonstrated exceptional capabilities when
trained within executable runtime environments, notably excelling at software
engineering tasks through verified feedback loops. Yet, scalable and generalizable
execution-grounded environments remain scarce, limiting progress in training more
capable ML agents. We introduce CTF-DOJO, the first large-scale executable
runtime tailored for training LLMs with verifiable feedback, featuring 658 fully
functional Capture-The-Flag (CTF)-style challenges containerized in Docker with
guaranteed reproducibility. To enable rapid scaling without manual intervention,
we develop CTF-FORGE, an automated pipeline that transforms publicly available
artifacts into ready-to-use execution environments in minutes, eliminating weeks
of expert configuration traditionally required.
We trained LLM-based agents on just 486 high-quality, execution-verified trajecto-
ries from CTF-DOJO, achieving up to 11.6% absolute gains over strong baselines
across three competitive benchmarks: InterCode-CTF, NYU CTF Bench, and Cy-
bench. Our best-performing 32B model reaches 31.9% Pass@1, establishing a new
open-weight state-of-the-art that rivals frontier models like DeepSeek-V3-0324
and Gemini-2.5-Flash. By framing CTF-style tasks as a benchmark for executable-
agent learning, CTF-DOJO demonstrates that execution-grounded training signals
are not only effective but pivotal in advancing high-performance ML agents without
dependence on costly proprietary systems.

1 Introduction

Advanced cybersecurity necessitates the ongoing analysis of increasingly complex software systems.
As globally connected infrastructures expand, their attack surfaces expand as well, making traditional
manual security analysis insufficient for timely vulnerability identification and remediation. This
urgency has spurred major research efforts, such as the DARPA Cyber Grand Challenge [37] and
DARPA AIxCC [11], which focus on building autonomous systems capable of discovering and
validating software flaws. In this context, Capture The Flag (CTF) competitions have emerged as the
de facto benchmark for evaluating the cybersecurity reasoning abilities of machine learning models,
demanding advanced, multi-step adversarial strategies to uncover system vulnerabilities and retrieve
hidden flags [4, 45, 33].

Previous works have demonstrated promising results in applying large language model (LLM) agents
to CTF challenges [19, 20, 5, 1], with systems like ENIGMA [1] achieving substantial progress on
∗Work done during an internship at Amazon.

https://github.com/amazon-science/CTF-Dojo


Source
Description.md

task

pykeepass

Rehost
REHOSTING
------------------------
Files can be found here: 
[LINK]

Challenge Setup 
------------------------
This challenge has two files 
which are …

CTF Archive Environment Generation

Dockerfile
Generates Dockerfile to build 
the runtime and embed flags on 
the server

Docker Compose
Generates a YAML file to 
configure Docker services and 
networks 

Challenge JSON
name          description
files         box
internal_port compose 
flag          category

Language 
Model

Challenge Server
Welcome to server!
Here is the challenge:
...

A cryptographic 
challenge 
involving Python 
and KeePass 
databases.

CTF Challenge Runtime

System
Prompt

Heuristic
Rules

Cybersecurity
Agent

Figure 1: CTF-FORGE powers automated creation of configuration files from publicly sourced CTF
artifacts for containerizing CTF challenges.

complex security tasks. While these approaches enable frontier proprietary models to achieve strong
performance, they fail short when applied to open-source LLMs due to the lack of agentic training
data. Recently, Zhuo et al. [56] shows that training on thousands of synthetic agent trajectories can
close the gap between proprietary and open-source LLMs. However, synthesizing a large number of
long-horizon trajectories from teacher models requires substantial computational resources, limiting
generalization under budget constraints. Moreover, the validity of synthetic trajectories is hard to
verify without runtime environments, limiting their reliability for training in high-stakes, safety-
critical domains.

To address these limitations, we present CTF-DOJO, the first execution environment that contains
hundreds of fully functional CTF challenges in secure Docker containers. CTF-DOJO leverages CTF
artifacts (e.g., challenge descriptions and files to reproduce each challenge) from pwn.college,
a public archive developed by Arizona State University for hands-on cybersecurity education, now
used in 145 countries and actively maintained by a team of professors and students. However, setting
up the runtime environment for CTF challenges is extremely difficult for non-professionals and can
take up to an hour per task even for experienced practitioners (documented Section 2). To eliminate
this bottleneck, we propose CTF-FORGE (Figure 1), an automated pipeline that leverages LLMs to
create hundreds of Docker images for CTF-DOJO within minutes, achieving over 98% success rate
through manual validation.

During trajectory collection from multiple LLMs within CTF-DOJO, we found that weaker models
struggle to solve CTF challenges independently (detailed in Section 4.1). To improve yield rates,
we collect diverse CTF writeups from CTFtime2 and incorporated them as inference-time hints.
Although we notice that only 23% of the CTF-DOJO challenges matches at least one writuep, we
empirically find that such writeup content, when available, can significantly boost the success rate of
LLMs up to 64% relatively gains. Notably, while building these environments, CTF-DOJO uncovered
four bugs from the existing pwn.college collection3.

Models trained on CTF-DOJO trajectories achieve open-weight state-of-the-art performance on
over 300 tasks across three established CTF benchmarks. Through the extensive analysis, we
identify three key findings for building effective cybersecurity agents: (1) writeups are crucial for
training, particularly when working with data generated by weak models, (2) augmenting the runtime
environment (e.g., server domains and flags) helps models yield more solved more CTF challenges,
and (3) employing diverse teacher LLMs in CTF-DOJO leads to better task diversity and stronger
performance. We hope our insights from the proposed CTF-DOJO can shed light on the future
development of cybersecurity agents. Our work provides following contributions:

• We introduce CTF-DOJO, the first large-scale, execution-ready environment for cybersecurity
agent training, offering hundreds of verified CTF challenges in isolated Docker containers.

2https://ctftime.org/
3We have filed issues in their official repository.

2

https://ctftime.org/
https://github.com/pwncollege/ctf-archive


Table 1: CTF-DOJO is the first cybersecurity executable environment deriving agent trajectories for
training. Detection: whether the task requires vulnerability detection; exploitation: whether the task
needs LLMs to verify the detected vulnerabilities; Agentic: whether each instance is repaired with an
interactive environment for exploitation; Real Task: whether each instance is developed by human
experts.

Executable Environment Detection Exploitation Agentic Real Task # Total # Train
SecRepoBench [13] ✗ ✗ ✓ ✓ 318 0
CVE-Bench [41] ✗ ✗ ✓ ✓ 509 0

CVE-Bench [54] ✗ ✓ ✓ ✓ 509 0
SEC-bench [23] ✗ ✓ ✓ ✓ 1,507 0
CyberGym [42] ✗ ✓ ✓ ✓ 1,507 0

CyberSecEval 3 [40] ✓ ✓ ✓ ✗ 6 0
SecCodePLT [51] ✓ ✓ ✓ ✗ 1,345 0

InterCode-CTF [48] ✓ ✓ ✓ ✓ 100 0
NYU CTF Bench [36] ✓ ✓ ✓ ✓ 200 0
Cybench [53] ✓ ✓ ✓ ✓ 40 0
BountyBench [52] ✓ ✓ ✓ ✓ 40 0
CTF-DOJO (Ours) ✓ ✓ ✓ ✓ 658 658

• We propose CTF-FORGE, a scalable pipeline that leverages LLMs to automate the generation of
Docker-based runtime environments, achieving over 98% success rate through manual validation.

• We conduct thorough analysis through extensive ablation studies, identifying key factors that
influence agent performance, including the presence of hint-guided trajectory collection, runtime
environment augmentation, and teacher model diversity.

2 CTF-DOJO: Environment for Building Powerful Cybersecurity Agents

CTF-DOJO is the first environment designed to synthesize verified agent trajectories for training
LLMs on offensive cybersecurity tasks involving vulnerability detection and exploitation. As shown
in Table 1, existing cybersecurity execution environments either lack agentic task instance or are
not designed for training purposes, creating a critical gap in the development of capable security
agents. Inspired by the success of trajectory-based learning in software engineering agents [21, 49],
CTF-DOJO adapts this paradigm to cybersecurity by sourcing publicly available CTF artifacts and
transforming them into executable and interactive environments.

Different from prior pipelines for software engineering tasks [34, 46, 50], which often require human
effort or complex multi-agent systems to construct Docker environments, our approach is lightweight
and fully automated. Towards that end, we introduce CTF-FORGE, a pipeline that automatically
builds Docker containers for CTF-DOJO. While manual setup can take up to an hour per challenge
even for experts4, CTF-FORGE completes each container in 0.5 seconds on average, reducing weeks
of total setup time to just minutes.

2.1 Source Data Collection

We begin by surveying CTF collections that offer diverse challenges from CTF competitions. During
our initial exploration, we determine a few candidates: (1) Sajjadium’s CTF Archives5, (2) r3kapig’s
Notion6, (3) CryptoHack CTF Archive7, (4) archive.ooo8, and (5) pwn.college’s CTF Archive9.
However, most of these collections suffer from inconsistent maintenance, lack standardization
across challenge formats, or are limited to specific categories (e.g., CryptoHack focuses solely on

4This has been attempted by one of the authors.
5https://github.com/sajjadium/ctf-archives
6https://r3kapig-not1on.notion.site
7https://cryptohack.org/challenges/ctf-archive/
8https://archive.ooo/
9https://github.com/pwncollege/ctf-archive

3

https://github.com/sajjadium/ctf-archives
https://r3kapig-not1on.notion.site
https://cryptohack.org/challenges/ctf-archive/
https://archive.ooo/
https://github.com/pwncollege/ctf-archive


Table 2: Challenge distribution across CTF datasets.

Benchmark Level # Competition # Crypto # Forensics # Pwn # Rev # Web # Misc # Total
Training

CTF-DOJO Multi-Level 50 228 38 163 123 21 85 658

Evaluation

InterCode-CTF High School 1 16 13 2 27 2 31 91
NYU CTF Bench University 1 53 15 38 51 19 24 192
Cybench Professional 4 16 4 2 6 8 4 40

cryptography). We determine that pwn.college’s CTF Archive is not only free of these issues but
additionally provides brief information about the steps to reproduce each CTF challenge. Table 2
shows the distribution of 658 CTF challenges (as of 2025/07) after decontaminating any tasks from
evaluation benchmarks, demonstrating the diversity of CTF instances across different categories and
competition events hosted between 2011 and 2025.

CTF challenges employ two primary flag-handling mechanisms. The first type uses predefined flags,
hashed with SHA-256 and verified through a provided binary executable (e.g., flagCheck) that
confirms submission correctness. Since these flags were manually captured and encoded, they are
subject to occasional errors (see 4 identified bugs in Appendix G). The second type relies on dynamic
flag generation, where the correct flag is generated at runtime and stored in a system path such as
/flag. In those challenges, participants must verify the system during execution to retrieve or
compute the correct flag, rather than match against a static value.

2.2 CTF-FORGE: Automatic Environment Creation for CTF Challenges

Figure 1 illustrates CTF-FORGE, a pipeline employing DeepSeek-V3-0324 to generate environments
and metadata for CTF runtime. After we source the CTF artifacts from pwn.college’s CTF
Archive, we design a set of prompts to instruct LLMs to generate the compulsory files for Docker
images in multiple stages. First, we determine whether the CTF challenge requires a containerized
server to interact with. Such servers are typically needed for web challenges, binary exploitation
challenges, and cryptography challenges that provide interactive services. The pipeline automatically
detects server requirements by analyzing the presence of flag verification files (SHA256 checksums
or check scripts) and challenge descriptions. For existing CTF runtime, we can categorize them into
several challenge types: 1) Web challenges that require web servers (Apache/Nginx) to serve PHP,
Python, or Node.js applications; 2) Binary exploitation challenges that need socat to host binary
services on port 1337 with appropriate library dependencies; 3) Cryptography challenges that may
require Python runtime environments for cryptographic services; 4) Reverse engineering challenges
providing downloadable binaries and potentially analysis services; and 5) Forensics challenges
offering evidence files for offline analysis. The pipeline employs category-specific guidelines and
adaptive Docker setup strategies to handle different architectures (32-bit vs 64-bit), library depen-
dencies, and runtime environments. For each challenge type, CTF-FORGE generates appropriate
Dockerfiles with proper base images, package installations, file copying, and service configurations,
then produces docker-compose.yml files for orchestration and challenge.json metadata
files that describe the challenge structure and provide flag verification mechanisms.

2.3 Building Sustainable Environment for Cybersecurity Agents

To ensure CTF-DOJO serves as a robust foundation for long-term research on autonomous cyberse-
curity agents, we emphasize sustainability across two dimensions: reliability and scalability.

Reliability To ensure the reliability of the CTF environments created via CTF-FORGE, we im-
plement an automated validation script that performs two critical checks: (1) whether the Docker
containers can be successfully built and executed without errors, and (2) whether the CTF services
inside the containers respond correctly to network communication on the expected ports. We run
CTF-FORGE three times independently on all 658 CTF challenges to evaluate consistency and deter-
minism. Across these runs, 98% (650) of the challenges consistently pass all checks, demonstrating
high reliability of the pipeline in producing stable, executable environments for cybersecurity agents.

4



Additionally, we sample 10% of the built CTF tasks and manually test the executables within each
runtime to verify expected behavior.

Scalability While CTF-DOJO currently contains fewer instances than existing software engineering
environments that covers thousands of instances [34, 46, 50], each CTF challenge environment is
uniquely designed, mimicking diverse real-world software systems rather than variations of a single
codebase that is common in SWE tasks. To enhance scalability over time, CTF-DOJO builds on
the actively growing CTF collections from the pwn.college community. As new challenges are
added, CTF-FORGE can continuously and automatically convert them into interactive environments
with minimal manual effort, enabling CTF-DOJO to scale organically alongside community-driven
CTF development.

2.4 Training Data Construction

We introduce a data pipeline to produce a large corpus of high-quality, multi-turn interaction traces
from CTF-DOJO. This process supports the development of CTF-solving agents that require diverse,
realistic demonstrations of iterative security problem-solving behavior.

Agent Scaffold We build on ENIGMA+ [56], a recently introduced agent scaffold designed for
scalable and consistent evaluation of agents on cybersecurity tasks. ENIGMA+ extends the original
ENIGMA framework to better support cybersecurity environments by incorporating interactive tools
for debugging and remote server interaction. Notably, ENIGMA+ improves evaluation efficiency by
executing tasks in parallel using isolated Docker containers, reducing runtime from days to hours
for large-scale experiments. It also enables the control of agent interactions based on the number of
interaction steps (e.g., 40 turns) rather than monetary cost, which aligns with best practices in agent
evaluation. Additionally, it replaces ENIGMA’s context-heavy summarization module with with a
lightweight alternative better suited for binary analysis outputs. Within this scaffold, we integrate the
CTF-DOJO environment and collect agent trajectories through structured interactions.

Trajectory Collection Within the ENIGMA+ scaffold, we deploy DeepSeek-V3-0324 to attempt
solving CTF challenges in CTF-DOJO with a temperature of 0.6, top-p of 0.95, and rollout count of
6. For each challenge instance, the agent is given the original task description and interactive access
to the containerized environment, capped at 40 turns. We log every system command, intermediate
output, and reasoning step until either the flag is captured or the turn budget is exhausted. Successful
trajectories are stored in structured JSON format for downstream filtering and training. Our initial
large-scale runs reveal that many trajectories stall due to brittle exploitation strategies or failure to
discover the correct toolchain. While some challenges yield multiple successful runs, a large fraction
remain unsolved or are solved only rarely, leading to a skewed dataset concentrated on limited tasks.

Inference-Time Bag of Tricks To increase the yield rate of successful trajectories on CTF chal-
lenges, we introduce two inference-time techniques (analyzed in Section 4). First, we leverage
publicly available CTF writeups to provide task-specific hints to LLMs. Specifically, we collect 8,361
writeups and apply fuzzy matching to align them with challenges in CTF-DOJO. This yields 252
matched writeups, covering 150 challenges with at least one relevant writeup. During preprocessing,
we redact any potential flag values from the writeups and incorporate the cleaned content into the task
prompt, as the direct answers may lead to the shortcut learning [15]. We explicitly instruct the LLM
to treat the writeup as a source of inspiration, using its strategies and reasoning implicitly without
direct referencing. To ensure the integrity of downstream evaluation, we remove all writeup content
from collected trajectories after inference. Second, we augment the CTF runtime per agent rollout via
CTF-FORGE by introducing randomized environment configurations. These augmentations include
varying port numbers, modifying file system paths, injecting non-functional distractor code, and
adjusting system-level metadata such as timestamps and installed packages. While preserving the
core logic and solvability of each challenge, these perturbations reduce overfitting to static runtime
cues and encourage agents to develop more generalizable exploitation strategies. They also help
mitigate persistent misconfigurations introduced by LLMs. By resetting the runtime with diverse
settings, the environment is more likely to land in a valid configuration that enables flag discovery,
even if previous runs failed due to deterministic setup errors. For challenges with dynamic flag
generation, we re-seed the container environments at each rollout to ensure unique flag instances per
interaction, further enriching training data diversity.

5



crypto
(141)

misc
(36)

rev
(52)

web
(8)

pwn
(20)

forensics
(17)

Figure 2: Breakdown of
solved CTF challenges.

Data Analysis We employ two models, Qwen3-Coder [47] and
DeepSeek-V3-0324 [26], to analyze the composition and character-
istics of the raw 1,006 successful trajectories across multiple runs
to better understand the coverage and difficulty distribution within
CTF-DOJO. Figure 2 shows the category distribution across solved
274 challenges, where cryptography tasks constitute the largest por-
tion, followed by reverse engineering, and miscellaneous categories.
This distribution reflects the typical emphasis in modern CTFs on
cryptographic reasoning and binary analysis. More analysis can be
seen in Appendix E.

3 Training LLMs as Cybersecurity Agents with CTF-DOJO

With CTF-DOJO, we train cybersecurity agents with various base models. Our primary objective is to
establish strong baselines and demonstrate the effectiveness of training data derived from execution.
We use Pass@k [9] as our main evaluation metric. Similar to Pan et al. [34], we employ a simple
policy improvement algorithm: rejection sampling fine-tuning, where we fine-tune the model on
trajectories successfully capturing flags inside CTF-DOJO. In addition, we apply sample capping
of 2 per solved CTF challenges to avoid bias towards easy tasks, following Pan et al. [34] and Yang
et al. [50]. We finally collect 486 trajectories from the 274 CTF challenges solved by Qwen3-Coder
and DeepSeek-V3-0324 (see Table 7).

3.1 Experiment Setup

Training We fine-tuned Qwen3 models at three scales: 7B, 14B, and 32B [47]. All models undergo
supervised fine-tuning via NVIDIA NeMo framework [22]. Due to computational constraints, we only
retain synthesized samples within 32,768 tokens, resulting in 486 trajectories. The hyperparameters
are consistently set as the global batch size of 16, the learning rate of 5e-6, and the epoch of 2.

Table 3: Pass@1 performance on benchmark tasks. The improvements of CTF-DOJO are absolute
in comparison with the Qwen3 model of corresponding sizes.

Model Train Size InterCode-CTF NYU CTF Cybench Average
Proprietary Models

Claude-3.7-Sonnet [4] - 86.8 18.2 30.0 39.0
Claude-3.5-Sonnet [3] - 85.7 16.7 25.0 37.2
Gemini-2.5-Flash [10] - 81.3 14.1 17.5 33.4

Open Weight Models

DeepSeek-V3-0324 [26] - 82.5 6.2 27.5 30.3
Kimi-K2 [38] - 72.5 4.7 15.0 25.1
Qwen3-Coder [47] - 70.3 5.7 10.0 24.5
Qwen2.5-Coder-7B-Instruct [18] - 34.1 2.0 0.0 10.8
Qwen2.5-Coder-14B-Instruct [18] - 44.0 3.1 5.0 14.9
Qwen2.5-Coder-32B-Instruct [18] - 68.1 4.7 10.0 23.2
Qwen3-8B [47] - 46.5 0.8 5.0 14.2
Qwen3-14B [47] - 55.0 2.6 12.5 18.6
Qwen3-32B [47] - 60.0 4.7 5.0 20.3

Cyber-Zero-8B∗ [56] 9,464 64.8 6.3 10.0 23.2
Cyber-Zero-14B∗ [56] 9,464 73.6 9.9 20.0 29.1
Cyber-Zero-32B∗ [56] 9,464 82.4 13.5 17.5 33.4

CTF-DOJO-8B (Ours) 486 53.8 (7.3% ↑) 4.2 (3.4% ↑) 10.0 (5.0% ↑) 18.9 (4.7% ↑)
CTF-DOJO-14B (Ours) 486 71.4 (16.4% ↑) 5.7 (3.1% ↑) 17.5 (5.0% ↑) 25.7 (7.1% ↑)
CTF-DOJO-32B (Ours) 486 83.5 (23.5% ↑) 10.4 (5.7% ↑) 17.5 (12.5% ↑) 31.9 (11.6% ↑)

Evaluation Scaffolding We use ENIGMA+, an enhanced version of the ENIGMA scaffold with
several key improvements for large-scale cybersecurity evaluation. ENIGMA+ executes evaluation
tasks in parallel, significantly improving efficiency. Following Zhuo et al. [56], we cap each rollout at
40 interaction turns, replacing ENIGMA’s cost-based budget [49] to ensure consistent evaluation
across models. We also adopt the Simple Summarizer to prevent context overflows from verbose
outputs like binary decompilation.

6



3.2 Result Analysis

We evaluate all LLMs with the Pass@1 metric, where we sample one trajectory per task and validate
whether the model captures the correct flag. Table 3 presents performance comparisons between
zero-shot and fine-tuned models across all benchmarks.

CTF-DOJO training enables efficient vulnerability exploitation. Our results show that CTF-
DOJO-fine-tuned models achieve performance comparable to Cyber-Zero while requiring 94.9%
fewer training trajectories (486 vs. 9,464). Both approaches fine-tune on Qwen3 backbones, yet
CTF-DOJO relies solely on a compact set of successful CTF trajectories. For instance, CTF-
DOJO-32B reaches an average Pass@1 of 31.9%, approaching Cyber-Zero-32B’s 33.4%. Similarly,
CTF-DOJO-14B achieves 25.7% versus 29.1% for Cyber-Zero-14B, and CTF-DOJO-8B attains
18.9% compared to Cyber-Zero-8B’s 23.2%. These results highlight that CTF-DOJO offers a highly
data-efficient alternative: competitive performance can be attained without massive-scale training.
Notably, CTF-DOJO-trained models also begin to rival frontier systems such as Claude-3.5-Sonnet
(37.2%), underscoring the practical feasibility of training capable cybersecurity agents at modest cost.

0 50 100 200 300 400
#Trajectories

15

20

25

30

Pa
ss

@
1 

(%
)

20.3

23.5
24.8

29.4
31.9

32B
14B
8B

Figure 3: Effect of data scal-
ing. Models across sizes ben-
efit from increased number of
training trajectories.

Scaling training data improves the performance linearly. Fig-
ure 3 shows the impact of increasing training trajectories on Pass@1
performance across different model sizes. All model variants (8B,
14B, 32B) demonstrate clear and consistent performance gains as
training trajectories increase. Notably, the 32B model improves from
22.0% to 31.9% Pass@1 from 0 to 486 trajectories, demonstrating
nearly linear performance scaling with data. This trend confirms that
even modestly sized datasets can substantially enhance capability in
cybersecurity tasks. Larger models not only start from higher base-
lines but also benefit more from additional supervision, highlighting
the synergistic effect of scale and verified data in training paradigm.

4 Ablations on CTF-DOJO Data

To better understand the components contributing to CTF-DOJO’s effectiveness, we conduct ablation
studies across three axes: external writeups as inference-time hints, runtime augmentation during data
collection, and teacher model diversity. These experiments reveal the impact of key design choices
and identify practical strategies for enhancing agent performance in cybersecurity environments.

4.1 Writups as Hints

Table 4: Solved rate (%) on CTF-DOJO tasks across categories, using ENIGMA+. “–” indicates
baseline without writeup hints; “+” includes writeups in the prompt.

Models # Crypto # Forensics # Pwn # Rev # Web # Misc # Total
– + – + – + – + – + – + – +

Proprietary Models

Claude-3.7-Sonnet 41.2 50.9 42.1 50.0 14.7 20.9 41.5 49.6 61.9 76.2 47.1 69.4 36.2 46.4
Claude-3.5-Sonnet 39.9 43.9 39.5 47.4 8.0 13.5 39.8 41.5 47.6 57.1 45.9 68.2 33.0 39.7

Open Weight Models

DeepSeek-V3-0324 37.1 41.0 41.0 43.6 12.0 13.5 34.1 36.6 33.3 52.4 36.5 41.2 30.4 33.9
Qwen3-Coder 31.4 42.8 35.9 38.5 7.9 9.1 26.8 39.8 23.8 28.6 24.7 37.6 23.9 32.5
Qwen3-32B 21.9 29.4 7.9 18.4 1.8 6.7 22.8 28.5 9.5 23.5 31.8 41.2 17.2 24.3
Qwen3-14B 14.0 25.9 5.3 10.5 1.8 4.9 20.3 25.2 9.5 14.3 24.7 40.0 12.9 21.1

Setup To assess the value of incorporating external CTF writeups during data collection, we conduct
a controlled ablation on CTF-DOJO challenges. We compare two settings: (1) No-Hint (-), where
models receive only the original challenge description, and (2) With-Hint (+), where one redacted
matched writeups is randomly chosen to prepend to the prompt as a non-referential hint for the
corresponding challenge. All other settings remain constant with the main experiments.

7



Analysis As shown in Table 4, writeup-based hints consistently improve the number of solved tasks
across all models and challenge categories. On average, the number of solved challenges increases
by 7.4%, from 168 (No-Hint) to 217 (With-Hint), underscoring the utility of public writeups for
improving the yield rate of training trajectories. This effect is particularly pronounced in the Crypto,
Reverse Engineering, and Miscellaneous categories where solution strategies often rely on reusable
heuristics or canonical exploration workflows. This finding suggests that writeups can serve as a rich
reservoir of domain-specific knowledge, allowing models to bootstrap strategic reasoning and explore
more promising solution paths. We believe the effectiveness of inference-time hints can generalize to
various agent tasks like solving GitHub issues [21], where more diverse data can be distilled from
LLMs to train stronger agentic models

4.2 Augmenting CTF Runtimes

Setup To evaluate the effect of runtime augmentation on agent performance, we compare two
settings for environment construction: (1) Static, where each CTF instance uses fixed runtime
parameters, and (2) Augmented, where we introduce perturbations such as randomized port numbers,
file path shuffling, distractor code injection, and dynamic flag regeneration. We run both Qwen3-
Coder and DeepSeek-V3-0324 across 1 to 4 agent rollouts and count the number of unique CTF
challenges successfully solved at least once under each setting. We keep all rollout and decoding
hyperparameters identical across both variants to isolate the impact of augmentation.

1 2 3 4
# Rollout

160

180

200

220

#
 S

ol
ve

d
Static
Augmented

Qwen3-Coder DeepSeek-V3-0324

Figure 4: Effect of runtime augmenta-
tion.

Analysis Figure 4 shows that augmented environments
consistently yield more solved tasks across all rollout
counts and both models. For example, Qwen3-Coder
solves 211 challenges under augmentation at rollout 4,
a relative improvement of 24.9% compared to only 169
under static runtimes. Similarly, DeepSeek-V3-0324 im-
proves from 156 to 217 solved tasks with augmentation
at rollout 4. The performance gap widens with more roll-
outs, suggesting that augmentation amplifies agent explo-
ration and generalization as more interactions are permit-
ted. These results confirm that runtime diversity prevents
brittle overfitting to environment artifacts and encourages
the development of more robust, transferable strategies for
flag capture.

4.3 Diversifying Teacher Models

Table 5: Solved challenges.

Category Qwen Both DeepSeek
Crypto 31 84 26
Forensics 1 13 3
Pwn 2 15 3
Rev 6 37 9
Web 0 6 2
Misc 4 26 6

Setup To assess the benefit of using multiple teacher models dur-
ing trajectory collection, we compare the individual and combined
contributions of Qwen3-Coder and DeepSeek-V3-0324. We first
analyze how many unique challenges each model solves and their
category-level overlaps. Then, we fine-tune Qwen3 models of sizes
8B, 14B, and 32B on three trajectory subsets: (1) Qwen3-Coder
only, (2) DeepSeek-V3-0324 only, and (3) both combined. We re-
port average Pass@1 across benchmarks to evaluate downstream
agent performance. Decoding parameters and training setup match those in our main experiments.

Table 6: Pass@1 performance
when varying teacher models.

Teacher Model 8B 14B 32B
Qwen 17.3 23.8 29.4
DeepSeek 17.6 24.8 31.3

Combined 18.9 25.7 31.9

Analysis In Table 5, Qwen3-Coder and DeepSeek-V3-0324
demonstrate complementary strengths. For example, in Crypto tasks,
the models share 84 solves, but Qwen3-Coder uniquely solves 31
while DeepSeek-V3-0324 adds another 26. Similar patterns emerge
across other categories, with notable non-overlapping contributions
in Reverse Engineering, Misc, and Forensics. Combining both mod-
els increases total coverage to 274 unique challenges, exceeding
either model alone. This diversity translates into measurable down-
stream gains.

8



Table 6 reveals that training on combined trajectories improves Pass@1 performance across all model
sizes. For example, the 32B model trained on combined data achieves 31.9%, outperforming both the
Qwen3-Coder-only (29.4%) and DeepSeek-only (31.3%) variants. Similarly, the 8B and 14B models
also benefit from the combined setting. These results confirm that teacher diversity enriches training
data and yields more capable cybersecurity agents.

5 Related Work

LLM Agents for Offensive Cybersecurity LLM agents are increasingly being applied to offensive
cybersecurity, particularly in solving CTF challenges within dockerized environments [48, 36, 53,
31]. These systems often build on Kali Linux due to its extensive suite of pre-installed security
tools, serving as foundations for broader applications such as penetration testing, vulnerability
exploitation, and cyberattack automation [8, 12, 14]. Recent efforts have advanced agent design.
Project Naptime [16] and Big Sleep [2] demonstrated agents capable of discovering new SQLite
vulnerabilities using integrated tools like debuggers and browsers. EnIGMA [1] further raises
the bar by combining cybersecurity-specific tools and interactive environments tailored for LLMs,
achieving state-of-the-art results. Recently, Zhuo et al. [56] introduced Cyber-Zero, achieving the best
performance among open-source LLMs. Unlike prior methods that primarily depend on inference-
time scaffolds or unverified training data, we introduce a runtime environment that efficiently enhances
model performance via execution.

Benchmarking Models’ Cybersecurity Capabilities Several benchmarks have been proposed to
evaluate LLMs on cybersecurity tasks. Multiple-choice datasets [24, 39, 27] offer limited insight,
as their results are often highly sensitive to prompt phrasing [35, 29] and lack alignment with real-
world operational contexts. AutoAdvExBench [7] assesses LLMs’ ability to autonomously break
image-based adversarial defenses, while CyberSecEval [6] focuses on single-turn code exploitation,
capturing only a narrow slice of the interactive, multi-step nature of real-world attacks. In contrast,
agent-based frameworks with integrated tool usage offer more realistic evaluations. As a result,
Capture-the-Flag (CTF) challenges have become a popular proxy for measuring security capabilities.
Recent systems [1, 31] further enhance realism by combining interactive environments with structured,
chain-of-exploitation evaluations.

6 Conclusion and Future Work

Conclusion We present CTF-DOJO, the first large-scale execution environment for training cy-
bersecurity LLM agents, addressing the long-standing challenge of limited runtime support in this
domain. Powered by our automated pipeline CTF-FORGE, CTF-DOJO transforms public CTF
artifacts into ready-to-use Docker containers in minutes, enabling scalable and reproducible trajectory
collection. Training on just 486 high-quality agent trajectories synthesized through CTF-DOJO, our
open-weight LLMs outperform strong baselines by up to 11.6% on three major CTF benchmarks.
Our 32B model achieves state-of-the-art results among open models, approaching the performance of
Claude-3.5-Sonnet. Our findings highlight the critical role of writeup-augmented training, runtime
augmentations, and diverse agent behaviors in building effective cybersecurity models. Overall,
CTF-DOJO provides a scalable foundation for advancing LLM-based security systems.

Future Work Wile CTF-DOJO enables training with execution-verified data, it remains constrained
by the static nature and finite scale of its current dataset (658 challenges). Exploring reinforcement
learning for cybersecurity agents would be a natural next step, where models interact with live
environments and receive structured feedback, such as partial rewards or flag-based signals. This
paradigm could unlock significantly higher data efficiency and adaptability, enabling agents to learn
more generalizable strategies beyond imitation and better handle novel CTF problems.

References
[1] Talor Abramovich, Meet Udeshi, Minghao Shao, Kilian Lieret, Haoran Xi, Kimberly Milner,

Sofija Jancheska, John Yang, Carlos E Jimenez, Farshad Khorrami, et al. Enigma: Interac-
tive tools substantially assist lm agents in finding security vulnerabilities. In Forty-second
International Conference on Machine Learning, 2025.

9



[2] Miltiadis Allamanis, Martin Arjovsky, Charles Blundell, Lars Buesing, Maddie Brand,
Sergei Glazunov, David Maier, Petros Maniatis, Guilherme Marinho, Henryk Michalewski,
Koushik Sen, Charles Sutton, Varun Tulsyan, Matteo Vanotti, Thomas Weber, and Dawn
Zheng. From naptime to big sleep: Using large language models to catch vulnerabili-
ties in real-world code. https://googleprojectzero.blogspot.com/2024/10/
from-naptime-to-big-sleep.html, November 2024. Accessed July 2025.

[3] Anthropic. Claude 3.5 Model Card Addendum. https://www-cdn.anthropic.com/
fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_
Addendum.pdf, 2024. Accessed: 2025-07-03.

[4] Anthropic. Claude 3.7 “Sonnet” System Card. https://assets.anthropic.com/
m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf,
2025. Accessed: 2025-07-03.

[5] Anthropic. System Card: Claude Opus 4 & Claude Sonnet 4. Technical report, Anthropic, May
2025. Accessed: 2025-07-03.

[6] Manish Bhatt, Sahana Chennabasappa, Cyrus Nikolaidis, Shengye Wan, Ivan Evtimov, Do-
minik Gabi, Daniel Song, Faizan Ahmad, Cornelius Aschermann, Lorenzo Fontana, et al.
Purple llama cyberseceval: A secure coding benchmark for language models. arXiv preprint
arXiv:2312.04724, 2023.

[7] Nicholas Carlini, Javier Rando, Edoardo Debenedetti, Milad Nasr, and Florian Tramèr. Au-
toadvexbench: Benchmarking autonomous exploitation of adversarial example defenses. arXiv
preprint arXiv:2503.01811, 2025.

[8] PV Charan, Hrushikesh Chunduri, P Mohan Anand, and Sandeep K Shukla. From text to mitre
techniques: Exploring the malicious use of large language models for generating cyber attack
payloads. arXiv preprint arXiv:2305.15336, 2023.

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[10] Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic
capabilities. arXiv preprint arXiv:2507.06261, 2025.

[11] DARPA. DARPA AIxCC, 2024. https://aicyberchallenge.com/about/, 2024.
Accessed: 2025-07-03.

[12] Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu, Tianwei Zhang,
Yang Liu, Martin Pinzger, and Stefan Rass. {PentestGPT}: Evaluating and harnessing large
language models for automated penetration testing. In 33rd USENIX Security Symposium
(USENIX Security 24), pp. 847–864, 2024.

[13] Connor Dilgren, Purva Chiniya, Luke Griffith, Yu Ding, and Yizheng Chen. Secrepobench:
Benchmarking llms for secure code generation in real-world repositories. arXiv preprint
arXiv:2504.21205, 2025.

[14] Richard Fang, Rohan Bindu, Akul Gupta, Qiusi Zhan, and Daniel Kang. Llm agents can
autonomously hack websites. arXiv preprint arXiv:2402.06664, 2024.

[15] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

[16] Sergei Glazunov and Maddie Brand. Project naptime: Evaluating offensive security capabilities
of large language models. https://googleprojectzero.blogspot.com/2024/
06/project-naptime.html, June 2024. Accessed July 2025.

10

https://googleprojectzero.blogspot.com/2024/10/from-naptime-to-big-sleep.html
https://googleprojectzero.blogspot.com/2024/10/from-naptime-to-big-sleep.html
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://aicyberchallenge.com/about/
https://googleprojectzero.blogspot.com/2024/06/project-naptime.html
https://googleprojectzero.blogspot.com/2024/06/project-naptime.html


[17] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[18] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-
jun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

[19] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[20] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[21] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. Swe-bench: Can language models resolve real-world github issues? In
The Twelfth International Conference on Learning Representations, 2024.

[22] Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii Hrinchuk, Ryan Leary, Boris Ginsburg,
Samuel Kriman, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook, et al. Nemo: a toolkit for
building ai applications using neural modules. arXiv preprint arXiv:1909.09577, 2019.

[23] Hwiwon Lee, Ziqi Zhang, Hanxiao Lu, and Lingming Zhang. Sec-bench: Automated bench-
marking of llm agents on real-world software security tasks. arXiv preprint arXiv:2506.11791,
2025.

[24] Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D
Li, Ann-Kathrin Dombrowski, Shashwat Goel, Gabriel Mukobi, et al. The wmdp benchmark:
measuring and reducing malicious use with unlearning. In Proceedings of the 41st International
Conference on Machine Learning, pp. 28525–28550, 2024.

[25] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

[26] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[27] Zefang Liu. Secqa: A concise question-answering dataset for evaluating large language models
in computer security. arXiv preprint arXiv:2312.15838, 2023.

[28] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack
v2: The next generation. arXiv preprint arXiv:2402.19173, 2024.

[29] Jakub Łucki, Boyi Wei, Yangsibo Huang, Peter Henderson, Florian Tramèr, and Javier Rando.
An adversarial perspective on machine unlearning for ai safety. arXiv preprint arXiv:2409.18025,
2024.

[30] Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu,
Binhua Li, Fei Huang, and Yongbin Li. Lingma swe-gpt: An open development-process-centric
language model for automated software improvement. arXiv preprint arXiv:2411.00622, 2024.

[31] Víctor Mayoral-Vilches, Luis Javier Navarrete-Lozano, María Sanz-Gómez, Lidia Salas Espejo,
Martiño Crespo-Álvarez, Francisco Oca-Gonzalez, Francesco Balassone, Alfonso Glera-Picón,
Unai Ayucar-Carbajo, Jon Ander Ruiz-Alcalde, et al. Cai: An open, bug bounty-ready cyberse-
curity ai. arXiv preprint arXiv:2504.06017, 2025.

[32] Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue
Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack:
Instruction tuning code large language models. In The Twelfth International Conference on
Learning Representations, 2024.

11



[33] OWASP GenAI Project (CTI Layer Team). OWASP LLM Exploit Generation Version 1.0.
Technical report, OWASP GenAI Project, February 2025. Accessed: 3 July 2025.

[34] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
arXiv:2412.21139, 2024.

[35] Xiangyu Qi, Boyi Wei, Nicholas Carlini, Yangsibo Huang, Tinghao Xie, Luxi He, Matthew
Jagielski, Milad Nasr, Prateek Mittal, and Peter Henderson. On evaluating the durability of
safeguards for open-weight llms. arXiv preprint arXiv:2412.07097, 2024.

[36] Minghao Shao, Sofija Jancheska, Meet Udeshi, Brendan Dolan-Gavitt, Kimberly Milner,
Boyuan Chen, Max Yin, Siddharth Garg, Prashanth Krishnamurthy, Farshad Khorrami, et al.
Nyu ctf bench: A scalable open-source benchmark dataset for evaluating llms in offensive
security. Advances in Neural Information Processing Systems, 37:57472–57498, 2024.

[37] Jia Song and Jim Alves-Foss. The darpa cyber grand challenge: A competitor’s perspective.
IEEE Security & Privacy, 13(6):72–76, 2015.

[38] Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

[39] Norbert Tihanyi, Mohamed Amine Ferrag, Ridhi Jain, Tamas Bisztray, and Merouane Debbah.
Cybermetric: a benchmark dataset based on retrieval-augmented generation for evaluating llms
in cybersecurity knowledge. In 2024 IEEE International Conference on Cyber Security and
Resilience (CSR), pp. 296–302. IEEE, 2024.

[40] Shengye Wan, Cyrus Nikolaidis, Daniel Song, David Molnar, James Crnkovich, Jayson Grace,
Manish Bhatt, Sahana Chennabasappa, Spencer Whitman, Stephanie Ding, et al. Cyberseceval
3: Advancing the evaluation of cybersecurity risks and capabilities in large language models.
arXiv preprint arXiv:2408.01605, 2024.

[41] Peiran Wang, Xiaogeng Liu, and Chaowei Xiao. Cve-bench: Benchmarking llm-based software
engineering agent’s ability to repair real-world cve vulnerabilities. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 4207–4224, 2025.

[42] Zhun Wang, Tianneng Shi, Jingxuan He, Matthew Cai, Jialin Zhang, and Dawn Song. Cybergym:
Evaluating ai agents’ cybersecurity capabilities with real-world vulnerabilities at scale. arXiv
preprint arXiv:2506.02548, 2025.

[43] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empow-
ering code generation with oss-instruct. In International Conference on Machine Learning, pp.
52632–52657. PMLR, 2024.

[44] Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel
Fried, Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning
via reinforcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

[45] xAI. xAI Risk Management Framework (Draft). Technical report, xAI, February 2025. Draft
version — accessed 3 July 2025.

[46] Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution. arXiv preprint
arXiv:2501.05040, 2025.

[47] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

[48] John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback. Advances in Neural Information
Processing Systems, 36:23826–23854, 2023.

12



[49] John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering. Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

[50] John Yang, Kilian Leret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025.

[51] Yu Yang, Yuzhou Nie, Zhun Wang, Yuheng Tang, Wenbo Guo, Bo Li, and Dawn Song.
Seccodeplt: A unified platform for evaluating the security of code genai. arXiv preprint
arXiv:2410.11096, 2024.

[52] Andy K Zhang, Joey Ji, Celeste Menders, Riya Dulepet, Thomas Qin, Ron Y Wang, Junrong
Wu, Kyleen Liao, Jiliang Li, Jinghan Hu, et al. Bountybench: Dollar impact of ai agent attackers
and defenders on real-world cybersecurity systems. arXiv preprint arXiv:2505.15216, 2025.

[53] Andy K Zhang, Neil Perry, Riya Dulepet, Joey Ji, Celeste Menders, Justin W Lin, Eliot Jones,
Gashon Hussein, Samantha Liu, Donovan Julian Jasper, Pura Peetathawatchai, Ari Glenn,
Vikram Sivashankar, Daniel Zamoshchin, Leo Glikbarg, Derek Askaryar, Haoxiang Yang, Aolin
Zhang, Rishi Alluri, Nathan Tran, Rinnara Sangpisit, Kenny O Oseleononmen, Dan Boneh,
Daniel E. Ho, and Percy Liang. Cybench: A framework for evaluating cybersecurity capabil-
ities and risks of language models. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=tc90LV0yRL.

[54] Yuxuan Zhu, Antony Kellermann, Dylan Bowman, Philip Li, Akul Gupta, Adarsh Danda,
Richard Fang, Conner Jensen, Eric Ihli, Jason Benn, et al. Cve-bench: A benchmark for ai agents’
ability to exploit real-world web application vulnerabilities. In Forty-second International
Conference on Machine Learning, 2025.

[55] Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppattarachai, Leandro von Werra, Harm de Vries,
Qian Liu, and Niklas Muennighoff. Astraios: Parameter-efficient instruction tuning code large
language models. arXiv preprint arXiv:2401.00788, 2024.

[56] Terry Yue Zhuo, Dingmin Wang, Hantian Ding, Varun Kumar, and Zijian Wang. Cyber-zero:
Training cybersecurity agents without runtime. arXiv preprint, 2025.

13

https://openreview.net/forum?id=tc90LV0yRL


Appendix
Contents

A Statistics 15

B CTF-DOJO CTF Challenges 16

C Scaffolding Interface 34

D Related Work on Training LLM Agents to Code 35

E More Data Analysis 36

F Prompt Design of CTF-FORGE 36

F.1 Dockerfile Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

F.2 Docker-Compose Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

F.3 Challenge.json Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

G Finding Bugs in CTF-DOJO 39

G.1 ECTF 2014 — Lowkey (Filed Issue) . . . . . . . . . . . . . . . . . . . . . . . . . 39

G.2 ångstromCTF 2019 — Blank Paper (Filed Issue) . . . . . . . . . . . . . . . . . . 39

G.3 HSCTF 2019 — Hidden Flag (Filed Issue) . . . . . . . . . . . . . . . . . . . . . 40

G.4 Access Denied CTF 2022 — Binary (Filed Issue) . . . . . . . . . . . . . . . . . . 40

14



A Statistics

We provide a summary of the important statistics mentioned in the paper.

Table 7: Summary of data statistics.
Item Description Count

CTF-DOJO Challenges

Number of available CTF challenges 658
Number of challenges with stable and reproducible en-
vironments, as confirmed by the original authors

650

Writeups for CTF Challenges

Total number of writeups collected from the CTFtime
website

8,361

Writeups successfully matched to CTF-DOJO chal-
lenges using competition and task metadata

252

CTF-DOJO challenges for which at least one corre-
sponding writeup is available

150

Successful Agent Samples

Raw agent trajectories collected before cleaning or fil-
tering

1,006

Unique trajectories remaining after removing duplicates
and limiting the maximum number per challenge

486

CTF-DOJO challenges that include at least one valid
and successful trajectory

274

15



B CTF-DOJO CTF Challenges

Competition Challenge Category Qwen DeepSeek

0CTF - 2017
babyheap Pwn ✓ ✗
diethard Pwn ✓ ✗
easiestprintf Pwn ✗ ✗

0CTF - 2018

babyheap2018 Pwn ✗ ✓
blackhole Pwn ✗ ✓
freenote2018 Pwn ✗ ✗
heapstorm Pwn ✗ ✗
subtraction Misc ✓ ✗
zerofs Pwn ✗ ✗

0CTF - 2019

babyaegis Pwn ✗ ✓
babyheap Pwn ✓ ✓
babyrsa Crypto ✓ ✗
babysandbox Pwn ✗ ✗
elements Rev ✓ ✗
flropyd Pwn ✗ ✗
plang Pwn ✗ ✗
sanitize Misc ✓ ✗
scanner Pwn ✗ ✗
zerotask Pwn ✗ ✗

0CTF Quals - 2021

cloudpass Crypto ✓ ✗
future Rev ✓ ✗
listbook Pwn ✓ ✓
vp Rev ✓ ✗
zer0lfsr Crypto ✓ ✗

Continued on next page

16



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

0xCTF - 4141

client Rev ✓ ✗
eazyrsa Crypto ✓ ✗
external Pwn ✓ ✓
factorize Crypto ✓ ✗
filereader Misc ✓ ✗
hash Rev ✓ ✗
moving-signals Pwn ✓ ✓
pyjail Misc ✓ ✗
ret-of-the-rops Pwn ✗ ✗
shjail Misc ✗ ✗
soul Crypto ✓ ✗
staple-aes Crypto ✗ ✗
the-pwn-inn Pwn ✗ ✗
wallet Crypto ✗ ✗
ware Rev ✗ ✗
wrongdownload Rev ✗ ✗
x-and-or Rev ✗ ✗

29c3CTF - 2012

findthekey Rev ✓ ✗
maya Rev ✗ ✓
memcached Pwn ✓ ✓
minesweeper Pwn ✓ ✓
proxy Pwn ✗ ✗
ru1337 Pwn ✗ ✗
updateserver Pwn ✗ ✗

AccessdeniedCTF - 2022

babyc Misc ✗ ✓
binary Rev ✗ ✓
ecc Crypto ✓ ✗
enormous Rev ✗ ✓
llvm Rev ✗ ✗
merklegoodman Crypto ✓ ✗
mitm2 Crypto ✓ ✗
ret2system Pwn ✓ ✓
rsa1 Crypto ✗ ✗
rsa2 Crypto ✗ ✗
rsa3 Crypto ✗ ✗
smallkey Crypto ✗ ✗

Continued on next page

17



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

AngstromCTF - 2016

amoebananas Web ✗ ✓
artifact Crypto ✓ ✗
asmtracing Rev ✗ ✓
casino Crypto ✓ ✗
cipher Rev ✗ ✓
ciphertwo Rev ✗ ✗
client Web ✗ ✓
drag Misc ✗ ✓
endian Pwn ✓ ✓
fender Forensics ✓ ✗
flaglock Misc ✗ ✓
formatone Pwn ✓ ✓
hamlet Crypto ✓ ✗
headsup Forensics ✗ ✓
helpcenter Crypto ✗ ✗
hex Crypto ✗ ✗
imageencryptor Rev ✗ ✗
javabest Rev ✗ ✗
metasploit Forensics ✗ ✗
music Forensics ✗ ✗
oops Forensics ✗ ✗
recovery Forensics ✗ ✗
rsa Crypto ✗ ✗
spqr Crypto ✗ ✗
yankovic Forensics ✗ ✗

AngstromCTF - 2017

begin Crypto ✓ ✗
casino Crypto ✓ ✗
knockknock Crypto ✓ ✗
obligatory Web ✓ ✓
royalcasino Crypto ✗ ✗
substitutioncipher Crypto ✗ ✗

Continued on next page

18



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

AngstromCTF - 2018

accumulator Pwn ✓ ✓
backtobasics Crypto ✓ ✗
bankroppery Pwn ✓ ✓
introtorsa Crypto ✓ ✗
productkey Rev ✗ ✓
rev1 Rev ✗ ✓
rev2 Rev ✗ ✗
rev3 Rev ✗ ✗
waldo2 Misc ✗ ✓
warmup Misc ✗ ✓
washington Rev ✗ ✗
weirdmessage Misc ✗ ✗
xor Crypto ✓ ✗

AngstromCTF - 2019

blankpaper Misc ✗ ✓
chainofrope Pwn ✓ ✓
highqualitychecks Rev ✗ ✓
icthyo Rev ✗ ✓
like Rev ✗ ✗
lithp Misc ✓ ✓
onebite Rev ✗ ✗
overmybrain Pwn ✓ ✓
paperbin Misc ✗ ✗
reallysecurealgorithm Crypto ✓ ✗
runes Crypto ✓ ✗

AngstromCTF - 2022

amongus Misc ✓ ✓
caesaranddesister Crypto ✓ ✗
dyn Rev ✓ ✓
numbergame Rev ✓ ✓
randomlysampledalgorithm Crypto ✓ ✗
reallyobnoxiousproblem Pwn ✓ ✓
shark1 Misc ✓ ✓
uninspired Rev ✗ ✗
wah Pwn ✓ ✓
whatsmyname Pwn ✗ ✗

Continued on next page

19



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

AngstromCTF - 2024

awman Crypto ✓ ✗
bap Pwn ✗ ✗
exam Pwn ✗ ✗
heapify Pwn ✗ ✗
layers Misc ✓ ✓
leftright Pwn ✗ ✗
og Pwn ✗ ✗
philosophy Crypto ✓ ✗
presidential Pwn ✗ ✗
simonsays Crypto ✓ ✗
snowman Misc ✓ ✓
stacksort Pwn ✗ ✗
themectl Pwn ✗ ✗
tss1 Crypto ✗ ✗
tss2 Crypto ✗ ✗

AsisCTF - 2013

dice Rev ✓ ✓
encoding Crypto ✓ ✗
inaccessible Forensics ✗ ✓
licensekey Rev ✓ ✓
memdump Forensics ✗ ✓
pcaps Crypto ✓ ✗
rsang Crypto ✓ ✗
serialnumber Rev ✗ ✗
simpleofficer Crypto ✗ ✗

AsisCTF - 2014 blocks Forensics ✓ ✓
randomimage Crypto ✓ ✗

BackdoorCTF - 2019

babyheapbackdoorctf Pwn ✗ ✗
babytcache Pwn ✗ ✗
echo Pwn ✗ ✗
forgot Pwn ✗ ✗
matrix Pwn ✗ ✗
miscpwn Pwn ✗ ✗
rsanne Crypto ✓ ✗
team Pwn ✗ ✗

Continued on next page

20



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

ByuCTF - 2022

ballgame Crypto ✓ ✗
basicrev Rev ✓ ✓
blue Forensics ✓ ✓
chicken Rev ✓ ✓
funfact Rev ✗ ✗
murdermystery Misc ✓ ✓
qool Forensics ✓ ✓
shift Crypto ✗ ✓
stickykey Forensics ✗ ✗
truth Crypto ✗ ✓
xqr Crypto ✗ ✗

ByuCTF - 2023

crcconfusion Forensics ✓ ✓
hexadecalingo Misc ✓ ✓
misc006-1 Misc ✓ ✓
misc006-2 Misc ✗ ✗
poem Crypto ✗ ✓
pwn2038 Pwn ✗ ✗
rsa1 Crypto ✗ ✓
rsa2 Crypto ✗ ✓
rsa3 Crypto ✗ ✗
rsa4 Crypto ✗ ✗
rsa5 Crypto ✗ ✗
xkcd2637 Misc ✗ ✗

ByuCTF - 2024

aresa Crypto ✗ ✓
domath Crypto ✗ ✓
giveup Crypto ✗ ✓
gotmail Misc ✓ ✓
meetgreg Misc ✓ ✓
multiplied Crypto ✗ ✗
petrolhead Misc ✗ ✗
typosquatting Misc ✗ ✗
vacationboats Misc ✗ ✗
wateryoudoing Misc ✗ ✗
worstchallenge Forensics ✓ ✓

CactusconCTF - 2025

clueless Misc ✓ ✓
frng Misc ✓ ✓
numbersleuthv1 Misc ✗ ✗
numbersleuthv2 Misc ✗ ✗
numbersleuthv3 Misc ✗ ✗
securerepititions Misc ✗ ✗

Continued on next page

21



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

CcscCTF - 2020

basilisk64 Crypto ✗ ✓
echoes Misc ✓ ✓
guy Pwn ✗ ✗
mouse Crypto ✗ ✓
routes Crypto ✗ ✓
spell Pwn ✗ ✗

Codegate - 2011

binary100 Pwn ✗ ✗
binary200 Pwn ✗ ✗
binary300 Pwn ✗ ✗
binary400 Pwn ✗ ✗
binary500 Pwn ✗ ✗
crypto200 Crypto ✗ ✓
crypto300 Crypto ✗ ✓
crypto400 Crypto ✗ ✓
crypto500 Crypto ✗ ✗
forensics200 Forensics ✓ ✓
forensics300 Forensics ✓ ✓
forensics400 Forensics ✗ ✗
network100 Web ✓ ✓

CodegateCTF - 2012

bin100 Pwn ✗ ✗
bin200 Pwn ✗ ✗
bin300 Pwn ✗ ✗
bin400 Pwn ✗ ✗
bin500 Pwn ✗ ✗
forensics100 Forensics ✓ ✓
forensics200 Forensics ✓ ✓
forensics300 Forensics ✗ ✗
forensics400 Misc ✓ ✓
vuln500 Pwn ✗ ✗

CodegateCTF - 2013 vuln100 Pwn ✗ ✗

Codegateprelims - 2014

4stone Pwn ✗ ✗
angrydoraemon Pwn ✗ ✗
automata Rev ✓ ✓
chronological Misc ✓ ✓
crackme Rev ✓ ✓
dodosandbox Pwn ✗ ✗
hypercat Pwn ✗ ✗
minibomb Pwn ✗ ✗
weirdsnus Pwn ✗ ✗

Continued on next page

22



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

CorCTF - 2021

babyrand Crypto ✗ ✓
babyrev Rev ✓ ✓
bank Crypto ✗ ✓
chainblock Pwn ✗ ✗
chance Crypto ✗ ✓
cshell Pwn ✗ ✗
fibinary Crypto ✗ ✗
fourninesix Crypto ✗ ✗
friedrice Crypto ✗ ✗
lcg Crypto ✗ ✗
vmquack Rev ✓ ✓

CorCTF - 2022

babypad Misc ✓ ✓
bogus Rev ✓ ✓
edgelord Rev ✓ ✓
exchanged Crypto ✗ ✓
msfrob Rev ✗ ✗
turbocrab Rev ✗ ✗
vmquacksrevenge Rev ✗ ✗

CryptoCTF - 2020

amsterdam Crypto ✗ ✓
complextohell Crypto ✗ ✓
fatima Crypto ✗ ✓
onelinecrypto Crypto ✗ ✗
threeravens Crypto ✗ ✗
trailingbits Crypto ✗ ✗

CryptoCTF - 2021

dorsa Crypto ✗ ✓
ecchimera Crypto ✗ ✓
elegant Crypto ✗ ✓
farm Crypto ✗ ✗
frozen Crypto ✗ ✗
hamul Crypto ✗ ✗
hypernormal Crypto ✗ ✗
improved Crypto ✗ ✗
lower Crypto ✗ ✗
rima Crypto ✗ ✗
tinyecc Crypto ✗ ✗
triplet Crypto ✗ ✗
trunc Crypto ✗ ✗
wolf Crypto ✗ ✗

Continued on next page

23



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

CryptoverseCTF - 2022

bigrabin Crypto ✗ ✓
dlog Crypto ✗ ✓
rsa2 Crypto ✓ ✓
rsa3 Crypto ✗ ✗
tale Crypto ✗ ✗
worldcup Rev ✓ ✓

CryptoverseCTF - 2023

acceptance Pwn ✗ ✗
babyaes Crypto ✓ ✓
backpack Crypto ✓ ✓
fractionalflag Crypto ✓ ✓
lsfr Crypto ✗ ✗
microassembly Rev ✓ ✓
picochip1 Crypto ✗ ✗
picochip2 Crypto ✗ ✗
retschool Pwn ✗ ✗
simplecheckin Rev ✓ ✓
standardvm Rev ✗ ✗

Csaw - 2017

almostxor Crypto ✓ ✓
auir Pwn ✗ ✗
babycrypt Crypto ✓ ✓
bananascript Rev ✓ ✓
cvv Pwn ✗ ✗
grumpcheck Rev ✓ ✓
minesweeper Pwn ✗ ✗
prophecy Rev ✗ ✗
scv Pwn ✗ ✗
serial Misc ✓ ✓
tablez Rev ✗ ✗
twitchplayspwnable Misc ✓ ✓
zone Pwn ✗ ✗

Continued on next page

24



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

CsawCTF - 2011

crypto1 Crypto ✓ ✓
crypto10 Crypto ✓ ✓
crypto2 Crypto ✓ ✓
crypto3 Crypto ✗ ✗
crypto4 Crypto ✗ ✗
crypto5 Crypto ✗ ✗
crypto6 Crypto ✗ ✗
crypto7 Crypto ✗ ✗
crypto8 Crypto ✗ ✗
crypto9 Crypto ✗ ✗
evilburritos2 Web ✓ ✓
hardware Web ✓ ✓
linux Rev ✓ ✓
loveletter Web ✗ ✗
net1 Rev ✓ ✓
net200 Web ✗ ✗
networking101 Web ✗ ✗

CsawCTF - 2012

exploit200 Pwn ✗ ✗
exploit400 Pwn ✗ ✗
exploit500 Pwn ✗ ✗
networking100 Web ✓ ✓
networking200 Web ✓ ✓
networking300 Web ✗ ✗
networking400 Web ✗ ✗
rev400 Rev ✓ ✓

CsawCTF - 2014

aerosol Rev ✓ ✓
bigdata Web ✗ ✗
bo Pwn ✗ ✗
cfbsum Crypto ✓ ✓
eggshells Rev ✓ ✓
feal Crypto ✓ ✓
ish Pwn ✗ ✗
obscurity Forensics ✓ ✓
s3 Pwn ✗ ✗
saturn Pwn ✗ ✗

CsawCTF Quals - 2020 applicative Pwn ✗ ✗

CsawCTF Quals - 2021

alienmath Pwn ✗ ✗
contactus Forensics ✓ ✓
forgery Crypto ✓ ✓
sonicgraphy Forensics ✓ ✓

Continued on next page

25



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

CsawCTF Quals - 2024

aes Crypto ✓ ✓
chinesefood Misc ✓ ✓
covert Forensics ✓ ✓
diffusion Crypto ✓ ✓
golf Pwn ✗ ✗
nix Pwn ✗ ✗
rickshaw Misc ✓ ✓
trapdoor Crypto ✓ ✓

DownunderCTF - 2020

1337crypt Crypto ✓ ✓
babyrsa Crypto ✓ ✓
calcgame Crypto ✓ ✓
ceebc Crypto ✗ ✗
echos Crypto ✗ ✗
extracoolblockchaining Crypto ✗ ✗
formatting Rev ✓ ✓
hexshiftcipher Crypto ✗ ✗
impeccable Crypto ✗ ✗
returnofwhat Pwn ✗ ✗
returnofwhatsrevenge Pwn ✗ ✗
roti Crypto ✗ ✗
shellthis Pwn ✗ ✗
vecc Pwn ✗ ✗
zombie Pwn ✗ ✗

DownunderCTF - 2021

babygame Pwn ✗ ✗
breakme Crypto ✓ ✓
flagchecker Rev ✓ ✓
flagloader Rev ✓ ✓
juniperus Rev ✗ ✗

DownunderCTF - 2022

babyarx Crypto ✓ ✓
babypywn Pwn ✗ ✗
oracle Crypto ✓ ✓
rsaoracle1 Crypto ✓ ✓
rsaoracle2 Crypto ✗ ✗
rsaoracle3 Crypto ✗ ✗
rsaoracle4 Crypto ✗ ✗
timelocked Crypto ✗ ✗

Continued on next page

26



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

DownunderCTF - 2024

adorableencryptedanimal Rev ✓ ✓
babysfirstforensics Forensics ✗ ✗
interceptedtransmission Misc ✓ ✓
myarraygenerator Crypto ✓ ✓
shufflebox Crypto ✓ ✓
ternarybrained Rev ✓ ✓
wackyreciepe Misc ✓ ✓

ECTF - 2014

ectfhacked Forensics ✗ ✗
friendsofcrime Rev ✓ ✓
hackermessage Forensics ✗ ✗
knotty Pwn ✗ ✗
lowkey Crypto ✓ ✓
python Rev ✓ ✓
seddit Pwn ✗ ✗
sleepycoder Pwn ✗ ✗

GitsCTF - 2012

crypto250 Crypto ✓ ✓
pwn200 Pwn ✗ ✗
pwn300 Pwn ✗ ✗
rev400 Rev ✓ ✓
trivia25 Misc ✓ ✓

GoogleCTF - 2020 beginner Rev ✓ ✓

Grehack - 2012 amanfromhell Crypto ✓ ✓
hackingfordummy Crypto ✓ ✓

Greycattheflag - 2022

baby Crypto ✓ ✓
block Crypto ✓ ✓
calculator Misc ✓ ✓
catino Crypto ✓ ✓
dot Crypto ✗ ✗

HackluCTF - 2011

challengetorrent Forensics ✗ ✗
mario Misc ✓ ✓
pycrackme Rev ✓ ✓
simplexor Crypto ✓ ✓
unknownplanet Misc ✓ ✓

HitconCTF - 2018

babytcache Pwn ✗ ✗
childrencache Pwn ✗ ✗
groot Pwn ✗ ✗
hitcon Pwn ✗ ✗
tftp Pwn ✗ ✗

Continued on next page

27



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

Hitconquals - 2017

artifact Pwn ✗ ✗
babyfs Pwn ✗ ✗
easytosay Pwn ✗ ✗
luaky Crypto ✓ ✓
reeasy Misc ✗ ✗
sakura Rev ✓ ✓
seccomp Rev ✓ ✓
sssp Crypto ✓ ✓
start Pwn ✗ ✗
veryluaky Crypto ✓ ✓
void Rev ✗ ✗

HkcertCTF - 2020

angr Rev ✓ ✓
calmdown Crypto ✓ ✓
rop Pwn ✗ ✗
signin Crypto ✓ ✓

HkcertCTF - 2021

easyheap Pwn ✗ ✗
freedom Crypto ✓ ✓
longstoryshort Crypto ✓ ✓
magicalpotion Crypto ✓ ✓
simplesignin Crypto ✗ ✗

HkcertCTF - 2022

base64 Crypto ✓ ✓
keyboard Misc ✗ ✗
kingrps Crypto ✓ ✓
locate Misc ✗ ✗
rogue Crypto ✓ ✓
sdcard Forensics ✗ ✗
zonn Misc ✗ ✗

Continued on next page

28



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

HsCTF - 2019

a-lost-cause Crypto ✓ ✓
aria-writer Pwn ✗ ✗
broken-repl Misc ✗ ✗
byte Pwn ✗ ✗
caesars-revenge Pwn ✗ ✗
caesars-revenge-wrapper Pwn ✗ ✗
combo-chain Pwn ✗ ✗
combo-chain-lite Pwn ✗ ✗
daheck Rev ✓ ✓
fish Forensics ✗ ✗
forgotpassword Rev ✓ ✓
hiddenflag Misc ✗ ✗
keith-logger Web ✗ ✗
license Rev ✗ ✗
slap Forensics ✗ ✗
the-quest Web ✗ ✗
the-real-reversal Misc ✗ ✗
verbose Misc ✗ ✗
virtualjava Rev ✗ ✗
welcome-to-crypto-land Crypto ✓ ✓

HsCTF - 2020

apcs Rev ✗ ✗
apenglish Rev ✗ ✗
binaryword Misc ✗ ✗
comments Forensics ✗ ✗
mountains Forensics ✗ ✗
pie Misc ✗ ✗
primes Misc ✗ ✗
unexpected Crypto ✓ ✓
xored Crypto ✓ ✓

HsCTF - 2021

aptenodytes Crypto ✓ ✓
canis Crypto ✓ ✓
multidimensional Rev ✗ ✗
opisthocomus Crypto ✓ ✓
queen Crypto ✗ ✗
warmup Rev ✗ ✗

Continued on next page

29



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

ImaginaryCTF - 2021

foliage Rev ✗ ✗
gottagofast Pwn ✗ ✗
inkaphobia Pwn ✗ ✗
linonophobia Pwn ✗ ✗
nothoughts Rev ✗ ✗
notpwn Rev ✗ ✗

ImaginaryCTF - 2022

cbc Crypto ✓ ✓
desrever Rev ✗ ✗
emoji Crypto ✓ ✓
fmtfun Pwn ✗ ✗
hash Crypto ✓ ✓
livingwithoutexpectations Crypto ✗ ✗
otp Crypto ✗ ✗
poker Crypto ✗ ✗
secureencoding Crypto ✗ ✗
secureencodinghex Crypto ✗ ✗
smoll Crypto ✗ ✗
stream Crypto ✗ ✗

ImaginaryCTF - 2023

chaos Rev ✗ ✗
crypto Forensics ✗ ✗
emoticons Crypto ✓ ✓
rsa Crypto ✓ ✓
scrambled Rev ✗ ✗
sheepish Rev ✗ ✗
signer Crypto ✓ ✓
signpost Misc ✗ ✗
snailchecker Rev ✗ ✗

ImaginaryCTF - 2024

base64 Crypto ✓ ✓
bf Rev ✗ ✗
integrity Crypto ✓ ✓
vokram Rev ✗ ✗

IrisCTF - 2025

ayes Crypto ✓ ✓
dot Misc ✗ ✗
sqlate Pwn ✗ ✗
winter Misc ✗ ✗

IsitdtuCTF - 2024

mixer1 Crypto ✓ ✓
mixer2 Crypto ✓ ✓
random Crypto ✓ ✓
sign Crypto ✗ ✗

Continued on next page

30



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

JustCTF - 2019

atm Pwn ✗ ✗
changevm Rev ✗ ✗
exponent Misc ✗ ✗
fsmir Rev ✗ ✗
fsmir2 Rev ✗ ✗
pandq Crypto ✓ ✓
phonebook Pwn ✗ ✗
safenotes Pwn ✗ ✗
shellcode Pwn ✗ ✗

M0leconteaserCTF - 2025

bootme Rev ✗ ✗
bootme2 Pwn ✗ ✗
ecsign Crypto ✓ ✓
ot Crypto ✓ ✓
ptmcasino Web ✗ ✗
quadratic Crypto ✓ ✓
talor Crypto ✗ ✗
telegram Web ✗ ✗
whispers Rev ✗ ✗
wolfram Web ✗ ✗

Neverlan - 2019

alphabet Crypto ✓ ✓
bases Crypto ✓ ✓
binary1 Pwn ✗ ✗
feb14 Crypto ✗ ✗
keyz Misc ✗ ✗
oink Crypto ✗ ✗
zerocool Crypto ✗ ✗

NoobzCTF - 2023

aes-1 Crypto ✓ ✓
asm Pwn ✗ ✗
ezrev Rev ✗ ✗
maas Crypto ✓ ✓
mypin Rev ✗ ✗
to-the-moon Misc ✗ ✗

Continued on next page

31



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

PatriotCTF - 2022

barry Crypto ✓ ✓
base64times10 Crypto ✓ ✓
bezier Forensics ✗ ✗
cowsay Crypto ✗ ✗
crackme Rev ✗ ✗
cryptogod Crypto ✗ ✗
exfil Forensics ✗ ✗
extremlycoolbook Crypto ✗ ✗
flowing Rev ✗ ✗
goobf Rev ✗ ✗
greek Misc ✗ ✗
hike Misc ✗ ✗
stringcheese Rev ✗ ✗
twofifty Crypto ✗ ✗

PatriotCTF - 2023

bookshelf Pwn ✗ ✗
bookshelf2 Pwn ✗ ✗
breakfastclub Crypto ✓ ✓
flagfinder Misc ✗ ✗
guessinggame Pwn ✗ ✗
printshop Pwn ✗ ✗
softshell Pwn ✗ ✗

PicoCTF - 2019

asm1 Rev ✗ ✗
asm2 Rev ✗ ✗
asm3 Rev ✗ ✗
asm4 Rev ✗ ✗
johnpollard Rev ✗ ✗
messymalloc Pwn ✗ ✗
needforspeed Rev ✗ ✗
reversecipher Rev ✗ ✗
seedspring Misc ✗ ✗
sicecream Pwn ✗ ✗
vaultdoor3 Rev ✗ ✗
vaultdoor4 Rev ✗ ✗
vaultdoor5 Rev ✗ ✗
vaultdoor6 Rev ✗ ✗
vaultdoor7 Rev ✗ ✗
vaultdoor8 Rev ✗ ✗
zerotohero Pwn ✗ ✗

Continued on next page

32



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

PlaidCTF

emojidb Pwn ✗ ✗
liars-and-cheats Pwn ✗ ✗
potassium Pwn ✗ ✗
reee Rev ✗ ✗
sandybox Pwn ✗ ✗
shop Pwn ✗ ✗
suffarring Pwn ✗ ✗

R3CTF - 2024

dao Misc ✗ ✗
forbiddencontent Pwn ✗ ✗
hackcam Pwn ✗ ✗
scp Crypto ✓ ✓
simplestkernel Pwn ✗ ✗
sparrow Crypto ✓ ✓
tinseal Misc ✗ ✗

Ritsec - 2019

bottles Pwn ✗ ✗
cleaners Forensics ✗ ✗
onion Misc ✗ ✗
shiny Crypto ✓ ✓

SekaiCTF - 2022
game Web ✗ ✗
issues Misc ✗ ✗
qr Misc ✗ ✗

SekaiCTF - 2023 cosmic Pwn ✗ ✗

TamuCTF - 2024
adminpanel Pwn ✗ ✗
confinement Pwn ✗ ✗
criminal Crypto ✓ ✓

Techcompfest - 2022 python Web ✗ ✗

UiuCTF - 2022

art Rev ✗ ✗
asr Crypto ✓ ✓
ecc Crypto ✓ ✓
militarygradenc Crypto ✗ ✗
oddshell Pwn ✗ ✗

Continued on next page

33



Table 8 – Continued from previous page
Competition Challenge Category Qwen DeepSeek

UiuCTF - 2023

athome Crypto ✓ ✓
chainmail Pwn ✗ ✗
explorer1 Misc ✗ ✗
explorer2 Misc ✗ ✗
explorer3 Misc ✗ ✗
explorer4 Misc ✗ ✗
explorer5 Misc ✗ ✗
explorer6 Misc ✗ ✗
fastcalc Rev ✗ ✗
groupproject Crypto ✓ ✓
groupprojection Crypto ✗ ✗
morphing Crypto ✗ ✗
rattler Pwn ✗ ✗
threetime Crypto ✗ ✗

UiuCTF - 2024 determined Crypto ✓ ✓
syscalls Pwn ✗ ✗

VsCTF - 2022
ezorange Pwn ✗ ✗
privatebank Misc ✗ ✗
tuningtest Pwn ✗ ✗

WtfCTF - 2021
k3y Pwn ✗ ✗
mom5m4g1c Pwn ✗ ✗
prison Pwn ✗ ✗

Zh3r0CTF - 2021

alicebobdave Crypto ✓ ✓
babyre Rev ✗ ✗
bootleg Crypto ✓ ✓
chaos Misc ✗ ✗
cheater Misc ✗ ✗
estr Rev ✗ ✗
injection Crypto ✗ ✗
mersenne Crypto ✗ ✗
numpymt Crypto ✗ ✗
optimiseme Rev ✗ ✗
pyaz Rev ✗ ✗
sabloom Rev ✗ ✗
twist Crypto ✗ ✗
vault Misc ✗ ✗

C Scaffolding Interface

We simulate the ENIGMA Scaffold interface in CTF-DOJO, and provide specialized tools inside
Table 9 from the original ENIGMA paper [1]. While we provide the interface to the models for data
generation, there is no guarantees that they will utilize the customized tools regularly.

34



Table 9: In additional to the standard Linux Bash commands and the SWE-agent specialized tools, we
provide ENIGMA with tools in the offensive cybersecurity domain, including binary decompilation
and disassemble, and interactive agent tools for debugging and connecting to remote servers. Required
arguments are enclosed in <> and optional arguments are in []. The last column shows the
documentation presented to the LLMs.

Category Command Documentation

Static
analysis

decompile <binary_path>
[-function_name
<function_name>]

Decompile a binary and prints the decompilation of a
given function name, or main by default.

disassemble <binary_path>
[-function_name
<function_name>]

Disassembles a binary and prints the disassembly of a
given function name, or main by default.

Dynamic
analysis

debug_start <binary> [<args>] Starts a debug session with the given binary and op-
tional command-line arguments for the binary.

debug_add_breakpoint
<breakpoint>

Adds a breakpoint in the debug session.

debug_continue Continues the program execution in the debug session.
debug_step [<number>] Steps number of instructions (default is 1) in the debug

session.
debug_exec <command> Executes arbitrary gdb command in debug session.
debug_stop Stops the current debug session.

Network connect_start <server_address>
<port>

Starts a new interactive connection to the server ad-
dress and port.

connect_sendline [<line>] Sends a line with Unicode/hexadecimal values to the
connection. Sending hexadecimal bytes should be
done using \x<hh> where hh stands for the specific
byte you want to send.

connect_exec <command> Executes arbitrary connect command in connect ses-
sion.

connect_stop Stops the current connect session.

Task submit ’<flag>’ Submits your current flag and terminates the session
upon correct response, you should be aware to prop-
erly escape the flag as this is a bash command and to
put your flag in single quotes.

exit_forfeit Give up on the current challenge and terminate the
session.

D Related Work on Training LLM Agents to Code

Previous training paradigms for software engineering have largely emphasized general-purpose cod-
ing capabilities [25, 28, 32, 55, 43]. While scaffolded approaches using proprietary models achieve
strong results on real-world software engineering (SE) tasks, open-source models continue to lag
behind, prompting a shift toward domain-specific training strategies. Several recent efforts exemplify
this trend. Lingma SWE-GPT [30] introduces 7B and 72B models trained with a process-oriented
development methodology. SWE-Gym [34] offers the first open training environment for SE agents,
yielding notable gains on SWE-bench [21]. More recent work includes SWE-smith [50], which auto-
matically scales training data for SE, and SWE-RL [44], which applies reinforcement learning [17]
to repair programs with reasoning. While these methods advance software engineering capabilities
via execution-based environments, they do not address the distinct demands of cybersecurity [56].
Our work fills this gap by introducing the first execution environment specifically tailored for security
tasks, where traditional code-centric training fails to transfer effectively.

35



0 5 10 15 20 25 30 35 40
Number of Assistant Turns

0

50

100

150

200

250

300

N
um

be
r 

of
 T

ra
je

ct
or

ie
s

12345678
Successful Sample Count

0

10

20

30

40

50

60

N
um

be
r 

of
 C

ha
lle

ng
e 

In
st

an
ce

s

Figure 5: Number of turns in each successful trajectory (left) and number of successful trajectories
for each challenge instance (right).

E More Data Analysis

Figure 5 presents two key statistics of the collected data. The left panel visualizes the number of
assistant turns per trajectory. The majority of trajectories fall between 5 to 15 turns, with a heavy
tail extending to 40 turns. This skew indicates that while many tasks can be solved efficiently, a
substantial portion demands prolonged, iterative explorations, highlighting the complex nature of
real-world CTF problems. The right panel plots the number of successful trajectories obtained for
each challenge, revealing that many challenges are solved only once within the total 12 rollouts,
indicating that successful trajectories for certain instances are difficult to collect.

F Prompt Design of CTF-FORGE

F.1 Dockerfile Generation

Based on the following CTF challenge information, generate a Dockerfile that will properly set up a server←↩
environment for CTF players to interact with.

# Challenge Name:
{task_name}

# Challenge Category:
{category}

# Available Files:
{available_files}

# File Analysis:
{file_analysis}

# Challenge Description:
{description}

# REHOST.md Content:
{rehost_content}

# .init File Content:
{init_content}

**IMPORTANT**: If .init file content is provided above, this contains setup instructions or configuration ←↩
specific to this challenge. The .init file may contain:

- Environment setup commands that should be executed during Docker build
- Configuration parameters or paths that should be used in the Dockerfile
- Special instructions for handling this particular challenge
- Library or dependency information
- Runtime configuration that affects how the challenge should be containerized

Use the .init content to inform your Dockerfile generation - execute any setup commands it specifies, copy←↩
any files it references, and follow any special instructions it provides.

{flag_instruction}

# CATEGORY-SPECIFIC GUIDELINES:
{category_guidelines}

# GENERAL DOCKER BEST PRACTICES:
1. Use ubuntu:20.04 as base image unless challenge specifically requires different environment
2. Install additional packages needed for the specific challenge (if any beyond the comprehensive set)
3. Create non-root user for running services when possible, but DO NOT use `useradd`

36



4. Use specific package versions when critical for challenge functionality
5. Properly set file permissions (especially for executables and sensitive files)
6. Use WORKDIR to organize files properly
7. Expose only the necessary port for the challenge
8. Use specific CMD/ENTRYPOINT that matches the challenge type
9. You MUST create a `run.sh` wrapper script using printf or echo commands (DO NOT use heredoc syntax like ←↩

<< 'EOF')

# CRITICAL SCRIPT CREATION SYNTAX:
- CORRECT: Use printf to create shell scripts in Dockerfiles:

```
RUN printf '#!/bin/bash\\ncd /challenge\\nexec stdbuf -i0 -o0 -e0 ./your_executable\\n' > /challenge/run←↩

.sh
```

- CORRECT: Use echo with \\n for newlines:
```
RUN echo -e '#!/bin/bash\\ncd /challenge\\nexec stdbuf -i0 -o0 -e0 ./your_executable' > /challenge/run.←↩

sh
```

- WRONG: Never use heredoc syntax in Dockerfiles (causes parsing errors):
```
RUN cat > /challenge/run.sh << 'EOF' # This will FAIL
#!/bin/bash
cd /challenge
exec stdbuf -i0 -o0 -e0 ./your_executable
EOF
```

# CRITICAL EXECUTABLE/SCRIPT WRAPPING REQUIREMENTS:
{architecture_specific_wrapper}

# SECURITY CONSIDERATIONS:
- DO NOT copy flag.sha256 or flagcheck files to the Docker image
- DO NOT copy any files not in the available files list
- Set appropriate file permissions for challenge files
- Use process isolation when running network services

# SHEBANG HANDLING:
- If any files have problematic shebangs (like #!/opt/pwn.college/python), they will be automatically ←↩

fixed
- You do not need to manually handle shebang issues - the system will detect and fix them
- Focus on proper file copying and permissions

# CTF-SPECIFIC REQUIREMENTS:
- The server MUST be accessible to CTF players over the network
- The flag should NEVER be directly accessed by the CTF players, and MUST always be stored in /flag with ←↩

the permissions 444
- Choose appropriate port based on service type (1337 for general, 80/8080 for web, etc.)
- Ensure the challenge service starts automatically and runs continuously
- Handle connection multiplexing for multiple players if needed
- Programs must respond to user input immediately without buffering delays (achieved through stdbuf)

# CRITICAL CTF BINARY BEHAVIOR UNDERSTANDING:
- CTF challenge binaries (especially pwn challenges) often exhibit specific behavior patterns:

* When run directly from command line, they may exit immediately without output (THIS IS NORMAL)

* They are designed to work through network services (socat) that provide stdin/stdout redirection

* The binary may wait for specific input patterns or network connections to respond

* Some binaries are designed to read from stdin and write to stdout in an interactive manner
- Do NOT assume a binary is broken if it runs without output when executed directly
- The key is to properly wrap the binary with socat for network access
- Test the service through network connection (nc localhost PORT) rather than direct execution

# LIBRARY DEPENDENCY HANDLING:
- Pay special attention to shared library dependencies (check with ldd if needed conceptually)
- For 32-bit binaries on 64-bit systems, ensure 32-bit libraries are installed
- If a binary requires specific libraries (e.g., libpam.so.0), install the appropriate packages:

* For libpam: install libpam0g:i386 for 32-bit or libpam0g for 64-bit

* Use library path environment variables or LD_LIBRARY_PATH if needed

* Consider using the system's dynamic linker directly for better compatibility

Generate a complete, production-ready Dockerfile. Respond with ONLY the Dockerfile content, no ←↩
explanations.

IMPORTANT VALIDATION CHECKLIST:
Base image specified (prefer ubuntu:20.04)
NOTE: Comprehensive package installation will be automatically added
Additional required packages installed (if needed beyond the comprehensive set)
Challenge files copied correctly
run.sh wrapper script created with stdbuf for proper interaction
Appropriate port exposed
Service command specified in CMD/ENTRYPOINT using socat with the run.sh wrapper
File permissions set correctly for both executables and run.sh
No sensitive files copied
Service will accept network connections and respond immediately to user input
CRITICAL: Scripts created using printf/echo commands, NOT heredoc syntax (<<)

# CRITICAL DOCKERFILE SYNTAX WARNING:
- NEVER use heredoc syntax like "RUN cat > file << 'EOF'" in Dockerfiles
- This causes Docker parsing errors and build failures
- ALWAYS use printf or echo commands instead
- Example: RUN printf '#!/bin/bash\\ncd /challenge\\nexec ./binary\\n' > /challenge/run.sh

37



# PYTHON NETWORK SERVICES:
- If the file analysis indicates a Python script is a network server listening on a specific internal port←↩

(e.g., detected as listening on port XXXX):
- The service MUST be run in the background (e.g., `python3 /challenge/server.py &`).
- You MUST use `socat` to proxy connections from the public EXPOSED port (e.g., 1337) to the script's ←↩

detected internal port.
- **CORRECT WAY** to create `run.sh` for a Python server on its detected internal port, exposed on 1337:

```
RUN printf '#!/bin/sh\\ncd /challenge\\n# Start the server in the background\\npython3 /challenge/server←↩

.py &\\n# Wait a moment for the server to start\\nsleep 1\\n# Use socat to forward connections from ←↩
the public port to the internal port\\nexec socat TCP-LISTEN:1337,reuseaddr,fork TCP:localhost:XXXX\\←↩
n' > /challenge/run.sh && chmod +x /challenge/run.sh

```
- The `CMD` in the Dockerfile should then be `CMD ["/challenge/run.sh"]`.
- DO NOT use `socat` with `EXEC` for these types of services, as it launches a new process for every ←↩

connection.

F.2 Docker-Compose Generation

Based on the following CTF challenge information and generated Dockerfile, create a docker-compose.yml ←↩
file with an appropriate ctfnet alias.

# Challenge Name:
{task_name}

# CTF Name:
{ctf_name}

# Available Files:
{available_files}

# Challenge Description:
{description}

Generated Dockerfile:
{dockerfile_content}

Requirements:
1. Use "build: ." to build from the local Dockerfile
2. Extract the exposed port from the Dockerfile and map it appropriately
3. Connect to the "ctfnet" external network
4. Generate a meaningful, DNS-compliant alias for this specific challenge
5. The alias should be memorable and related to the challenge name/theme
6. Use format like: challengename.ctf.io or similar creative naming
7. Avoid generic names like "web.chal.custom.io"
8. Use the challenge information to create a relevant alias

Example good aliases:
- showdown.csaw.io
- cryptochallenge.picoctf.io
- webshell.defcon.io
- bufferoverflow.ctf.io

Generate a complete docker-compose.yml. Respond with ONLY the docker-compose.yml content, no explanations←↩
.'

F.3 Challenge.json Generation

Generate a challenge.json file for this CTF challenge following the exact schema.

Challenge Information:
# Name:
{task_name}

# Category:
{category}

# Files:
{task_files}

# CTF Challenge RAW Description:
{description}

# REHOST.md Content:
{rehost_content}

{docker_compose_section}

REQUIRED JSON SCHEMA:
{{

"name": "challenge name",
"description": "human readable and self-contained challenge description for the CTF players, not for ←↩
the CTF rehosters. flag checker is NOT available and you should NOT mention it in the description",

"category": "will be set automatically from module.yml mapping",
"files": ["list of files to upload for this challenge"],
"box": "optional URL for external server challenge",

38



"internal_port": "optional port for external server challenge",
"compose": true if hosting the ctf challenge requires a server, false otherwise,
"flag": "flag for the challenge"

}}

RULES:
1. Use the exact challenge name: "{task_name}"
2. Use the exact files list: {task_files}
3. DO NOT generate the category field - it will be set automatically from module.yml mapping
4. Always set "box": "" and "internal_port": ""
5. If server_needed is False: do NOT include "server_description" field
6. The flag should be a valid flag for the challenge
7. You MUST NOT mention the flagCheck in the Challenge Description, as we will handle the validation in ←↩

other way.

OUTPUT: Return ONLY valid JSON matching the schema above. No explanations, no markdown, no extra text.

G Finding Bugs in CTF-DOJO

Through our experiments on CTF-DOJO, we identify 4 bugs inside the current CTF-Archive maintain
by pwn.college. Specifically, we observe a consistent behavior pattern across these problematic
challenges, where the LLMs make several attempts to submit the same flag mismatched with the one
encoded inside the original repository.

G.1 ECTF 2014 — Lowkey (Filed Issue)

CTF Challenge

Hey! I just met you! And this is craazy! But here’s a product of prime numbers! Try me maybe! 2449
P.S. My mother told me that the 7th key fits in the lock ;)
Hint: Hint is implied in the question.

Solution To solve the lowkey cryptography challenge, the LLM began by extracting the contents
of the provided archive low_key.tar.gz, which revealed a file named whatami.txt contain-
ing a sequence of integers. The challenge description hinted at a “product of prime numbers” (2449)
and a “7th key,” suggesting an RSA encryption scheme with a public exponent e = 7. The LLM
factored 2449 into its prime components, p = 31 and q = 79, yielding n = pq = 2449 and Euler’s
totient ϕ(n) = (p− 1)(q − 1) = 2340. Using the extended Euclidean algorithm, the LLM computed
the modular inverse of 7 modulo 2340 to obtain the private key exponent d = 1003. With this, the
encrypted integers from whatami.txt were decrypted using the formula m = cd mod n, and
the resulting values were converted to ASCII characters. This will reveal the flag in the format of
flag{...}.

Verification The model attempts multiple times to submit the same flag but got rejected, as it did
not align with the flag hashed by the pwn.college team. To verify the validity of captured flag,
we have done some research on the possible ECTF2014 writeups online but could not find any of
them. However, when searching for the flag content captured by the model, we notice there is a blog
in Chinese that describes the similar CTF challenge and confirms the flag correctness.

G.2 ångstromCTF 2019 — Blank Paper (Filed Issue)

CTF Challenge

Someone scrubbed defund’s paper too hard, and a few of the bytes fell off.

Solution To solve the blankpaper challenge, the LLM identified that the PDF file
blank_paper.pdf was corrupted due to missing header bytes. By inspecting the file with a
hex viewer, it discovered that the expected %PDF signature had been replaced with null bytes. It
then created a script to restore the missing header by replacing the first four bytes with %PDF. After
regenerating the corrected PDF as fixed_paper.pdf, the model used pdftotext to extract its
contents. Within the text, it found the flag in the format of actf{...}.

39

https://github.com/pwncollege/ctf-archive
https://bbs.huaweicloud.com/blogs/350419


Verification As the flag format is not specified in the challenge description, the model has tried
with the flag wrapper of flag{...} and actf{...}. Both of them fails the flagCheck and
.flag.sha256. However, the submitted context inside the flag remains unchanged. We validate
the flag using a writeup shown on CTFtime.

G.3 HSCTF 2019 — Hidden Flag (Filed Issue)

CTF Challenge

This image seems wrong.....did Keith lose the key again?

Solution To solve the hiddenflag miscellaneous CTF challenge, the LLM was given a file
named chall.png, which, although named as a PNG image, was identified by the file command
as generic data. Upon inspecting the file using strings, the clue key is invisible was
discovered. This led to the hypothesis that the file was XOR-encrypted using the key invisible.
A Python script was created to XOR-decrypt the file byte-by-byte using this key. The output, saved
as decrypted.png, was confirmed to be a valid PNG image. Optical character recognition (OCR)
was then performed using Tesseract, which successfully extracted the flag embedded in the image.

Verification The model made the same flag submission attempts for several times but all of them
failed. We find a writeup on the personal website that describes the similar solution and the flag value
same as what the model captures.

G.4 Access Denied CTF 2022 — Binary (Filed Issue)

CTF Challenge

Finally, you are in the binary stage.

Solution To solve the hiddenflag CTF challenge, the LLM was provided with a file named
chall.png, which was not recognized as a valid PNG file. Upon running strings on the file, we
found the phrase key is invisible, suggesting XOR encryption with the key invisible.
A Python script was used to XOR each byte of the file with the repeating key, producing a valid
image saved as decrypted.png. After confirming the decrypted file was a PNG, we ran OCR
using Tesseract to extract any hidden text. The extracted text revealed the flag in the format of
hsctf{...}.

Verification The flag submitted by the model does not match with the officiallu provided hash in
the repository. We confirm the correctness of the submission via a writeup written in the personal
blog.

40

https://ctftime.org/writeup/14880
https://vijeta1.github.io/HSCTF2019-Writeups/
https://berryberry.hatenablog.jp/entry/2022/06/12/201817

	Statistics
	CTF-Dojo CTF Challenges
	Scaffolding Interface
	Related Work on Training LLM Agents to Code
	More Data Analysis
	Prompt Design of CTF-Forge
	Dockerfile Generation
	Docker-Compose Generation
	Challenge.json Generation

	Finding Bugs in CTF-Dojo
	ECTF 2014 — Lowkey (Filed Issue)
	ångstromCTF 2019 — Blank Paper (Filed Issue) 
	HSCTF 2019 — Hidden Flag (Filed Issue) 
	Access Denied CTF 2022 — Binary (Filed Issue)


