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Abstract
We propose RSight, a new deep neural network model for prod-
uct demand forecasting across multiple geographic regions. Our
model employs a novel region-enhanced encoder to learn cross-
regional information. Using a dataset consisting of weekly sales for
15 million products from a large e-commerce company at the US
Zip2 level, our method achieves substantial accuracy improvement
over existing state-of-the-art forecasting models. Additionally, we
demonstrate that RSight exhibits scaling effects with data sizes as
we increase the number of series in our training population, we
observe substantive performance improvements.
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1 Introduction
Inventory management at scale is a critical challenge for modern re-
tailers who handle millions of daily transactions of a catalogue con-
sisting of billions of products.With different delivery-time promises,
retailers must precisely position inventory near customer demand.
While national-level demand forecasts help with aggregate buying
decisions, they are insufficient for detailed retail operations such
as delivery; knowing that 10,000 units of a product will be sold
nationwide offers little guidance on whether to stock warehouses
in Seattle or Miami to enable fast deliveries. Furthermore, point
estimates of demand are insufficient for risk-aware planning, which
means that retailers require forecasts of the entire distribution of
regional demand in order to make optimal decisions.

The problem of probabilistic regional demand forecasting is
particularly complex due to the nonlinear, spatio-temporal nature
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Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’25, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1454-2/25/08
https://doi.org/10.1145/XXXXXX.XXXXXX

of consumer behavior. Regional demand patterns are influenced
by numerous local factors including events, weather conditions,
and demographic shifts. Furthermore, regions can exhibit complex
interactions, with demand surges in one area impacting neighboring
areas, or seasonal patterns varying across geographical regions.

Traditional approaches for demand forecasting have relied on
classical time-seriesmethods, such as ARIMAor exponential smooth-
ing. These methods are often highly scalable, but generally fail to
capture complex non-linear, spatio-temporal relationships present
in regional demand data. Recent advances in deep learning, however,
have shown promising results in general time-series forecasting,
with deep learning models achieving state-of-the-art performance
on benchmark tasks such as forecasting weather patterns, traffic,
and stock prices. While there exists work using neural networks
to forecast demand at a global or product level, the specific chal-
lenges of probabilistic regional demand forecasting remain largely
unaddressed. Hence, there is a clear need for scalable, probabilistic
forecasting models which can capture the complex spatio-temporal
dynamics of regional demand. To address this gap, we introduce
RSight, a deep neural network architecture specifically designed
for probabilistic regional demand forecasting.

In summary, our key contributions are as follows:

(1) We present RSight, a novel deep learning architecture for
probabilistic regional demand forecasting. The model intro-
duces both 1D and 2D convolutions to learn region-specific
and region-agnostic information and demonstrates state-of-
the-art predictive performance.

(2) We demonstrate that RSight outperforms various state-of-
the-art time-series forecasting models, achieving ∼9% im-
provement over PatchTST [17] andNBEATS [20] inweighted
quantile loss on real-world datasets

(3) We conduct comprehensive ablation studies to validate the
efficacy of each component in RSight

(4) Motivated by [29], we show the data scaling effect of RSight,
demonstrating our model’s suitability for large-scale demand
forecasting tasks.

The rest of paper is organized as follows. Section 3 formalizes
the problem of regional demand forecasting. Afterwards, in Section
4.1, we present a review of MQTransformer [6], upon which our
model is built. We then introduce our model, RSight, in Section
4.2. Then, experiment results and a detailed analysis are presented
in Section 5, demonstrating the superior performance of RSight
over state-of-the-art benchmark models. An ablation study is also
presented in the same section. A concluding remark is given at the
end in Section 6.
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2 Related Work
Deep Learning for Time-Series Forecasting. Deep learning has

become a dominant paradigm in time-series forecasting, driven
in large part by the success of the Transformer architecture [22].
Originally introduced for natural language processing, Transform-
ers have been adapted to time-series data through numerous vari-
ants which include time-series based inductive biases as well as
augmentations which address bottlenecks of vanilla Transformers.
Informer [32], Autoformer [26], and Fedformer [33] incorporate
frequency-based decomposition to improve long-horizon forecast-
ing. Other adaptations such as LogTrans [9] and Pyraformer [10]
focus on improving locality and scalability via customized atten-
tion mechanisms. Recent models like PatchTST [17], iTransformer
[11], ContiFormer [4], and the Rough Transformer [14] introduce
architectural innovations including patch-based inputs, inverted
attention, and continuous-time processing to further improve fore-
casting performance. Spectral attention mechanisms such as those
in [15, 16] have been proposed as an alternative to standard dot-
product attention, offering greater inductive bias for highly seasonal
signals.

Alongside these Transformer-based approaches, a range of alter-
native deep learning architectures have shown competitive or even
superior performance. Models such as N-BEATS [20], NHITS [2],
and N-BEATSx [18] use feedforward networks with basis expan-
sion to learn interpretable representations of time-series dynam-
ics. TSMixer [3] demonstrates that all-MLP architectures can rival
Transformers when structured to exploit temporal dependencies.
DLinear [31] further challenges the necessity of complex models,
showing that linear layers alone can serve as effective and efficient
forecasters.

The aforementioned architectures are proposed as general time-
series models, while other attention-based models such as MQCNN
[23], MQTransformer [6] and SPADE [24] specialize in demand
quantile forecasting and have demonstrated promising results. DeepAR
[21] remains a foundational probabilistic model for multivariate
time-series forecasting and is widely used in demand forecasting
settings.

Spatio-Temporal Forecasting. Forecasting regional-level demand
requires models that can capture spatio-temporal dynamics. A popu-
lar approach for forecasting such systems is Graph Neural Networks
(GNNs). GraphCast [8] demonstrates the power of GNN-based ar-
chitectures for high-resolution weather forecasting. Hierarchical
and graph-based approaches have also gained traction: HiSTGNN
[12] and hierarchical ST-GNNs [13] incorporate spatial hierarchies
explicitly.

Hierarchical structure in regional or categorical data introduces
additional modeling challenges. Probabilistic hierarchical forecast-
ing techniques such as deep Poisson mixtures [19] aim to capture
aggregate-level coherence. Other works [12, 13, 28] use graph-based
encodings to model inter-regional dependencies and hierarchies
across spatial and temporal scales.

Foundation Models for Time Series. Recently, foundation models
pretrained on broad time-series data have emerged. Chronos [1],
Time-LLM [7], Moirai [25], and TimesFM [5] explore the scaling
laws and transfer capabilities of large models in the time-series

domain. GPT4TS [34] applies pretrained language models directly
to time-series tasks, highlighting the potential for unification of
sequence modeling across modalities.

3 Problem Formulation
We consider the problem of forecasting weekly demand for a pop-
ulation of 𝑁 products. Let 𝑌 ∈ R𝑁×𝑇 denote the time series of
weekly demand for the past 𝑇 weeks. To forecast weekly demand,
we consider four types of inputs:

(1) X(𝑠 ) ∈ R𝑁×𝑚 : a set of𝑚 static covariates,
(2) X(𝑔) ∈ R𝑁×𝑇×𝑑𝑔 : product-level past historical inputs ,
(3) X(𝑓 ) ∈ R𝑁×𝑇×𝑑𝑓 : product-level future known inputs,
(4) X(𝑙 ) ∈ R𝑁×𝑅×𝑇×𝑑𝑙 : product-region specific inputs, where 𝑅

is the total number of regions.

We also let 𝑌 ∈ R𝑁×𝑇×1 denote the regional demand, that is, 𝑌 ⊂
X(𝑙 ) .

Given a look-backwindowwith length𝐶 ≥ 0, and future-horizon
ℎ, we wish to generate the forecast

𝑌𝑡,𝑡+1:𝑡+ℎ = 𝑓

(
𝑌𝑡−𝐶 :𝑡 ,X

(𝑔)
𝑡−𝐶 :𝑡 ,X

(𝑓 )
𝑡−𝐶 :𝑡 ,X

(𝑔)
𝑡−𝐶 :𝑡 ,X

(𝑠 ) ;𝜽
)
, (1)

where 𝜽 represents a collection of learnable parameters, 𝑍𝑡−𝐶 :𝑡 =
(𝑍𝑡−𝐶 , · · · , 𝑍𝑡 ) for any variable𝑍 and𝑌𝑡,𝑡+1:𝑡+ℎ = (𝑌𝑡,𝑡+1, · · ·𝑌𝑡,𝑡+ℎ)
with 𝑌𝑡,𝑡 ′ represents our forecast of the demand for week 𝑡 ′ made
at week 𝑡 . After the model 𝑓 is chosen, the parameters are tuned to
optimize the aggregated loss through training

Loss(𝜽 ) =
∑︁
𝑖

∑︁
𝑟

∑︁
𝑡

∑︁
ℎ

ℓ (𝑦𝑖,𝑟 ,𝑡,ℎ, 𝑦𝑖,𝑟 ,𝑡,ℎ), (2)

where each forecast 𝑦𝑖,𝑟,𝑡,ℎ is made at (product, region, forecast
date, horizon) level.

To capture the uncertainty of demand, we decide to use “quantile
loss” as the optimization objective: for the forecast 𝑓 at the 𝑞-th
quantile with respect to the true demand 𝑑 , the quantile loss 𝐿 (QL)
is defined as

𝐿𝑞 (𝑑, 𝑓 ) = 𝑞(𝑑 − 𝑓 )+ + (1 − 𝑞) (𝑓 − 𝑑)+, (3)

where (·)+ = max(·, 0).
The weighted P50 and P90 QL, i.e., QL with 𝑞 ∈ {0.5, 0.9} aggre-

gated all dimensions (e.g., products, regions and forecasting hori-
zons) and then normalized by the aggregated demand, are widely
used to measure the quality of forecasts and have been used as the
loss function of training and evaluation metric for many previous
works on multi-horizon time series forecasting [6, 23, 27].

4 Model
In this section, we present RSight, a novel deep-learning architec-
ture for forecasting regional level demand. RSight uses the state-of-
art MQTransformer [6] as the base architecture, and incorporates
region-enhanced convolutions in the encoder. For clarity, we pro-
vide an overview of the main components of MQTransformer in
Section 4.1. In Section 4.2, we discuss the innovations of RSight, i.e.,
the region-enhanced convolutions, which effectively incorporate
regional-level features.
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Figure 1: Model architecture of RSight. We enhance the MQTransformer [6] encoder by combining the region-specific information
X(𝑙 ) with region-agnostic information X(𝑔) early as well as adding region-enhanced convolutions highlighted in grey and blue
correspondingly.

4.1 MQTransformer
MQTransformer is built on two main architectural components:
horizon-specific decoder-encoder attention and decoder self-attention.
These components enable the model to (i) align different parts of
the input history with each forecast horizon and (ii) incorporate
information from past forecasts to reduce excess volatility.

The first module in MQTransformer produces a positional encod-
ing for input features. Static features X(𝑠 ) and historical covariates
X(𝑔) are passed into a positional encoder and concatenated:

𝑟 (𝑠 ) = PE(𝑠 )
(
X(𝑠 )

)
𝑟
(𝑔)
𝑡−𝐶 :𝑡 = PE(𝑔)

(
X(𝑔)

)
𝑟𝐶−𝑡,𝑡 =

[
Expand

(
𝑟 (𝑠 )

)
, 𝑟

(𝑔)
𝑡−𝐶 :𝑡

]
,

where [𝑥,𝑦] denotes concatenation of two tensors. The positionally
encoded vectors are then concatenated with demand features and
passed to a Conv1D encoder:

ℎ̃𝑡−𝐶 :𝑡 = Conv1D
(
𝑌𝑡−𝐶 :𝑡 ,X

(𝑔)
𝑡−𝐶 :𝑡 ,X

(𝑓 )
𝑡−𝐶 :𝑡 , 𝑟𝑡−𝐶 :𝑡

)
(4)

ℎ𝑡−𝐶 :𝑡 =
[
ℎ̃𝑡−𝐶 :𝑡 ; Expand

(
MLP

(
X(𝑠 )

))]
. (5)

To define the decoder, first let

Attention (𝑄,𝐾,𝑉 ;𝑊 ) = SoftMax

(
𝑄𝑊𝑄 (𝐾𝑊𝐾 )⊥√︁

𝑑𝑚𝑜𝑑𝑒𝑙

)
𝑉𝑊𝑉 .

Then we define for each forecast horizon 𝑙 = 1, . . . , 𝐻 and snapshot
𝑠,𝑢 = 𝑡 −𝐶, . . . , 𝑡 :

𝑐
𝐻𝑆,𝑙
𝑠,𝑢 = Attention ( [ℎ𝑠 ; 𝑟𝑠 , 𝑟𝑠+𝑙 ], [ℎ𝑢 , 𝑟𝑢 ], ℎ𝑠 )
𝑐
agg
𝑡 = MLP( [ℎ𝑡 ; 𝑟𝑡 ])
𝑐𝑠,𝑟 = [𝑐𝑡,1; · · · ; 𝑐𝑡,𝐻 : 𝑐𝑎𝑔𝑔𝑡 ]

𝑐𝐷𝑆
𝑡,ℎ

= Attention({𝑐𝑠,ℎ, ℎ𝑠 , 𝑟𝑠 }𝑠<𝑡 ) ,

These are concatenated and passed into a shared output head:

𝑌𝑡,𝑡+ℎ = MLP
(
[𝑐agg𝑡 ; 𝑐HS

𝑡,ℎ
; 𝑐𝐷𝑆
𝑡,ℎ

; 𝑟𝑡+ℎ]
)
,

which outputs 𝑄 quantiles for the target horizon ℎ.

4.2 RSight
Here, we introduce the model architecture of RSight, illustrated in
Figure 1. Note that MQTransformer was designed for time-series
data of a particular spatial granularity and does not leverage cross-
regional information, limiting its effectiveness on regional fore-
casting tasks (as demonstrated in Section 5). Additionally, when
forecasting regional demand, national-level demand can provide
valuable contextual information about base regional demand trends
at the regional level, suggesting that an effective model should
incorporate both national and regional demand histories.

To address these limitations, RSight introduces an enhanced
encoder layer designed to answer two fundamental questions:

(1) How can we effectively integrate region-specific features
with region-agnostic (national-level) information?

(2) How can we leverage cross-regional dependencies to im-
prove forecasting accuracy?

To address the first question, we propose a simple method for
mixing the national-level features X(𝑔)

𝑡 with regional-specific fea-
tures X(𝑙 )

𝑡 . In particular, we compute encoder input embeddings𝑈𝑡
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as follows:

𝑈𝑡 = Concat
(
Broadcast(X(𝑔)

𝑡 ),X(𝑙 )
𝑡

)
. (6)

These embeddings𝑈𝑡 are then passed to the Conv1D encoder de-
fined in (4). To summarize, in RSight, instead of (4) that only con-
siders product level historical covariates, we now have

ℎ̃𝑡−𝐶 :𝑡 = Conv1D ( [𝑌𝑡−𝐶 :𝑡 ,𝑈𝑡−𝐶 :𝑡 , 𝑟𝑡−𝐶 :𝑡 ]) , (7)

which also takes product-region level features.
To address the second question above, we introduce the region-

enhanced conovolutions, which consists of an 1D and 2D dilated
convolutions (illustrated in Figure 2). Formally, the region-enhanced
convolutions do the following

𝑉
(1)
𝑡 = Conv1D

(
𝑋

(𝑙 )
𝑡−ℎ:𝑡

)
,

𝑉
(2)
𝑡 = Conv2D

(
𝑋

(𝑙 )
𝑡−ℎ:𝑡

)
,

𝐻𝑡 = 𝑉
(1)
𝑡 +MLP

(
𝑉

(2)
𝑡

)
.

Intuitively, Conv1D layer provides region-specific time-series
embeddings, while the Conv2D layer learns cross-region corre-
lations. One motivation behind the use Conv2D for cross-region
learning rather than, say, an MLP is that Conv2D can learn local
regional patterns which are common across multiple regions. An
important caveat of using Conv2D is a fixed, meaningful ordering
of regions is required. An meaningless ordering such as randomly
shuffling regions in the input tensor could make it harder for the
model to learn related demand patterns. For example, if Miami,
Orlando, and Tampa are placed far apart in the input representa-
tion, the model might struggle to efficiently capture the similar
seasonal patterns in swimming pool supplies across these Florida
cities, patterns that are driven by their shared climate and lifestyle
characteristics. In our study, the natural ordering of US Zip2 pro-
vides implicit information of the geographical locations, i.e., Zip2
regions that are close in ordering are generally geographically close
as well. Hence, we believe Conv2d can indeed learn meaningful
cross-region information. The above intuition also points out in-
teresting future direction to apply attention based learning across
regions utilizing more region-specific information such as total
population, income level, or other demographic characteristics.

The output of the region-enhanced convolution is then added
back to the ℎ̃𝑡−𝐶 from (7) before feeding into the decoder.

In summary, rather than (5) in MQTransformer, we now have

ℎ𝑡−𝐶 :𝑡 =
[
ℎ̃𝑡−𝐶 :𝑡 + 𝐻𝑡−𝐶 :𝑡 ; Expand

(
MLP

(
X(𝑠 )

))]
in RSight.

5 Results
To benchmark RSight, we consider the following experimental
setups. First, we compare RSight to a selection of state-of-the-art
deep learning time-series forecasting models, including PatchTST
[17], ChronosBolt [1], NHITS [2], NBEATS [20], and TS-Mixer
[3], as well as MQTransformer [6]. We demonstrate that RSight
outperforms all models on a large-scale regional demand forecasting
problem.

Then, we perform a series of ablation studies. To begin with, we
examine the scaling ability of RSight by increasing the number

(a) 1D dilated convolution layer: historical inputs only from own
region is used

(b) 2D dilated convolution layer: the input from nearby regions
are also used

Figure 2: Illustration of 2D dilated causal and 1D dilated
causal layers

of series processed by the model. We demonstrate that RSight ex-
hibits scaling laws which show promise for RSight as a large-scale
time-series foundation model. We then ablate RSight on different
activation functions to study whether the choice of activation func-
tions affect the performance. Next, we experiment Attention and
MLP based cross-region learning mechanisms instead of the base
convolutional design. Finally, we demonstrate the importance of
natural US Zip2 region ordering to RSight performance.

5.1 Large-Scale Regional Demand Forecasting
In this experiment, we consider a dataset of weekly sales for 15
million products sold from a large e-commerce retailer and includes
time series features such as demand, promotions, holidays and
detail page views as well as static metadata features such as catalog
information. For each product, demand is observed in 100 Zip2
regions (defined as the first 2 digits of US zipcodes).

The dataset is divided into 10 million products whose data ranges
from 2018 to 2022 and 5 million products whose data span 2023. At
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the end of each week, we predict P50 and P90 quantiles for next 5
weeks.

In Table 1, we report the performance of RSight relative to the
state-of-the-art benchmarks using Weighted Quantile Loss (WQL)
as our performance metric. For products 𝑖 = 1, . . . , 𝑁 with observed
demand 𝑑𝑖,𝑡 and forecasts 𝑓𝑖,𝑡 for 𝑡 = 1, ..., 𝐻 , WQL is defined

𝑊𝑄𝐿(𝑞) :=
∑𝑁
𝑖

∑𝐻
𝑡=1 𝐿𝑞 (𝑑𝑖,𝑡 , 𝑓𝑖,𝑡 )∑𝑁
𝑖

∑𝐻
𝑡=1 𝑑𝑖,𝑡

. (8)

We use WQL as this metric gives greater weight to products with
higher demand, which better aligns with business objectives since
errors in high-demand products typically have a larger impact
on revenue and customer satisfaction than errors in low-demand
products.

We see that RSight outperforms recent developed time series
deep learning models such as PatchTST and ChronosBolt by a large
margin, with RSight improving P50 WQL by 200 bps (7%) and P90
WQL by 370 bps (13%). We propose two possible explanations for
this performance improvement. First, each of the benchmark mod-
els do not leverage cross-region information, which is responsible
for the performance improvement over MQTransformer. Second,
the horizon-specific decoder-encoder attention and decoder self-
attention inherited from the MQTransformer backbone process ex-
ogenous features efficiently. The significance of exogenous features
for demand forecasting has been well-documented [30], and the
efficient processing of such features is crucial for a performant
forecasting model.

We also observe small improvement (11 bps in P50 and 20 bps in
P90) from RSight against MQTransformer, showing the benefit of
the region-enhanced convolutions. Due to the large scale of product
population, improvements of such magnitude are still significant
and entail sizable financial and operational impacts.

Details of the hyperparameter tuning for baseline models are
reported in Appendix A.

Table 1: WQL of RSight against state-of-art time series fore-
casting models

Model P50 WQL P90 WQL
RSight 0.2748 0.2398
MQTransformer 0.2759 0.2418
PatchTST 0.2986 0.2773
MLP 0.5 0.9
NHITS 0.2983 0.2699
ChronosBolt 0.2948 0.2752
TS-Mixer 0.3764 0.3830
NBEATS 0.299 0.278

5.2 RSight scaling
We experiment with RSight and MQTransformer on different train-
ing data sizes to assess the scaling law on weighted quantile loss
over the same inference data used in Table 1. To that end, we train
both architectures on random samples of our full training data
containing 10,000, 100,000, 1 million, and 10 million products re-
spectively, across all US Zip2 regions.

Table 2 shows P50 and P90 weighted quantile loss for all cases.
Both MQTransformer and RSight improve with the increase of
training data, highlighting the returns to scaling. When we have
small number of training data (less than 10,000 products), RSight
do not outperform MQTransformer. One possible reason for that
is that the number of data is too small for the region-enhanced
convolution to learn useful information. With 1 million products,
RSight start to outperform MQTransformer. While using 10 million
products in training further improves the test error, the margin
from RSight over MQTransformer is about the same.

Table 2: WQL of RSight on different training data sizes

Training size RSight P50 RSight P90 MQT P50 MQT P90
104 0.5001 0.8999 0.3101 0.2885
105 0.3025 0.2651 0.2930 0.2713
106 0.2802 0.2496 0.2828 0.2532
107 0.2748 0.2398 0.2759 0.2418

5.3 RSight with different activation functions
Over time people have developed different activation functions
for neural network. Here, we consider 5 activation functions for
RSight and study their impact on WQL. Table 3 summarizes the
result.

For P50, the choice of activation function does not lead to much
difference (less than 7 bps across all models) while for P90 the devi-
ations are larger (20 bps across different models) with Exponential
Linear Unit (ELU) the best and PReLU the worst.

Table 3: WQL of RSight with different activation function

Model P50 WQL P90 WQL
RSight-ReLU 0.2748 0.2398
RSight-LeakyReLU 0.2755 0.2407
RSight-PReLU 0.2754 0.2409
RSight-ELU 0.2752 0.2389
RSight-GELU 0.2755 0.2408

5.4 RSight with different cross-region learning
mechanisms

We evaluate two alternative cross-region learning mechanisms in
place of the convolutional block in RSight. RSight-Attention ap-
plies multi-head self-attention along the region dimension at each
time step and applies a demand-weighted distance matrix to mask
our attention scores. In short, for any specific region, we will mask
out regions with large distance to the target region. RSight-MLP
uses a dimension-preserving linear transformation over the same
axis. Table 4 compares these variants with the original RSight.
Firstly, RSight-MLP produces higher WQL for both P50 and P90
compared to 2D convolution and attention based cross-region learn-
ing. This shows that the extra information from other regions can-
not improve the forecast unless carefully utilized. Secondly, we
observe RSight-Attention performs on par.
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5.5 Region ordering
Asmentioned in Section 4.2, the convolutional cross-region learning
used by RSight is motivated by the intuition that the canonical
ordering of US Zip2 regions provides a useful inductive bias. To
verify this intuition, we randomly permute US Zip2 regions in our
data and retrain RSight on the permuted data. The final row of
Table 4 shows that disrupting natural region ordering leads to WQL
degradation of 45 bps on P50 and 79 bps on P90, confirming our
intuition.

Table 4: WQL of RSight with different cross-region learning
mechanisms and with shuffled region ordering

Model P50 WQL P90 WQL
RSight-Conv 0.2748 0.2398
RSight-Attention 0.2756 0.2394
RSight-MLP 0.2793 0.2411
RSight-Conv (shuffled regions) 0.2793 0.2477

6 Conclusion
We introduced RSight, a novel deep neural networkmodel designed
to directly forecast product demand across predefined geographic
regions within US. Our model uses MQTransformer as its backbone
but can readily adapt to leverage other architectures such as SPADE
[24], facilitating fast evaluation and deployment of state-of-the-art
models across business applications. Our work demonstrates the
feasibility of building a Deep Neural Network (DNN) model for
regional demand forecasting using the same architectural backbone
as national demand forecasting models. The next key research ques-
tion is whether a single foundation model can effectively handle
both national and regional forecasting simultaneously.

This work also shows several challenges to overcome along this
path. First, we observe a noticeable impact of region-specific inputs
on model performance, which requires new research on model’s
capability to handle multiple input granularity. Second, training
across marketplaces requires the model to handle a flexible number
of regions, a topic requiring effort beyond the scope of this paper.
Finally, reconciling multiple tasks (e.g., national level forecasting
vs region-level forecasting) inside a single DNN framework needs
further study as well.
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A Baseline Hyperparameters
In order to select the hyperparameters for the baseline models, we
took a random subset of 10000 products during the training window
as a calibration set. We used 7000 products for training and 3000
products as validation and conducted grid search over possible
parameters. Models with the best quantile loss on the validation
were selected. Search spaces and final hyperparameters can be
found in Table 5.
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Table 5: Hyperparameter search spaces for all models. Val-
ues in bold indicate the final selected configuration for each
model.

Model Parameter Search Space

PatchTST

hidden_size {64, 128}
n_heads {4, 16}
encoder_layers {2, 4}
patch_len {8, 16}
d_model {16, 32, 64}
input_size {52, 104}
learning_rate {0.0001, 0.001}
batch_size {32}

NBEATS

num_layers {2, 3}
mlp_width {128, 256}
n_harmonics {1, 2, 3}
n_polynomials {1, 2, 3}
d_model {32, 64, 128}
input_size {52, 104}
batch_size {32}
learning_rate {0.0001, 0.001}

NHITS

n_pool_kernel_size {[2,2,1], [4,2,1], [8,4,1], [16,8,1]}
n_freq_downsample {[168,24,1], [60,8,1],[16,8,1], [1,1,1]}
input_size_multiplier {1, 3, 5}
scaler_type {None, "robust", "standard"}
d_model {32, 64}
input_size {52, 104}
batch_size {32}
learning_rate {0.0001, 0.001}

ChronosBolt

input_patch_size {8, 16}
d_ff {512, 1024}
d_kv {32, 64}
d_model {32, 64}
input_size {52, 104}
batch_size {8, 16}
learning_rate {0.0001, 0.001}

TSMixer

n_block {2, 3}
ff_dim {16, 64, 128, 256}
residual_connection {"add", "cat"}
revin {False, True}
d_model {16, 32, 64, 128}
input_size {52, 104}
batch_size {32}
learning_rate {0.0001, 0.001}

MLP

num_layers {2, 3, 4}
hidden_size {128, 256, 1024, 2048}
use_exog {False, True}
d_model {32, 64}
input_size {52, 104}
batch_size {32}
learning_rate {0.0001, 0.001}
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