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Abstract

We study the overparametrization bounds required for the global convergence of stochastic
gradient descent algorithm for a class of one hidden layer feed-forward neural networks
equipped with ReLU activation function. We improve the existing state-of-the-art results
in terms of the required hidden layer width. We introduce a new proof technique combining
nonlinear analysis with properties of random initializations of the network.

1 Introduction

The study of convergence properties of mini-batch stochastic gradient descent (SGD) iterations applied to
feed-forward neural nets (NN) is at the core of modern machine learning research. SGD with its variants like
ADAM is the most common optimization scheme applied for supervised training of NN. In principle however,
the loss landscape encountered when training NN is highly nonconvex, especially for deep nonlinear NN as
revealed, e.g., by visualizations performed by Li et al. (2018), and construction proofs of spurious local
minima by Auer et al. (1996a); Brutzkus et al. (2018). The nonconvexity may have severe consequences
for practical NN training routines, as SGD may potentially get stuck at a spurious local minimum or a
saddle point and cease to converge further down the loss valley. Yet, practice suggests that with enough
overparametrization, SGD iterations achieve global minima most of the times. This phenomenon is not fully
understood yet and is the main theme of this paper.

Contemporary research on NN convergence theory was initiated with the study of linear networks. The
loss landscape in this setting was fully characterized by Kawaguchi (2016), solving the problem stated
by Choromanska et al. (2015). The research revealed the feasibility of global SGD convergence for deep NN
despite the loss landscape nonconvexity.

Even though it seems difficult to fully characterize the loss landscape in the nonlinear setting, proving the
global SGD convergence is still feasible. Recent research suggests that SGD converges globally with high
probability for random initialization of weights, under the assumption of sufficiently large overparametriza-
tion expressed in terms of NN layers’ widths. The first result of this kind required an unrealistic level of
overparametrization of polynomial order in the number of samples, cf. Allen-Zhu et al. (2019). The following
series of related results (see Table 1) further reduced the required level of overparametrization using various
techniques and assumptions on training data. Especially in the case of Deep NN equipped with analytic acti-
vation functions, an overparametrization of the linear order with respect to the number of training examples
is sufficient. However, such tight overparametrization results do not apply in the case of a non-differentiable
ReLU activation function (see Table 1). Existing theoretical bounds still require a significantly larger number
of parameters than used in practice. The question about an exact boundary marking the minimal number
of parameters required for the global convergence is still open even for shallow (one hidden layer) ReLU NN,
see, e.g., Oymak & Soltanolkotabi (2020).

1.1 Main Contribution.

We establish a new theoretical order of overparametrization required for SGD convergence towards a global
minimizer for one hidden layer NN with ReLU activations, improving known state-of-the-art bounds. We
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introduce a new proof technique based on nonlinear analysis. First, we show the global convergence of
continuous solutions of the differential inclusion (DI) being a nonsmooth analog of the gradient flow for
the MSE loss. Second, using the existing nonsmooth analysis results, we establish closeness of continuous
trajectories to SGD sequences until convergence for a sufficiently small learning rate.

The concept of studying the dynamics of continuous solutions pursued in this work already appeared earlier
(Arora et al., 2019a; Du et al., 2019b). However, the authors treated the convergence of SGD sequences
independently from the analysis of continuous solutions, which served motivational purpose only. We develop
a rigorous method for for establishing the convergence of SGD sequences via the convergence of continuous
solutions, which works for general nonsmooth approximators including deep NN and general loss functions.

1.2 Informal statements.

We derive the global convergence results under the following assumptions and notation (made precise later
on). Let N be the sample size. The input data comes from the i.i.d. sub-Gaussian distribution on the
sphere in Rd0 , where d0 ∈ [Nδ0 , N ] for some δ0 ∈ (0, 1). The initial weight vector θ0 is obtained via LeCun
scheme (variance scales with width). L(θ) is the MSE loss for some output matrix, weight vector θ and NN
equipped with ReLU activation function. The subdifferential in the sense of Clarke is denoted by ∂ and Ω̃
is the Ω notation hiding the logarithmic terms. All presented results hold with high probability (WHP),
meaning that the probability of the event converges to one as the number of samples N diverges to infinity,
a convention widely adopted in the literature.

Our first main result provides a condition for the global convergence of the continuous solutions of the
nonsmooth analog of gradient flow for L.
Theorem 1.1 (Informal Corollary 4.5). Let the width of the shallow NN satisfy d1 = Ω̃(N1.25). Then,
any solution θ : R+ → R to the DI Cauchy problem θ(0) = θ0, θ̇(t) ∈ −∂L(θ(t)) satisfies L(θ(t)) ≤
L(θ(0)) exp(−ctd1) for all t ≥ 0 and some constant c > 0 WHP.

The second main result establishes the global convergence for the mini-batch SGD iterates WHP.
Theorem 1.2 (Informal Theorem 5.1). Let the width of the shallow NN satisfy d1 = Ω̃(N1.25). Then, for
any error ε > 0 and any mini-batch size, the mini-batch SGD sequences with step size small enough achieve
the loss value below ε at a linear convergence rate WHP.

We obtain Theorem 1.2 via the following result. It is stated for general approximators (including deep ReLU
NN) and general losses (including hinge loss, cross-entropy etc.). We believe it is of independent interest.
We drop the assumption on the MSE loss and particular NN, and use the notion of an arbitrary loss L̃.
Theorem 1.3. (Informal Theorem 5.6) Let the loss function L̃ be arbitrary satisfying some mild technical
conditions. Additionally, assume there exists a nonempty compact set Q, s.t. any solution θ to the DI θ̇(t) ∈
−∂L̃(θ(t)) if initialized in Q, remains in some compact set G and converges to zero as L̃(θ(t)) ≤ L̃(θ(0))e−γt.
Then, for any ε > 0, the SGD sequences initialized in Q and with step size small enough achieve the loss
value below ε at a linear convergence rate WHP.

Let us comment briefly on some key aspects of our results.

Overparametrization Bound Improvement.

Theorem 1.2 improves state-of-the-art overparametrization bounds for global SGD convergence for shallow
ReLU NN – in Table 1 we compare it to the selected works that we find most related. For instance, Nguyen
(2021) require d1 = Ω(N2). Similarly, Oymak & Soltanolkotabi (2020) require d1 = Ω(N4/d3

0) (which is
better for d0 in a small neighborhood of N), where they train the first weight matrix only and the second
weights matrix remains fixed, cf. Remarks 5.3 and 5.4 for a detailed discussion and Section 6 for numerical
experiments comparing both setups. We also note that we have more general data assumptions than Oymak
& Soltanolkotabi (2020).

On the other hand, results from Kawaguchi & Huang (2019) and Liu et al. (2022) require only linear
overparametrization and work for more general data. However, they do not apply to ReLU as they rely
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heavily on the smoothness of the activation function. In particular, analysis of non-smooth activation
functions seems to be a much more challenging task, see e.g., a result showing the existence of spurious local
minima in the ReLU setting Safran & Shamir (2018).

Discrete vs Continuous Convergence.

The idea of establishing a link between continuous solutions to the gradient flow and their discrete GD analogs
for deep linear networks was introduced recently by Elkabetz & Cohen (2021). Their method require the
Hessian to exist and to be bounded along the continuous trajectories. Such approach does not work when
a nonsmooth activation function, e.g. ReLU, is employed – we provide additional evidence supporting this
claim in Section 6. Our approach of passing from continuous solutions to SGD sequences is more general
because it works in the differential inclusions setting, which treats nondifferentiable objectives (in contrast
to Elkabetz & Cohen (2021)).

SGD step size.

One should keep in mind that Theorem 1.2 is qualitative – it does not provide a constructive condition for
the step size to guarantee convergence. However, existing quantitative results for ReLU NNs give to the
best of our knowledge no better bound than O(1/N2), which is still far from the learning rates used in ML
practice.

Table 1: A Perspective on related work. Reported results using notation Ω̃ hides logarithmic terms, N is the number of train samples,
d0 is the input dimension, L is the number of layers of deep NN

Work Algorithm ReLU Deep Data Scaling

Du et al. (2019a) GD no yes non degenerate
normalized Ω̃(2O(L)N4)

Kawaguchi & Huang (2019) GD no yes normalized Ω̃(Nd0) (shallow)
Ω̃(N + d0L

2) (deep)

Liu et al. (2022) SGD no yes non degenerate
normalized Ω̃(N)

Allen-Zhu et al. (2019) SGD yes no separable Ω̃(N24L12)
Arora et al. (2019b) GD yes yes unif. on sphere Ω̃(N7)
Zou & Gu (2019) SGD yes yes separable Ω̃(N8L12)

Oymak & Soltanolkotabi (2020) SGD
(on layer 1) yes no unif. on sphere Ω̃(N4/d3

0)

Nguyen (2021) GD yes yes subgaussian Ω̃(N2) (shallow)
Ω̃(N3) (deep)

Ours SGD yes no subgaussian Ω̃(N1.25)

1.3 Other Related Work.

We summarize the current literature concerning the question of SGD global convergence for NN equipped
with the MSE loss in Table 1. We split the results into two groups, first the ones working for smooth
activations and second, the results for ReLU activation function, also considered in this work. Similar and,
in some cases, tighter overparametrization results have been established for training deep NN equipped with
cross-entropy loss Li & Liang (2018); Ji & Telgarsky (2020); Chen et al. (2021). All existing results are
derived under the assumption that there is a significant overparametrization of the NN under study (at
least one wide hidden layer). Earlier work focused on the non-existence of spurious local minima without
consideration of SGD dynamics Xie et al. (2017). The extreme case of overparametrization, i.e., infinite layer
width, has also been analyzed in Chizat & Bach (2018); Jacot et al. (2018); Mei et al. (2018).

One can also find negative results in the literature, demonstrating, e.g., the existence of spurious local minima
in underparameterized regimes, Auer et al. (1996b), or convergence towards spurious local minima, Brutzkus
et al. (2018). As for other fundamental properties, nonlinear NN are universal approximators Cybenko
(1989); Shaham et al. (2018). NN memorization property has also been extensively studied – in the case
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of shallow NN, known overparametrization bounds for perfect memorization of the data are near-optimal
Zhang et al. (2017); Hardt & Ma (2017); Nguyen & Hein (2018); Baldi & Vershynin (2019); Yun et al. (2019);
Bubeck et al. (2020).

1.4 Organization of this paper

In Section 2 we introduce the notation and recall some facts regarding differential inclusions. In Section 3
we study the properties of the DI solutions for MSE loss. In Section 4 we prove the global convergence result
for DI solutions under random initialization. In Section 5 we extend the result of Section 4 to SGD iterates.
In Section 6 we present some numerical experiments related to our results. We summarize our findings in
Section 7.

2 Preliminaries

Let X ∈ RN×d0 be a matrix of the training inputs (arranged rowwise) and Y ∈ RN×d2 be a matrix of
training labels, where N ∈ N+

def= 1, 2 . . . is the sample size and d0, d2 ∈ N+ are the dimensions of the input
and output respectively. Consider the following one hidden-layer feed-forward NN

Ŷ
def= ϕ(XW )V,

where for some d1 ∈ N+, W ∈ Rd0×d1 and V ∈ Rd1×d2 are the weight matrices and ϕ : R → R is the ReLU
activation function applied element-wise. We often assume that X, Y are fixed and known from context,
whence they are not explicitly mentioned as parameters, e.g., in the loss function formula. We denote the
hidden layer by H, i.e., H

def= ϕ(XW ) ∈ RN×d1 . We write D
def= d0d1 + d1d2 and denote parameter vector by

θ ∈ RD, i.e., θ is obtained by stacking vectorized matrices W, V . We identify matrices with their vectorized
forms and write simply θ = (W, V ).

The standard dot product and Euclidean distance on Rd for d ∈ N+ are denoted by ⟨·, ·⟩ and ∥·∥. For x ∈ Rd
and r > 0, B(x, r) def= { y ∈ Rd : ∥y − x∥ ≤ r } is the closed ball with radius r centered at x. For a matrix
A ∈ Rnr×nc , Ai: denotes the i-th row vector of A for i ∈ [nr], and A:i denotes the i-th column vector of A
for i ∈ [nc], where [k] def= {1, . . . , k} for k ∈ N+. Finally, we denote the minimal eigen- and singular values
of A by λmin(A) and σmin(A), i.e., σmin(A) =

√
λmin(ATA), while the operator and Frobenius norms of A

are denoted by ∥A∥op and ∥A∥F .

Our aim is to optimize the MSE loss function L : RD → R+, defined via L(θ) def= 1
2 ∥Y − Ŷ ∥2

F . The widely
applied ReLU activation function is non-differentiable at x = 0 but the generalized derivative in the sense
of Clarke, cf. Clarke (1983), exists and is equal to the interval [0, 1]. We denote the Clarke subdifferential
by ∂ and refer the reader to Rockafellar & Wets (2009) for a detailed treatment of generalized gradients.

Recall that a curve1 x : R+ → Rd is absolutely continuous if there exists a map v : R+ → Rd that is integrable
on compact intervals and s.t. x(t) − x(0) =

∫ t
0 v(s) ds for all t ≥ 0. To lighten the notation we sometimes

write d
dtx(t) = ẋ(t) and call any absolutely continuous curve an arc. We are interested in finding arcs x that

are solutions to the following differential inclusion Cauchy problem

x(0) = x0, ẋ(t) ∈ −∂f(x(t)) for a.e. t ≥ 0, (1)

where x0 ∈ Rd and f : Rd → R are given. The following property plays a crucial role in analyzing such
problems – we say that f satisfies the chain rule if for any arc x : R+ → Rd,{

⟨v, ẋ(t)⟩ : v ∈ ∂f(x(t))
}

=
{ d

dt
(f ◦ x)(t)

}
for a.e. t ≥ 0. (2)

Consider the dynamics given by the following DI obtained from equation 1 by taking f = L,

θ(0) = θ0, θ̇(t) ∈ −∂L(θ(t)) for a.e. t ≥ 0, (3)
1We use the same symbols to denote points and curves.
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where θ0 ∈ RD is some initial value. Note that a-priori it is unknown if there exists a solution to equation 3
defined on the whole interval [0, ∞). Recall the notation H = ϕ(XW ). The following standard result is due
to the fact that L satisfies the chain rule equation 2, cf. Davis et al. (2020), combined with usual arguments
regarding DIs, subdifferential of L and Grönwall’s lemma. Since we were unable to find such statement that
rigorously treats its existential component connected to the theory of DIs, we provide its detailed proof in
Appendix A.

Proposition 2.1. For any initial θ0 ∈ RD, there exists T > 0 and a solution θ : [0, T ) → RD to the
DI equation 3. Moreover, for any bounded domain G ∋ θ0, each solution θ to equation 3 can be extended to
infinity or up until it hits the boundary of G. Finally, for any such θ, denoting α0(s) def= σmin(HT (θ(s))),
one gets

L(θ(t)) ≤ L(θ(0)) exp
(

− 2
∫ t

0
α2

0(s) ds
)

for every t ∈ [0, T ).

3 Dynamics of the Differential Inclusion

In this section, we show that the integral of the loss (square root) along the parameter θ trajectories de-
termined by the DI equation 3 satisfies a simple one-dimensional differential inequality. From that we infer
boundedness properties of the loss along trajectories. The constants appearing in the differential inequality
depend on the initialization properties only which allows us to provide WHP estimates in Section 4.

Recall the notation H = ϕ(XW ) and α0(s) = σmin(HT (θ(s))). By Weyl’s inequality, cf., e.g., (Dax, 2013,
Theorem 4), and Lemma H.1,

|α0(t) − α0(0)| ≤ ∥H(t) − H(0)∥F ≤ ∥X(W (t) − W (0))∥F ≤ ∥X∥op∥W (t) − W (0)∥F . (4)

Therefore, to use Proposition 2.1, in lemma below we bound the quantity ∥X∥op∥W (t) − W (0)∥F . We defer
its proof, which is based on a careful application of Grönwall’s lemma, to Appendix B.

Lemma 3.1. Any solution θ : [0, T ) → R, θ = (W, V ), to the DI equation 3 satisfies

∥θ(t) − θ(0)∥ ≤
√

2∥X∥op
(
∥W (0)∥F + ∥V (0)∥F

)
L̄(t) exp

(√
2∥X∥opL̄(t)

)
(5)

for every t ∈ [0, T ), where L̄(t) =
∫ t

0

√
L(θ(s)) ds. Moreover

∥X∥op∥W (t) − W (0)∥F ≤ 1
2

(
c1L̄(t) + c2

(
L̄(t)

)2
)

exp
(

c
(
L̄(t)

)2
)

(6)

for every t ∈ [0, T ), where

c1
def= 2

√
2∥X∥2

op∥V (0)∥F , c2
def= 2∥X∥3

op∥W (0)∥F , c
def= ∥X∥2

op. (7)

Using Lemma 3.1 and Proposition 2.1 we infer in the proposition below that loss trajectories along solutions
to the DI equation 3 obey some specific differential inequality. This observation is crucial for obtaining the
main results of this paper, i.e., Corollary 4.5 and Theorem 5.1.

Proposition 3.2. Let c, c1, c2 be as in Lemma 3.1, equation 7. Set

a
def=

√
L(θ(0)), α

def= σmin(HT (θ(0))). (8)

If for some T > 0, θ : [0, T ) → RD solves the DI equation 3, then L̄(t) def=
∫ t

0

√
L(θ(s) ds is a solution

y : [0, T ) → R to the problem

y(0) = 0; y′(t) ≤ a exp
(
αt(c1y(t) + c2y2(t))ecy

2(t) − α2t
)

for all t ∈ [0, T ). (9)
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Proof. Using Proposition 2.1, the inequality (u − v)2 ≥ u2 − 2u|v| for u ≥ 0, v ∈ R, and the estimate
from equation 4, we get for all t ∈ [0, T ),√

L(θ(t) ≤
√

L(θ(0)) · exp
(

−
∫ t

0
α2

0(s) ds
)

≤
√

L(θ(0)) · exp
(

− tα2
0(0) + 2α0(0)

∫ t

0
|α0(s) − α0(0)| ds

)
≤

√
L(θ(0)) · exp

(
− tα2

0(0) + 2α0(0)
∫ t

0
∥X∥op∥W (s) − W (0)∥F ds

)
.

Using the bound from equation 6 due to Lemma 3.1 and noting that L̄′(t) =
√

L(θ(t)), we arrive at

L̄′(t) ≤ a · exp
(

− tα2 + 2α

∫ t

0
∥X∥op∥W (s) − W (0)∥F ds

)
≤ a · exp

(
− tα2 + α

∫ t

0

(
c1L̄(s) + c2

(
L̄(s)

)2)
exp

(
c
(
L̄(s)

)2)
ds

)
and the conclusion follows by estimating L̄(s) ≤ L̄(t) for all s ∈ [0, t].

Perhaps surprisingly, due to the double exponential dependence on y2(t), a simple condition involving
a, c, c1, c2, α determines that solutions to equation 9 remain bounded by 2a/α2 for all times, as demon-
strated in Lemma 3.3 below. This property is illustrated in Figure 1.
Lemma 3.3. Let a, α, c, c1, c2 be some arbitrary parameters of equation 9. If α > 0 and

4
(ac1

α3 + 2a2c2

α5

)
exp

(
4ca2/α4)

< 1, (10)

then for any T > 0, any solution y : [0, T ) → R to the problem from equation 9 is bounded from above by
2a/α2 and its derivative at any time t ∈ [0, T ) is bounded by ae−α

2t/2.

Proof. Let y : [0, T ) → R be any solution to equation 9. Set

t0 = inf
{

t ∈ [0, T ) : α
(
c1y(t) + c2y2(t)

)
ecy

2(t) = α2/2
}

.

By assumption y(0) = 0 and α > 0, whence by continuity of y, t0 > 0. Moreover, for a.e. t < t0,
y′(t) ≤ ae−α

2t/2, whence y(t) ≤ 2a/α2 · (1 − e−α
2t/2) < 2a/α2 for all t < t0. If t0 < T , then by continuity

y(t0) ≤ 2a/α2 as well, whence

α2/2 = α
(
c1y(t0) + c2y2(t0)

)
ecy

2(t0) ≤ α
(2ac1

α2 + 4a2c2

α4

)
exp

(
4ca2/α4)

but this yields a contradiction with equation 10. Therefore t0 = T as desired.

Using Proposition 3.2 in conjunction with Lemma 3.3, we obtain in the theorem below the announced global
convergence guarantee for continuous parameter trajectories.
Theorem 3.4. Let a, α, c, c1, c2 be as in Proposition 3.2. Assume that α > 0 and that at initialization

F (θ(0), X, Y ) def=
(ac1

α3 + a2c2

α5

)
exp

(4ca2

α4

)
<

1
8 . (11)

Then, any solution θ : [0, T ) → RD to the DI equation 3 can be extended to a solution on R+ and any such
extension satisfies for all t ≥ 0,

L(θ(t)) ≤ L(θ(0)) exp(−tα2
0(0)) (12)

and for u
def= 4∥X∥op

√
L(θ(0))/α0(0)2,

∥θ(t) − θ(0)∥ ≤ u∥θ(0)∥eu. (13)
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Figure 1: Numerical illustration of the solutions to equation 9 for fixed a, c1, c2, c = 1 and α ∈ [2.042, 2.045]. The color scale encodes
the values of 4(ac1/α

3 + 2a2c2/α
5) exp(4ca2/α4), the quantity determining equation 10. It is visible that the solution y(t) either

remains bounded or explodes rapidly depending on the condition involving the constants. Observe that empirically the upper bound is
smaller than the derived theoretical bound.

Proof. If L(θ(0)) = 0, then the result holds. If L(θ(0)) > 0, then set U(s) def=
√

2∥X∥op
(
∥W (0)∥F +

∥V (0)∥F
)
s · e

√
2∥X∥ops and let G

def= B(θ(0), 2U(2a/α2)). By Proposition 2.1, there exists T > 0 and a
solution θ : [0, T ) → RD to the DI equation 3, which can be extended up until it hits the boundary of G.
Assume that θ is already such an extension. By Proposition 3.2, L̄(t) =

∫ t
0

√
L(θ(s)) ds solves equation 9,

whence Lemma 3.3 asserts that if α > 0 and equation 11 is satisfied, then L̄(t) is bounded from above by
2a/α2 and L̄′(t) =

√
L(θ(t)) is bounded from above by ae−tα

2/2 for all t ∈ [0, T ).

By Lemma 3.1, ∥θ(t) − θ(0)∥ ≤ U(L̄(t)) ≤ U(2a/α2) for all t ∈ [0, T ), so θ never reaches the boundary of G,
whence T = ∞ and equation 12 follows. Estimating ∥W (0)∥F + ∥V (0)∥F ≤

√
2∥θ(0)∥ gives equation 13.

4 Convergence of the Differential Inclusion Trajectories

To verify that equation 11 holds WHP at initialization, we need to impose some additional assumptions on
the data matrices X, Y , and on the initialization scheme of θ0. In this section, all the complexity notations
O, Ω, Θ, etc., are understood in terms of N approaching infinity, e.g., for any space X and a function
f : X × N → R, we say that f(x, N) = O(N) if |f(x, N)| ≤ CN for some constant C > 0 and all x ∈ X .

Recall that a random variable z ∈ R is sub-Gaussian if its Orlicz norm defined as ∥z∥ψ2
def= inf{t >

0: E exp(z2/t2) ≤ 2} is finite. A random vector Z ∈ Rn is said to be sub-Gaussian if ∥Z∥ψ2
def=

supt∈Rn, ∥t∥2=1 ∥⟨Z, t⟩∥ψ2 is finite. For more refined treatment of the Orlicz norms and sub-Gaussian random
variables, we refer the reader to Vershynin (2018).

In the sequel, we impose the following assumption.
Assumption 4.1.

1. Xi:’s are random i.i.d. sub-Gaussian vectors s.t. ∥Xi:∥2 =
√

d0 and ∥Xi:∥ψ2 = O(1) for i ∈ [N ].

2. (W0)ij ∼ N (0, β2
w) for (i, j) ∈ [d0] × [d1] and some βw > 0.

3. (V0)ij ∼ N (0, β2
v) for (i, j) ∈ [d1] × [d2] and some βv > 0.

4. W0 and V0 are independent random vectors.

5. ∥Yi:∥2 = O(βwβv
√

d0d1d2) for i ∈ [N ].

Remark 4.2. The choice of data scaling in Assumption 4.1 is made merely to simplify the notation. In
particular, it asserts that under the LeCun initialization, ∥Yi:∥ = O(

√
d2) for any i ∈ [N ] and that ∥Ŷ ∥F is

WHP of similar order as ∥Y ∥F at initialization, cf. Lemma 4.4.

The result below provides a lower bound on α0(0). The proof is a slight modification of the argument
from (Nguyen et al., 2021, Theorem 5.1) – we present it in Appendix C.
Theorem 4.3. Under Assumption 4.1, let d0 ∈ [Nδ0 , N ] for some δ0 ∈ (0, 1). Let Ψ: N → [1, ∞) be s.t.
d1 ≥ max

(
N, C(δ0)d−1

0 NΨ(N) log2(N)
)

for some and C(δ0) > 0 depending on δ0 only. Then, there exists
a universal constant c(δ0) depending on δ0 only, s.t. α0(0) ≥

√
c(δ0)d0d1βw holds with probability at least

1 − exp(−Ψ(N)) − O(N2) exp(−Ω(Nδ0/2)).
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The following lemma follows from standard concentration inequalities – we provide the proof for completeness
in Appendix D.
Lemma 4.4. If Assumption 4.1 is satisfied, then

∥W0∥F = Θ(
√

d0d1βw) and ∥V0∥F = Θ(
√

d1d2βv)

with probability 1 − 2 exp(−Ω(d0d1)) − 2 exp(−Ω(d1d2)),

∥X∥op = O(
√

max{N, d0})

with probability 1 − exp(−Ω(max{N, d0})), and

L(θ0) = O(∥Y ∥2
F + β2

vd2∥W0∥2
F ∥X∥2

op log(N))

with probability. 1 − exp(−Ω(d2 log(N))).

Combining results from Sections 3 and 4 we obtain the following result demonstrating the global convergence
of solutions to DI equation 3 towards zero loss under initialization satisfying Assumption 4.1. The full proof
is provided in Appendix E.
Corollary 4.5. Under Assumption 4.1, let β2

v = d−ρ1 for some ρ ≥ 0 and d0 ∈ [Nδ0 , N ] for some δ0 ∈ (0, 1).
Let moreover c(δ0) and C(δ0) be as in Theorem 4.3 and

d1 ≥ max
(
N, C(δ0)

[
d2N2.5

d0β2
w

]1/(1+ρ)

log2(N)
)
.

Then, any solution θ : [0, T ) → R to the DI equation 3 can be extended to a solution on R+ and any such
extension satisfies

L(θ(t)) ≤ L(θ(0)) · exp
(

− t · c(δ0)d0d1β2
w

)
for all t ≥ 0 with probability at least 1 − exp

(
− d0

N ·
[
d2N

2.5

d0β2
w

]1/(ρ+1)) − O(N2) exp(−Ω(Nδ0/2)) −
exp(−Ω(d2 log N)).

Proof sketch. By Theorem 3.4 and Theorem 4.3, it suffices to verify that F (θ(0), X, Y ) = o(1). The last
condition is verified WHP by means of Theorem 4.3 and Lemma 4.4.

5 Convergence of the Stochastic Gradient Descent Iterations

Let us consider a discrete version of the dynamics given by the DI Cauchy problem equation 3, i.e., the
stochastic gradient descent. We start with introducing some additional notation.

Let (Ξ, F , µ) be a probability space and consider a function f : RD × Ξ → R, s.t. f(·, s) is locally Lipschitz
for all s ∈ Ξ. Let θ0 ∈ RD be a random variable with absolutely continuous distribution function. For a
fixed stepsize η > 0, we say that a sequence of RD-valued random variables (θηk)k∈N is an f -SGD sequence if

θη0 = θ0; θηk+1 ∈ −η · ∂f(θηk , ξk+1) for k ∈ N, (14)

where ∂f(θ, s) is the Clarke subdifferential at point θ applied to the function θ 7→ f(θ, s) and (ξk)k∈N+ is a
sequence of i.i.d. Ξ-valued random variables distributed according to µ, which are independent of θ0.

For b ∈ [N ], let [N ](b) denote the family of subsets of [N ] containing exactly b elements and Ab ∼ Unif([N ](b))
be a random variable selecting each item from [N ](b) with the same probability. We define the loss function
Lb : RD × [N ](b) → R+ for a batch sample of size b ∈ [N ] via the formula Lb(θ, A) def= 1

2
∑
i∈A ∥Yi: − Ŷi:∥2.

Therefore, an Lb-SGD sequence is any random sequence (θηk)k∈N satisfying equation 14 with Ξ = [N ](b) and
an i.i.d. sequence ξk ∼ Unif([N ](b)) for k ∈ N+. We stress that this construction corresponds to the usual
mini-batch SGD.

Corollary 4.5 states that, assuming enough overparametrization, the continuous trajectories given by the
dynamics of the DI problem equation 3 converge to the global minima of the loss L if the initial value θ0 is
chosen properly, which happens WHP. In the theorem below we deduce an analogous convergence result for
the Lb-SGD iterates defined above.
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Theorem 5.1. Under Assumption 4.1, let β2
v = d−ρ1 for some ρ > 0 and d0, d1, d2, δ0, c(δ0), C(δ0) be as in

Corollary 4.5. Choose any error ε > 0, batch size b = b(N) ∈ [N ] and any family {(θηk) : η > 0} of Lb-SGD
sequences equation 14.

Then, there exists a step size η0 ∈ (0, 1) s.t. for a.e. η ∈ (0, η0), L(θηk∗) < ε for some

k∗ ≤
⌊
1 + N

ηb
max

(
0,

log
(
CN log(N)d0d1β2

wβ2
v/ε

)
c(δ0)d0d1β2

w

)⌋
, (15)

where C > 0 is some absolute constant. The result holds with probability at least 1−exp
(
− d0
N ·

[
N2.5

d0β2
w

]1/(ρ+1))−
O(N2) exp(−Ω(Nδ0/2)) − exp(−Ω(d2 log N)).
Remark 5.2. Note that k∗ in Theorem 5.1 depends on ε via log(1/ε), i.e., SGD converges to the global
minima at a linear rate.
Remark 5.3. In order to compare the bounds obtained by Theorem 5.1 with other works, one has to take
into consideration not only parameters βw, βv but also scaling of the data matrices X and Y . E.g., Oymak
& Soltanolkotabi (2020) works under the assumptions that ∥X:i∥ = 1 for i ∈ [N ] and βw = 1, which by the
properties of Gaussian distribution corresponds exactly to our case ∥X:i∥ =

√
d0 and βw = 1/

√
d0.

Remark 5.4. Corollary 5.1 under the LeCun initialization, β2
w = 1/d0, β2

v = 1/d1, yields exponential loss
convergence WHP for d1 = Ω̃(N1.25), improving on d1 = Ω(N2) due to Nguyen (2021). Similarly, under
different but equivalent scaling, (Oymak & Soltanolkotabi, 2020, Corollary 2.4) shows that overparametriza-
tion of the form d1 = Ω(N4/d3

0) is sufficient for exponential loss convergence, when only the first layer is
trained for d0 ∈ [

√
N, N ], whereas the second layer is fixed. Neglecting the logarithmic factor, one can see

that our bound d1 = Ω̃(N1.25) improves upon d1 = Ω(N4/d3
0) for δ0 ≤ 2.75/3 ≈ .92, including practical

datasets dimensions. Moreover, our bound works also for δ0 ∈ (0, 0.5) and for any d2 (while they assume
d2 = 1). Finally, a simple adaptation of our technique combined with some observations from Oymak &
Soltanolkotabi (2020) allows to obtain the bound d1 = Ω(N5/d4

0) in training one layer setup, cf. Appendix G.

The main tool used to obtain Theorem 5.1 is the following abstract result, which claims that under some
technical conditions on f and initialization scheme, the solutions to the DI involving f are WHP close in
the supremum norm to the trajectories of the corresponding piecewise interpolated processes.
Theorem 5.5 (Bianchi et al. (2022)). For any probability space (Ξ, F , µ), let f : RD × Ξ → R be s.t. for
some function κ : RD × Ξ → R+, the following conditions are satisfied:

1. ∀ x ∈ RD, ∃ ε > 0, ∀ z, y ∈ B(x, ε), ∀ s ∈ Ξ, ∥f(y, s) − f(z, s)∥ ≤ κ(x, s)∥y − z∥;

2. ∀ x ∈ RD, ∃ K > 0, Eξ∼µκ(x, ξ) ≤ K(1 + ∥x∥);

3. ∀ K⊂RD s.t.
K is compact , supx∈K Eξ∼µκ(x, ξ)2 < ∞;

4. for a.e. x ∈ RD, f is C2 in some neighborhood of x.
Then, for any time horizon T > 0, the following DI problem is well-defined

θ̇(t) ∈ −∂Eξ∼µf(θ(t), ξ) for a.e. t ∈ [0, T ]. (16)

Moreover, if { (θηk)k∈N+ : η > 0 } is a family of f -SGD sequences equation 14 initialized at random contin-
uously distributed θ0, then there exists a set N ⊂ (0, ∞) s.t. N c is of zero Lebesgue measure and s.t. for
every compact set K ⊂ RD, time horizon T > 0, and error ε̃ > 0,

lim
N∋η→0+

P
(
∃ θ : [0, T ] → RD solving equation 16, θ(0) ∈ K, sup

t∈[0,T ]
|θ(t) − θ̄η(t)| < ε̃

∣∣ θ0 ∈ K
)

= 1,

where θ̄η is the corresponding random (measurable w.r.t. (θηk)k∈N) piecewise interpolated process defined, i.e.,

θ̄η(t) def= θηk + (t/η − k)(θηk+1 − θηk) (17)

for all t ∈ [kη, (k + 1)η), k ∈ N.

9
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The following theorem built upon Bianchi et al. (2022) can be seen as a general tool allowing to pass
(when deducing global convergence) from the solutions to the DI equation 3 to the SGD sequences given
by equation 14. We state it for general approximators (including, e.g., deep ReLU NN) and general loss
functions as we believe it is of independent interest. In particular, we drop the assumption on the MSE loss
and the NN denoted by Ŷ .
Theorem 5.6. Let L̃i : RD → R for i ∈ [N ] be arbitrary locally Lipschitz functions satisfying the chain
rule equation 2 and being C2 in some neighborhood of a.e. point of RD. Set L̃ =

∑
i∈[N ] L̃i. Assume there

exists a nonempty compact sets Q ⊂ G ⊂ RD, s.t. any solution θ : [0, ∞) → RD to the DI

θ̇(t) ∈ −∂L̃(θ(t)) ∀ t ≥ 0, (18)

if initialized in Q, remains in G and satisfies L̃(θ(t)) ≤ L̃(θ(0))e−γt for all t ≥ 0 and some γ > 0. Choose
confidence threshold δ > 0, error ε > 0, batch size b ∈ [N ], and family {(θηk)k∈N : η > 0} of L̃b-SGD
sequences given by equation 14, where Ξ = [N ]b, µ = Unif([N ]b) and L̃b : RD × [N ]b → R+ is given by
L̃b(θ, A) =

∑
i∈A L̃i(θ). Assume that θ0 is continuously distributed.

Then, there exists a step size η0 ∈ (0, 1) s.t. for a.e. η ∈ (0, η0), P(L̃(θηk∗) < ε | θ0 ∈ Q) ≥ 1 − δ for
k∗ ≤ ⌊1 + N

ηb max(0, γ−1 log(2ε−1 supθ∈Q L̃(θ)))⌋.

Proof sketch of Theorem 5.6. Let l
def= supθ∈Q L̃(θ) and T ∗

def= inf{ t ≥ 0: le−γt ≤ ε/2 } = max
(
0, log(2l/ε)

γ

)
so that all solutions to the DI equation 18 initialized in the set Q fall to L̃−1([0, ε/2]) before time T ∗ (and
clearly never escape it). Set L

def= sup{ ∥v∥ : v ∈ ∂L(θ), θ ∈ G }.

If we could apply Theorem 5.5 with the family {(θηk)k∈N : η > 0}, ε̃ = min(ε/2L, 1) and T = 1 + N
b T ∗, it

would yield that for any δ ∈ (0, 1), there exists η0 ∈ (0, 1) s.t. for a.e. η ∈ (0, η0),

P
(
∃ θ solving θ̇(t) ∈ −∂EL̃b(θ(t), Ab) s.t. θ(0) ∈ Q and sup

t∈[0,T ]
|θ(t) − θ̄η(t)| < ε̃

∣∣ θ0 ∈ Q
)

≥ 1 − δ.

Recall that Ab ∼ Unif([N ]b) and note that EL̃b(·, Ab) = b
N L̃(·), whence if θ(t) solves θ̇(t) ∈ −∂EL̃b(θ(t), Ab),

then θ(tN/b) solves equation 18. In particular L̃(θ(t)) ≤ ε/2 for any t ≥ N
b T ∗. Therefore, as for η ∈ (0, η0)

it holds that N
b T ∗ ≤ ηk∗ ≤ T , then for a.e. η ∈ (0, η0),

L̃(θηk∗) = L̃(θ̄η(ηk∗)) ≤ L̃(θ(ηk∗)) + ε̃L ≤ ε

with probability at least 1 − δ conditioned on θ0 ∈ Q.

However, in general L̃ does not satisfy the assumptions of Theorem 5.5. In order to overcome this, we
need to consider the set G and modify L̃ outside of some neighborhood containing G, so that it becomes
globally Lipschitz. As all solutions to equation 18 initialized in Q remain in G, then it turns out that such
modification does not conflict with the argument above, as is discussed in detail in Appendix F.

We are ready to prove the main result of this section.

Proof of Theorem 5.1. For θ = (W, V ) ∈ RD and X̃ ∈ RN×d0 , let α0(X̃, θ) def= σmin(ϕ(X̃W )T ) and L(X̃, θ) def=
1
2 ∥Y − ϕ(X̃W )V ∥2

F . Define

Q(X̃) def= { θ ∈ RD : F (θ, X̃, Y ) < 1
8 , α0(X̃, θ) ≥

√
c(δ0)d0d1βw,

L(X̃, θ) ≤ Cd0d1d2β2
wβ2

vN log(N), ∥θ∥ ≤ C(
√

d0d1βw +
√

d1d2βv)},

where c(δ0) is the same constant as in Theorem 4.3, F is defined as in Theorem 3.4, equation 11, and C > 0
is some big enough absolute constant such that

P(θ0 ∈ Q(X)) ≥ 1 − exp
(

− d0

N
·
[

N2.5

d0β2
w

]1/(ρ+1) )
− O(N2) exp(−Ω(Nδ0/2)) − exp(−Ω(d2 log N)),

10
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which is possible in virtue of Theorem 4.3 and Lemma 4.4, cf. Proof of Corollary 4.5. For each X̃, let
u

def= u(X̃, θ) = 2
√

L(X̃, θ)/α2
0(X̃, θ) and U(X̃) def= supθ∈Q(X̃){

√
2∥X̃∥op∥θ∥u·e

√
2∥X̃∥opu }, so that any solution

to the DI θ̇ ∈ −∂L(θ), if initialized in Q(X̃), remains in the set G(X̃) = B(Q(X̃), U(X̃)) in virtue of
Lemma 3.1 (cf., Proof of Theorem 3.4). Moreover, U(X̃) < ∞ by compactness of Q(X̃), whence G(X̃) is
compact.

For each X̃, apply Theorem 5.6 with L̃(·) = L(X̃, ·), Q = Q(X̃), γ = infθ∈Q(X̃) α2
0(X̃, θ), δ = P(θ0 /∈ Q(X̃))

and G = G(X̃), to get that for some η0 ∈ (0, 1) and a.e. η ∈ (0, η0), P(L(X̃, θηk∗) < ε | θ0 ∈ Q(X̃)) ≥ P(θ0 ∈
Q(X̃)), where k∗ is as in Theorem 5.6 and whence bounded as in equation 15 by the definition of Q(X̃).
Note that η0 depends on X̃ only.

Using the inequality P(A | B) ≤ P(A)/P(B), multiplying both sides by δ, integrating w.r.t. the distribution
of X and estimating (1 − δ)2 ≥ 1 − 2δ, we get that P(∃ η0 ∈ (0, 1) s.t. for a.e. η ∈ (0, η0), L(θηk∗) < ε) is at
least 1 − 2P(θ0 /∈ Q(X)), as desired.

6 Numerical Experiments

We present some numerical results illustrating two training setups – when both layers (W, V ) are trained and
when W is trained only, complementing the experiments from (Oymak & Soltanolkotabi, 2020, Section 4).

6.1 Setup

Data is generated per single experimental run as follows: N = 200, rows of X are i.i.d. from the unit sphere,
d2 = 1 and labels Y are randomly chosen s.t. half are set to 1 and the other half to −1. In the first training
setup W has i.i.d. N (0, 1) entries and V has i.i.d. N (0, 1/d1) entries. In the second training setup W is as
before and V is fixed – half of the entries are 1/

√
d1 and half are −1/

√
d1 as in Oymak & Soltanolkotabi

(2020). In all of the experiments we vary d0, d1. The NNs are implemented within the Pytorch framework.
We used the standard SGD optimizer (in fact, GD as the batch size is set to 200) with momentum (0.9). The
learning rate differs on the training setup and is set to 0.15 (W only training), or 0.002 ((W, V ) training).

6.2 Results

Figure 2a illustrates the probability of convergence towards a global minimum depending on the network
configuration. The probability is approximated based on 10 independent runs and d0, d1 grid 2 spaced,
the convergence criterion is ∥ŷ − y∥/∥y∥ < 2.5e − 03 as in Oymak & Soltanolkotabi (2020). Compared
with Oymak & Soltanolkotabi (2020), there seems to be no difference between training setups in terms of
convergence probability and it is supposed that the overparametrization N/d0 is sufficient for the global
SGD convergence. In Figures 2b, 2c we present the average number of numerical zeros (absolute values
below 1e − 08) in the preactivation layer at convergence. Our investigation reveals an SGD optimization
bias in both setups toward global minima with positive number of zero preactivation neurons (i.e., ReLU
non differentiability points). In fact, these seem to be points of intersection of several ReLU activation
pattern regions, as there are many zeros found. Note the different scales of the two plots – the W only
training setup results in order of magnitude more numerical zeros than in the case of (W, V ) training. This
in particular suggests that the training trajectories might cross many different ReLU regions and thus they
would be far from the linear regime described in Elkabetz & Cohen (2021). Below, we investigate further
this phenomenon.

We now turn to Figures 3 in which we analyze the training trajectories for both setups. It is seen that despite
being close to global minima (loss is already close to 0 as seen on Figures 3a, 3f), the number of numerical
zeros in the preactivation pattern stays positive and is confined to a small range of values depending on the
studied overparametrization level as presented on Figures 3b, 3g. This confirms the observation above that
the GD scheme prefers minima located close to the boundaries between several ReLU activation patterns. In
fact, these seem to be corner points connecting several regions. We are not aware of any explanation of such
a phenomenon in the literature. Moreover, despite being close to global minima, the activation patterns keep
changing while performing the consecutive GD iterates before eventually stabilizing in some region. At which
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Figure 2: Numerical results for both training setups after 50k SGD iterates.

iteration that happens, depends on the overparametrization level as presented on Figures 3c, 3h. This, in
particular, demonstrates that most of the shallow ReLU networks training scheme happens in the nonlinear
regime, i.e., it is not confined to a single ReLU activation region until the very end stage of training. The
activation regions keep changing in a nonlinear fashion. Hence, the problem of studying the convergence of
ReLU nets cannot be simplified to a study within a linear regime as suggested by Elkabetz & Cohen (2021).

Finally, on Figures 3d, 3i, 3e, 3j we investigated the relative loss change ∆L = |L(θk)−L(θk−1)|
L(θk−1) and the

relative differential change measured in the operator norm ∆D = ∥DYk−DYk−1∥op

∥DYk−1∥op
. It is visible that the

relative differential change is by order of magnitude larger than the relative loss change, suggesting that
the training for moderate and larger overparametrization levels is far from the lazy training regime studied
in Chizat et al. (2019) characterized by ∆L ≫ ∆D.
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Figure 3: Top row: training the hidden layer of the shallow NN only. Bottom row: training both layers of the shallow NN. The number
of the hidden neurons is varied (the NN configuration is provided in the legend) and the total number of epochs of the evolution is
equal to 25k. The solid curve presents the mean from five independent runs, and the shaded region presents the standard deviation,
plotted every 100th epoch.

7 Conclusions and Future Work

We have demonstrated an improved trainability overparametrization bound of order Ω̃(N1.25) on the hidden
layer of shallow NN equipped with ReLU activation functions. We have obtained Theorem 5.6 – an result
allowing to pass from continuous solutions of the DI to the dynamics of SGD. We believe that our contri-
bution deepens the understanding of the optimization theory of NN. There are several natural directions of
further research and we list some of them below. First direction is towards the theory of deep networks,
where one could try to combine Theorem 5.6 with an analysis of DI dynamics in order to obtain improved
overparametrization guarantees. Secondly, Theorem 5.6 might serve as a tool to obtain overparametrization
bounds which are suggested by numerical experiments in Section 6. Finally, all known bounds for ReLU
NNs are valid under strong, probabilistic data assumptions and it would be of interest to pursue directions
of research that would allow for more general data such as in the case of smooth activations, cf. Table 1.
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