
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAINING-FREE NATIVE SPARSE ATTENTION FOR KV
CACHE COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) suffer from inference inefficiency as KV cache
memory and computation scale linearly with context length. Existing KV cache
compression methods typically use attention-score-based token-level selection,
which leads to uneven attention distributions—overemphasizing prompt bound-
aries and neglecting global context. We propose the HBW-KV method for training-
free KV cache compression with two innovations: (1) block-wise selection that
achieves superior precision over token-level approaches, and (2) a hierarchical
selection strategy that preserves global context without extra training. Our approach
adapts insights from Native Sparse Attention to the KV cache compression setting,
enabling plug-and-play integration into existing pre-trained models. Extensive
experiments demonstrate significant improvements: 16× compression ratio on 32K
sequences, reduces KV cache by over 90%, accelerates decoding by 4×, and main-
tains over 99%+ accuracy. Our training-free solution offers universal compatibility
with existing LLM frameworks for practical long-context applications.

1 INTRODUCTION
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Figure 1: Accuracy and efficiency comparison
of different methods. The horizontal axis repre-
sents decoding speed, while the vertical axis indi-
cates the relative accuracy compared to the uncom-
pressed baseline.

Recent advancements in large language models
(LLMs), such as GPT-4 Achiam et al. (2023)
with 128K, Claude-3 Anthropic (2024) with
200K, and Gemini-Pro-1.5 Reid et al. (2024)
with 1M, have significantly extended the con-
text length—from tens of thousands to even mil-
lions of tokens. Despite these impressive capa-
bilities, processing long-context inputs remains
challenging, particularly due to inefficiencies as-
sociated with the Key-Value (KV) cache in atten-
tion mechanisms Li et al. (2024a). Specifically,
during inference, the decoding stage is memory-
bounded Shazeer (2019) due to attention compu-
tations involving all previously cached KV pairs,
causing decoding latency to increase linearly
with prompt length. Moreover, the large KV
cache consumes substantial memory resources,
imposing considerable hardware demands and
limiting the scalability of LLMs.

To address these challenges, previous meth-
ods such as StreamingLLM Xiao et al. (2023),
H2O Zhang et al. (2023), FastGen Ge et al. (2023), and Scissorhands Liu et al. (2024) have proposed
various KV cache optimization strategies, primarily focusing on selective eviction during generation.
However, these approaches often overlook the critical issue of compressing KV caches for prompt
tokens, which typically represent the primary bottleneck in memory efficiency. Recent studies, notably
SnapKV series Li et al. (2024b); Cai et al. (2024); Feng et al. (2024), attempted to tackle this issue by
identifying stable attention patterns within prompt tokens at the prefill stage. SnapKV demonstrates
the feasibility of predicting critical attention patterns prior to generation, significantly enhancing
decoding speed and memory efficiency.
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Another promising direction involves designing sparse attention structures, such as Grouped Query
Attention (GQA) Ainslie et al. (2023) and Multi-Query Attention (MQA) Shazeer (2019), though
these typically require extensive pre-training. Recently, Yuan et al. (2025) proposed Native Sparse
Attention (NSA), employing a dynamic hierarchical sparse strategy that integrates coarse-grained
token compression with fine-grained token selection. NSA maintains global context awareness and
local precision, enhancing training efficiency, inference speed, and model accuracy through hardware-
aligned design. However, NSA has notable limitations: (1) it requires substantial training resources,
complicating integration into existing well-trained models, and (2) its dynamic selection strategy
prevents effective KV cache compression. Nevertheless, NSA’s insights—particularly its block-wise
selection strategy and the fusion of global context with fine-grained information—offer valuable
directions for KV cache compression, which remain largely unexplored in current research.

We propose Hierarchical Block- Wise KV cache compression (HBW-KV), which is training-free and
universally compatible with existing LLM frameworks and inherits the advantages of both SnapKV
and NSA. Building on SnapKV, we adapt NSA’s sparse attention strategy to a training-free context,
enabling plug-and-play integration with pre-trained models. Specifically, HBW-KV consists of two
key components: (1) a block-wise selection mechanism, which empirically demonstrates higher
precision than traditional token-level selection methods (as used by SnapKV and others), and (2)
a hierarchical selection approach that addresses the typical concentration of selected positions at
the beginning and end of prompts, thereby preserving more global context. Our HBW-KV captures
comprehensive global information without introducing additional learnable modules, effectively
bridging the gap between NSA-inspired sparse attention and practical KV cache compression.

Our contributions can be summarized as follows:

• We propose a block-wise selection method for KV cache compression that empirically
outperforms token-level selection methods used in SnapKV and previous works.

• We identify the problem of imbalanced attention score distributions—often focused on
prompt boundaries—and introduce a hierarchical selection strategy that better preserves
global context without extra training.

• Extensive experiments across various LLMs and datasets demonstrate significant improve-
ments in inference efficiency, memory usage, and accuracy over existing KV cache eviction
methods, as shown in Figure 1. For instance, with 32K sequences, our HBW-KV method
achieves a 16x compression ratio, reduces KV Cache by over 90%, accelerates decoding by
4×, and maintains over 99% of the original accuracy.

2 RELATED WORKS

Sparse Attention Mechanisms. Multi-Query Attention (MQA) Shazeer (2019) and Grouped-Query
Attention (GQA) Ainslie et al. (2023) introduced a trade-off solution by dividing the query heads
into multiple groups, while each group shares its own keys and values. MQA and GQA variants
can optimize key-value (KV) management by intra-layer sharing to reduce redundancy. Recently,
Native Sparse Attention (NSA) Yuan et al. (2025) employed a dynamic hierarchical sparse strategy,
combining coarse-grained token compression with fine-grained token selection. As aforementioned, it
has limitations: (1) It relies on heavy training and cannot be seamlessly integrated into existing models.
(2) It dynamically selects important blocks based on incoming tokens, which prevents effective KV
cache compression. In this paper, inspired by NSA, we propose a training-free NSA approach for
KV cache compression. Our method is plug-and-play, offering significant accuracy improvements
compared to existing KV cache eviction methods.

KV Cache Eviction Methods. Numerous studies have explored optimizing KV cache through
selective retention. StreamingLLM Xiao et al. (2023) maintained only the initial tokens (attention
sinks) and most recent tokens, but discard valuable intermediate information. H2O Zhang et al. (2023)
used a scoring-based strategy that removes KVs during generation according to cumulative attention
metrics. While effective for compressing KVs added during generation, this method fails to address
prompt KV compression, which is essential for reducing both memory usage and computational
demands. FastGen Ge et al. (2023) developed an Adaptive KV Compression system featuring a two-
stage algorithm with four distinct compression policies. ScissorHands Liu et al. (2024) retained tokens
with stable attention patterns across previous windows. However, both FastGen and ScissorHands
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Figure 2: The workflow of our proposed HBW-KV. Left: KV cache is selected via three branches,
including global selection for overall context, block-wise selection for important segments, and
sliding attention for local context. Right: Visualization of attention patterns by each branch. Green
areas indicate reserved regions while white ones represent skippable areas.

encounter limitations similar to H2O regarding prompt handling. In contrast, SnapKV Li et al. (2024b)
focused on compressing KVs during the prefill stage by analyzing attention allocation, enabling
efficient KV cache reduction for long prompts without sacrificing accuracy.

Our approach builds upon SnapKV, integrating the principles of NSA to further improve performance:
(1) We propose a block-wise selection method, which empirically outperforms the token-level
approaches used in SnapKV and prior works. (2) We observe that attention-based selection often leads
to unevenly distributed indices, focusing on prompt boundaries and losing global context. To address
this, we propose a hierarchical selection strategy—without adding extra learnable modules—to better
preserve global information.

3 THE PROPOSED METHOD

In this section, we first briefly revisit the background and notations, and then introduce our proposed
method. The overall framework of our method is shown in Figure 2.

3.1 BACKGROUND

The attention mechanism Vaswani et al. (2017), widely adopted in Transformer models, produces
the attention output as a weighted sum of value matrix V , where the weights are determined by the
similarity between query matrix Q and key matrix K. Formally, it can be expressed as:

Attention(Q,K,V ) = softmax

(
QK⊤
√
d

)
V , (1)

where Q ∈ RLq×d, K,V ∈ RLk×d, in which Lq and Lk denote the lengths of query and key
sequences, respectively, and d indicates the hidden dimension.

To avoid redundant recomputations of K and V for previous tokens, these matrices are cached
incrementally, which is termed KV cache. Mathematically, for a sequence of length Lk, the memory
footprint of the KV cache grows as O(2 · Lk · d), which scales linearly with sequence length. While
KV cache reduces computational overhead from O(L2

k · d) to O(Lk · d) per step, it introduces
significant memory pressure for long sequences.

3.2 HBW-KV FOR KV CACHE COMPRESSION

To enhance efficiency and reduce memory overhead, we propose a novel KV cache compression
method, which contains three components, i.e., importance score computation, block-wise selection,
and hierarchical block-wise selection.

3
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Figure 3: Effect of group number M on index distribution and information coverage (illustrated
with Mistral-7B-Instruct-v0.2). (a) and (b): Histograms for M = 1 and M = 4, showing improved
uniformity as M increases. (c): Entropy grows with M , reflecting enhanced global information
capture through higher grouping diversity.

3.2.1 IMPORTANCE SCORE COMPUTATION

Following SnapKV, we divide the prompt sequence Lk into two segments:

• Observation Window (Lobs), the last segment of the prompt, used to compute the impor-
tance scores.

• Prefix Segment (Lprefix), the initial portion of the prompt preceding the observation window.
Overall, we have:

Lk = Lprefix + Lobs . (2)

Given the query vectors from the observation segment Qobs ∈ RN×Lobs×d and the key vectors from
the prefix segment Kprefix ∈ RN×Lprefix×d, where N denotes the number of attention heads, the
attention scores are computed as:

S = softmax

(
QobsK

⊤
prefix√
d

)
∈ RN×Lobs×Lprefix . (3)

Next, we aggregate the scores by summing along the observation window dimension Lobs to obtain a
tensor Sagg:

Sagg =

Lobs∑
l=1

S[:, l, :] , (4)

where Sagg ∈ RN×Lprefix . Accordingly, we select k reserved tokens based on tensor Sagg per head,
where k is referred to as the KV cache capacity and defined by k = ⌊p · Lprefix⌋, in which p denotes
the compression rate.

3.2.2 BLOCK-WISE SELECTION

We further divide the prefix segment into continuous blocks of size T . For each block Bi ∈ RN×T ,
we compute a block-wise importance score by averaging the scores within the block:

Sblock(i) =
1

T

∑
j∈Bi

Sagg[:, j] . (5)

We then select the blocks with the highest scores:

I = Topk

(
Sblock, ⌊

k

T
⌋
)
, (6)

where operation Topk selects indices I of the top ⌊ k
T ⌋ blocks in tensor Sblock per head, with k

denoting the target KV cache capacity as previously defined. Consequently, the compressed KV
cache is composed of the key and value vectors corresponding to the selected indices I , expressed as:

Kcompressed,Vcompressed = K[I],V [I] . (7)
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The block-wise selection process is illustrated in Figure 2. Notice that our proposed block-wise
selection in Eq. equation 6 has more feasibility; Eq. equation 6 actually degenerates into SnapKV
when T equals 1. Besides, NSA similarly employs block-wise selection; however, there are two key
distinctions between our method and NSA:

1. Our approach directly calculates the importance score for each block based on the K vectors
without training, whereas NSA computes scores using each block’s summary vector via a
trainable MLP.

2. We adopt a fixed Lobs for selection, whereas NSA dynamically re-selects blocks per incoming
token. Thus, our approach enables effective KV cache compression, while NSA is unable to
perform KV cache eviction.

3.2.3 HIERARCHICAL BLOCK-WISE SELECTION

Previously, we introduced a KV cache compression strategy based on importance scores. It is worth
noting that both our block-wise selection strategy and previous works Li et al. (2024b); Zhang et al.
(2023) treat the entire KV cache as a whole when selecting. However, it is empirically observed that
the selected indices I often exhibit an imbalanced distribution, clustering notably at the head and tail
positions, as shown in Figure 3a. Such imbalance may introduce bias due to discrepancies between
the observation window and incoming tokens, leading to the potential loss of global information.

To more effectively preserve global information, we further evolve our method into Hierarchical
Block-Wise KV cache compression (HBW-KV), as illustrated in Figure 2.

The core idea is to partition the prefix KV cache, Lprefix, into M groups G1, G2, . . . , GM and
then apply block-wise selection independently within each group. Specifically, for a total capacity
of C, we allocate an equal capacity of C/M to each group to retain its most important tokens.
This hierarchical design significantly enhances the coverage of global information. As illustrated in
Figure 3b, increasing M yields a more balanced token distribution. Correspondingly, Figure 3c shows
that the entropy of this distribution grows with a larger M , further confirming that our approach
achieves a more balanced representation of the input sequence.

Building upon this, we adopt a progressive selection procedure. The process begins with an initial
round of block-wise selection where M = 1 to preserve the most critical global tokens. In subsequent
rounds, we incrementally increase M (e.g., to 8), thereby enriching the diversity of the selected
tokens at different granularities. For the sliding window part, we directly employ the observation
window for simplicity. The experimental results further demonstrate that our strategy outperforms
alternative methods in capturing global context.

4 EXPERIMENTAL RESULTS

In this section, we conduct comparative and ablation experiments on benchmark datasets to verify the
effectiveness of our proposed HBW-KV, which significantly reduces memory usage while preserving
the most informative context for subsequent attention computations. All experiments are conducted
using PyTorch on 4 Tesla V100 GPUs.

4.1 CONFIGURATIONS

Following the setting of SnapKV, we here conduct the long-text benchmark LongBench Bai et al.
(2024) and Needle-in-a-Haystack test Kamradt (2023).

The proposed HBW-KV is built upon Huggingface’s Transformers and PyTorch. We validate the
performance of our mechanisms across various models that can handle extended contexts, includ-
ing LWM-Text-Chat-1M (1M context), LongChat-7b-v1.5-32k and Mistral-7B-Instruct-v0.2
(both 32k context). The first two are based on the LLaMA architecture Touvron et al. (2023), while
the last one adopts the Mistral architecture Jiang et al. (2023).
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Table 1: Performance comparison of our HBW-KV, SnapKV and H2O across various LLMs on
LongBench. † denotes results from SnapKV. Best results in each cell are underlined.

LLMs *

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Overall

NrtvQA
Qasper

MF-en
HotpotQA

2Wiki
Musique

GovRep
QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P Avg

LW
M

C
ha

t

All KV 18.18 25.94 42.53 24.57 19.39 10.49 27.14 24.90 24.32 71.0 60.41 39.41 3.5 6.0 44.71 44.03 100%
SnapKV: 1024 17.21 23.96 42.51 23.77 17.93 10.07 19.14 23.99 22.81 69.5 60.73 38.62 2.5 5.0 42.79 43.79 95.4%
Ours: 1024 17.44 25.34 43.36 23.83 17.52 10.19 19.80 24.35 23.14 70.5 61.12 39.68 3.0 5.5 44.27 44.57 97.4%
SnapKV: 2048 17.75 25.30 42.91 23.49 18.27 9.71 21.64 23.85 24.19 70.0 61.16 39.10 3.0 5.5 43.97 43.26 97.2%
Ours: 2048 18.31 25.71 43.59 23.83 18.41 10.52 23.22 24.58 23.73 70.5 61.07 39.37 3.0 6.0 45.10 46.13 99.3%
SnapKV: 4096 18.29 25.64 43.00 23.48 17.83 9.72 24.57 24.74 24.23 70.0 61.07 39.13 3.0 5.5 44.24 44.76 98.5%
H2O: 4096† 13.17 24.82 20.01 16.86 9.74 7.2 25.77 23.26 23.83 71.0 61.06 40.33 0.0 0.0 41.52 40.97 86.2%
Ours: 4096 18.36 25.79 43.96 24.00 18.28 10.04 25.59 24.83 24.29 70.5 60.82 39.70 3.0 6.5 45.38 46.36 100.2%

L
on

gC
ha

t

All KV 22.61 34.32 46.10 38.78 27.20 16.03 30.88 22.57 26.39 66.5 83.99 40.61 0.5 30.5 54.82 58.92 100%
SnapKV: 1024 21.21 30.24 40.41 36.31 25.75 14.01 22.95 21.48 25.01 61.5 77.75 38.19 0.5 30.0 52.81 57.41 92.5%
Ours: 1024 21.66 32.27 45.49 38.22 26.16 14.42 24.50 21.56 25.74 65.0 82.82 38.72 0.5 30.5 52.74 57.93 96.3%
SnapKV: 2048 21.13 33.65 41.54 36.36 26.41 14.67 25.33 22.26 26.14 65.0 77.05 39.28 0.5 30.0 54.93 57.94 95.3%
Ours: 2048 22.23 34.21 44.77 38.94 26.58 14.82 27.12 21.94 26.28 65.5 82.20 39.97 0.5 31.0 55.07 58.04 98.1%
SnapKV: 4096 21.67 35.08 43.96 37.07 27.06 14.37 28.22 22.83 26.16 65.5 80.13 40.02 0.5 30.5 54.82 58.69 97.7%
H2O: 4096† 19.31 28.30 37.75 30.51 23.06 11.76 27.55 21.37 26.49 66.0 75.80 39.92 0.0 25.5 53.56 55.53 90.3%
Ours: 4096 22.70 35.20 45.75 38.84 26.98 15.20 28.43 22.77 26.34 66.5 82.75 41.08 0.5 31.0 54.28 58.92 99.4%

M
is

tr
al

All KV 25.30 32.94 49.28 42.98 27.88 19.22 32.91 24.08 27.04 71.0 86.23 42.80 2.75 86.98 55.85 53.43 100%
SnapKV: 512 23.49 27.69 48.35 40.44 25.90 17.00 23.08 23.55 24.05 65.5 85.99 41.08 2.74 87.13 54.2 51.48 94.3%
Ours: 512 24.31 29.81 50.11 42.06 26.10 17.98 23.76 23.85 24.27 67.0 86.12 41.89 2.97 87.56 55.41 52.13 96.3%
SnapKV: 1024 23.28 31.13 48.61 41.48 27.02 18.55 26.03 23.89 25.97 68.0 86.32 41.91 2.64 87.56 55.65 51.81 96.9%
Ours: 1024 24.89 31.84 50.08 42.39 27.17 18.90 26.31 23.85 26.16 69.5 86.38 41.64 3.09 88.17 56.13 52.75 98.3%
SnapKV: 2048 24.31 32.49 48.82 43.30 27.65 18.85 28.59 24.13 26.69 68.5 86.50 42.56 2.88 86.77 55.84 52.52 98.5%
Ours: 2048 25.02 32.80 49.68 43.68 27.73 19.85 29.06 24.61 26.83 71.0 86.58 42.09 3.03 88.54 55.57 53.24 99.8%
SnapKV: 4096† 26.41 33.36 49.81 42.32 27.93 18.76 30.74 24.19 27.08 71.0 86.25 43.01 2.73 86.18 55.62 52.65 99.6%
SnapKV: 4096 25.12 33.43 49.40 42.72 28.20 19.25 30.46 24.02 26.73 70.0 86.30 42.17 2.65 85.77 55.93 53.21 99.2%
H2O: 4096† 22.61 29.06 47.22 36.54 20.60 16.25 30.00 23.80 26.75 70.5 86.16 42.97 3.46 86.38 53.72 51.10 95.1%
Ours: 4096 26.47 33.66 50.07 43.57 27.90 19.02 31.76 24.93 27.07 71.0 86.40 42.57 3.03 87.04 55.83 52.92 100.4%

4.2 EXPERIMENTS ON BENCHMARK DATASETS

As shown in Table 1, we evaluate HBW-KV on three models using LongBench, a multi-task bench-
mark for long context understanding, covering tasks like document QA, summarization, few-shot
learning, synthetic tasks, and code completion. For each model, we compress the prompt KV cache
to 1024, 2048, and 4096 tokens. The average input token length for these models is about 13k. Conse-
quently, our method achieves an average compression rate of 92% with a cache size of 1024 tokens,
and 68% with 4096 tokens. The last column of Table 1 reports the quantile of the average score across
all datasets relative to the uncompressed baseline. Table 1 illustrates a negligible performance drop
from models with our HBW-KV compared with original implementations for 16 different datasets.
For instance, with the Longchat model, our HBW-KV achieves an accuracy of 96.3% using a KV
cache size of 1024, compared to 92.5% for SnapKV. Notably, this even exceeds SnapKV’s accuracy
of 95.3% when using a KV cache size of 2048. These results confirm that HBW-KV effectively
captures key information within long contexts and produces comprehensive, detail-rich summaries.

4.3 GENERALIZABILITY ON NEEDLE-IN-A-HAYSTACK

In Sec. 4.2, we demonstrated that our method is compatible with diverse LLM architectures or weights.
Herein, we assess its generalization capability on an additional dataset, the Needle-in-a-Haystack
dataset. It challenges the model to accurately retrieve information from a specific sentence (”needle”)
concealed within an extensive document (the ”haystack”), with the sentence placed at a random
location. Typically, sentences that are inserted in the middle of prompts are harder to retrieve.

Figure 4 compares different compression methods on single-token retrieval with Mistral-7b-instruct-
v0.2. With a KV cache size of 2048 (the second column), our HBW-KV achieves even higher average
accuracy than full KV (86.94 vs. 85.32), whereas SnapKV suffers a 1-point loss. Moreover, our
method’s advantage becomes more pronounced with longer sequences. For example, at a length of
30K, our method achieves an accuracy of 81.43, while the baseline and SnapKV reach 80.65 and
74.54, respectively. Furthermore, at higher compression rates (with a KV cache size of 1024), the
advantage of our method is further amplified.
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(b) SnapKV: 2048
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(c) HBW-KV: 2048 (Ours)
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(d) SnapKV: 1024
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(e) HBW-KV: 1024 (Ours)

Figure 4: A comparison of different compression methods on the Needle-in-a-Haystack (single
needle) dataset based on Mistral-7b-instruct-v0.2. Our HBW-KV achieves higher accuracy compared
to SnapKV, and maintains lossless accuracy even when the KV cache size is 1024.

4.4 ABLATION STUDY

In this section, we conduct ablation studies to evaluate the impact of different components in our
method, with Mistral-7B-Instruct-v0.2 as the target LLM. Firstly, we study the impact of block-size T
in block-wise selection. Then, we assess the contribution of incorporating global information. Finally,
we investigate the combined effect of these two approaches, which together form our HBW-KV.
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Figure 5: Relative accuracy on LongBench
single-doc QA benchmark varies with block size
and KV cache capacity. The x-axis represents
block size, and the y-axis represents the relative
accuracy compared to the full KV cache.
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Figure 6: Performance comparison across
datasets using various methods (KV cache ca-
pacity = 512) relative to the full KV baseline.
The y-axis shows relative accuracies, and the x-
axis represents different datasets on LongBench.

4.4.1 EFFECT OF BLOCK SIZES T

First we investigate the effect of our block strategy and notice that when block size T equals 1, it
actually degenerates into SnapKV. To provide a more intuitive representation, we report the relative
accuracy compared to full KV in Figure 5. It is evident that the default block size of 1 is not the optimal
choice (selecting only the most important token). Increasing the block size leads to a significant
improvement in accuracy. For instance, with a KV cache capacity of 512, there is a 4% increase in
accuracy (from 91.11% to 95.13%), which even surpasses the performance of SnapKV with a KV
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Table 2: Effect of global information under KV cache capacity of 1024.

Global
Strategy

LongBench Single-Doc QA
NrtvQA Qasper MF-en MF-zh AVG

Full KV 25.30 32.94 49.28 58.47 100%
first 21.92 24.04 34.75 32.57 68.2%
last 4.33 16.37 14.08 15.85 30.5%
max 18.29 17.89 21.32 23.54 48.8%
avg 4.34 9.01 5.37 4.93 14.2%

M = {8} 22.48 27.4 45.2 47.53 85.9%
M = {1} (SnapKV) 23.28 31.13 48.61 54.10 94.7%
M = {1, 8} (Ours) 24.32 31.76 48.42 55.32 96.3%

Table 3: Ablation study of our method using Mistral-7B-v0.2-Instruct as the target LLM.

KV cache Block-wise
Selection

Hierarchical
Selection

LongBench Single-Doc QA LongBench Few-Shot
Budget Memory NrtvQA Qasper MF-en MF-zh AVG TREC TriviaQA SAMSum lsht AVG

Full 32K 4096MB × × 25.30 32.94 49.28 58.47 100% 71.0 86.23 42.80 39.0 100%

1024 128MB

× × 23.28 31.13 48.61 54.10 94.7% 68.0 86.32 41.91 30.0 94.6%
× ✓ 24.32 31.76 48.42 55.32 96.3% 69.0 86.16 41.67 32.0 95.7%
✓ × 25.07 31.63 49.74 56.29 98.0% 69.0 86.25 40.78 34.0 96.2%
✓ ✓ 24.89 31.84 50.08 56.75 98.5% 69.5 86.38 41.64 36.0 97.7%

512 64MB

× × 23.49 27.69 48.35 51.71 91.1% 65.5 85.99 41.08 25.75 91.8%
× ✓ 23.61 28.68 49.27 52.68 92.9% 66.0 85.99 42.27 27.5 92.8%
✓ × 24.04 28.31 49.90 55.20 94.8% 66.0 86.22 41.01 32.5 94.4%
✓ ✓ 24.31 29.81 50.11 55.26 96.1% 67.0 86.12 41.89 34.5 96.0%

cache size of 1024. This indicates that the strategy of block-based selection effectively improves the
compression accuracy under these settings.

This block strategy shows similar effects at different KV cache sizes. As the cache capacity increases,
the performance gains gradually diminish, which is expected because SnapKV incurs only minimal
losses with larger KV cache capacities.

Another interesting observation is that the optimal block size scales proportionally with the KV cache
capacity, as shown by the star markers in Figure 5. Specifically, the optimal block sizes for capacities
512, 1024, and 2048 are 16, 32, and 64, respectively. Therefore, we empirically set the block size
using the formula: Block Size = KV Cache Capacity / 32.

4.4.2 EFFECT OF GLOBAL INFORMATION

In this subsection, we investigate the impact of global information. In NSA, the KV cache is divided
into multiple blocks, and each block generates a summary vector through an additional learnable
MLP, which is regarded as global information. In this paper, our goal is to make it plug-and-play, so
we need to explore training-free methods for retaining global information.

Previously we mentioned that the index distribution selected directly based on importance scores
is imbalanced, which may lead to the loss of global information. This motivates us to explore the
integration of global information. For fair comparison, we do not adopt block-wise selection (T=1).

There are some direct methods to generate global information, such as dividing Lprefix into blocks,
and produce one vector from each block as a representative by selecting the first element (first),
selecting the last element (last), selecting the highest-scoring element (max), or taking the average
within the block (avg). As illustrated in Table 2, all these methods incurs accuracy degradation.

To address this, we propose a hierarchical method for incorporating global information. When the
group number M is set to 1, it is equivalent to SnapKV. As shown in Figure 3, as M increases, more
global information can be retained. The hierarchical method with M = 1 and other values, such as
M = 8, achieves the best performance in Table 2.

4.4.3 COMBINATION OF THE TWO

Here we conduct ablation experiments on our HBW-KV, which comprises two strategies: block-wise
selection and hierarchical selection to incorporate global information. It is noteworthy that without
these two strategies, HBW-KV essentially degenerates to SnapKV (the first row in each cell). The

8
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column labeled “AVG” in Table 3 indicates the average relative quantile scores of the different
datasets in comparison to the full KV baseline.

As shown in Table 3, both block-wise and hierarchical selection greatly improve accuracy, and
combining them achieves the best result. For example, with a KV cache of 512, SnapKV achieves
91.1% and 91.8% on single-doc QA and few-shot learning datasets respectively. Adding block-wise
selection raises accuracy to 94.8% and 94.4%, and adding hierarchical selection further boosts it to
96.1% and 96%, outperforming SnapKV even at a larger cache size of 1024.

In Figure 6, we present a more intuitive comparison across all datasets on LongBench using bar charts.
Our HBW-KV consistently achieves the best performance, highlighting a similar trend across these
datasets. Results in Table 3 and Figure 6 demonstrate the effectiveness of our proposed HBW-KV
method. Remarkably, our approach does not incur additional memory overhead: the size of our KV
cache remains identical to that of SnapKV. Furthermore, in the following section, we will also show
that our method can achieve a significant acceleration ratio during the decoding phase.

4.5 LATENCY COMPARISON

Method Speed (Tokens/s) KV Cache
16K 32K (MB)

Full KV 9.68±0.02 5.74±0.01 4096
Ours: 4096 16.70±1.17 17.08±3.20 512
Ours: 2048 21.03±0.10 20.66±3.84 256
Ours: 1024 22.08±1.52 22.48±2.96 128

Table 4: Comparison of decoding latency and KV
cache memory usage at 16K and 32K context
lengths.
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Figure 7: Latency comparison under different
prompt length using various methods.

Table 4 compares the decoding latency (tokens/s) and KV cache memory for various methods at
different compression rates. We evaluated these on a Tesla V100 using Mistral-7B-Instruct-v0.2 with
input sequences of 16K and 32K tokens. Results are averaged over five runs, with standard deviations
reported. Figure 7 extends these performance metrics to a wider range of input sequence lengths.

As shown in Table 4 and Figure 7, since decoding is primarily memory-bound, inference speed with
a full KV cache decreases nearly exponentially as input length increases. Our HBW-KV, however,
effectively compresses the KV cache, yielding significant decoding speedups. For instance, with the
KV cache compressed to 1024 tokens, our approach achieves a 4× speedup for 32K sequences.

Notably, results for SnapKV are not included. This is because our compression is applied post-
prefill, and the KV cache size during decoding remains constant across all evaluated methods.
Additionally, our method’s contiguous selection of KV cache blocks theoretically enhances memory
access efficiency, as discussed in NSA Yuan et al. (2025). While our current implementation does not
optimize for this property, we reserve such optimizations for future work.

5 CONCLUSIONS

In this paper, we proposed the HBW-KV method for training-free KV cache compression in long-
context large language models. The proposed HBW-KV contains the block-wise and hierarchical
selection strategies that achieve superior precision over token-level methods while preserving global
context without additional parameters. Extensive results demonstrated that the proposed method
significantly improve the accuracy after compression while ensuring a high compression ratio and
fast inference speed. In the future, it is attractive to further analyze the underlying principles behind
the improvements led by our method and explore more effective compression patterns. In addition, it
is also interesting to combine our approach with the distribution characteristics of different layers or
attention heads for enhancing performance.
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