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ABSTRACT

Conventional low-light object detection approaches typically involve distinct im-
age enhancement modules before the detection process. This can lead to com-
promised performance due to misaligned objectives and reduced robustness in
challenging visual contexts. Many existing methodologies either do not optimize
both tasks jointly or overlook significant latent features that are essential for accu-
rate detection. To address this issue, a novel end-to-end framework was proposed
that was exclusively trained on normal-light images, eliminating the need for low-
light data during the training phase. This approach drew inspiration from the
Retinex theory, which separated images into reflectance (representing scene struc-
ture) and illumination (indicating lighting conditions). The proposed framework
approximates this decomposition within the feature space. The architecture uti-
lizes deep multi-scale feature aggregation along with a reflectance-guided fusion
pathway, enabling the adaptive integration of illumination-aware representations
through element-wise modulation. Despite being trained on normal-light images,
the framework demonstrates effective generalization to low-light and visibility-
compromised environments. Comprehensive experiments conducted on both syn-
thetic datasets (Pascal VOC) and real-world benchmarks (ExDark, RTTS) indi-
cate that this method achieves enhanced detection accuracy and robustness, par-
ticularly in adverse lighting conditions, and outperforms current state-of-the-art
techniques.

1 INTRODUCTION

Operational effectiveness in autonomous systems relies on accurate detection of key objects like
pedestrians and vehicles. Contemporary object detection models have achieved significant advance-
ments under optimal conditions; however, their performance often declines in challenging visual en-
vironments characterised by inadequate lighting, heterogeneous illumination, and adverse weather
conditions. These scenarios can lead to reduced contrast, increased noise, and substantial infor-
mation loss, ultimately affecting the reliability of leading detection algorithms. Traditional object
detection architectures predominantly follow a sequential pipeline where image enhancement tech-
niques precede the detection phase Huang et al. (2021); Kalwar et al. (2022). This configuration
may lead to misalignment between enhancement and detection objectives, potentially compromis-
ing performance and adaptability in complex visual scenarios. The enhancement module is typically
optimised for visual quality, focusing on noise reduction and contrast enhancement, while the de-
tection module is concerned with object localization and classification. This disparity can result in
compounded errors, where enhancements may inadvertently introduce artifacts or obscure essential
features needed for semantic analysis. As a consequence, improvements in the enhancement module
alone may not adequately address these challenges, indicating a need for a systematic integration of
enhancement and detection processes to optimise both tasks simultaneously.

Prior study has endeavoured to address object detection in adverse conditions, revealing several
limitations.

Two-Stage Pipelines: Enhancement Followed by Detection Early methods primarily relied
on sequential ‘two-stage’ pipelines, utilising models like RetinexNet Wei et al. (2018) or Zero-
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DCE Guo et al. (2020) for low-light enhancement, followed by detection networks such as YOLO
or Faster R-CNN. While these methods can enhance detection accuracy under challenging lighting
conditions, they may be prone to feature mismatches and error propagation. When enhancement
processes are optimised independently from detection objectives, the risk of generating artefacts or
obscuring critical features necessary for robust semantic analysis increases. Even physics-based en-
hancement strategies may struggle to adapt to the varying relevance of features required for object
recognition across diverse low-light conditions.

Existing End-to-End Approaches: In response to these challenges, recent research has shifted
toward integrated, end-to-end frameworks that optimise both enhancement and detection simultane-
ously. Models such as MPE-DETR Xue et al. (2024) and FSDNet Hu et al. (2021) aim to learn
shared or decomposed feature representations, aligning low-level reconstruction with high-level
recognition tasks. Nonetheless, many of these architectures utilize static fusion methodologies,
including direct concatenation or summation of enhanced features with their unmodified counter-
parts Sindagi et al. (2020); Zhang et al. (2021c).

Static fusion techniques can create bottlenecks, limiting the network’s adaptability and expressive
capacity when faced with diverse visual challenges. By treating all input features uniformly or
employing fixed integration methods, static approaches may inadequately adjust the importance of
various features—such as original pixel data, enhanced features, and illumination or reflectance
components—based on scene-specific degradation. This lack of flexibility can hinder the network’s
capacity to leverage the most informative cues under varying conditions, indicating the limitations
of a ‘one size fits all’ strategy and highlighting the necessity for context-aware methodologies.

Additionally, investigations of transformer-based architectures, such as LLFormer Wang et al.
(2023) and Retinexformer Cai et al. (2023), have not fully addressed the constraints associated with
CNN-based sequential processing and may not effectively separate illumination from reflectance
information. Furthermore, existing implementations of Retinex-based decomposition often exhibit
limitations in task-specific feature integration within the detection framework, underscoring a need
for potential enhancement.

Therefore, this study aimed to propose and verify a Retinex-Feature-Decomposition-based YOLO
(RFD-YOLO) model, an Artificial Intelligence (AI) solution designed for robust object recognition
across diverse conditions that avoids the need for extensive retraining when training datasets are
modified to simulate low-light and low-visibility scenarios. Grounded in Retinex theory, RFD-
YOLO offers an end-to-end object detection solution designed to address the limitations of current
methodologies.

The academic contribution of this AI model lies in its ability to decompose images into reflectance
(as an illumination-invariant object property) and illumination based on Retinex theory. This decom-
position enables the model to distinguish objects based on their intrinsic structural characteristics
rather than the varying illumination conditions. Well-illuminated images provide rich reflectance
information, allowing the model to effectively extract and utilize a robust representation for object
recognition tasks.

2 RELATED WORKS

2.1 OBJECT DETECTION IN LOW-LIGHT IMAGES

Study in low-light image enhancement often focuses on improving visual quality, which can hinder
recognition accuracy. Models generally fall into three frameworks: Retinex theory-based models,
multi-scale and attention-based fusion frameworks Cui et al. (2022); He et al. (2023), and trans-
former architectures Wei et al. (2018); Wang et al. (2019).

Retinex theory-based models ur Rahman et al. (2004), such as RetinexNet and KinD++ Zhang et al.
(2021b), enhance low-light images while addressing issues like noise and colour distortion. Enlight-
enGAN Jiang et al. (2021) employs unsupervised GAN techniques, whereas Zero-DCE Guo et al.
(2020) introduces a lightweight deep curve estimation method for image enhancement.

Multi-scale and attention-based fusion models improve enhancements through feature representation
and attention mechanisms. Transformer architectures, exemplified by LYT-NET Brateanu et al.
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(2024), represent a shift towards advanced enhancement strategies. However, a significant challenge
remains: many models prioritize visual quality, risking the loss of critical detection features and
introducing artifacts.

2.2 OBJECT DETECTION IN ADVERSARIAL VISIBILITY CONDITIONS

Low-vision image processing, a crucial aspect for real-world applications such as autonomous
driving and surveillance, is the focus of many models that generally fall into three frameworks:
enhancement-then-detection, end-to-end approaches, and transformer-based architectures.

The enhancement-then-detection framework combines enhancement models (e.g., RetinexNet,
Zero-DCE) with detection algorithms, such as YOLO. However, challenges such as feature mis-
match, which refers to the discrepancy between the features learned by the enhancement model and
those required by the detection algorithm, arise due to separate optimization.

End-to-end approaches, such as MPE-DETR Xue et al. (2024) and FSDNet Hu et al. (2021), inte-
grate enhancement with detection but often suffer from static fusion techniques, which are fixed and
not adaptable to different scenarios, limiting their adaptability.

Recent transformer models, which enhance low-light images using Retinex theory, show promise
but face significant challenges, similar to CNNs, in processing and distinguishing illumination from
reflectance. This underscores the need for further research and innovation in this area.

To address these issues, RFD-YOLO in this study introduces decomposition and fusion based on the
Retinex theory within the detection process, successfully bridging the gap between low-light image
restoration and object recognition.

3 METHODS

3.1 CONSIDERATION AND MOTIVATION

Traditional approaches to low-light object detection often involve a distinct phase of image enhance-
ment performed before the actual detection. However, frequently results in a misalignment between
the objectives of enhancement and the specific requirements of detection tasks. As a consequence,
the overall performance can suffer in realistic, low-light conditions. To address these limitations,
we draw inspiration fron Retinex theory Land & McCann (1971), which decomposes an image into
reflectance and illumination component allowing object details to be separated from varying lighting
conditions. This separation enables more robust detection under challenging illumination. Based on
this principle, we propose an innovative end-to-end framework designed to intergrate these elements
and enhance detection accuracy.

3
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Figure 1: The architecture of the proposed RFD-YOLO (Retinex Feature Decomposition YOLO)
for low-light object detection is outlined. This network incorporates a Retinex-inspired decompo-
sition module, designed to separate illumination and reflectance components from the input image.
The resulting decomposed features are then fused and fed into the detection head, thereby facilitat-
ing improved object detection capabilities in low-light environments with adversarial conditions.

The architecture of our approach, illustrated in Figure 1, encompasses two principal components that
work in tandem: (1) a deep multi-scale feature aggregation module that adeptly captures hierarchical
features from the levels P3, P4, and P5, and (2) a reflectance-guided fusion pathway that synthesizes
illumination-aware representations through sophisticated element-wise modulation. Together, these
components aim to replicate the essence of Retinex-feature decomposition within the feature space,
enabling a more nuanced understanding of the images. The following subsections provide a detailed
exploration of each component, outlining the mechanisms by which they contribute to robust object
detection, regardless of the presence of low-light training images.

3.2 DEEP MULTI-SCALE FEATURE AGGREGATION

Modern convolutional architectures generate hierarchical feature representations at various semantic
levels, allowing for a detailed analysis of input images. In our method, we focus on three key feature
maps referred to as P3, P4, and P5 extracted from intermediate layers of the backbone network.
These maps correspond to progressively reduced spatial resolutions and deeper receptive fields:
P3 identifies intricate textures, P4 captures mid-level patterns, and P5 conveys broader high-level
contextual semantics Lin et al. (2016); Liu et al. (2018).

The choice of these feature maps is particularly relevant in low-light conditions, where local ob-
ject details and overall illumination significantly impact visual perception. Specifically, P3 models
localised reflectance variations, while P5 provides insights into the larger patterns of illumination.
By integrating these different scales, our approach allows for a cohesive representation of both re-
flectance and illumination characteristics, which is essential for a Retinex-inspired decomposition
framework.

To create a unified representation, we aggregate the features {P3, P4, P5} through both spatial align-
ment and channel integration. Each feature map is resized to a uniform spatial resolution and then
combined using a channel-wise operation:

Fagg = A(P3, P4, P5), (1)
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where A(·) denotes the aggregation function. This function may utilize techniques like upsampling,
concatenation, or summation, depending on the implementation specifics.

The resulting feature Fagg provides a comprehensive, multi-scale representation of the scene, ef-
fectively integrating both detailed and broad information. This aggregated feature forms the basis
for the subsequent reflectance-guided fusion stage, enhancing the model’s ability to learn object
representations that are invariant to variations in illumination.

3.3 REFLECTANCE-GUIDED FEATURE FUSION

The proposed architecture is based on the application of the Retinex model, which is designed to
decompose images into their fundamental illumination L(x, y) and reflectance R(x, y) components.
This model can be expressed as follows:

I(x, y) = L(x, y)⊗R(x, y), (2)
where I(x, y) represents the observed image, L(x, y) relates to variable illumination conditions
and R(x, y) corresponds to intrinsic reflectance—indicating stable object features Land & McCann
(1971). The operation ⊗ indicates element-wise multiplication, demonstrating that pixel intensity at
each coordinate (x, y) arises from the product of the associated reflectance and illumination values.

To apply this decomposition effectively within the deep feature space, the approach utilizes two
branches, each with a specific function. The illumination maps L(x, y) are generated from multi-
scale features P3, P4, and P5 through the Efficient Channel Attention (ECA) mechanism. ECA
extracts illumination features by applying a fast 1D convolution over globally pooled channels,
capturing local cross-channel interactions without dimensionality reduction. This preserves essen-
tial intensity patterns while maintaining spatial structure. Such lightweight attention is crucial in
low-light conditions, where accurate illumination modeling enhances object distinction in poorly lit
scenes.

Conversely, the reflectance maps R(x, y) are developed using a cross-scale feature enhancement
pathway. This pathway integrates upsampling, concatenation, and a series of RepNCSPELAN4
blocks. Derived from the YOLOv9 framework Wang & Liao (2024), RepNCSPELAN4 distin-
guishes itself from conventional C2f or ELAN modules by employing reparameterised convolutions
and nested connections Zhang et al. (2024). This architectural choice is significant for preserv-
ing structural details and achieving computational efficiency, both of which are crucial for accurate
reflectance modelling.

The selection of RepNCSPELAN4 is based on its ability to capture hierarchical spatial patterns
while minimizing aggressive downsampling. This characteristic is essential for maintaining edge
integrity, object contours, and texture coherence across varying lighting conditions. The reflectance-
aware features produced are further refined through lightweight convolutional layers, including
ECA, which enhances spatial coherence and facilitates robust, illumination-invariant representa-
tions.

The fusion of the segregated reflectance and illumination components occurs through element-wise
multiplication, consistently applied across three distinct resolution levels:

F fused
i = Ri ⊗ Li, i ∈ {3, 4, 5}, (3)

This operation reflects the core Retinex principle within the deep feature space, enabling the network
to retain high-confidence structural features while minimizing noise and distortions from inconsis-
tent lighting.

This reflectance-guided fusion methodology represents a significant advancement in the field, offer-
ing various benefits. It enables the model to focus on stable, intrinsic object characteristics, regard-
less of fluctuating lighting, thereby enhancing generalization in low-light scenarios. Additionally,
it introduces an efficient and fully differentiable mechanism that integrates illumination awareness
into the detection process. This framework eliminates the need for external enhancement mod-
ules or reliance on paired low-light datasets, addressing limitations commonly found in traditional
enhancement-plus-detector pipelines by fostering genuinely illumination-invariant features within a
unified, end-to-end learning paradigm.
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4 EXPERIMENT RESULTS

To demonstrate the robustness of our approach, we evaluate the proposed method in adverse visual
contexts, focusing on foggy and low-light conditions.

4.1 DATASETS

In our model training endeavours, we utilize the comprehensive training and validation splits derived
from both the Pascal VOC 2007 and 2012 datasets Everingham & Winn (2009); Everingham et al.
(2012), which encompass 20 distinct classes. The test split from VOC 2007 comprises a substantial
collection of 4,952 images, which we meticulously adapt to align with the class nomenclature of two
additional datasets: ExDark, featuring 10 classes, and RTTS, consisting of 5 classes Loh & Chan
(2019) Li et al. (2017). This alignment process involves a careful category mapping, ensuring that
only overlapping classes are retained, while unmatched categories are excluded from our evaluation
within the VOC Norm training set.

We designate the revised VOC 2007 test set, following this class mapping, as the VOC N Ts (VOC
Normal Test Set). To rigorously evaluate the model’s resilience across a spectrum of challenging
conditions, we create deliberately complex test images and apply two specialised filters to the origi-
nal VOC 2007 test set:

• VOC F Ts (Foggy Filter Test Set): To replicate the effects of foggy conditions, we em-
ploy the atmospheric scattering model (ASM) Narasimhan & Nayar (2002), which artfully
introduces a layer of white haze to each image. The parameters dictating the intensity and
spread of the fog are randomly selected, yielding a diverse array of fog densities that range
from subtle mist to dense, obscuring fog.

• VOC D Ts (VOC Dark Test Set): For simulating low-light environments, we craft syn-
thetic dark images by elevating each normalised clear image to a randomly chosen gamma
value between 1.5 and 5. This transformation, defined by the equation Idark = Iγ , results
in varying degrees of darkening, creating a rich spectrum of visibility challenges based on
the sampled gamma values.

These innovative filters enable us to generate additional foggy and low-light variants of the VOC test
images, which are then used for evaluation alongside real-world datasets, ExDark and RTTS. For our
primary assessment, we treat ExDark and RTTS as independent test sets, ensuring that our model
does not gain prior access to these datasets during the training phase. Furthermore, the class labels
within ExDark and RTTS are meticulously mapped to correspond with the Pascal VOC categories,
thereby maintaining a consistent framework across all evaluation metrics.

4.2 IMPLEMENTATION DETAILS

In this study, all images were uniformly resized to a resolution of 640× 640 pixels, ensuring consis-
tency across both the training and testing phases. The models were trained using a carefully selected
batch size of 2, spanning a total of 80 epochs. To enhance the learning process, the training com-
menced with an initial learning rate of 0.01, which was systematically reduced to 0.0001, allowing
for finer adjustments as the training progressed. The optimization employed was stochastic gradient
descent (SGD), complemented by a weight decay of 5 × 10−4 to effectively mitigate the risk of
overfitting and improve generalization on unseen data.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 RESULTS AND ANALYSES

5.1 QUALITATIVE ANALYSIS

Figure 2: Detection results on fog-affected RTTS dataset using YOLOv9, the current state-of-the-art
WARLearn, and the proposed RFD-YOLO. RFD-YOLO achieves superior detection accuracy and
confidence under low-visibility conditions. This evaluation is best appreciated at 4× magnification.

In our assessment of the detection performance of the RFD-YOLO model, we conducted a com-
parative analysis against both the standard YOLOv9 and the more sophisticated WARLearn frame-
work Agarwal et al. (2025), with an emphasis on challenging conditions such as low-light environ-
ments and scenarios impacted by fog. The detection results for each framework are illustrated in
Figures 2 and 3, highlighting their performance in visually analogous contexts. Additional ablation
experiments on our proposal and individual modules are included for completeness. Please refer to
the Appendix for full results and discussion A.

Our findings reveal that RFD-YOLO consistently outperforms both YOLOv9 and WARLearn in
terms of localization accuracy and robust detection capabilities, particularly for small, occluded, or
low-contrast objects. Compared to these alternatives, RFD-YOLO generally demonstrates a lower
false positive rate and provides more comprehensive detection results. These qualitative insights un-
derscore the enhanced generalization and reliability of RFD-YOLO in adverse weather conditions
and variable lighting environments. A detailed quantitative evaluation of the performance enhance-
ments provided by RFD-YOLO will follow in the subsequent analysis.

Figure 3: Visual comparison of detection performance on low-light ExDark dataset. From left
to right: baseline YOLOv9, the current state-of-the-art WARLearn, and the proposed RFD-YOLO.
RFD-YOLO demonstrates higher accuracy and confidence, particularly under challenging illumina-
tion conditions. The results are best appreciated at a 4× magnification.
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5.2 QUANTITATIVE ANALYSIS

This section offers a quantitative evaluation of RFD-YOLO’s performance, benchmarking it against
leading models on complex foggy and low-light datasets using the Mean Average Precision (mAP)
metric.

Table 1: A comparison of our method with previously established approaches is carried out on
fog-related benchmarks. The mean Average Precision (mAP) scores for the datasets V N Ts
(VOC Normal test), V F Ts (VOC Foggy test), and RTTS are presented in the final three columns.
This analysis provides valuable insights into the robustness of each model under varying visibility
conditions.

Method Train data Voc N Ts Voc F Ts RTTS
Yolov12 Hybrid 66.1 66.0 31.30
MSBDN VOC Norm - 57.38 30.20

GridDehaze VOC Norm - 58.23 31.42
DAYolo Hybrid 56.51 55.11 29.93
DSNET Hybrid 53.29 67.40 28.91
IA-Yolo Hybrid 73.23 72.03 37.08

GDIP-Yolo Hybrid 73.70 71.92 42.42
DETR Hybrid 73.7 72.7 41.9

WARLearn Hybrid 69.11 75.10 52.60
RFD-YOLO (Our) VOC Norm 83.2 78.4 52.50

Foggy conditions: Table 1 presents a comparative analysis of RFD-YOLO’s detection capabilities
against state-of-the-art methods across fog-specific benchmarks, including the VOC regular test set
(Voc N Ts), the VOC foggy test set (Voc F Ts), and the RTTS. The term ‘Hybrid’ denotes models
trained on a mix of clear and foggy images. Our approach, however, leverages the VOC Norm
dataset exclusively, enhancing detection robustness under adverse conditions. RFD-YOLO achieved
the highest mAP across all benchmarks: 83.2 on Voc N Ts, 78.4 on Voc F Ts, and 52.5 on RTTS,
surpassing recent techniques such as WARLearn, DETR Zhao et al. (2024), DA-YOLO Zhang et al.
(2021a), and IA-YOLO Liu et al. (2021). This superior performance is attributed to our Retinex-
inspired feature extraction, which effectively yields reliable results in challenging environmental
conditions, even when trained solely on normal images.

Table 2: Evaluation of current methodologies against established dark-related benchmarks is pre-
sented. The mean Average Precision (mAP) scores for VOC N Ts (VOC Normal test), V D Ts
(VOC Dark test), and Exdark are summarised in the final three columns, offering a detailed analy-
sis of each model’s performance and resilience across different visibility scenarios.

Method Train data Voc N Ts Voc D Ts Exdark
Yolov12 Hybrid 57.0 51.9 40.2

ZeroDCE VOC Norm - 33.57 37.03
DAYolo Hybrid 41.68 21.53 18.15
DSNET Hybrid 64.08 43.75 36.97
IA-Yolo Hybrid 56.01 48.44 26.67

GDIP-Yolo Hybrid 63.23 57.85 42.56
DETR Hybrid 59.2 57.2 48.3

WARLearn Hybrid 75.50 70.90 55.70
RFD-YOLO (Our) VOC Norm 73.6 69.6 58.8

Low-light conditions: As shown in Table 2, RFD-YOLO reaches a leading mAP of 58.8 on the
ExDark dataset, outperforming competitors like WARLearn (55.7) and DETR (48.3). Notably, RFD-
YOLO achieves this without low-light images in its training regimen, underscoring the efficacy of
our Retinex-based methodology in developing illumination-invariant features. This attribute enables
strong generalization in real-world low-light situations, affirming RFD-YOLO as a robust solution
for object detection under challenging lighting conditions.

Impact Analysis Across Low-Light and Fog Intensities: While RFD-YOLO demonstrates strong
resilience in low-light and foggy environments, significant challenges arise when visibility plummets
below critical thresholds. In scenarios characterised by extremely dense fog or total darkness, the
reliability of detection diminishes, not due to inherent model deficiencies, but rather the scarcity of

8
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visual information. This limitation is a common struggle for all vision-based methods. Pixel val-
ues tend to consolidate at brightness extremes, diminishing contrast and obscuring object features,
complicating even human recognition. RFD-YOLO maintains high accuracy up to these thresh-
olds, surpassing competing models; however, performance declines universally beyond this point.
These results reveal fundamental limitations in object detection capabilities under severely degraded
conditions.

5.3 REAL-TIME PERFORMANCE

In our evaluation of real-time performance, as illustrated in Table 3, RFD-YOLO demonstrates an
exceptional throughput of 88.82 frames per second (FPS) when deployed on a single NVIDIA RTX
4090 GPU. This remarkable performance not only sets a new standard but also surpasses several
prominent benchmarks in the field. Notably, it outshines YOLOv12, which operates at 84.12 FPS,
and DETR, which achieves a mere 49.72 FPS—both of which leverage transformer architectures for
object detection.

Table 3: Comparison of FPS performance between the proposed model and existing detection meth-
ods. RFD-YOLO achieves the highest inference speed.

Model Yolov12 IA-YOLO DETR GDIP-YOLO DA-YOLO RFD-YOLO
FPS 84.12 22.84 49.72 29.78 24.27 88.82

Moreover, RFD-YOLO’s efficiency surpasses that of DA-YOLO, renowned for its prowess in foggy
object detection, achieving a throughput of 24.27 FPS, and IA-YOLO, a leading contender for low-
light scenarios, which runs at 22.84 FPS. These comparisons reveal that RFD-YOLO not only excels
in maintaining high detection accuracy but also offers unparalleled real-time performance capabil-
ities, making it a formidable choice for real-time object detection tasks across various challenging
environments.

6 CONCLUSION

In this study, we introduced RFD-YOLO, an innovative object detection framework designed to
address the challenges presented by fog and low-light environments. The framework features a
Retinex-inspired illumination module and an element-wise operation that simulates the interaction
between illumination and surface reflectance. This design approach enhances feature representation,
making it more robust and adaptable. Extensive evaluations on benchmark datasets under foggy and
low-light conditions demonstrate that RFD-YOLO consistently outperforms leading state-of-the-art
methods, even when trained exclusively on images captured under standard lighting conditions.

Ablation studies highlight the significance of explicit illumination modelling and Retinex-based fea-
ture interactions, which contribute to the model’s adaptability to unfamiliar adverse conditions. Ad-
ditionally, our findings highlight an important aspect: the variety in training and evaluation datasets
significantly impacts the model’s generalization capability and detection accuracy. While our frame-
work exhibits notable resilience against environmental degradation, extreme visibility loss or poor
illumination can still lead to undetectable objects, a challenge that humans also face in such scenar-
ios.

This observation highlights the need for ongoing research to develop more sophisticated architec-
tures and thoroughly characterise the diverse range of real-world visual variations. Looking ahead,
we plan to enhance our methodology to manage even more complex atmospheric conditions and
lighting scenarios. We also aim to broaden the scope of our training images to include various scene
types and quality levels, thereby improving the model’s robustness. By diversifying the training
dataset with a richer assortment of examples, we aim to enhance the model’s ability to identify
objects across various real-world situations, regardless of environmental changes.
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A APPENDIX

A.1 ABLATION STUDY

This section presents a comprehensive ablation study that analyses the individual and col-
lective effects of key components within the architecture. The focus is on clarifying how
each module—specifically the Retinex-inspired illumination module and the element-wise opera-
tion—contributes to the model’s performance in challenging visual scenarios. All ablation experi-
ments utilize a combination of standard and hybrid datasets, incorporating both clear and adverse
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Table 4: Ablation Study with Exdark dataset.
Method Train data Voc N Ts Voc D Ts Exdark

Without illumination Hybrid 51.6 60.8 52.4
VOC Norm 62.3 52.7 41.4

Without element-wise Hybrid 72.3 68.6 57.5
VOC Norm 69.6 66.3 55.6

RFD-YOLO Hybrid 74.0 70.2 60.0
VOC Norm 73.6 69.6 58.8

conditions (e.g., foggy or low-light images), to ensure fair comparisons with existing approaches
and accurately evaluate each component’s contribution to generalization.

Influence of the Illumination Module:

The illumination module, based on Retinex theory, is implemented to model lighting variations, al-
lowing the network to separate illumination from reflectance. This separation is crucial for extract-
ing illumination-invariant features necessary for detection in challenging environments. To assess
its contribution, the illumination module was removed from the architecture, and the model was re-
trained using the same hybrid data configuration. Results in Table 4 and 5 indicate a significant drop
in performance upon omitting the illumination module; for example, the mean Average Precision
(mAP) on the RTTS dataset decreased from 52.5 to 35.5 and from 58.8 to 41.4 on ExDark. This
demonstrates the importance of explicit illumination modeling in adapting to low-light and foggy
conditions, even when challenging imagery is present during training. The hybrid training data also
appears to influence these outcomes, as reflected in the highlighted results.

Table 5: Ablation Study with RTTS dataset.
Method Train data Voc N Ts Voc F Ts RTTS

Without illumination Hybrid 75.4 74.8 42.4
VOC Norm 74.0 58.6 35.5

Without element-wise Hybrid 83.6 77.6 52.5
VOC Norm 79.7 79.3 48.3

RFD-YOLO Hybrid 85.1 80.5 52.9
VOC Norm 83.2 78.4 52.5

Contribution of Element-wise Operation with Diversity Image: The element-wise operation in
this design aligns with the Retinex principle, considering each image as a product of illumination and
reflectance (image ≈ illumination ⊗ reflectance). This operation enables the network to estimate and
integrate these components independently during feature extraction, facilitating illumination-aware
representations. When this feature is excluded, the network’s ability to adjust for lighting variations
at the feature level is compromised, reverting to a conventional architecture without illumination
enhancement capabilities. As shown in Table 4 and 5, this results in further declines in mAP for
both RTTS and ExDark datasets, indicating the significance of the Retinex-inspired operation for
managing diverse illumination and maintaining detection performance in complex environments.
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