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Abstract

Physics-Informed Neural Networks (PINNs) approximate solutions to partial dif-
ferential equations (PDEs) in a data-free setting. This work replaces the MLP
commonly used in PINNs with Radial Basis Functions (RBFs), leveraging their ex-
plicit structure and analytic derivatives to improve training efficiency and solution
accuracy. Building on this RBF representation, a generative pretrained initialization
model based on variational inference is introduced to further enhance adaptability.
Conditioned on PDE attributes, it produces informative RBF kernel parameters
that provide strong starting points for PINN training, enabling rapid adaptation
to new PDE conditions with minimal fine-tuning and consistently accelerating
convergence compared to standard initialization. Experiments on canonical 1D
and 2D PDEs demonstrate (1) that RBF-based PINNs can outperform standard
MLP-based PINNSs in comparable settings and serve as adaptive models, and (2)
that variational pretraining can provide effective initialization to enhance training
performance. Together, these results validate inference-through-adaptation as a
promising direction for scalable, data-efficient, and adaptable PINNs.

1 Introduction

Multi-query problems require repeatedly solving a PDE under varying parameters (e.g., material
properties, boundary conditions, forcing terms), a setting common in design optimization, uncertainty
quantification, and inverse modeling where accuracy and efficiency are essential [11]. Traditional
solvers like FEM incur high cost because each parameter change demands a full re-solve [[15]. PINNs
mitigate this by embedding the governing equations into the loss, reducing the need for labeled data
[L6], but standard MLP-based PINNs converge slowly and must be retrained for every new instance
[17]. Adaptive modeling approaches address this by exploiting low-dimensional solution manifolds,
enabling knowledge reuse across related PDEs [9, [1]].

This work introduces a framework that integrates RBFs as adaptive models with a generative hyper-
network that provides task-specific initialization within a bilevel optimization setup. The use of
RBFs yields explicit and localized representations that support rapid few-step adaptation, while
the hyper-network supplies high-quality initial parameters that improve training efficiency across
tasks. Experiments on 2D PDEs (Allen—Cahn, Burgers, Convection, Helmholtz) demonstrate that
RBFs serve as effective adaptive models and that generative initialization significantly acceler-
ates convergence, strengthening PINN performance in multi-query settings. This combination of
hyper-network—driven initialization, RBF-based PINN structure, and bilevel adaptation establishes a
practical paradigm for fast, efficient, and adaptive physics-informed learning.
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2 Related Work

PINNS incorporate PDE constraints into the loss function, allowing data-efficient learning of physical
systems [[16]]. However, standard MLP-based PINNs often converge slowly and must be retrained
for each parameter instance, which limits their scalability in multi-query settings [[19]]. RBFs offer
explicit, localized representations that improve interpretability and stability [2| [7]. Recent studies
have enhanced PINN efficiency through meta-learning, transfer learning, and generative initialization
[[L8L 13} 1S]. However, their combination with explicit adaptive models, such as RBFs, remains
underexplored. Erkocc et al. [6] proposed HyperDiffusion for generative weight prediction, while
Kang et al. [12]] combined RBFs with PINN losses but without leveraging analytical derivatives. In
contrast, our results show that properly initialized RBFs achieve fast convergence and strong accuracy
without auxiliary layers. Similarly, Zhang et al. [20] demonstrated the efficiency of analytic RBF
interpolation, supporting the potential of explicit representations for scalable PDE solvers.

3 Method

We consider a family of parametric PDEs indexed by a condition vector ¢ € C, which may encode
parameters of the PDE, as well as initial or boundary conditions. Each instance defines a differential
operator NV, and boundary/initial operator B, over a spatial domain 2 C R and time interval 7

N[u](z,t) =0 for (z,t)eQ x T, B.[u](z,t) =0 for (z,t)edQ x {0,T}. (1)

Here N [u](z,t) denotes the residual of the PDE when u is substituted into it (e.g., N.[u] =
us + V-(a.Vu) — f. for a diffusion problem), and B, [u](z, t) enforces boundary or initial conditions
such as Dirichlet or Neumann constraints. In the PINN setting, we minimize the residual PDE N ¢[u]
and the violations of the initial and boundary conditions, rather than relying on labeled solutions.

Adaptive model (anisotropic RBFs). We represent v with K anisotropic Gaussian RBFs for
E=1[z7,4" e RIHL:

K
w(&0) =D wedn(€& M), onl€) = exp(— 36— ) TSNE - ), )

k=1
with parameters 0 = {(w, pur, Sx) ;. We use Xy = Qg diag(o} ,..., 0% 411)Q) where Qy, is

an orthogonal matrix that encodes the kernel’s orientation (e.g., in 2D a rotation matrix). This explicit
formulation provides analytic derivatives and exposes interpretable, localized structure, enabling
targeted refinement—an advantage over black-box MLP architectures.

Physics-informed objective. 'We combine residuals evaluated at interior collocation points &,
boundary points X}, and initial points Xy, plus optional data D:

Lo (05 ¢) = i By e, [ING[u(0)] (2, )|l +  Ee e [1Belul 0)] (z,)]5
+ a0 B e [uz, t50) — uo(2)])3 + oy B gyenllu(z, t:0) =yl 3)

Generative initialization. While the RBF model in (2) can fit a single PDE instance, it is typically
time-consuming to train a large number of instances, especially when solving many related PDEs
under varying conditions c. To address this, we introduce a generative initializer G 4 that learns to
predict a good starting point 6y for each PDE instance conditioned on c. This amortizes the search
for useful kernel locations, scales, and orientations across the training distribution of PDEs. Formally,
we define a latent-variable model

2~ qp(2e) = N(ug(e), diag o3 (), o = Gy(z;¢), ()
where the encoder (14, 04) maps the PDE condition ¢ to a compact latent representation z, and the
decoder G, predicts a full set of RBF parameters 0 = {(wy, jux, Xx) 1<, with each covariance
Y, parameterized via log-scales and orientation. We implement G as a permutation-invariant Set
Transformer [[13] that maps (z, ¢) to an unordered set of kernel parameters. This design allows
the network to allocate kernels flexibly in space—time according to the PDE structure implied by
c. The resulting initialization encodes useful information about the expected solution (e.g., where

discontinuities or high-frequency areas are likely to occur), thereby reducing the number of subsequent
physics-informed optimization steps required.
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Figure 1: Training speed comparison. Left: iteration rates from 200 experiments, showing the RBF
model achieves the fastest per-iteration updates. Right: total training time summed over all 200
runs on the convection equation, highlighting that the RBF model requires the least cumulative
computation time.

Bilevel learning with truncated adaptation. The training is performed by solving a bilevel
optimization problem. The inner problem adapts 6 to minimize the physics-informed loss (3) for a
given condition ¢, while the outer problem updates ¢ so that the initialization 6y = G4(z; ¢) leads to
minimal post-adaptation error. Concretely, for each sampled condition ¢, we draw a latent code z,
compute 6y = G4(z; ¢), and run T inner optimization steps:

Or+1 = 0 — Vo Lpinn(0s; €), t=0,...,T -1, 5)

yielding adapted parameters 6* = 6. The outer objective encourages 6 to be close to 6*, while
encouraging latent regularity and diversity among kernels:

* Tep 1
Louter(¢) = Wadapt |6 _90||§+5DKL(q¢(Z|C) | V(O, I)) + K()\

RVt I = g3/ 0%

(6)

The first term measures the magnitude of adaptation: small values indicate that the generator
already predicts near-optimal kernel configurations for that PDE. The KL term regularizes the latent
embedding of ¢, while the last term—the repulsion loss— prevents kernel collapse and encourages
spatial coverage. Gradients of Loy are computed through the truncated inner loop, similar to
meta-learning approaches [8]], but with physics-informed residuals as the inner objective.

During inference, the trained generator produces 6y = G4(IE[z|c]; ¢) (or a single posterior sample),
followed by a few gradient steps on (3. This yields a solution operator for the PDE with reduced
adaptation cost, effectively performing amortized physics-informed inference.

4 Experiments

The RBF-based adaptive model was compared with an MLP-PINN, SPINN [4], PIKANN [14]], and
PIG [12], all reimplemented in JAX with matched parameters and tuned hyperparameters. Figures[TH2]
show that the RBF model achieves the best accuracy—efficiency trade-off across benchmarks, with
the highest iteration throughput and lowest cumulative optimization time, except for the convection
equation, where convergence is slower due to its strong advective term.

4.1 Choice of Adaptive Model

To assess the RBF-based adaptive model, it was compared with four architectures: an MLP-based
PINN, SPINN [4]], PIKANN [14], and PIG [12]. All baselines were reimplemented in JAX with
matched parameters and individually tuned hyperparameters. Figures[TH2|present the results. The
RBF model consistently delivers the best accuracy—efficiency trade-off, with highest iteration through-
put and lowest cumulative optimization time, except for the convection equation, where convergence
slows due to the strong advective term.

To verify that slower convergence on the convection equation is not an RBF capacity issue, the same
model was trained with a purely data-driven MSE loss. As shown in the right panel of Figure[2] the
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Figure 2: Model comparison across benchmarks (mean over 10 runs). Left: worst-performing case
under the PINN loss. Middle: best-performing case under the PINN loss. Right: RBF retains
accuracy under pure MSE, confirming model expressivity. Overall, the RBF model achieves the best
accuracy—efficiency trade-off.

RBF accurately fits the solution, indicating that the bottleneck arises from the PINN loss landscape
rather than model expressiveness. Future work may explore improved optimization, adaptive residual
weighting, or leveraging generative-model uncertainty for selective fine-tuning to mitigate these
landscape effects.

4.2 Generative Initialization

Generative initialization substantially accelerates the convergence of the convection equation, allowing
the RBF to reach a high-quality solution within 50 epochs (= 0.010ms).
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Figure 3: Comparison of standard vs. generative initialization (VID) for the convection equation.
Generative initialization reduces the number of optimization steps required to reach convergence,
highlighting faster training efficiency.

5 Discussion & Conclusions

This work presents preliminary evidence that combining RBFs with generative initialization yields
an efficient adaptive framework for parametric PDEs. RBFs offer fast convergence, interpretable
parameters, and closed-form derivatives, while learned initialization significantly reduces optimization
time. Slower convergence on certain cases reflects the stiffness of the PINN loss rather than model
limits. The framework also enables inference through refinement: when design changes are localized,
only nearby kernels require updating. This RBF locality supports targeted optimization without
retraining, similar to Gaussian-splat refinement [10], providing a reduced-order modeling tool for
multi-query PDEs.

Limitations include the current restriction to 2D benchmarks and a narrow PDE set, leaving questions
of 3D scalability and generalization to more complex dynamics open. The generative model’s
uncertainty remains unused but could support selective refinement or adaptive sampling. Future
directions include extending the framework to higher-dimensional PDEs, broader dynamical regimes,
and richer equation families, as well as exploring improved generative components (e.g., flow
matching) to strengthen initialization and robustness. Overall, explicit adaptive models with task-
specific initialization offer a promising route to fast and interpretable PDE solvers.
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