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Abstract

A deep neural network using rectified linear units represents a continuous piecewise
linear (CPWL) function and vice versa. Recent results in the literature estimated
that the number of neurons needed to exactly represent any CPWL function grows
exponentially with the number of pieces or exponentially in terms of the factorial
of the number of distinct linear components. Moreover, such growth is amplified
linearly with the input dimension. These existing results seem to indicate that
the cost of representing a CPWL function is expensive. In this paper, we propose
much tighter bounds and establish a polynomial time algorithm to find a network
satisfying these bounds for any given CPWL function. We prove that the number
of hidden neurons required to exactly represent any CPWL function is at most a
quadratic function of the number of pieces. In contrast to all previous results, this
upper bound is invariant to the input dimension. Besides the number of pieces, we
also study the number of distinct linear components in CPWL functions. When
such a number is also given, we prove that the quadratic complexity turns into
bilinear, which implies a lower neural complexity because the number of distinct
linear components is always not greater than the minimum number of pieces in a
CPWL function. When the number of pieces is unknown, we prove that, in terms
of the number of distinct linear components, the neural complexities of any CPWL
function are at most polynomial growth for low-dimensional inputs and factorial
growth for the worst-case scenario, which are significantly better than existing
results in the literature.

1 Introduction

The rectified linear unit (ReLU) [Fukushima, 1980, Nair and Hinton, 2010] activation has been
by far the most widely used nonlinearity and successful building block in deep neural networks
(DNNs). Numerous architectures based on ReLU DNNs have achieved remarkable performance
or state-of-the-art accuracy in speech processing [Zeiler et al., 2013, Maas et al., 2013], computer
vision [Krizhevsky et al., 2012, Simonyan and Zisserman, 2015, He et al., 2016], medical image
segmentation [Ronneberger et al., 2015], game playing [Mnih et al., 2015, Silver et al., 2016], and
natural language processing [Vaswani et al., 2017], just to name a few. Besides such unprecedented
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Theorem 1 and 3
[Hertrich et al., 2021]

[He et al., 2020]

Figure 1: Any CPWL function Rn → R with q pieces or k distinct linear components can be exactly
represented by a ReLU network with at most h hidden neurons. In Theorem 1 and 3, h = 0 when
q = 1 or k = 1. The bounds in Theorem 1 and the worst-case bounds in Theorem 3 are invariant to n.
(4) is used to infer h based on the depth and width given by Hertrich et al. [2021]. The upper bounds
given by Theorem 1 and 3 are substantially lower than existing bounds in the literature, implying that
any CPWL function can be exactly realized by a ReLU network at a much lower cost.

empirical success, ReLU DNNs are also probably the most understandable nonlinear deep learning
models due to their ability to be “un-rectified” [Hwang and Heinecke, 2019].

The ability to demystify ReLU DNNs via “un-rectifying ReLUs” dates back to a seminal work
by Pascanu et al. in 2014. Because each of ReLUs in a hidden layer divides the space of the
preceding layer’s output into two half spaces whose ReLU response is affine in one half space and
exactly zero in the other, the layer of ReLUs can be replaced by an input-dependent diagonal matrix
whose diagonal elements are ones for firing ReLUs and zeros for non-firing ReLUs. Based on this
rationale, Pascanu et al. [2014] proved that a neural network using ReLUs divides the input space
into many linear regions such that the network itself is an affine function within every region. Two
excellent visualizations are shown in Figure 2 in [Hanin and Rolnick, 2019a] and [Hanin and Rolnick,
2019b]. At this point, it is quite evident that any ReLU network exactly represents a CPWL function.
Pascanu et al. also proved that the maximum number of linear regions for any ReLU network with a
single hidden layer is equivalent to the number of connected components induced by arrangements
of hyperplanes in general position where each hyperplane corresponds to a ReLU in the hidden
layer. Such a number can be computed in a closed form by Zaslavsky’s Theorem [Zaslavsky, 1975].
Furthermore, they showed that the maximum number of linear regions can be bounded from below
by exponential growth in terms of the number of hidden layers, leading to a conclusion that ReLU
DNNs can generate more linear regions than their shallow counterparts. In the same year, Montúfar
et al. improved such a lower bound and gave the first upper bound for the maximum number of linear
regions. These bounds and their assumptions were later improved by [Montúfar, 2017, Raghu et al.,
2017, Arora et al., 2018, Serra et al., 2018, Hinz and van de Geer, 2019], just to name a few. We refer
readers to Hinz’s doctoral thesis for a thorough discussion on the upper bound of the number of linear
regions. Because a CPWL function with more pieces can better approximate any given continuous
function and a ReLU DNN exactly represents a CPWL function [Arora et al., 2018], a ReLU DNN
with more linear regions in general exhibits stronger expressivity. In summary, this “un-rectifying”
perspective provides us a new angle to understand ReLU DNNs, and the results in some ways align
with advances in approximation theory demonstrating the expressivity.1

Despite these advancements in linear regions, the complexity of a ReLU DNN that exactly represents
a given CPWL function remains largely unexplored. One can find that this question is the opposite
direction of the above-mentioned line of research. Although Arora et al. [2018] proved that any
CPWL function can be exactly represented by a ReLU DNN with a bounded depth, any estimates

1The approximation viewpoint is not the focus of this paper. The literature on approximation is vast and we
refer readers to [Vardi et al., 2021, Lu et al., 2017, Eldan and Shamir, 2016, Telgarsky, 2016, Hornik et al., 1989,
Cybenko, 1989], just to name a few.
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regarding the width or number of neurons of such a network were not given. The resources required
for a ReLU neural network to exactly represent a CPWL function remained unknown until He et al.
[2020] provided a bound to the complexity of a ReLU network that realizes any given CPWL function.
They proved that the number of neurons is bounded from above by exponential growth in terms
of the product between the number of pieces and the number of distinct linear components of a
given CPWL function. Such an exponential bound also grows linearly with the input dimension.
Because the number of pieces is an upper bound of the number of distinct linear components for any
CPWL function [Tarela and Martínez, 1999, He et al., 2020], the bound grows exponentially with the
quadratic number of pieces, which seems to imply that the cost for representing a CPWL function by
a ReLU DNN is exceedingly high.

The most recent upper bound can be inferred from a recent work by Hertrich et al. [2021] although
the number of hidden neurons was not directly given. Hertrich et al. [2021] proved a width bound in
terms of the number of distinct linear components under the same depth used by Arora et al. [2018]
and He et al. [2020].2 In particular, they proved that the maximum width of a ReLU network that
represents any given CPWL function can be polynomially bounded from above in terms of the number
of distinct linear components. However, the order of such a polynomial is a quadratic function of the
input dimension, which can be immensely large for a small number of pieces or linear components
when the input dimension is large. This bound grows larger with the input dimension even though
the underlying CPWL function is just a one-hidden-layer ReLU network using only one ReLU (see
Figure 1 for the difference between n = 1 and n = 2 when q = 2 or k = 2).

In this paper, we provide improved bounds showing that any CPWL function can be represented
by a ReLU DNN whose neural complexity is bounded from above by functions with much slower
growth (see Figure 1). Our results imply that one can exactly realize any given CPWL function by a
ReLU network at a much lower cost. On the other hand, in addition to guaranteeing the existence of
such a network, we also give a polynomial time algorithm to exactly find a network satisfying our
bounds. To the best of our knowledge, our results regarding the computational resource for a ReLU
network, i.e., the number of hidden neurons, are the lowest upper bounds in the existing literature and
the algorithm is the first tailored procedure to find a network representation from any given CPWL
function. Key results and main contributions of this paper are highlighted below.

1.1 Key results and contributions

Quadratic bounds. We prove that any CPWL function with q pieces can be represented by a ReLU
network whose number of hidden neurons is bounded from above by a quadratic function of q. We
also give the corresponding upper bounds for the maximum width, i.e., the maximum number of
neurons per hidden layer, and the number of layers for such a network. The maximum width is
bounded from above by O(q2) and the number of layers is bounded from above by a logarithmic
function of q, i.e., O(log2 q). These bounds are invariant to the input dimension. For any affine
function, the upper bounds for the maximum width and the number of hidden neurons are zero.

Further improvements on neural complexity. When the number of distinct linear components
k of any CPWL function is given along with the number of pieces q, the quadratic bounds O(q2)
for the number of hidden neurons and the maximum width turn into bilinear bounds of k and q, i.e.,
O(kq). Such a change reduces the neural complexity because k ≤ q, and q can be much larger than
k. Still, these bounds are independent of the input dimension.

Finding a network satisfying bilinear bounds. We establish a polynomial time algorithm that
finds a ReLU network representing any given CPWL function. The network found by the algorithm
satisfies the bilinear bounds on the number of hidden neurons and the maximum width, and the
logarithmic bound on the number of layers. Note that such an algorithm also guarantees that one
can always reverse-engineer at least one ReLU network from the function it computes. Compared to
the general-purpose reverse-engineering algorithm proposed by Rolnick and Kording [2020], our
algorithm specializes in the situation when pieces of a CPWL function are given.

2The number of “affine pieces” used by Theorem 4.4 in [Hertrich et al., 2021] should be interpreted as
the number of distinct linear components to best reflect the upper bound for the maximum width. Such an
interpretation of “affine pieces” is different from the convention used by Pascanu et al. [2014], Montúfar et al.
[2014], Arora et al. [2018], Hanin and Rolnick [2019a], and this work.
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Improved bounds from a perspective of linear components. When the number of pieces of a
CPWL function is unknown and only the number of linear components k is available, we prove that
the number of hidden neurons and maximum width are bounded from above by factorial growth.
More precisely, O (k · k!). The number of layers is bounded from above by linearithmic growth, or
O(k log2 k). However, when the input dimension n grows sufficiently slower than k, e.g., O

(√
k
)

,
then bounds for the number of hidden neurons and maximum width reduce to polynomial growth
functions of order 2n+ 1; and the linearithmic growth reduces to O (n log2 k) for the depth.

A new approach to choosing the depth. Instead of scaling the depth of a ReLU network with the
input dimension [Arora et al., 2018, He et al., 2020, Hertrich et al., 2021], we reveal that constructing
a ReLU network whose depth is scaled with the number of pieces of the given CPWL function is
more advantageous. Such a scaling turns out to be the key to deriving better upper bounds. This
insight is provided by the max-min representation of CPWL functions [Tarela et al., 1990]. The
importance of this scaling on the depth in ReLU networks has not been well recognized by existing
bounds in the literature. We discuss implications of different representations in Section 4.

2 Preliminaries

Notation and definitions used in this paper are set up and clarified in this section. The set
{1, 2, · · · ,m} is denoted by [m]. I [condition] is an indicator function that gives 1 if the condition
is true, and 0 otherwise. The CPWL function is defined by Definition 1 below.
Definition 1. A function p : Rn → R is said to be CPWL if there exists a finite number of closed
subsets of Rn, say {Ui}i∈[m], such that (a) Rn =

⋃
i∈[m] Ui; (b) p is affine on Ui,∀i ∈ [m].

A family of closed convex subsets, say {Xi}i∈[q], satisfying Definition 1 is also referred to as a family
of convex regions, affine pieces or simply pieces for a CPWL function in this paper. Definition 1
follows the definition of CPWL functions by Ovchinnikov [2002]. Notice that there are different
definitions in the literature. For example, Chua and Deng [1988] and Arora et al. [2018] defined a
CPWL function on a finite number of polyhedral regions. However, their definitions are essentially the
same as Definition 1 because any family of closed subsets satisfying Definition 1 can be decomposed
into polyhedral regions. It is possible that some of the closed subsets satisfying Definition 1 are
non-convex even though the number of them reaches the minimum (see Figure 2 in [Wang and Sun,
2005]). The continuity is implied by Definition 1 due to the subsets being closed.

Because the goal of this paper is to bound the complexity of a ReLU DNN that exactly represents
any given CPWL function, it is necessary to be able to measure the complexity of a CPWL function.
The complexity of a CPWL function can be described using two different perspectives. One is the
number of pieces q, which is the number of closed convex subsets satisfying Definition 1. Because
this number has a minimum and any finite number above the minimum can be a valid m in Definition
1, the bounds become obviously loose when the number of pieces is not the minimum. Without loss
of generality, we are interested in the number q when it is the minimum. The other is the number of
distinct linear components k. A linear component of a CPWL function is defined in Definition 2.
Definition 2. An affine function f is said to be a linear component of a CPWL function p if there
exists a nonempty subsetM ⊆ [m] such that f(x) = p(x),∀x ∈

⋃
i∈M Ui where {Ui}i∈[m] is a

family of the minimum number of closed subsets satisfying Definition 1.

A greater q or k gives a CPWL function more degrees of freedom because a CPWL function allowed
to use q + 1 pieces or k + 1 arbitrary linear components can represent any CPWL function with q
pieces or k distinct linear components and still have the flexibility to modify existing affine maps
or increase the number of distinct affine maps of the CPWL function. Although increasing them
both leads to a CPWL function with greater flexibility, the speed of upgrading degrees of freedom
is different from each other. Note that a CPWL function with q pieces can never have more than q
distinct linear components and a CPWL function with k distinct linear components can easily have
more than k minimum number of pieces. Such a difference in a 1-dimensional case can be clearly
observed from Figure 1 in [Tarela and Martínez, 1999]. Note that it is possible for two disjoint subsets
from a minimum number of closed subsets satisfying Definition 1 to share the same linear component.
In other words, a linear component can be reused by multiple pieces. Hence, increasing k gives faster
growth than increasing q for the complexity and expressivity of CPWL functions.
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We define the ReLU activation function in Definition 3. The ReLU network defined in Definition 4
is a simple architecture which is usually referred to as a ReLU multi-layer perceptron. Definition 5
defines the corresponding number of hidden neurons, depth, and maximum width.
Definition 3. The rectified linear unit (ReLU) activation function σ is defined as σ(x) = max(0, x).
The ReLU layer or vector-valued rectified linear activation function σk is defined as σk(x) =[
σ(x1) σ(x2) · · · σ(xk)

]T
where x =

[
x1 x2 · · · xk

]T
.

Definition 4. Let l be any positive integer. A function g : Rk0 → Rkl is said to be an l-layer
ReLU network if there exist weights Wi ∈ Rki×ki−1 and bi ∈ Rki for i ∈ [l] such that the
input-output relationship of the network satisfies g(x) = hl(x) where h1(x) = W1x + b1 and
hi(x) = Wiσki−1

(
hi−1(x)

)
+ bi for every i ∈ [l] \ [1].

Definition 5. The sum
∑L−1

l=1 kl and the maximum maxl∈[L−1] kl for L > 1 are referred to as the
number of hidden neurons and the maximum width of an L-layer ReLU network, respectively. Any
1-layer ReLU network is said to have 0 hidden neurons and a maximum width of 0. An l-layer ReLU
network is said to have depth l and l − 1 hidden layers.

3 Upper bounds on neural complexity for representing CPWL functions

The correspondence between CPWL functions and ReLU networks was first clearly confirmed by
Theorem 2.1 in [Arora et al., 2018] although a weaker version of the correspondence can be inferred
from Proposition 4.1 in [Goodfellow et al., 2013]. Arora et al. [2018] proved that every ReLU
network Rn → R exactly represents a CPWL function, and the converse is also true, i.e., every
CPWL function can be exactly represented by a ReLU network. One of the key steps used by Arora
et al. [2018] to construct a ReLU network from any given CPWL function relies on an important
representation result by Wang and Sun [2005], stating that any CPWL function can be represented
by a sum of a finite number of max-η-affine functions [Magnani and Boyd, 2009] whose signs may
be flipped and η is bounded from above by n+ 1 where η is the number of affine functions in the
max-η-affine function. The implication of using this representation is later discussed in Section 4.1
and its max-η-affine functions are given therein. The bound η ≤ n+ 1 in the representation allowed
Arora et al. [2018] to further prove that there exists a ReLU DNN with at most⌈

log2(n+ 1)
⌉

(1)

hidden layers to exactly realize any given CPWL function. However, the computational resource
required for a ReLU network to exactly represent any CPWL function had not been available in the
literature until the work by He et al. [2020].

3.1 Upper bounds in prior work

He et al. [2020] proved that a CPWL function Rn → R with q pieces and k linear components can
be represented by a ReLU network whose number of neurons is given byO

(
n2kq+(n+1)(k−n−1)

)
, if k ≥ n+ 1,

O
(
n2kq

)
, if k < n+ 1.

(2)

The number of hidden layers in such a ReLU DNN is also bounded from above by
⌈
log2(n+ 1)

⌉
,

which is the same as the bound derived by Arora et al. [2018]. One of their significant contributions
in our view is that they utilize the number of pieces and linear components of a CPWL function to
bound the complexity of the equivalent ReLU network. He et al. [2020] also proved the relationship

k ≤ q ≤ k! (3)

for any CPWL function. Note that the bounds in (3) on the number of pieces q and linear components
k were first mentioned by Tarela and Martínez [1999] who developed the lattice representation of
CPWL functions. Asymptotically, the bounds in (2) for k ≥ n + 1 and k < n + 1 are amplified
linearly with the input dimension n for any fixed k. Due to (3), they can be further bounded from
above by O

(
n2q

2+(n+1)(q−n−1)
)

and O
(
n2q

2
)

in terms of q and n. On the other hand, in terms

of k and n, they can be further bounded from above by O
(
n2k·k!+(n+1)(k−n−1)

)
and O

(
n2k·k!

)
.
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Because these bounds grow much faster than exponential growth, they seem to suggest that the cost
of computing a CPWL function via a ReLU network is exceptionally high.

Hertrich et al. [2021] proved that any CPWL function Rn → R with k distinct linear components
can be represented by a ReLU network whose maximum width is O

(
k2n

2+3n+1
)

under the same

number of hidden layers
⌈
log2(n+ 1)

⌉
. Hence, the number of hidden neurons must be bounded

from above by
O
(
k2n

2+3n+1 log2 (n+ 1)
)
. (4)

Note that we infer this bound by taking the product of the depth and the maximum width. Using
k ≤ q, the bound in (4) can be expressed in terms of q, leading toO

(
q2n

2+3n+1 log2 (n+ 1)
)

. Such

a bound can grow slower than O
(
n2q

2
)

, but it grows faster than O
(
n2q

2
)

if the input dimension

n grows sufficiently faster than the number of pieces q. Also, O
(
k2n

2+3n+1 log2 (n+ 1)
)

grows

faster than O
(
n2k·k!

)
when the input dimension n grows sufficiently faster than the number of

distinct linear components k.

3.2 Improved upper bounds

We show that any CPWL function can be represented by a ReLU network whose number of hidden
neurons is bounded by much slower growth functions. We state our main results in Theorem 1, 2 and
3, and focus on their impact in this subsection. Each one of them is tailored to a specific complexity
measure of the CPWL function. Their proof sketches are deferred to Section 4.2. We first focus on
the case when the number of linear components is unknown and the complexity of the CPWL is only
measured by the number of pieces q.
Theorem 1. Any CPWL function p : Rn → R with q pieces can be represented by a ReLU network
whose number of layers l, maximum width w, and number of hidden neurons h satisfy

l ≤ 2 ⌈log2 q⌉+ 1, (5)

w ≤ I [q > 1]

⌈
3q

2

⌉
q, (6)

and
h ≤

(
3 · 2⌈log2 q⌉ + 2 ⌈log2 q⌉ − 3

)
q + 3 · 2⌈log2 q⌉ − 2 ⌈log2 q⌉ − 3. (7)

Furthermore, Algorithm 1 finds such a network in poly (n, q, L) time where L is the number of
bits required to represent every entry of the rational matrix Ai in the polyhedron representation
{x ∈ Rn|Aix ≤ bi} of the piece Xi for every i ∈ [q].

Algorithm 1 Find a ReLU network that computes a given continuous piecewise linear function

Input: A CPWL function p with pieces {Xi}i∈[q] of Rn satisfying Definition 1.
Output: A ReLU network g computing g(x) = p(x),∀x ∈ Rn.

1: f1, f2, · · · , fk ← run Algorithm 6 to find all distinct linear components of p
2: for i = 1, 2, · · · , q do
3: Ai ← ∅
4: for j = 1, 2 · · · , k do
5: if fj(x) ≥ p(x),∀x ∈ Xi then
6: Ai ← Ai

⋃
{j}

7: end if
8: end for
9: vi ← run Algorithm 2 with {fm}m∈Ai

using the minimum type
10: end for
11: v ← run Algorithm 3 with v1, v2, · · · , vq ▷ Combine q ReLU networks in parallel

12: u← run Algorithm 2 with
{[

s1 s2 · · · sq
]T 7→ sm

}
m∈[q]

using the maximum type

13: g ← run Algorithm 4 with v and u ▷ Find a ReLU network for the composition u ◦ v

6



The proof of Theorem 1 is deferred to Appendix B.4 in the supplementary material. Algorithm
6, 2, 3, and 4 used by Algorithm 1 are deferred to Appendix C in the supplementary material and
will be discussed soon after the discussion on bounds. Because 2⌈log2 q⌉ < 2q, the upper bound in
(7) can be further bounded from above by 6q2 + 2 ⌈log2 q⌉ q + 3q − 2 ⌈log2 q⌉ − 3, leading to the
asymptotic bound h = O(q2). Obviously, l = O(log2 q) and w = O(q2). Since the bound given by
Theorem 5.2 in He et al. [2020] can be lower bounded by O

(
n2q

2
)

, it grows exponentially faster
than our bound of h given in Theorem 1. On the other hand, the upper bound given by (4) is at least
polynomially larger than our bound of h and the order of this polynomial grows quadratically with the
input dimension n. Note that such a polynomial becomes an exponential function when the growth in
n is not slower than q. Such differences are illustrated by the figure on the left-hand side of Figure
1. The bounds in Theorem 1 are independent of the input dimension n. Hence, one can realize any
given CPWL function using a relatively small ReLU network even though n is huge.

In terms of the maximum width, the upper bound given by (6) is at least polynomially smaller than
the one given by Hertrich et al. [2021]. In contrast to the bound for the number of layers in [Arora
et al., 2018, He et al., 2020, Hertrich et al., 2021] that grows logarithmically with the input dimension
n, our bound in Theorem 1 grows logarithmically with the number of pieces q. Therefore, the ReLU
network found by Algorithm 1 in general becomes deeper when the CPWL becomes more complex
for a fixed input dimension. On the other hand, the network remains the same depth even for an
arbitrarily larger n as long as q is fixed. Taking an affine function for example, a 1-layer ReLU
network with 0 hidden neurons is the solution given by Theorem 1. However, the bound given by
[Arora et al., 2018, He et al., 2020, Hertrich et al., 2021] keeps increasing the depth for a larger n.

We briefly explain algorithms used by Algorithm 1. Algorithm 2 finds a ReLU network that computes
a max-affine or min-affine function [Magnani and Boyd, 2009]. Algorithm 3 concatenates two given
ReLU networks in parallel and returns another ReLU network computing the concatenation of two
outputs. Algorithm 4 finds a ReLU network that represents a composition of two given ReLU
networks. These algorithms are basic manipulations of ReLU networks. Algorithm 1 is a polynomial
time algorithm, following from the proof of Theorem 2. Table 1 in Appendix C in the supplementary
material gives a complexity analysis for Algorithm 1.

Notice that Algorithm 1 does not need to be given any linear components or completely know the
CPWL function because every distinct linear component can be found by Algorithm 6, which only
needs to be given a closed ϵ-ball in the interior of every piece of a CPWL function p and observe the
output of p when feeding an input. Algorithm 6 solves a system of linear equations for every piece of
p to find the corresponding linear component. Every system of linear equations here has a unique
solution because the interior of each of the pieces is nonempty. The nonemptyness is guaranteed by
Lemma 12(a) in Appendix A in the supplementary material.

The 5th step of Algorithm 1 can be executed by checking the optimization result of the following
linear programming problem

minimize fj(x)− p(x),

subject to x ∈ Xi.
(8)

The condition in the 5th step can only be true when the optimal value is nonnegative. Because every
piece of p is given to Algorithm 1, the piece Xi is available for the linear program as a system of
linear inequalities. The objective function is also available since p is affine on Xi and all distinct
linear components are available from Algorithm 6. The corresponding linear component of p on Xi

can be found by first feeding at most n+ 1 affinely independent points from the closed ϵ-ball to p
and every candidate linear component, and then matching their output values.

The ellipsoid method [Khachiyan, 1979], the interior-point method [Karmarkar, 1984], and the
path-following method [Renegar, 1988] are polynomial time algorithms for the linear programming
problem using rational numbers on the Turing machine model of computation. These algorithms
are also known to be weakly polynomial time algorithms. The strongly polynomial time algorithm
requested by Smale’s 9th problem [Smale, 1998], i.e., the linear programming problem, is still an
open question. Given that we run the 5th step of Algorithm 1 by solving the linear programming
problem in (8), Algorithm 1 is a weakly polynomial time algorithm. The question of whether it is a
strongly polynomial time algorithm is not known. The dependency on the number of bits L in the
time complexity of Algorithm 1 directly comes from using (8) to execute the 5th step. In practice,
linear programming problems can be solved very reliably and efficiently [Boyd and Vandenberghe,

7



1 2 3 4 5 6 7 8 9 10

101

105

109

1013

1017

k

U
pp

er
bo

un
d

of
h

1 2 3 4 5 6 7 8 9 10

101

105

109

1013

1017

k

U
pp

er
bo

un
d

of
h

1 2 3 4 5 6 7 8 9 10

101

105

109

1013

1017

k

U
pp

er
bo

un
d

of
h

n = 1
n = 2
n = 3
n = 10

Figure 2: Left: The upper bound of h in Theorem 3 grows much slower when n grows sufficiently
slower than k, leading to a much better upper bound compared to the worst-case asymptotic bound
O (k · k!) in Theorem 3 when n is sufficiently larger. Middle: the bound in (4) inferred from [Hertrich
et al., 2021]. Right: Theorem 5.2 in [He et al., 2020].

2004]. We provide an implementation of Algorithm 1 and measure its run time on a computer for
different numbers of pieces and input dimensions in Appendix D in the supplementary material.

Theorem 2 discusses the case when the number of linear components and pieces are both known.
Theorem 2. Any CPWL function p : Rn → R with k linear components and q pieces can be
represented by a ReLU network whose number of layers l, maximum width w, and number of hidden
neurons h satisfy l ≤ ⌈log2 q⌉+ ⌈log2 k⌉+ 1, w ≤ I [k > 1]

⌈
3k
2

⌉
q, and

h ≤
(
3 · 2⌈log2 k⌉ + 2 ⌈log2 k⌉ − 3

)
q + 3 · 2⌈log2 q⌉ − 2 ⌈log2 k⌉ − 3. (9)

Furthermore, Algorithm 1 finds such a network in poly (n, k, q, L) time where L is the number of
bits required to represent every entry of the rational matrix Ai in the polyhedron representation
{x ∈ Rn|Aix ≤ bi} of the piece Xi for every i ∈ [q].

The proof of Theorem 2 is deferred to Appendix B.3 in the supplementary material. The bounds in
Theorem 2 are in general tighter and always no worse than those in Theorem 1 because q is never less
than k but can be much larger than k. Asymptotically, l = O(log2 q), w = O(kq), and h = O(kq).
The bound given by Theorem 5.2 in He et al. [2020] increases exponentially faster than the bound of
h in Theorem 2.

When the number of linear components is the only complexity measure of the CPWL function, we
resort to Theorem 3 below.
Theorem 3. Any CPWL function p : Rn → R with k linear components can be represented by a
ReLU network whose number of layers l, maximum width w, and number of hidden neurons h satisfy
l ≤

⌈
log2 ϕ(n, k)

⌉
+ ⌈log2 k⌉+ 1, w ≤ I [k > 1]

⌈
3k
2

⌉
ϕ(n, k), and

h ≤
(
3 · 2⌈log2 k⌉ + 2 ⌈log2 k⌉ − 3

)
ϕ(n, k) + 3 · 2⌈log2 ϕ(n,k)⌉ − 2 ⌈log2 k⌉ − 3 (10)

where

ϕ(n, k) = min

 n∑
i=0

(k2−k
2

i

)
, k!

 . (11)

The proof of Theorem 3 is deferred to Appendix B.5 in the supplementary material. Because
ϕ(n, k) ≤ k!, the worst-case asymptotic bounds for l, w and h are l = O (k log2 k), w = O (k · k!),
and h = O (k · k!), respectively. However, it holds that

∑n
i=0

( k2−k
2
i

)
≤ k2n, so the asymptotic

bounds are l = O (n log2 k), w = O
(
k2n+1

)
, and h = O

(
k2n+1

)
when n grows sufficiently slower

than k. For example, n = O
(√

k
)

. In this case, w and h are bounded from above by a polynomial

of order 2c
√
k+1 for some constant c, which grows slower than factorial growth. Such an advantage

for small n is illustrated by the figure on the left-hand side of Figure 2.

Since the bound given by Theorem 5.2 in [He et al., 2020] can be bounded from below byO
(
n2k·k!

)
,

it at the minimum grows exponentially larger than the upper bound of h in Theorem 3. Even for
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a small n, the relative order of growth is gigantic. The figure on the right-hand side of Figure 2
illustrates such a large difference. For k = 5, n2k·k! ≈ 7.92× 1028 when n = 1, while our bound of
h is at most 3615 for any n. The difference is extremely large even though k is small under n = 1.
The middle plot in Figure 2 shows that (4) increases much faster when n becomes larger. For k = 3,
k2n

2+3n+1 log2 (n+ 1) ≈ 8.20× 10110 when n = 10, while our bound of h is at most 95 for any n.
The upper bound of h in Theorem 3 is much better than (4) for any n and k.
Lemma 1. Let Pn,k be the set of all CPWL functions with exactly k distinct linear components such
that p : Rn → R,∀p ∈ Pn,k. Let Cn,k(p) be the collection of all families of closed convex subsets
satisfying Definition 1 for any p ∈ Pn,k. Then, k ≤ minQ∈Cn,k(p)|Q| ≤ ϕ(n, k).

The proof of Lemma 1 is deferred to Appendix B.1 in the supplementary material. Clearly, ϕ(n, k) is
a better upper bound of q compared to the bound q ≤ k! given by He et al. [2020]. When n grows
sufficiently slower than k, the bound ϕ(n, k) can be exponentially smaller than k!.

3.3 Limitations

Although these new bounds are significantly better than previous results, it is still possible to find a
ReLU network whose hidden neurons are fewer than the bounds in Theorem 2 to exactly represent a
given CPWL function. A tight bound for the case when n = 1 was first given by Theorem 2.2 in
[Arora et al., 2018]. However, it seems more difficult to bound the size of a network from below for
n > 1. To the best of our knowledge, we are not aware of any tight bounds in the literature for the
size of the ReLU network representing a general CPWL function using an arbitrary input dimension.

4 Representations of CPWL functions have different implications on depth

We reveal implications of using different representations of CPWL functions and their impact on
constructing ReLU networks. We first discuss the popular representation used by prior work and the
implicit constraint imposed by such a representation.

4.1 Constrained depth

Arora et al. [2018], He et al. [2020], and Hertrich et al. [2021] proved the same bound for the number
of layers, relying on the following representation of a CPWL function

p(x) =

J∑
j=1

σj max
i∈η(j)

fi(x) (12)

where σj ∈ {+1,−1} and η(j) is a subset of [J ] such that
∣∣η(j)∣∣ ≤ n+ 1 for all j ∈ [J ]. That is, a

sum of a finite number of max-η-affine functions whose signs may be flipped. (12) was established
by Theorem 1 in [Wang and Sun, 2005] which is essentially the same as Theorem 1 in [Wang, 2004]
that emphasizes the difference between two convex piecewise linear functions. This result was also
used by Goodfellow et al. [2013] to prove Proposition 4.1 in the maxout network paper.

The depth given by (1) does not scale with the complexity of a CPWL function. This feature directly
comes from using a ReLU network to realize each of max-η-affine functions in (12) and concatenating
all of them together. Because the size of η(j) is bounded from above by n + 1, the depth can be
made to depend solely on n. Such a treatment seems to be the only way if one considers a CPWL
function represented by (12). As a result, the ReLU network is forced to use a depth constrained
by the input dimension to represent the given CPWL function, which in turn requires more hidden
neurons. Because we do not use (12), our networks are not limited by such an implication.

4.2 Proof sketch for the unconstrained depth

We give a proof sketch in this subsection for our main results. By using a different representation, the
depth of a ReLU network is able to be scaled with the complexity measure, i.e., the number of pieces,
of any given CPWL function to accommodate the high expressivity.

By Theorem 4.2 in [Tarela and Martínez, 1999], any CPWL function p can be represented as
p(x) = max

X∈Q
min

i∈A(X )
fi(x) (13)
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for all x ∈ Rn where A (X ) =
{
i ∈ [k] | fi(x) ≥ p(x),∀x ∈ X

}
is the set of indices of linear

components that have values greater than or equal to p(x) for all x ∈ X , and Q is any family of
closed convex subsets of Rn satisfying Definition 1. We have used f1, f2, · · · , fk to denote the k
distinct linear components of p. Notice that Theorem 4.2 in [Tarela and Martínez, 1999] was first
stated by Theorem 7 in [Tarela et al., 1990]. Both are essentially the same, but Theorem 4.2 in [Tarela
and Martínez, 1999] emphasizes the convexity of each of the regions in the domain. Both theorems
are also fundamentally equivalent to Theorem 2.1 in [Ovchinnikov, 2002]. Notice that one of the
concluding remarks in [Ovchinnikov, 2002] pointed out that the convexity of the input space is an
essential assumption. The entire space Rn satisfies such an assumption. In addition, Ovchinnikov
pointed out that the max-min representation also holds for vector-valued CPWL functions. Hence, it
is possible to generalize our bounds to vector-valued CPWL functions.

Using the representation in (13) and Lemma 2 below, we are able to prove Theorem 2 by bounding
the size of Q and A (X ). Theorem 1 and 3 can be proved by applying Lemma 1 to Theorem 2. Note
that the size|Q| in (13) is the key for the depth of a ReLU network to be able to scale with q.
Lemma 2. Let m be any positive integer. Define l(m) = ⌈log2 m⌉+ 1, w(m) = I [m > 1]

⌈
3m
2

⌉
,

and the following sequence for any positive integer k,

r(k) =


0, if k = 1,
3k
2 + r

(
k
2

)
, if k is even,

2 + 3(k−1)
2 + r

(
k+1
2

)
, if k ̸= 1 and k is odd.

(14)

Then, there exists an l(m)-layer ReLU network g : Rn → R with r(m) hidden neurons and a
maximum width of w(m) such that g computes the extremum of f1(x), f2(x), · · · , fm(x), i.e.,
g(x) = maxi∈[m] fi(x) or g(x) = mini∈[m] fi(x) for all x ∈ Rn under any m scalar-valued affine
functions f1, f2, · · · , fm. Furthermore, Algorithm 2 finds such a network in poly(m,n) time.

The proof of Lemma 2 is deferred to Appendix B.2 in the supplementary material. One can also view
l(m), w(m), and r(m) as upper bounds for the number of layers, maximum width, and the number
of hidden neurons. Because r(m) < 6m − 3 by Lemma 6, the bound for the number of hidden
neurons r(m) is tighter than the bound 8m−4 given by Lemma D.3 in [Arora et al., 2018] or Lemma
5.4 in [He et al., 2020] (these two lemmas are essentially the same). The bound for the number
of layers remains the same as the one given by Lemma D.3 in [Arora et al., 2018]. By combining
Lemma 2 with Lemma 3, Lemma 4, and Lemma 8, we can easily perform the same job on computing
the extremum of multiple scalar-valued ReLU networks as Lemma D.3 does in [Arora et al., 2018].
Lemma 6, 3, 4, and 8 are given in Appendix A in the supplementary material.

5 Broader impact

Our results guarantee that any CPWL function can be exactly computed by a ReLU neural network
at a more manageable cost. This assurance is crucial because CPWL functions are important tools
in many applications. Such an assurance also relates DNNs closer to CPWL functions and allows
researchers and engineers to understand the expressivity of DNNs from a different perspective. We
focus on simple ReLU networks (ReLU multi-layer perceptrons) in this paper, but it may be possible
to derive bounds for other activation functions and advanced neural network architectures such as
maxout networks [Goodfellow et al., 2013], residual networks [He et al., 2016], densely connected
networks [Huang et al., 2017], and other nonlinear networks [Chen et al., 2021], by making some
(possibly mild) assumptions. Our contributions advance the fundamental understanding of the link
between ReLU networks and CPWL functions.
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