Code snippets insertion approach for code completion task

Anonymous ACL submission

Abstract

The purpose of the code completion task is
to continue the following line of the source
code. This feature helps developers to write
code faster and with fewer errors by provid-
ing suggestions for completing the current line
of code based on the context and the avail-
able libraries and functions. One common but
resource-expensive approach to improve model
performance on the code completion task is
to fine-tune Large Language Models (LLMs).
This paper introduces a technique that involves
feeding the additional input with ranked por-
tions of code to the LLMs without additional
fine-tuning. The proposed approach aims to
replicate the development process of program-
mers by scanning project files for the required
code snippets, making the process intuitive and
efficient. The paper also discusses the lack of
metrics for the task and puts forward a novel
metric ClickScore, as well as a new code bench-
mark RealCode for the code completion task.
The paper compares the insertion technique of
code snippets with the existing state-of-the-art
methods using standard and proposed metrics
and demonstrates the approach’s effectiveness.

1 Introduction

Code completion is widely utilized (Svyatkovskiy
et al., 2021) in the field of Programming Language
Processing (PLP) to aid in accurately writing and
extending code. It offers significant advantages to
programmers by minimizing the time required to
create fully functional code and systems.

In the paper, we investigate the code comple-
tion task and propose the approach to improve the
quality of LLMs without necessitating additional
model fine-tuning. We gathered real code data from
projects on GitHub and established a benchmark to
assess the quality of experiments conducted within
the context of the code completion task.

The paper presents an approach that enhances
the quality of LLMs with reduced time and mem-

ory overhead compared to existing approaches, par-
ticularly those involving fine-tuning models. The
primary objective of the approach is to incorporate
an additional small code segment, which is initially
identified by ranking all the files within the project
from which the source code requiring code contin-
uation originates. Subsequently, the source code,
along with the top-ranked code snippet, is inserted
into the LL.Ms. The evaluation of the approach’s
quality is conducted by comparing the method that
incorporates the insertion of code fragments with
the traditional method without inserting fragments.

Thus, the contribution of work can be summa-
rized as follows:

* We present an approach to code completion
that does not require LLMs fine-tuning;

* We introduce and release ! in the open-source
RealCode benchmark that contains Python
programming language;

* We propose the efficient ClickScore metric,
which offers a more comprehensive evaluation
of the effectiveness of LLMs predicting the
following line.

2 Related Work

In previous studies, (Li et al., 2023a) proposed a
method for training a model to link variables in
code from one file to another. This approach hides
irrelevant local variables and prevents distractions
when substituting code snippets for input. How-
ever, a pre-ranked snippet list and time for model
training are required to detect and eliminate unnec-
essary variables between files.

The code retrieving task is solved using ReACC:
A Retrieval-Augmented Code Completion Frame-
work (Lu et al., 2022), where the training process

YThe link was removed to preserve anonymity for the re-
view period.

1

of the retriever is in proposed framework ReACC.
Still, such an approach requires additional fine-
tuning for successful implementation, which is
resource-consuming.

3 Approach

3.1 Overview

The method aims to assist LLMs in displaying more
useful code and expanding their knowledge base.
We propose an intuitive approach that does not
require fine-tuning the LLMs. Main goal is to sim-
ulate developers’ daily work by identifying mean-
ingful code within the appropriate project files for
LLMs to use. To achieve this, we 1) pre-process
the entire code space of project files 3.2, 2) rank all
file snippets and select the most relevant ones based
on their similarity to the source file 3.3. Below, we
will discuss the definitions of the terms used in the
approach and describe the experiments conducted
within this approach.

Throughout all experiments, the algorithm stays
consistent, with only the method of ranking and
selection snippets being subject to change. The
pre-processing of snippets remain consistent across
all experiments.

3.2 Pre-processing of the code data

The source code requiring the continuation of
the next line is extracted from a specific project.
The first stage of the approach incorporates pre-
processing of the code files within the each project
files space of each source code. Two components
are needed to define: the query and context. The
left context serves as a query (left context) for
which the corresponding relevant context (code
snippet) needs to be found. The code snippet has
two parts: 1) snippet 2) add to snip.

Left context is the source code file taken by the
last ten lines of code (see the code example 1).

package io.fabric8.crd.example. joke;

> import io.fabric8.kubernetes.

PrinterColumn;
public class JokeRequestSpec {
public enum Category {
Any,
Misc,
Programming ,
Dark,
Pun,
Spooky ,
Christmas

public enum ExcludedTopic {
nsfw,
religious,

16

)

SR

N

political,

Listing 1: Inital code (source) example.

Snippet code is a snipped piece of code that
contains ten lines (i.e., ten line breaks). We do not
enforce reproducibility restrictions on the trimmed
code snippet. These snippets are obtained by slic-
ing a complete code structure into small pieces
with a window of ten lines. This process divides
the source file into multiple snippet codes.
package io.fabric8.crd.example. joke;
import io.fabric8.kubernetes.

PrinterColumn;
public class JokeRequestSpec {
public enum Category {
Any,
Misc,
Programming,
Dark,
Pun,
Spooky ,
Christmas

Listing 2: Snippet code example (a small part of the
code file).

Add to snip is the next five lines of code after
the snippet code, which do not participate in
ranking when choosing the best relevant snippet to
submit. Add to snip is added after the snippet itself
is inserted.

}
public enum ExcludedTopic {

nsfw,
religious,
political,

Listing 3: The next five lines after the snippet code.

3.3 Ranking and snippet selection

This chapter outlines two experiments, they are em-
ploying a different method for ranking code snip-
pets. The crucial distinction across these experi-
ments lies in how the code snippets are ranked and
selected.

In the first experiment, detailed in the 4.2 section,
snippet ranking is accomplished using the BM25
algorithm. Meanwhile, in the 4.1, the code encoder
generates embeddings for each code snippet, which
are then indexed using the Faiss index. The final
ranking is determined by measuring the dot product
between the embeddings of the code snippets and
left context.

After ranking and selecting the best snippet, it
has been inserted into LLMs. The proposed fitting
mode into LLMs is outlined below. The fitting
mode is consistent across all experiments.

> # {filename_of_best_snippet}
3 {best_snippet}

6

{filename_of_left_context}
{left_context}

Listing 4: Input format for LLMs.

The best snippet is the concatenation of snippet
code and add to snip.

4 Experiments

4.1 Embeddings similarity ranking

All the snippets were created based from the files
that constitute the entirety of the project, from
which the left context was derived in a manner
consistent with the provided in 3.2.

Snippets were let through encoder CodeSage-
base without fine-tuning > (Zhang et al., 2024) to
get embeddings of size 1024 from each of them.
The left context is also run through CodeSage-base.
After obtaining embeddings for the left context and
snippets, the Faiss index > are raised with all the
embeddings in it.

The similarity of two embeddings (left context
and snippet code) is determined using the dot prod-
uct within the Faiss index. A higher similarity dis-
tance number indicates a greater similarity between
the two vectors.

During validation, snippets with the same file
name as the original query file should be ignored.
In such cases, the distance will be highest in terms
of proximity, indicating a potential leak, as the
relevant snippet (context) will be the same file that
is considered as the query. The final step is to
select the best snippets based on similarity with dot
product and feed them to the LLMs input in the
format presented in Listing 4.

4.2 BM2S5 ranking

ElasticSearch (Elastic) 4 is a tool for bringing up
the index and searching within it. Elastic is pow-
ered by the BM25 (Chen and Wiseman, 2023) algo-
rithm. BM2S5 is a bag-of-words retrieval function
that ranks a set of documents based on the query
terms appearing in each document, regardless of
their proximity within the document. In this way

Zhttps://huggingface.co/codesage/
codesage-base

3https://github.com/facebookresearch/faiss

*https://www.elastic.co/elasticsearch

the left context represents the query, while the doc-
uments consist of sliced snippet codes.

In this experiment, Elastic performed a search
for relevant snippets. The algorithm was as follows:
1) pre-process the entire code space of project files
3.2 2) building an index using Elastic; 3) ranking
and selecting relevant snippets with top-K based on
BM?2S5 algorithm running by index on the previous
step.

The final step is to select the best snippets and
feed them to the LLMs input in the format pre-
sented in 4.

5 [Evaluation

5.1 RealCode benchmark

RealCode is a benchmark to perform an execution-
based evaluation of LLMs code generation for real
GitHub repositories containing. The dataset con-
tains 219 Python functions > from 22 GitHub repos-
itories ¢ published between June and August 2023.
All these functions are covered with tests in their
respective repositories.

The benchmark task is to write the body of a
function that is declared in a file within one of the
repositories. The benchmark supplies the model
with the remainder of the file or the entire repos-
itory. The metrics used for the benchmark is the
Pass@k metric (Chen et al., 2021)) is employed
for evaluation. We define a successful generation
as one that passes the same number of tests as the
actual body of a function.

5.2 ClickScore metric

The Exact Match (EM) (Wang et al., 2024) metric is
commonly used in code completion to measure the
percentage of correctly generated strings according
to the model’s predictions, including spaces and
special characters. However, relying solely on this
metric may not provide a comprehensive assess-
ment of the model’s quality, as it is too strict and
underestimates the model’s performance. Thus, we
propose a new metric called the ClickScore (CS).

This metric reflects the number of human’s
keystrokes saved when a hint of possible code con-
tinuation is given. For instance, if there is a code
line in Python: a,b = 0, 1, and the predicted line
is a,b = 0,4, then the EM is 0, but the CS is 0.9.

5In the paper, the term “function” includes methods in
classes

®About 60 percent of the repositories used are related to
the field of AI, LLMs, and ML

https://huggingface.co/codesage/codesage-base
https://huggingface.co/codesage/codesage-base
https://github.com/facebookresearch/faiss
https://www.elastic.co/elasticsearch

Thus, the CS shows how closely and numerically
the predicted string matches the ground truth string.
If EM equals 1, then CS will also equal 1. The
CS metric presents a more realistic view of model
prediction performance than EM.

5.3 LLMs inference

We conducted measurements on the open-source
models using the aforementioned experiments to
assess their performance based on CS and EM met-
rics on RealCode benchmark in fill in the middle
(FIM) mode (Bavarian et al., 2022) with 4096 con-
text size. Top-1 snippet codes were collected across
all experiments.

Used open-source LLMs: DeepseekCoder-6.7B
base model (Guo et al., 2024) 7 , CodeGemma-2B ®
and CodeGemma-7B (Team, 2024) ° , CodeQwen-
7B (Bai et al., 2023) '°.

All of them had been used without fine-tuning
for the task.

Model CS EM
DEEPSEEK CODERg.73 0.71 0.51
DEEPSEEK CODERg6.7Bsnippet ~ 0.84 0.74
CODEGEMMA3p 0.61 0.15
CODEGEMMA2B snippet 0.75 0.25
CODEGEMMA7B 0.69 0.20
CODEGEMMA7B snippet 0.83 0.31
CODEQWEN7p 0.73 0.52
CODEQWEN7B snippet 0.83 0.74

Table 1: Embeddings similarity ranking experiment on
Code Completion by RealCode benchmark. Best model
scores are bold.

Model CS EM
DEEPSEEK CODERg.7B 0.71 0.51
DEEPSEEK CODERg6.7B snippet ~ 0.86 0.76
CODEGEMMA2p 0.61 0.15
CODEGEMMA2B snippet 0.78 0.26
CODEGEMMA~ R 0.69 0.20
CODEGEMMA7B snippet 085 0.33
CODEQWEN7p 0.73 0.52
CODEQWEN7?B snippet 0.86 0.76

Table 2: BM25 experiment on Code Completion by
RealCode benchmark. Best model scores are bold.

6 Results

The proposed approach is intuitive and seeks to
replicate the real-life scenarios developers en-

"https://huggingface.co/deepseek-ai/
deepseek-coder-6.7b-base
8https://huggingface.co/google/codegemma—Zb
9https://huggingface.co/google/codegemma—7b
10https://huggingface.co/Qwen/CodeQwem.5—7B

counter. In practice, developers frequently refer-
ence project files directly during their coding pro-
cess or utilize pre-existing code written by others
and subsequently modify it. The integration of opti-
mal snippet codes into LLMs facilitates the model’s
ability to assimilate the context of the file.

The analysis of ranked snippets revealed that
most of them originated from files that closely re-
sembled the left context, necessitating continuation.
We do not consider it as a leakage as in practice,
the developers do absolutely the same.

If we compare the results from the Embeddings
similarity ranking (see Table 1) and the BM25 ex-
periment (see Table 2), the metrics are pretty sim-
ilar. The first experiment is designed to capture
semantic knowledge from code using embeddings,
while the second experiment aims to identify syn-
tactically similar files. The overlap in relevant snip-
pets between the two experiments was over 60%,
indicating significant commonality.

We have also conducted an additional experi-
ment regarding the selection between whole file
and short snippet code staging. The results are
presented in Table 3. The metrics indicate that em-
ploying LL.Ms on full files rather than short code
snippets does not yield any improvement over us-
ing snippet codes.

We also conducted an evaluation of various mod-
els using the specified approach across nine pro-
gramming languages. The results are documented
in 1. This method consistently demonstrates an
enhancement across all languages.

7 Conclusion

The success of padding the snippet into the model
can be attributed to the combination of copy-paste
and semantics between left context and best snippet
codes. Developers often utilize existing code and
modify it when writing new code. We attempted
to replicate this in practice by enhancing visibility
through the inclusion of the most relevant simi-
lar code snippets alongside the code provided by
LLM:s.

During the research, we conducted a comparison
of the performance of open-source LLMs using
both the fine-tuning and snippet code approaches.
The results indicated that fine-tuning only resulted
in a marginal 1-2 percent improvement compared
to the approach without fine-tuning. This perfor-
mance underscoring the substantial effectiveness
of code snippets insertion approach.

https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
https://huggingface.co/google/codegemma-2b
https://huggingface.co/google/codegemma-7b
https://huggingface.co/Qwen/CodeQwen1.5-7B

Limitations

In current approach, the substantial increase in
metrics can be attributed to a significant number
of copy-paste instances, which may present chal-
lenges in the context of code completion task. It is
anticipated that there will be minimal requests for
hints in code where obvious copies are located in
other files, as the necessity for hints for developers
is obviated in such cases.

Effectively managing the substantial volume of
code snippets without compromising performance
poses a significant challenge. One potential solu-
tion for embedding similarity experiment is out-
lined here A.0.1

The code in the RealCode repositories was not
observed during the fine-tuning of StarCoder (Li
et al., 2023b) ' or CodeLlama (Roziere et al.,
2023) '2, as these models were trained before the
summer of 2023. DeepSeek Coder may have en-
countered this code during fine-tuning.

Training an embedder that will be tuned for a
specific code completion task is one way to im-
prove approach.

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,
John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. 2022. Efficient training of lan-
guage models to fill in the middle. arXiv preprint
arXiv:2207.14255.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,

"https://huggingface.co/bigcode/starcoder
12https://huggingface.co/codellama/
CodelLlama-7b-hf

Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Xiaoyin Chen and Sam Wiseman. 2023. Bm25
query augmentation learned end-to-end. ArXiv,
abs/2305.14087.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and
Xing Hu. 2023a. Skcoder: A sketch-based approach
for automatic code generation. In 2023 IEEE/ACM
45th International Conference on Software Engineer-
ing (ICSE), pages 2124-2135. IEEE.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023b. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:
A retrieval-augmented code completion framework.
arXiv preprint arXiv:2203.07722.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi,
Maik Riechert, Juliana Vicente Franco, and Miltiadis
Allamanis. 2021. Fast and memory-efficient neural
code completion. In 2021 IEEE/ACM 18th Interna-
tional Conference on Mining Software Repositories
(MSR), pages 329-340. IEEE.

CodeGemma Team. 2024. Codegemma: Open
code models based on gemma. arXiv preprint
arXiv:2406.11409.

Cunxiang Wang, Sirui Cheng, Qipeng Guo, Yuanhao
Yue, Bowen Ding, Zhikun Xu, Yidong Wang, Xi-
angkun Hu, Zheng Zhang, and Yue Zhang. 2024.
Evaluating open-qa evaluation. Advances in Neural
Information Processing Systems, 36.

Dejiao Zhang, Wasi Uddin Ahmad, Ming Tan, Hantian
Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, and
Bing Xiang. 2024. Code representation learning at
scale. ArXiv, abs/2402.01935.

https://huggingface.co/bigcode/starcoder
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/codellama/CodeLlama-7b-hf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://api.semanticscholar.org/CorpusID:258841762
https://api.semanticscholar.org/CorpusID:258841762
https://api.semanticscholar.org/CorpusID:258841762
https://api.semanticscholar.org/CorpusID:267411870
https://api.semanticscholar.org/CorpusID:267411870
https://api.semanticscholar.org/CorpusID:267411870

A Appendix

A.0.1 Approximate nearest neighbor in
embeddings similarity ranking
experiment

Faiss from 4.1 '3 is a library for efficient simi-
larity search and clustering of dense vectors. It
contains algorithms that search in sets of vectors
of any size, up to ones that possibly do not fit in
RAM. It also contains supporting code for evalu-
ation and parameter tuning. For the efficiency of
raising such an index with large vectors, consider
using an approximate nearest neighbor (ANN) al-
gorithm. ANN algorithms can be more efficient
than exhaustive search methods when dealing with
high-dimensional data, especially in large vector
spaces

Approximate Nearest Neighbor (ANN) approach
was used to speed up the search process through a
large number of data.

It’s the approach that helps to group a large set
of vectors by parts using the k-means algorithm,
each part corresponding to a centroid - a vector that
is the selected center for this cluster. It searches
through the minimum distance to the centroid and
then searches for the minimum distance among
the vectors in that cluster corresponding to that
centroid. Taking k equal to y/n, where n is the
number of vectors in the index, we obtain an opti-
mal search at two levels - first among +/n centroids,
then among +/n vectors in each cluster. The search
is times faster than the full one, which solves one
of the problems when dealing with millions of vec-
tors.

Thus, instead of a complete search of vectors
to find the nearest one, we need to find only the
necessary cluster and search for vectors already in
1t.

A.1 RealCode benchmark details

The sources of the repositories used in creating the
RealCode benchmark are:

* https://github.com/Jakob-98/openai-
functools

* https://github.com/biobootloader/mentat

* https://github.com/causalens/cai-causal-
graph

* https://github.com/modelscope/modelscope-
agent

13https://github.com/facebookresearch/faiss

* https://github.com/simonmesmith/agentflow
* https://github.com/defog-ai/sql-eval

* https://github.com/Wyvern-Al/wyvern

* https://github.com/danielbeach/tinytimmy

* https://github.com/a-r-r-o-w/stablefused

* https://github.com/langchain-ai/permchain

* https://github.com/NullPyDev/beholder

* https://github.com/opencopilotdev/opencopilot
* https://github.com/AgentOps-Al/agentops

* https://github.com/TengHu/ActionWeaver

* https://github.com/fynnfluegge/doc-
comments.ai

* https://github.com/Tinny-Robot/DimSense
* https://github.com/mljar/plotai

* https://github.com/juliendenize/eztorch

* https://github.com/yihong0618/epubhv

* https://github.com/simonw/lIlm-cluster

* https://github.com/PennywOrth/NetExec

* https://github.com/Vaultexe/server

We didn’t apply any specific topic-based filtering
to these data. The topic meta information comes
from the topic distribution of Python repositories
on GitHub in the summer of 2023. The repositories
were rolled back to a specific commit during data
preparation.

A.2 Snippet length variety experiment

We have examined submitting code snippets of
different lengths. We attempt two options — to
submit a small relevant piece of code or to submit
the entire code from the file and then select the
best snippet after ranking by BM25 4.2. The best
snippet was fed into the LLMs input in the format
shown in the input section (see 4 for reference).

We’ve examine submitting different lengths of
code snippets. There were two alternatives - to feed
a small piece of code that is relevant or to feed the
whole code from the file from which the best snip-
pet after ranking by BM25 4.2 was found. We’ve
tried each of them, and the results are presented
below.

The best snippets was feeded to the LLms input
in the format presented in 4.

https://github.com/facebookresearch/faiss

Model CS EM

DEEPSEEK CODERsnippet 0.84 0.74
DEEPSEEK CODERwhote_fitle 0.84 0.73
CODEGEMMA2B snippet 0.75 0.25
CODEGEMMA2B whole_ file 0.75 0.24
CODEGEMMA7B snippet 0.83 031
CODEGEMMA7B whole_ file 0.82 0.30
CODEQWEN? B snippet 0.83 0.74
CODEQWEN7BwhOle_file 0.83 0.75

Table 3: Snippet length variety experiment by BM25
ranking by RealCode benchmark. Best model scores
are bold.

A.3 LLMs evaluation by nine programming
languages with BM25 snippet codes
ranking

We also conducted an evaluation of various models
using the specified approach across nine program-
ming languages. The results are documented in 1.
This method consistently demonstrates an enhance-
ment across all languages. The data was collected
by the same concept as the RealCode benchmark
A.1. We took projects from GitHub on actual code
for nine different programming languages: Python,
Java, JavaScript, TypeScript, C++, Go, C#, Kotlin,
Ruby.

0.7 1 mm CodeQwen 1.5-7B

I msm DeepSeek Coder 6.7B base
0.6 1 Il I

0.54 | I

0.4

Exact match

0.3

Figure 1: EM metric on the BM25 experiment on dataset
gathered by 9 languages from GitHub projects.

	Introduction
	Related Work
	Approach
	Overview
	Pre-processing of the code data
	Ranking and snippet selection

	Experiments
	Embeddings similarity ranking
	BM25 ranking

	Evaluation
	RealCode benchmark
	ClickScore metric
	LLMs inference

	Results
	Conclusion
	Appendix
	Approximate nearest neighbor in embeddings similarity ranking experiment
	RealCode benchmark details
	Snippet length variety experiment
	LLMs evaluation by nine programming languages with BM25 snippet codes ranking

