
Code snippets insertion approach for code completion task

Anonymous ACL submission

Abstract

The purpose of the code completion task is001
to continue the following line of the source002
code. This feature helps developers to write003
code faster and with fewer errors by provid-004
ing suggestions for completing the current line005
of code based on the context and the avail-006
able libraries and functions. One common but007
resource-expensive approach to improve model008
performance on the code completion task is009
to fine-tune Large Language Models (LLMs).010
This paper introduces a technique that involves011
feeding the additional input with ranked por-012
tions of code to the LLMs without additional013
fine-tuning. The proposed approach aims to014
replicate the development process of program-015
mers by scanning project files for the required016
code snippets, making the process intuitive and017
efficient. The paper also discusses the lack of018
metrics for the task and puts forward a novel019
metric ClickScore, as well as a new code bench-020
mark RealCode for the code completion task.021
The paper compares the insertion technique of022
code snippets with the existing state-of-the-art023
methods using standard and proposed metrics024
and demonstrates the approach’s effectiveness.025

1 Introduction026

Code completion is widely utilized (Svyatkovskiy027

et al., 2021) in the field of Programming Language028

Processing (PLP) to aid in accurately writing and029

extending code. It offers significant advantages to030

programmers by minimizing the time required to031

create fully functional code and systems.032

In the paper, we investigate the code comple-033

tion task and propose the approach to improve the034

quality of LLMs without necessitating additional035

model fine-tuning. We gathered real code data from036

projects on GitHub and established a benchmark to037

assess the quality of experiments conducted within038

the context of the code completion task.039

The paper presents an approach that enhances040

the quality of LLMs with reduced time and mem-041

ory overhead compared to existing approaches, par- 042

ticularly those involving fine-tuning models. The 043

primary objective of the approach is to incorporate 044

an additional small code segment, which is initially 045

identified by ranking all the files within the project 046

from which the source code requiring code contin- 047

uation originates. Subsequently, the source code, 048

along with the top-ranked code snippet, is inserted 049

into the LLMs. The evaluation of the approach’s 050

quality is conducted by comparing the method that 051

incorporates the insertion of code fragments with 052

the traditional method without inserting fragments. 053

Thus, the contribution of work can be summa- 054

rized as follows: 055

• We present an approach to code completion 056

that does not require LLMs fine-tuning; 057

• We introduce and release 1 in the open-source 058

RealCode benchmark that contains Python 059

programming language; 060

• We propose the efficient ClickScore metric, 061

which offers a more comprehensive evaluation 062

of the effectiveness of LLMs predicting the 063

following line. 064

2 Related Work 065

In previous studies, (Li et al., 2023a) proposed a 066

method for training a model to link variables in 067

code from one file to another. This approach hides 068

irrelevant local variables and prevents distractions 069

when substituting code snippets for input. How- 070

ever, a pre-ranked snippet list and time for model 071

training are required to detect and eliminate unnec- 072

essary variables between files. 073

The code retrieving task is solved using ReACC: 074

A Retrieval-Augmented Code Completion Frame- 075

work (Lu et al., 2022), where the training process 076

1The link was removed to preserve anonymity for the re-
view period.

1



of the retriever is in proposed framework ReACC.077

Still, such an approach requires additional fine-078

tuning for successful implementation, which is079

resource-consuming.080

3 Approach081

3.1 Overview082

The method aims to assist LLMs in displaying more083

useful code and expanding their knowledge base.084

We propose an intuitive approach that does not085

require fine-tuning the LLMs. Main goal is to sim-086

ulate developers’ daily work by identifying mean-087

ingful code within the appropriate project files for088

LLMs to use. To achieve this, we 1) pre-process089

the entire code space of project files 3.2, 2) rank all090

file snippets and select the most relevant ones based091

on their similarity to the source file 3.3. Below, we092

will discuss the definitions of the terms used in the093

approach and describe the experiments conducted094

within this approach.095

Throughout all experiments, the algorithm stays096

consistent, with only the method of ranking and097

selection snippets being subject to change. The098

pre-processing of snippets remain consistent across099

all experiments.100

3.2 Pre-processing of the code data101

The source code requiring the continuation of102

the next line is extracted from a specific project.103

The first stage of the approach incorporates pre-104

processing of the code files within the each project105

files space of each source code. Two components106

are needed to define: the query and context. The107

left context serves as a query (left context) for108

which the corresponding relevant context (code109

snippet) needs to be found. The code snippet has110

two parts: 1) snippet 2) add to snip.111

Left context is the source code file taken by the112

last ten lines of code (see the code example 1).113

1 package io.fabric8.crd.example.joke;114
2 import io.fabric8.kubernetes.115

PrinterColumn;116
3 public class JokeRequestSpec {117
4 public enum Category {118
5 Any ,119
6 Misc ,120
7 Programming ,121
8 Dark ,122
9 Pun ,123

10 Spooky ,124
11 Christmas125
12 }126
13 public enum ExcludedTopic {127
14 nsfw ,128
15 religious ,129

16 political , 130

Listing 1: Inital code (source) example.

Snippet code is a snipped piece of code that 131

contains ten lines (i.e., ten line breaks). We do not 132

enforce reproducibility restrictions on the trimmed 133

code snippet. These snippets are obtained by slic- 134

ing a complete code structure into small pieces 135

with a window of ten lines. This process divides 136

the source file into multiple snippet codes. 137

1 package io.fabric8.crd.example.joke; 138
2 import io.fabric8.kubernetes. 139

PrinterColumn; 140
3 public class JokeRequestSpec { 141
4 public enum Category { 142
5 Any , 143
6 Misc , 144
7 Programming , 145
8 Dark , 146
9 Pun , 147

10 Spooky , 148
11 Christmas 149

Listing 2: Snippet code example (a small part of the
code file).

Add to snip is the next five lines of code after 150

the snippet code, which do not participate in 151

ranking when choosing the best relevant snippet to 152

submit. Add to snip is added after the snippet itself 153

is inserted. 154

1 } 155
2 public enum ExcludedTopic { 156
3 nsfw , 157
4 religious , 158
5 political , 159

Listing 3: The next five lines after the snippet code.

3.3 Ranking and snippet selection 160

This chapter outlines two experiments, they are em- 161

ploying a different method for ranking code snip- 162

pets. The crucial distinction across these experi- 163

ments lies in how the code snippets are ranked and 164

selected. 165

In the first experiment, detailed in the 4.2 section, 166

snippet ranking is accomplished using the BM25 167

algorithm. Meanwhile, in the 4.1, the code encoder 168

generates embeddings for each code snippet, which 169

are then indexed using the Faiss index. The final 170

ranking is determined by measuring the dot product 171

between the embeddings of the code snippets and 172

left context. 173

After ranking and selecting the best snippet, it 174

has been inserted into LLMs. The proposed fitting 175

mode into LLMs is outlined below. The fitting 176

mode is consistent across all experiments. 177

2



1178
2 # {filename_of_best_snippet}179
3 {best_snippet}180
4181
5 # {filename_of_left_context}182
6 {left_context}183

Listing 4: Input format for LLMs.

The best snippet is the concatenation of snippet184

code and add to snip.185

4 Experiments186

4.1 Embeddings similarity ranking187

All the snippets were created based from the files188

that constitute the entirety of the project, from189

which the left context was derived in a manner190

consistent with the provided in 3.2.191

Snippets were let through encoder CodeSage-192

base without fine-tuning 2 (Zhang et al., 2024) to193

get embeddings of size 1024 from each of them.194

The left context is also run through CodeSage-base.195

After obtaining embeddings for the left context and196

snippets, the Faiss index 3 are raised with all the197

embeddings in it.198

The similarity of two embeddings (left context199

and snippet code) is determined using the dot prod-200

uct within the Faiss index. A higher similarity dis-201

tance number indicates a greater similarity between202

the two vectors.203

During validation, snippets with the same file204

name as the original query file should be ignored.205

In such cases, the distance will be highest in terms206

of proximity, indicating a potential leak, as the207

relevant snippet (context) will be the same file that208

is considered as the query. The final step is to209

select the best snippets based on similarity with dot210

product and feed them to the LLMs input in the211

format presented in Listing 4.212

4.2 BM25 ranking213

ElasticSearch (Elastic) 4 is a tool for bringing up214

the index and searching within it. Elastic is pow-215

ered by the BM25 (Chen and Wiseman, 2023) algo-216

rithm. BM25 is a bag-of-words retrieval function217

that ranks a set of documents based on the query218

terms appearing in each document, regardless of219

their proximity within the document. In this way220

2https://huggingface.co/codesage/
codesage-base

3https://github.com/facebookresearch/faiss
4https://www.elastic.co/elasticsearch

the left context represents the query, while the doc- 221

uments consist of sliced snippet codes. 222

In this experiment, Elastic performed a search 223

for relevant snippets. The algorithm was as follows: 224

1) pre-process the entire code space of project files 225

3.2 2) building an index using Elastic; 3) ranking 226

and selecting relevant snippets with top-K based on 227

BM25 algorithm running by index on the previous 228

step. 229

The final step is to select the best snippets and 230

feed them to the LLMs input in the format pre- 231

sented in 4. 232

5 Evaluation 233

5.1 RealCode benchmark 234

RealCode is a benchmark to perform an execution- 235

based evaluation of LLMs code generation for real 236

GitHub repositories containing. The dataset con- 237

tains 219 Python functions 5 from 22 GitHub repos- 238

itories 6 published between June and August 2023. 239

All these functions are covered with tests in their 240

respective repositories. 241

The benchmark task is to write the body of a 242

function that is declared in a file within one of the 243

repositories. The benchmark supplies the model 244

with the remainder of the file or the entire repos- 245

itory. The metrics used for the benchmark is the 246

Pass@k metric (Chen et al., 2021)) is employed 247

for evaluation. We define a successful generation 248

as one that passes the same number of tests as the 249

actual body of a function. 250

5.2 ClickScore metric 251

The Exact Match (EM) (Wang et al., 2024) metric is 252

commonly used in code completion to measure the 253

percentage of correctly generated strings according 254

to the model’s predictions, including spaces and 255

special characters. However, relying solely on this 256

metric may not provide a comprehensive assess- 257

ment of the model’s quality, as it is too strict and 258

underestimates the model’s performance. Thus, we 259

propose a new metric called the ClickScore (CS). 260

This metric reflects the number of human’s 261

keystrokes saved when a hint of possible code con- 262

tinuation is given. For instance, if there is a code 263

line in Python: a, b = 0, 1, and the predicted line 264

is a, b = 0, 4, then the EM is 0, but the CS is 0.9. 265

5In the paper, the term “function” includes methods in
classes

6About 60 percent of the repositories used are related to
the field of AI, LLMs, and ML

3

https://huggingface.co/codesage/codesage-base
https://huggingface.co/codesage/codesage-base
https://github.com/facebookresearch/faiss
https://www.elastic.co/elasticsearch


Thus, the CS shows how closely and numerically266

the predicted string matches the ground truth string.267

If EM equals 1, then CS will also equal 1. The268

CS metric presents a more realistic view of model269

prediction performance than EM.270

5.3 LLMs inference271

We conducted measurements on the open-source272

models using the aforementioned experiments to273

assess their performance based on CS and EM met-274

rics on RealCode benchmark in fill in the middle275

(FIM) mode (Bavarian et al., 2022) with 4096 con-276

text size. Top-1 snippet codes were collected across277

all experiments.278

Used open-source LLMs: DeepseekCoder-6.7B279

base model (Guo et al., 2024) 7 , CodeGemma-2B 8280

and CodeGemma-7B (Team, 2024) 9 , CodeQwen-281

7B (Bai et al., 2023) 10.282

All of them had been used without fine-tuning283

for the task.284

Model CS EM
DEEPSEEK CODER6.7B 0.71 0.51
DEEPSEEK CODER6.7Bsnippet 0.84 0.74
CODEGEMMA2B 0.61 0.15
CODEGEMMA2Bsnippet 0.75 0.25
CODEGEMMA7B 0.69 0.20
CODEGEMMA7Bsnippet 0.83 0.31
CODEQWEN7B 0.73 0.52
CODEQWEN7Bsnippet 0.83 0.74

Table 1: Embeddings similarity ranking experiment on
Code Completion by RealCode benchmark. Best model
scores are bold.

Model CS EM
DEEPSEEK CODER6.7B 0.71 0.51
DEEPSEEK CODER6.7Bsnippet 0.86 0.76
CODEGEMMA2B 0.61 0.15
CODEGEMMA2Bsnippet 0.78 0.26
CODEGEMMA7B 0.69 0.20
CODEGEMMA7Bsnippet 0.85 0.33
CODEQWEN7B 0.73 0.52
CODEQWEN7Bsnippet 0.86 0.76

Table 2: BM25 experiment on Code Completion by
RealCode benchmark. Best model scores are bold.

6 Results285

The proposed approach is intuitive and seeks to286

replicate the real-life scenarios developers en-287

7https://huggingface.co/deepseek-ai/
deepseek-coder-6.7b-base

8https://huggingface.co/google/codegemma-2b
9https://huggingface.co/google/codegemma-7b

10https://huggingface.co/Qwen/CodeQwen1.5-7B

counter. In practice, developers frequently refer- 288

ence project files directly during their coding pro- 289

cess or utilize pre-existing code written by others 290

and subsequently modify it. The integration of opti- 291

mal snippet codes into LLMs facilitates the model’s 292

ability to assimilate the context of the file. 293

The analysis of ranked snippets revealed that 294

most of them originated from files that closely re- 295

sembled the left context, necessitating continuation. 296

We do not consider it as a leakage as in practice, 297

the developers do absolutely the same. 298

If we compare the results from the Embeddings 299

similarity ranking (see Table 1) and the BM25 ex- 300

periment (see Table 2), the metrics are pretty sim- 301

ilar. The first experiment is designed to capture 302

semantic knowledge from code using embeddings, 303

while the second experiment aims to identify syn- 304

tactically similar files. The overlap in relevant snip- 305

pets between the two experiments was over 60%, 306

indicating significant commonality. 307

We have also conducted an additional experi- 308

ment regarding the selection between whole file 309

and short snippet code staging. The results are 310

presented in Table 3. The metrics indicate that em- 311

ploying LLMs on full files rather than short code 312

snippets does not yield any improvement over us- 313

ing snippet codes. 314

We also conducted an evaluation of various mod- 315

els using the specified approach across nine pro- 316

gramming languages. The results are documented 317

in 1. This method consistently demonstrates an 318

enhancement across all languages. 319

7 Conclusion 320

The success of padding the snippet into the model 321

can be attributed to the combination of copy-paste 322

and semantics between left context and best snippet 323

codes. Developers often utilize existing code and 324

modify it when writing new code. We attempted 325

to replicate this in practice by enhancing visibility 326

through the inclusion of the most relevant simi- 327

lar code snippets alongside the code provided by 328

LLMs. 329

During the research, we conducted a comparison 330

of the performance of open-source LLMs using 331

both the fine-tuning and snippet code approaches. 332

The results indicated that fine-tuning only resulted 333

in a marginal 1-2 percent improvement compared 334

to the approach without fine-tuning. This perfor- 335

mance underscoring the substantial effectiveness 336

of code snippets insertion approach. 337

4

https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
https://huggingface.co/google/codegemma-2b
https://huggingface.co/google/codegemma-7b
https://huggingface.co/Qwen/CodeQwen1.5-7B


Limitations338

In current approach, the substantial increase in339

metrics can be attributed to a significant number340

of copy-paste instances, which may present chal-341

lenges in the context of code completion task. It is342

anticipated that there will be minimal requests for343

hints in code where obvious copies are located in344

other files, as the necessity for hints for developers345

is obviated in such cases.346

Effectively managing the substantial volume of347

code snippets without compromising performance348

poses a significant challenge. One potential solu-349

tion for embedding similarity experiment is out-350

lined here A.0.1351

The code in the RealCode repositories was not352

observed during the fine-tuning of StarCoder (Li353

et al., 2023b) 11 or CodeLlama (Roziere et al.,354

2023) 12, as these models were trained before the355

summer of 2023. DeepSeek Coder may have en-356

countered this code during fine-tuning.357

Training an embedder that will be tuned for a358

specific code completion task is one way to im-359

prove approach.360

References361

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,362
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei363
Huang, et al. 2023. Qwen technical report. arXiv364
preprint arXiv:2309.16609.365

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,366
John Schulman, Christine McLeavey, Jerry Tworek,367
and Mark Chen. 2022. Efficient training of lan-368
guage models to fill in the middle. arXiv preprint369
arXiv:2207.14255.370

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming371
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-372
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,373
Greg Brockman, Alex Ray, Raul Puri, Gretchen374
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-375
try, Pamela Mishkin, Brooke Chan, Scott Gray,376
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz377
Kaiser, Mohammad Bavarian, Clemens Winter,378
Philippe Tillet, Felipe Petroski Such, Dave Cum-379
mings, Matthias Plappert, Fotios Chantzis, Eliza-380
beth Barnes, Ariel Herbert-Voss, William Hebgen381
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie382
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,383
William Saunders, Christopher Hesse, Andrew N.384
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan385
Morikawa, Alec Radford, Matthew Knight, Miles386
Brundage, Mira Murati, Katie Mayer, Peter Welinder,387

11https://huggingface.co/bigcode/starcoder
12https://huggingface.co/codellama/

CodeLlama-7b-hf

Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 388
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 389
ing large language models trained on code. CoRR, 390
abs/2107.03374. 391

Xiaoyin Chen and Sam Wiseman. 2023. Bm25 392
query augmentation learned end-to-end. ArXiv, 393
abs/2305.14087. 394

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 395
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 396
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder: 397
When the large language model meets programming– 398
the rise of code intelligence. arXiv preprint 399
arXiv:2401.14196. 400

Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and 401
Xing Hu. 2023a. Skcoder: A sketch-based approach 402
for automatic code generation. In 2023 IEEE/ACM 403
45th International Conference on Software Engineer- 404
ing (ICSE), pages 2124–2135. IEEE. 405

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 406
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 407
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 408
2023b. Starcoder: may the source be with you! 409
arXiv preprint arXiv:2305.06161. 410

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung- 411
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc: 412
A retrieval-augmented code completion framework. 413
arXiv preprint arXiv:2203.07722. 414

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 415
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 416
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023. 417
Code llama: Open foundation models for code. arXiv 418
preprint arXiv:2308.12950. 419

Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, 420
Maik Riechert, Juliana Vicente Franco, and Miltiadis 421
Allamanis. 2021. Fast and memory-efficient neural 422
code completion. In 2021 IEEE/ACM 18th Interna- 423
tional Conference on Mining Software Repositories 424
(MSR), pages 329–340. IEEE. 425

CodeGemma Team. 2024. Codegemma: Open 426
code models based on gemma. arXiv preprint 427
arXiv:2406.11409. 428

Cunxiang Wang, Sirui Cheng, Qipeng Guo, Yuanhao 429
Yue, Bowen Ding, Zhikun Xu, Yidong Wang, Xi- 430
angkun Hu, Zheng Zhang, and Yue Zhang. 2024. 431
Evaluating open-qa evaluation. Advances in Neural 432
Information Processing Systems, 36. 433

Dejiao Zhang, Wasi Uddin Ahmad, Ming Tan, Hantian 434
Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, and 435
Bing Xiang. 2024. Code representation learning at 436
scale. ArXiv, abs/2402.01935. 437

5

https://huggingface.co/bigcode/starcoder
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/codellama/CodeLlama-7b-hf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://api.semanticscholar.org/CorpusID:258841762
https://api.semanticscholar.org/CorpusID:258841762
https://api.semanticscholar.org/CorpusID:258841762
https://api.semanticscholar.org/CorpusID:267411870
https://api.semanticscholar.org/CorpusID:267411870
https://api.semanticscholar.org/CorpusID:267411870


A Appendix438

A.0.1 Approximate nearest neighbor in439

embeddings similarity ranking440

experiment441

Faiss from 4.1 13 is a library for efficient simi-442

larity search and clustering of dense vectors. It443

contains algorithms that search in sets of vectors444

of any size, up to ones that possibly do not fit in445

RAM. It also contains supporting code for evalu-446

ation and parameter tuning. For the efficiency of447

raising such an index with large vectors, consider448

using an approximate nearest neighbor (ANN) al-449

gorithm. ANN algorithms can be more efficient450

than exhaustive search methods when dealing with451

high-dimensional data, especially in large vector452

spaces453

Approximate Nearest Neighbor (ANN) approach454

was used to speed up the search process through a455

large number of data.456

It’s the approach that helps to group a large set457

of vectors by parts using the k-means algorithm,458

each part corresponding to a centroid - a vector that459

is the selected center for this cluster. It searches460

through the minimum distance to the centroid and461

then searches for the minimum distance among462

the vectors in that cluster corresponding to that463

centroid. Taking k equal to
√
n, where n is the464

number of vectors in the index, we obtain an opti-465

mal search at two levels - first among
√
n centroids,466

then among
√
n vectors in each cluster. The search467

is times faster than the full one, which solves one468

of the problems when dealing with millions of vec-469

tors.470

Thus, instead of a complete search of vectors471

to find the nearest one, we need to find only the472

necessary cluster and search for vectors already in473

it.474

A.1 RealCode benchmark details475

The sources of the repositories used in creating the476

RealCode benchmark are:477

• https://github.com/Jakob-98/openai-478

functools479

• https://github.com/biobootloader/mentat480

• https://github.com/causalens/cai-causal-481

graph482

• https://github.com/modelscope/modelscope-483

agent484

13https://github.com/facebookresearch/faiss

• https://github.com/simonmesmith/agentflow 485

• https://github.com/defog-ai/sql-eval 486

• https://github.com/Wyvern-AI/wyvern 487

• https://github.com/danielbeach/tinytimmy 488

• https://github.com/a-r-r-o-w/stablefused 489

• https://github.com/langchain-ai/permchain 490

• https://github.com/NullPyDev/beholder 491

• https://github.com/opencopilotdev/opencopilot 492

• https://github.com/AgentOps-AI/agentops 493

• https://github.com/TengHu/ActionWeaver 494

• https://github.com/fynnfluegge/doc- 495

comments.ai 496

• https://github.com/Tinny-Robot/DimSense 497

• https://github.com/mljar/plotai 498

• https://github.com/juliendenize/eztorch 499

• https://github.com/yihong0618/epubhv 500

• https://github.com/simonw/llm-cluster 501

• https://github.com/Pennyw0rth/NetExec 502

• https://github.com/Vaultexe/server 503

We didn’t apply any specific topic-based filtering 504

to these data. The topic meta information comes 505

from the topic distribution of Python repositories 506

on GitHub in the summer of 2023. The repositories 507

were rolled back to a specific commit during data 508

preparation. 509

A.2 Snippet length variety experiment 510

We have examined submitting code snippets of 511

different lengths. We attempt two options — to 512

submit a small relevant piece of code or to submit 513

the entire code from the file and then select the 514

best snippet after ranking by BM25 4.2. The best 515

snippet was fed into the LLMs input in the format 516

shown in the input section (see 4 for reference). 517

We’ve examine submitting different lengths of 518

code snippets. There were two alternatives - to feed 519

a small piece of code that is relevant or to feed the 520

whole code from the file from which the best snip- 521

pet after ranking by BM25 4.2 was found. We’ve 522

tried each of them, and the results are presented 523

below. 524

The best snippets was feeded to the LLms input 525

in the format presented in 4. 526

6

https://github.com/facebookresearch/faiss


Model CS EM
DEEPSEEK CODERsnippet 0.84 0.74
DEEPSEEK CODERwhole_file 0.84 0.73
CODEGEMMA2Bsnippet 0.75 0.25
CODEGEMMA2Bwhole_file 0.75 0.24
CODEGEMMA7Bsnippet 0.83 0.31
CODEGEMMA7Bwhole_file 0.82 0.30
CODEQWEN7Bsnippet 0.83 0.74
CODEQWEN7Bwhole_file 0.83 0.75

Table 3: Snippet length variety experiment by BM25
ranking by RealCode benchmark. Best model scores
are bold.

A.3 LLMs evaluation by nine programming527

languages with BM25 snippet codes528

ranking529

We also conducted an evaluation of various models530

using the specified approach across nine program-531

ming languages. The results are documented in 1.532

This method consistently demonstrates an enhance-533

ment across all languages. The data was collected534

by the same concept as the RealCode benchmark535

A.1. We took projects from GitHub on actual code536

for nine different programming languages: Python,537

Java, JavaScript, TypeScript, C++, Go, C#, Kotlin,538

Ruby.539

Figure 1: EM metric on the BM25 experiment on dataset
gathered by 9 languages from GitHub projects.

7


	Introduction
	Related Work
	Approach
	Overview
	Pre-processing of the code data
	Ranking and snippet selection

	Experiments
	Embeddings similarity ranking
	BM25 ranking

	Evaluation
	RealCode benchmark
	ClickScore metric
	LLMs inference

	Results
	Conclusion
	Appendix
	Approximate nearest neighbor in embeddings similarity ranking experiment
	RealCode benchmark details
	Snippet length variety experiment
	LLMs evaluation by nine programming languages with BM25 snippet codes ranking


