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Abstract
Continual learning aims at incrementally ac-001
quiring new knowledge while not forgetting002
existing knowledge. To overcome catastrophic003
forgetting, methods are either rehearsal-based,004
i.e., store data examples from previous tasks005
for data replay, or isolate parameters dedi-006
cated to each task. However, rehearsal-based007
methods raise privacy and memory issues, and008
parameter-isolation continual learning does not009
consider interaction between tasks, thus hin-010
dering knowledge transfer. In this work, we011
propose MoCL, a rehearsal-free Modular and012
Compositional Continual Learning framework013
which continually adds new modules to lan-014
guage models and composes them with existing015
modules. Experiments on various benchmarks016
show that MoCL outperforms state of the art017
and effectively facilitates knowledge transfer.018

1 Introduction019

To effectively deploy machine learning (ML) mod-020

els in real-world settings, they need to adopt con-021

tinual learning (CL), i.e., incrementally acquire,022

update and accumulate knowledge to evolve con-023

tinually and stay effective over time (Chen and024

Liu, 2018). However, CL often suffers from catas-025

trophic forgetting (McCloskey and Cohen, 1989):026

The knowledge learned at early stages of training027

is overwritten by subsequent model updates.028

A commonly used strategy to mitigate catas-029

trophic forgetting is to store training samples from030

prior tasks along the continual learning process and031

train the model jointly with samples from prior032

and current tasks (rehearsal) (Rebuffi et al., 2017).033

However, training samples of prior tasks are not al-034

ways available due to storage or privacy constraints035

(Wang et al., 2023a).036

Another line of work allocates task-specific pa-037

rameters to overcome catastrophic forgetting, often038

referred to as parameter isolation-based CL. Al-039

though inter-task interference leads to catastrophic040

forgetting (Wang et al., 2023a), knowledge transfer 041

across tasks could be promising. However, those 042

approaches do not enable effective knowledge 043

transfer. Recent parameter isolation-based methods 044

either separately train task-specific modules, com- 045

pletely excluding knowledge transfer (Wang et al., 046

2023d), or progressively concatenate all previous 047

task-specific modules with the current task module 048

(Razdaibiedina et al., 2022), without considering if 049

the interaction between tasks is “positive” (knowl- 050

edge transfer boosting performance) or “negative” 051

(knowledge interference hurting performance). 052

To address these challenges, we introduce 053

MoCL, a Modular and Compositional Continual 054

Learning framework for language models.1 MoCL 055

avoids catastrophic forgetting without storing addi- 056

tional data and facilitates effective knowledge trans- 057

fer via module composition. Specifically, MoCL 058

allocates task-specific parameters using prefix tun- 059

ing (Li and Liang, 2021). During training, MoCL 060

continually adds new task-specific modules to lan- 061

guage models. To avoid catastrophic forgetting, 062

the task-specific module is frozen once the train- 063

ing on the respective task is finished. Additionally, 064

MoCL facilitates knowledge transfer across tasks 065

by composing existing and new modules based on 066

task matching weights while learning the new task. 067

In our evaluation on near-domain and far- 068

domain continual learning benchmarks, MoCL out- 069

performs state-of-the-art methods under the task- 070

incremental learning setting where the task identi- 071

ties are available during testing. It further demon- 072

strates strong abilities to transfer knowledge of pre- 073

vious tasks to the new tasks. Furthermore, the task 074

matching strategy of MoCL enables task composi- 075

tion during testing. As a result, MoCL effectively 076

addresses the continual learning problem in the 077

challenging class-incremental setting where task 078

identities are not provided during testing. 079

1We will release our code upon publication.
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Figure 1: Overview of the MoCL framework for continual learning. MoCL continually adds new modules to
language models and composes existing and new modules based on task matching weights for learning the new task.

2 Related Work080

In line with previous work (De Lange et al., 2021;081

Ke and Liu, 2022; Wang et al., 2023a), we group082

CL strategies into three categories. (i) Regular-083

ization-based methods add explicit regularization084

terms to preserve the knowledge of previous tasks085

(Li and Hoiem, 2017; Kirkpatrick et al., 2017;086

Aljundi et al., 2018). As regularizing knowledge087

tends to have suboptimal performance, it is often088

used in combination with other methods. (ii) Re-089

hearsal-based methods address catastrophic forget-090

ting by saving old training samples in a memory091

buffer (Rebuffi et al., 2017; Rolnick et al., 2019;092

Zhang et al., 2022a), or training generative models093

to provide pseudo samples of previous tasks (Shin094

et al., 2017; Su et al., 2019) for future rehearsal.095

(iii) Parameter isolation-based methods assign iso-096

lated parameters dedicated to each task along the097

CL process to prevent interference between tasks098

(Madotto et al., 2020; Zhang et al., 2022b; Razdai-099

biedina et al., 2022; Wang et al., 2023d).100

Since rehearsal-based methods raise memory101

and data privacy issues, we focus on rehearsal-free102

CL methods. MoCL falls into the category of pa-103

rameter isolation-based continual learning, i.e., we104

allocate task-specific parameters to avoid knowl-105

edge interference. In contrast to related work, we106

additionally encourage knowledge transfer consid-107

ering the relatedness across tasks.108

3 Continual Learning Basics / Notation109

In this work, we focus on continual learning110

(CL) on a sequence of text classification tasks.111

Specifically, we denote the sequence of tasks as112

{T1, . . . , TN}. Each task Tn contains a set of input113

samples {(xin, yin)}, where xin is the input text, yin114

is the ground-truth label, and n ∈ {1, . . . , N} is115

the task identity. A CL model aims to solve the116

series of tasks which arrive sequentially. The over-117

arching goal is to optimize the model’s average118

performance across all tasks after learning them in 119

the sequence. As we focus on rehearsal-free contin- 120

ual learning, data from earlier tasks is not available 121

when training later tasks, i.e., our model does not 122

suffer from the aforementioned shortcomings of 123

rehearsal-based methods, such as memory issues. 124

While in many benchmark settings, the task 125

identity n is provided, it is not a realistic as- 126

sumption that task identities are available in real- 127

world setups. Thus, we consider two setups: task- 128

incremental learning (TIL) and class-incremental 129

learning (CIL). In TIL, the task identities are avail- 130

able in both training and testing. In CIL, the task 131

identities are only provided during training.2 132

4 Method 133

We propose MoCL, a novel CL approach for lan- 134

guage models to tackle catastrophic forgetting and 135

enhance knowledge transfer at the same time. 136

Avoiding Catastrophic Forgetting. We utilize 137

prefix tuning (Li and Liang, 2021), a parameter- 138

efficient fine-tuning (PEFT) approach, for allocat- 139

ing task-specific parameters to LMs, avoiding catas- 140

trophic forgetting without storing data samples.3 141

In particular, prefix-tuning prepends a set of train- 142

able parameters (prefix) to the frozen pretrained 143

language model (PLM) for downstream task fine- 144

tuning. Instead of updating the whole model, only a 145

small number of prefix parameters is trained. As il- 146

lustrated in Figure 1, MoCL uses trainable prefixes 147

as the task-specific modules and keeps the PLM 148

frozen. For each task Tn ∈ {T1, . . . , TN} in the 149

sequence, we initialize a prefix Pn for fine-tuning. 150

After the training on one task is finished, the corre- 151

2For better readability, we also refer to the domain-
incremental learning (DIL), where tasks have the same la-
bel space but different input distributions, with and without
test-time task identities as CIL and TIL, respectively; see
Appendix A.2 for a more rigorous definition.

3Other PEFT modules such as Adapter (Houlsby et al.,
2019) and LoRA (Hu et al., 2021) can also be combined with
MoCL. We leave such exploration for future work.
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sponding prefix parameters are frozen to preserve152

the task-specific knowledge in the following train-153

ing process, thus avoiding catastrophic forgetting.154

Enabling Knowledge Transfer. MoCL introduces155

task feature vectors for task matching and com-156

poses old and new modules for learning. This com-157

position strategy facilitates effective knowledge158

transfer, which is often ignored by prior work.159

In particular, while learning on Tn, the previ-160

ously acquired knowledge, which is encoded in161

the respective prefixes (P1, . . . , Pn−1), is reused162

via a weighted summation, denoted as P ′
n =163 ∑n

k=1 αkPk. Here, Pk is the prefix specific to the164

kth task and αk is the weight determining the con-165

tribution of Pk for new task learning. We detail its166

computation below. Finally, the composed prefix167

P ′
n is prepended to the PLM, consisting of all the168

prefix components up to the current task.169

To calculate the prefix contribution weights αk,170

we introduce trainable task feature vectors V ∈171

RN×D to capture salient features of tasks in the172

CL sequence. Note that each task-specific vec-173

tor v ∈ RD has the same dimension as the input174

embeddings xn ∈ RD (i.e., the embeddings from175

the PLM encoder). Then, we calculate the cosine176

similarity between the input embeddings xn and177

feature vectors up to the current nth task V [: n] as178

task matching scores α [: n] = cos(xn, V [: n]).179

Training and Inference. The training objective180

for the nth task is to find the prefix Pn and the task181

feature vector vn that minimize the cross-entropy182

loss of training examples, and, at the same time,183

maximize the cosine similarity between vn and the184

corresponding task input embeddings xn:185

min
Pn,vn

−
∑

xn,yn

log p(yn|xn, P
′
n, θ)−

∑
xn

cos(xn, vn) (1)186

During inference, as the task identities are avail-187

able in the TIL setting, we directly select the task-188

specific prefix for inference. In the CIL setting, we189

use the matching scores between input and task fea-190

tures vectors for prefix composition. The resulting191

prefix is prepended to the PLM for inference.192

5 Experimental Setup193

In this section, we describe our experimental setup.194

5.1 Datasets195

Following Wang et al. (2023d), we distinguish196

benchmarks according to the domain similar-197

ity of tasks. As near-domain benchmarks, we198

use the Web-of-Science document classification 199

dataset (Kowsari et al., 2017) consisting of 7 200

tasks, and AfriSenti (Muhammad et al., 2023), 201

a multilingual sentiment analysis dataset with 12 202

African languages. As far-domain benchmark, we 203

use the widely adopted MTL5 dataset (de Mas- 204

son D’Autume et al., 2019), including 5 text clas- 205

sification tasks. Following prior work, we apply 206

different task orders for evaluation. Detailed task 207

information are provided in Appendix A.1. 208

5.2 Training Details 209

We utilize three LMs for these datasets in line with 210

previous work (Razdaibiedina et al., 2022; Wang 211

et al., 2023d).4 We use encoder-based models for 212

WOS, AfriSenti and MTL5 datasets (BERT (Devlin 213

et al., 2018), AfroXLMR (Alabi et al., 2022) and 214

BERT, respectively), and the encoder-decoder T5 215

(Raffel et al., 2020) model for MTL5 under the 216

few-shot setting. All reported results are averaged 217

over 3 random seeds. The detailed experimental 218

settings are provided in Appendix A.4.1. 219

5.3 Baselines 220

To compare different CL methods, we include the 221

following baselines: Sequential FT continuously 222

fine-tunes the language model (the prefix param- 223

eters in our case) on the task sequence; Per-task 224

FT trains a separate prefix for each task; and the 225

parameter isolation-based methods ProgPrompt 226

(Razdaibiedina et al., 2022) and EPI (Wang et al., 227

2023d). A detailed description of these methods 228

can be found in Appendix A.3.1. 229

Method WOS
AfriSenti Orders

AVG 1 2 3

Sequential FT 53.86 6.17 5.62 6.52 6.30
Per-task FT 82.78 52.41 52.41 52.41 52.41
ProgPrompt 89.93 49.07 50.16 46.74 50.30
EPI 77.83 43.10 41.49 42.65 45.16
MoCL (Ours) 90.59 56.77 57.05 56.52 56.74

Table 1: TIL results on near-domain datasets.

6 Experimental Results 230

In this section, we discuss our experimental results. 231

6.1 MoCL for Task-Incremental Learning 232

Near-domain. As shown in Table 1, MoCL outper- 233

forms state-of-the-art methods on both benchmarks. 234

4In general, MoCL is compatible with any transformer-
based model.
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Method
MTL5 (BERT) Orders

AVG 1 2 3 4

Sequential FT 14.8 27.8 26.7 4.5 18.4
Per-task FT 79.0 79.0 79.0 79.0 79.0
ProgPrompt ⋄ 77.9 78.0 77.9 77.9 77.9
EPI † 77.3 77.4 77.3 77.2 77.4
MoCL (Ours) 79.4 79.3 79.6 79.2 79.4

Method
MTL5 (T5) Orders

AVG 1 2 3

Sequential FT 28.5 18.9 24.9 41.7
Per-task FT 75.1 75.1 75.1 75.1
ProgPrompt⋄ 75.1 75.0 75.0 75.1
EPI 56.4 49.7 54.1 65.3
MoCL (Ours) 75.9 75.6 75.4 76.7

Table 2: TIL results on far-domain MTL5 with BERT
and T5 as the base model. ⋄ and † indicate that results
are taken from Razdaibiedina et al. (2022) and Wang
et al. (2023d), respectively.

CIL
Datasets

WOS AfriSenti MTL5-BERT MTL5-T5

EPI 77.83 43.10 77.3 56.4
Ours 79.23 45.62 74.1 56.8

Table 3: CIL results. We only compare MoCL and EPI
as they are the only two rehearsal-free approaches that
support this challenging task setting.

It is 7.81 and 4.36 points better than training each235

task with an individual model (per-task FT), indi-236

cating it realizes effective knowledge transfer.237

Since EPI consists of task identification and per-238

task fine-tuning, its performance depends on the239

task identification accuracy. While it achieves com-240

parable results with per-task fine-tuning on WOS,241

the performance degrades on AfriSenti, where dif-242

ferent languages could be harder to differentiate.243

While MoCL achieves comparable results to244

ProgPrompt on WOS (0.66 percentage points bet-245

ter), the performance gap on AfriSenti is consider-246

ably higher (7.7 points better). We assume this is247

due to the suboptimal knowledge transfer of Prog-248

Prompt, which we will analyze in Section 6.3.249

Far-domain. Table 2 provides the results on MTL5250

using BERT (encoder model) and T5 (encoder-251

decoder model). MoCL again outperforms other252

CL methods in both cases across different task or-253

ders. Its advantage over per-task fine-tuning is254

less pronounced, which is due to the fact that far-255

domain tasks share weaker similarities.256

FWT
Datasets

WOS AfriSenti MTL5-BERT MTL5-T5

ProgPrompt 8.4 -3.5 -0.3 0
Ours 8.9 4.8 0.3 0.3

Table 4: Forward transfer (FWT) score comparison be-
tween ProgPrompt and MoCL across datasets.

6.2 MoCL for Class-Incremental Learning 257

Table 3 presents the class-incremental results. We 258

compare MoCL only to EPI as they are the only 259

two rehearsal-free CL methods applicable to this 260

setting. Unlike EPI, our model has no explicit 261

task identification component. Nevertheless, it still 262

achieves better or competitive results. 263

6.3 Forward Transfer Analysis 264

We calculate the forward transfer scores (FWT) 265

(Wang et al., 2023a) of MoCL and ProgPrompt in 266

the TIL setting (see Table 4).5 267

The results show that ProgPrompt suffers from 268

catastrophic forgetting on AfriSenti (FWT < 0) 269

and explain the performance gap in Table 1. We 270

assume the reason is negative interference between 271

some of the languages, as observed in Wang et al. 272

(2023c). ProgPrompt suffers from such interfer- 273

ence as it concatenates all previous task-specific 274

modules with the current task module, without con- 275

sidering task interaction. In contrast, MoCL com- 276

poses task modules based on task matching, thus 277

avoiding negative interference between tasks while 278

exploiting similarities for knowledge transfer. 279

On the far-domain MTL5 dataset, MoCL still 280

achieves higher scores than ProgPrompt. This sug- 281

gests that our approach is better at transferring 282

knowledge on various benchmarks, even with dif- 283

ferent levels of task similarities. 284

7 Conclusion 285

In this paper, we introduced MoCL, a modular and 286

compositional continual learning framework for 287

language models, effectively addressing the critical 288

challenges of catastrophic forgetting and knowl- 289

edge transfer in continual learning. Our broad eval- 290

uations across various benchmarks demonstrated 291

MoCL’s superior performance compared to existing 292

state-of-the-art methods and showed its proficiency 293

in knowledge transfer from previous tasks. 294

5As mentioned in 6.1, EPI consists of task identification
and per-task FT. Thus, with given task IDs, EPI is identifical to
per-task FT, thus, includes no knowledge transfer (FWT = 0).
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8 Limitation295

One limitation of our work is the scope of evalua-296

tion. While MoCL is generally applicable to a wide297

range of tasks, we primarily focus on text classifi-298

cation tasks following prior work. Further exper-299

iments with other types of NLP tasks, especially300

generative tasks is left as a future work direction.301

Besides, MoCL leverages prefix-tuning for302

parameter-efficient continual learning. It has not303

been evaluated with other prevalent parameter-304

efficient fine-tuning (PEFT) approaches such as305

Adapter (Houlsby et al., 2019) or LoRA (Hu et al.,306

2021). Future work could explore the synergy be-307

tween our method and these alternative fine-tuning308

strategies.309
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A Appendix482

A.1 Dataset Information483

Here we give detailed information of the datasets484

we use with in this work. For near-domain485

benchmarks, we use Web-of-Science (WOS) and486

AfriSenti. WOS is originally a hierarchical doc-487

ument classification datasets which collects pub-488

lished papers in 7 different domains, which are489

biochemistry, civil engineering, computer science,490

electrical engineering, medical science, mechanical491

engineering and psychology. These domains corre-492

sponds to 7 high-level classes for document classi-493

fication, and there are several low-level subclasses494

under each high-level class. Following Wang et al.495

(2023d), we organize 7 continual learning tasks496

according to these high-level classes. AfriSenti497

is a multilingual sentiment analysis dataset which498

covers 12 low-resource African languages, includ-499

ing Amharic (am), Algerian Arabic (dz), Hausa500

(ha), Igbo (ig), Kinyarwanda(kr), Moroccan Arabic501

(ma), Nigerian Pidgin (pcm), Mozambican Por-502

tuguese (pt), Swahili (sw), Xitsonga (ts), Twi (twi)503

and Yoruba (yo).504

For far-domain benchmarks, we adopt the com-505

monly used MTL5 dataset, consisting of 5 text clas-506

sification tasks. we summarize the details of MTL5507

in Table 5. We experiment with BERT-base and508

T5-large models on this dataset in line with prior509

work (Razdaibiedina et al., 2022). For BERT-based510

experiments, we uses the same train and test sets511

follwoing prior work such as ProgPrompt (Razdai-512

biedina et al., 2022) and EPI (Wang et al., 2023d),513

consisting of 115,000 training and 7,600 text sam-514

ples for each task. For T5-based experiments, 4515

out of these 5 tasks (except Yelp) are used in line516

with Qin and Joty (2021) and Razdaibiedina et al.517

(2022), with 16 samples per task for training and518

the test sets are unchanged.519

Following prior work, we report F1 score on the520

AfriSenti dataset (Muhammad et al., 2023; Wang521

et al., 2023b) and accuracy on WOS and MTL5522

datasets (de Masson D’Autume et al., 2019; Raz-523

daibiedina et al., 2022; Wang et al., 2023d). We524

use different task orders for each dataset to evalu-525

ate the robustness of continual learning methods526

against changing task orders. The task orders used527

are summarzied in Table 6.528

A.2 Continual Learning Setting Details529

Beyond the general formulation as introduced in530

Section 3, continual learning can be categorized531

Dataset Class Task Type Domain

AGNews 4 Topic classification News
Yelp 5 Sentiment anlysis Yelp reviews
Amazon 5 Sentiment anlysis Amazon reviews
DBPedia 14 Topic classification Wikipedia
Yahoo 10 Q&A Yahoo Q&A

Table 5: Details of the MTL5 dataset we use in the
continual learning experiments.

into several detailed settings, 6 according to the 532

distinction between incremental data batches and 533

task identity availability. Task-incremental learn- 534

ing (TIL) refers to the scenario where the tasks 535

have disjoint label space. Task identities are pro- 536

vided in both training and testing. This is the most 537

studied continual learning scenario and also the 538

easiest case of continual learning tasks. 539

Class-incremental learning (CIL) is a more chal- 540

lenging continual learning scenario where the task 541

identities are not available during testing. The tasks 542

still have disjoint label space and task identities are 543

available during training. 544

Domain-incremental learning (DIL) assumes the 545

class labels are the same across all tasks and the 546

inputs are from different domains. Whether task 547

identities are given during testing or not, it all 548

belongs to this category. Strictly speaking, the 549

AfriSenti benchmark used in this work belongs to 550

the DIL category. In this multilingual sentiment 551

analysis dataset, the data of different tasks (lan- 552

guages) is considered to have different input dis- 553

tributions, while the label space is shared across 554

tasks (languages). In this work, we aim to evalu- 555

ate MoCL in settings where the task identities are 556

provided and are not provided during testing. We 557

also consider the evaluation setting on AfriSenti 558

as task-incremental learning and class-incremental 559

learning, respectively. In our experiments, we as- 560

sume tasks have disjoint label spaces, i.e., their 561

classification heads are different. In this way, we 562

use the AfriSenti benchmark for TIL and CIL eval- 563

uation as well. 564

A.3 Experimental Setup Details 565

In this section, we give more detailed information 566

about the baseline methods we used in this work 567

and the implementation details for experiments. 568

6We focus on some commonly studied continual learning
settings here, for a more comprehensive categorization of
continual learning settings please refer to (Wang et al., 2023a).
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Dataset Order Model Task Sequence

AfriSenti

1 AfroXLMR am → dz → ha → ig → kr → ma → pcm → pt → sw → ts → twi → yo
2 AfroXLMR ma → pcm → kr → pt → ig → sw → ha → ts → dz → twi → am → yo
3 AfroXLMR am → dz → ha → ma → ig → kr → sw → ts → twi → yo → pcm → pt

WOS 1 BERT 1 → 2 → 3 → 4 → 5 → 6 → 7

MTL5

1 BERT ag → yelp → amazon → yahoo → db
2 BERT yelp → yahoo → amazon → db → agnews
3 BERT db → yahoo → ag → amazon → yelp
4 BERT yelp → agnews → db → amazon → yahoo

MTL5

1 T5 db → amazon → yahoo → ag
2 T5 db → amazon → ag → yahoo
3 T5 yahoo → amazon → ag → db

Table 6: The different orders of task sequences used for continual learning experiments.

Method RF PE CI KT

EWC (Kirkpatrick et al., 2017) ✓ ✓
MBPA++ (de Masson D’Autume et al., 2019) ✓ ✓
IDBR (Huang et al., 2021) ✓ ✓
LFPT5 (Qin and Joty, 2021) ✓ ✓
ProgPrompt (Razdaibiedina et al., 2022) ✓ ✓ ✓
EPI (Wang et al., 2023d) ✓ ✓ ✓
MoCL(Ours) ✓ ✓ ✓ ✓

Table 7: Comparison between MoCL and existing CL
approaches. RF: rehearsal-free; PE: parameter-efficient;
CI: applicable to class-incremental learning, KT: en-
abled knowledge transfer.

A.3.1 Baseline Methods569

In Section 6, we evaluate MoCL and prior continual570

learning methods on different benchmark datasets.571

Here we give a more detailed description of the572

baseline methods used in this work.573

ProgPrompt (Razdaibiedina et al., 2022): a pa-574

rameter isolation-based continual learning method575

which assigns task-specific parameters to avoid576

catastrophic forgetting. During continual learning,577

ProgPrompt progressively concatenates all task-578

specific modules to encourage forward transfer.579

Task identities are always required during training580

and testing.581

EPI (Wang et al., 2023d): a parameter isolation-582

based method applicable to the class-incremental583

learning setting. EPI introduces a non-parametric584

task identification module that identifies tasks dur-585

ing testing. Given reliable task identification, the586

CIL performance could be comparable with TIL,587

where the ground truth task identities are given.588

As discussed in the main paper, ProgPrompt and589

EPI are two closely related prior work to MoCL.590

ProgPrompt concatenates all previously learned pa-591

rameters with the current learnable to encourage 592

knowledge transfer while ignoring different levels 593

of relatedness across tasks: There might be knowl- 594

edge interference or transfer between different pairs 595

of tasks. EPI focus on the class-incremental learn- 596

ing setting and the task-specific parameters are 597

completely isolated, i.e., there is no knowledge 598

transfer in their approach. In contrast, MoCL as- 599

signs different weights to previously learned task- 600

specific modules based on the relatedness between 601

tasks, therefore deftly balancing knowledge inter- 602

ference or transfer and leading to more effective 603

knowledge transfer. 604

A.4 Experimental Results Details 605

In this section, we give detailed experimental re- 606

sults of MoCL, including the per-task results on 607

the three datasets and the weight distribution on 608

AfriSenti for prefix composition. 609

Per-task results From Table 8 to 11, we give the 610

detailed per-task results on the aforementioned 611

datasets under task-incremental learning and class- 612

incremental learning settings. 613

WOS per-task results

order 1 AVG 1 2 3 4 5 6 7

TIL 90.59 91.86 95.72 80.05 93.25 95.09 93.60 84.54
CIL 79.23 70.57 93.36 58.74 86.67 91.29 87.82 66.19

Table 8: Detailed per-task results on the WOS dataset
under TIL and CIL settings.

Weight distribution In Figure 2, we visualize 614

the weight distribution produced by MoCL on the 615

AfriSenti dataset with the task order 2 (see Table 6) 616

under the TIL setting. MoCL performs per-instance 617

task matching and prefix composition, here we av- 618

erage the weight distributions across all examples 619
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AfriSenti per-task results

order1 AVG am dz ha ig kr ma
TIL 57.05 58.52 58.58 66.83 56.92 63.68 48.68
CIL 45.57 63.56 52.88 47.06 26.15 52.16 40.28

order1 pcm pt sw ts twi yo
TIL 60.59 64.27 57.24 42.97 46.56 59.77
CIL 56.98 36.71 28.80 38.10 44.21 60.00

order2 AVG ma pcm kr pt ig sw
TIL 56.52 47.41 58.51 65.15 61.38 54.47 55.19
CIL 44.32 40.56 57.12 47.53 35.22 25.44 29.21

order2 ha ts dz twi am yo
TIL 67.27 44.45 61.20 45.40 58.32 59.53
CIL 44.49 40.33 46.24 41.82 64.91 59.03

order3 AVG am dz ha ma ig kr
TIL 56.74 58.52 58.58 66.83 50.05 54.20 59.90
CIL 46.95 46.00 39.34 57.76 45.17 47.08 49.89

order3 sw ts twi yo pcm pt
TIL 57.47 42.60 44.83 60.01 60.17 64.71
CIL 53.56 23.24 34.61 49.19 53.50 CIL

Table 9: Detailed per-task results on the AfriSenti
dataset under TIL and CIL settings.

MTL5-BERT per-task results

order1 AVG agnews yelp amazon yahoo db

TIL 79.31 94.13 64.41 61.67 77.14 99.19
CIL 73.02 93.39 62.75 39.13 72.30 97.52

order2 AVG yelp amazon yahoo db agnews

TIL 79.64 64.43 62.50 78.03 99.23 94.03
CIL 74.00 62.69 44.91 70.98 99.14 92.26

order3 AVG db yahoo agnews amazon yelp

TIL 79.20 99.23 77.72 94.03 61.78 63.24
CIL 74.75 98.40 72.19 92.97 53.82 59.57

order4 AVG yelp agnews db amazon yahoo

TIL 79.61 64.43 94.37 99.20 62.04 77.99
CIL 73.55 62.54 93.41 98.98 47.75 65.07

Table 10: Detailed per-task results on the MTL5 dataset
using BERT as the base language model under TIL and
CIL settings.

MTL5-T5 per-task results

order1 AVG db amazon yahoo agnews

TIL 75.59 98.27 47.88 70.84 85.31
CIL 51.15 40.86 11.34 67.58 84.84

order2 AVG db amazon agnews yahoo

TIL 75.37 98.18 47.99 84.69 70.64
CIL 47.84 32.04 8.91 79.84 70.59

order3 AVG yahoo amazon agnews db

TIL 76.70 71.42 51.09 86.25 97.99
CIL 71.47 67.75 48.37 73.92 95.82

Table 11: Detailed per-task results on the MTL5 dataset
using T5 as the base language model under TIL and CIL
settings.

Figure 2: Average weight distribution on the AfriSenti
dataset with the task order 2.

from a given task (i.e., language). As introduced 620

in Section 4, while learning on the nth task, we 621

calculate the cosine similarity between the input 622

embeddings and task feature vectors up to the cur- 623

rent nth task. Therefore, the heatmap of Figure 624

2 only has the lower left part. The heatmap en- 625

tries quantify the extent of contribution from each 626

task-specific module (denoted on the x-axis) to the 627

subsequent tasks (represented on the y-axis). 628

Certain task-specific modules, such as am, ha, 629

and kr, exhibit utility across a wide range of other 630

tasks, while some, like dz, demonstrate exclusivity 631

in utility to their respective tasks. Moreover, we 632

observe that there is a pronounced sparsity in the 633

learned weight distributions. Our task matching 634

paradigm can be considered as a mixture-of-experts 635

strategy where we use task-specific experts as the 636

mixture components. Such a sparsity suggests that 637

we can potentially reduce the number of experts, 638

instead of using experts specific to each task in 639

this work. This will be an interesting direction for 640

future work. 641

A.4.1 Implementation Details 642

We use the AdamW optimizer (Loshchilov and 643

Hutter, 2017) and the batch size of 8 for all exper- 644

iments. We choose the same maximum sequence 645

length and prefix length as prior work (Razdaibied- 646

ina et al., 2022; Wang et al., 2023d). Table 12 gives 647

detailed hyperparameter choices of MoCL across 648

different datasets. The training was performed on 649

Nvidia A100 GPUs.7 650

7All experiments ran on a carbon-neutral GPU cluster.
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Hyperparameters

WOS-BERT

Epochs 40
Early stop patience 5
Learning rate 3e-2
Max. sequence len. 256
Prefix len. 16

AfriSenti-AfroXLMR

Epochs 40
Early stop patience 5
Learning rate 2e-4
Max. sequence len. 128
Prefix len. 8

MTL5-BERT

Epochs 40
Early stop patience 5

Learning rate 8e-4 (db), 1e-3 (yahoo)
2e-3 (others)

Max. sequence len. 256
Prefix len. 20

MTL5-T5

Epochs 40
Early stop patience 5

Learning rate 2e-2 (yahoo, db)
5e-2 (others)

Max. sequence len. 512
Prefix len. 50

Table 12: Hyperparameters used in this work across
different CL experiments.
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