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Abstract

This work introduces UDPNet, a novel architecture designed to accelerate the reverse dif-
fusion process in speech synthesis. Unlike traditional diffusion models that rely on timestep
embeddings and shared network parameters, UDPNet unrolls the reverse diffusion process
directly into the network architecture, with successive layers corresponding to equally spaced
steps in the diffusion schedule. Each layer progressively refines the noisy input, culminating
in a high-fidelity estimation of the original data, x0. Additionally, we redefine the learning
target by predicting latent variables instead of the conventional x0 or noise ϵ0. This shift
addresses the common issue of large prediction errors in early denoising stages, effectively
reducing speech distortion. Extensive evaluations on single- and multi-speaker datasets
demonstrate that UDPNet consistently outperforms state-of-the-art methods in both qual-
ity and efficiency, while generalizing effectively to unseen speech. These results position
UDPNet as a robust solution for real-time speech synthesis applications. Sample audio is
available at https://onexpeters.github.io/UDPNet/.

Introduction

Diffusion Probability Models (DPMs) (Sohl-Dickstein et al., 2015) have gained significant popularity in recent
years for speech synthesis tasks (Lam et al., 2022; Chen et al., 2020; Kong et al., 2020b), owing to their
ability to model complex data distributions effectively. These models rely on two fundamental processes:
the forward process, where Gaussian noise is progressively added to the data until it resembles white
noise, and the reverse process, where the model learns to recover the original data distribution through
denoising.

While DPMs excel in generating high-quality outputs, they typically require a large number of diffusion
steps during training, resulting in a proportional number of reverse steps during sampling. This makes
diffusion-based speech synthesis models unsuitable for real-time or low-latency applications due to slow
inference times. For instance, models like WaveGrad (Chen et al., 2020) mitigate this issue by optimizing
the noise schedule through a grid search algorithm, while BDDM (Lam et al., 2022) reduces the number of
reverse steps by training a scheduling network that significantly shortens the noise schedule. However, even
with these optimizations, methods like grid search remain computationally expensive and inefficient when
handling large numbers of noise steps.

This work proposes a simple setup where the reverse diffusion process is unrolled directly into the architecture
of a neural network. Instead of using a shared neural network across all timesteps with timestep embeddings
(as in traditional DPMs), our approach maps each layer of the neural network to one or more reverse diffusion
steps. This design eliminates the need for explicit timestep embeddings, as each layer inherently corresponds
to a specific timestep or range of timesteps, determined by the skip parameter τ . Specifically, the number
of layers N is given by:

N = T

τ
,

where T is the total number of forward diffusion steps. Each layer in the network progressively denoises
the input during the reverse process, enabling cumulative refinement over multiple forward steps. This
architecture simplifies the reverse process, accelerates sampling, and reduces computational costs.
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Complementing the proposed technique, we introduce a new learning target: instead of predicting the
original input x0 or noise ϵ0, we train the model to predict latent variables. Predicting x0 or ϵ0 can lead
to large prediction errors during the early stages of the reverse process, causing artifacts and distortions in
the synthesized speech (Zhou et al., 2023). Latent variables provide a more stable representation, reducing
early-stage errors and enabling smoother recovery of high-fidelity speech.

Extensive evaluations of the proposed approach show that it not only accelerates audio generation but also
generalizes effectively to unseen speech. By leveraging latent variables and layer-timestep unrolling, we
achieve high-fidelity speech synthesis while significantly reducing sampling times. This makes our method
particularly suitable for real-time applications such as AI-powered voice assistants and voice cloning.

1 Background

1.1 Denoising diffusion probabilistic model(DDPM)

Given an observed sample x of unknown distribution, DDPM defines a forward process as:

q(x1:T |x0) =
T∏

i=1
q(xt|xt−1) (1)

Here, latent variables and true data are represented as xt with t = 0 being the true data. The encoder
q(xt|xt−1) seeks to convert the data distribution into a simple tractable distribution after the T diffusion
steps. q(xt|xt−1) models the hidden variables xt as linear Gaussian models with mean and standard cen-
tered around its previous hierarchical latent xt−1. The mean and standard deviation can be modelled as
hyperparameters (Ho et al., 2020) or as learnt variables (Nichol & Dhariwal, 2021) (Kingma et al., 2021).
The Gaussian encoder’s mean and variance are parameterized as ut(xt) = √

αtxt−1 and Σq(xt) = (1 − αt)I
respectively, hence the encoder can be expressed as q(xt|xt−1) = N (xt;

√
αtxt−1, (1 − αt)I) where αt evolves

with time t based on a fixed or learnable schedule such that the final distribution p(xT ) is a standard Gaus-
sian. Using the property of isotropic Gaussians, Ho et al. (2020) show that xt can be derived directly on x0
as:

xt =
√

ᾱtx0 +
√

(1 − ᾱt)ϵ0 (2)
where ᾱt =

∏t
t=1 αt and ϵ0 ∼ N (ϵ0; 0, I) hence q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I). The reverse process

which seeks to recover the data distribution from the white noise p(xT ) is modelled as:

pθ(x0:T ) = p(xT )
T∏

i=1
pθ(xt−1|xt) (3)

where p(xT ) = N (xT ; 0, I). The goal of DPM is therefore to model the reverse process pθ(xt−1|xt) so that it
can be exploited to generate new data samples. After the DPM has been optimized, a sampling procedure
entails sampling Gaussian noise from p(xT ) and iteratively running the denoising transitions pθ(xt−1|xt) for
T steps to generate x0. To optimize DPM, evidence lower bound (ELBO) in equation 4 is used.

log p(x) = Eq(x0)[DKL(q(xT |x0)||p(xT ))+
T∑

t=2
Eq(xt|x0)[DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))]−

Eq(x1|x0)[log pθ(x0|x1)]

(4)

In equation 4, the second term on the right is the denoising term that seeks to model pθ(xt−1|xt) to match
the ground truth q(xt−1|xt, x0). In (Ho et al., 2020), q(xt−1|xt, x0) is derived as:

q(xt−1|xt, x0) =N (
√

α(1 − ᾱt−1)xt +
√

ᾱt−1(1 − αt)x0

(1 − ᾱt)
,

(1 − αt)(1 − ᾱt−1)
(1 − ᾱt)

I)
(5)
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In order to match pθ(xt−1|xt) to q(xt−1|xt, x0) during the reverse process, pθ(xt−1|xt) is modeled with the
same variance as that of q(xt−1|xt, x0) i.e Σq(t) = (1−αt)(1−ᾱt−1)

(1−ᾱt) I. The mean of pθ(xt−1|xt) is made to
match that of q(xt−1|xt, x0) hence it is parameterized as:

uθ(xt, t) =
√

α(1 − ᾱt−1)xt + √
ᾱt−1(1 − αt)x̂θ(xt, t)

(1 − ᾱt)
(6)

Here, the score network x̂θ(xt, t) is parameterized by a neural network and it seeks to predict x0 from a
noisy input xt and time index t. Hence,

pθ(xt−1|xt)

= N (
√

α(1 − ᾱt−1)xt + √
ᾱt−1(1 − αt)x̂θ(xt, t)

(1 − ᾱt)
,

(1 − αt)(1 − ᾱt−1)
(1 − ᾱt)

I)

(7)

Therefore, optimizing the KL divergence between the two Gaussian distributions of q(xt−1|xt, x0) and
pθ(xt−1|xt) can be formulated as:

Lt−1 =
arg min

θ
Et∼U(2,T )DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)) (8)

Lt−1 = arg min
θ

Et∼U(2,T )DKL

(N (xt−1; µq, Σq(t)||N (xt−1; µθ(xt, t), Σq(t))
(9)

Here,

µq =
√

α(1 − ᾱt−1)xt +
√

ᾱt−1(1 − αt)x0

(1 − ᾱt)
Equation 9 is simplified as (see (Luo, 2022)):

Lt−1 = arg min
θ

Et∼U(2,T )[||x̂θ(xt, t) − x0||22] (10)

The loss function is composed of the neural network x̂θ(xt, t) that is conditioned on the discrete time t and
noisy input xt to predict the original ground truth input x0. By rearranging equation 2 as:

x0 = xt −
√

1 − ᾱtϵ0√
ᾱt

(11)

an equivalent optimization of modelling a neural network ϵ̂θ(xt, t) to predict the source noise can be derived
(Ho et al., 2020).

Lt−1 = arg min
θ

Et∼U(2,T )[||ϵ̂θ(xt, t) − ϵ0||22] (12)

Work in (Ho et al., 2020) uses Lt−1 as an optimization of the ELBO.

2 Related work

Deep neural network generative techniques for speech synthesis (vocoders) are either implemented using
likelihood technique or generative adversarial network (Goodfellow, 2016). Likelihood methods are composed
of autoregressive, VAE, flow, and diffusion-based vocoders. Autoregressive models such as (Oord et al., 2016)
(Kalchbrenner et al., 2018) (Mehri et al., 2016) and (Valin & Skoglund, 2019) are models that generate speech
sequentially. The models learn the joint probability over speech data by factorizing the distribution into a
product of conditional probabilities over each sample. Due to their sequential nature of speech generation,
autoregressive models require a large number of computations to generate a sample. This limits their ability
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to be deployed in application where faster real time generation is required. However, there are models such
as (Paine et al., 2016), (Hsu & Lee, 2020) and (Mehri et al., 2016) which propose techniques to speed up
speech generation in autoregressive models. Another likelihood-based speech synthesis technique is the flow-
based models (Rezende & Mohamed, 2015) used in (Prenger et al., 2019) (Kim et al., 2020) (Hsu & Lee,
2020). These models use a sequence of invertible mappings to transform a given probability density. During
sampling, flow-based models generate data from a probability distribution through the inverse of these
transforms. Flow based models implement specialized models that are is complicated to train Tan et al.
(2021). Denoising diffusion probabilistic models (DDPM) have recently been exploited in speech synthesis
using tools such as PriorGrad (Lee et al., 2021), WaveGrad (Chen et al., 2020), BDDM (Lam et al., 2022)
and DiffWave (Kong et al., 2020b). These models exploit a neural network that learns to predict the source
noise that was used in the noisification process during the forward process. Diffusion-based vocoders can
generate speech with very high voice quality but are slow due to the high number of sampling steps. Tools
such as BDDM (Lam et al., 2022) propose techniques to speed up speech generation while using diffusion
models. Our proposed work also looks at how to speed up speech synthesis in diffusion models. Finally,
GAN based models such as (Kong et al., 2020a) and (Kumar et al., 2019) exploit the training objective to
make the model generate data that is indistinguishable from the training data. While GAN based models
can generate high quality speech, they are difficult to train due to instability during the training process
(Mescheder et al., 2018). A complete review of the vocoders can be found in (Tan et al., 2021).

Figure 1: An overview of the unconditioned audio generation. An input audio is processed by a pre-trained
model to generate x0. x0 is then processed by forward process to generate latent variables xt. In the reverse
process, white noise xT is passed through the first layer of the neural network and processed through the
subsequent layers. A layer is mapped to a given time step t of the forward process. If a layer l is mapped to
a time step t, an error Li is computed by establishing l2 norm between their respective embeddings.

3 Speech synthesis by Unrolling diffusion process using Neural network layers

3.1 Unconditional speech generation

3.1.1 Forward Process

During the forward process, a raw audio waveform x is encoded by a pre-trained encoder into its latent
representation x0 ∈ Rf×h, where f denotes the number of frames and h is the hidden dimension size.
This representation serves as the foundation for generating latent variables xt through the forward diffusion
process, as described in Equation 2, for 1 ≤ t ≤ T .

To facilitate the reconstruction process during the reverse diffusion, a pre-trained discrete codebook of size
K with dimension h is employed. The codebook, denoted as Z = {zk}K

k=1 ∈ Rh, maps each row of x0 to the
closest entry in the codebook. This mapping is determined by minimizing the squared Euclidean distance,
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as shown in Equation 13:
zq =

(
arg min

zk∈Z
∥xi

0 − zk∥2
2 ∀i ∈ f

)
∈ Rf×h. (13)

Here, zq represents the quantized latent representation, where each row xi
0 is replaced by the nearest codebook

vector zk. These discrete indices, xd
0, correspond to the assigned codebook entries for each row of x0. The

stored indices play a critical role in the reverse diffusion process, enabling the recovery of the original signal
from the latent representation.

3.1.2 Reverse process

The ELBO (Equation 4) used for optimizing diffusion probabilistic models consists of three key parts:

L0 = Eq(x1|x0) [log pθ(x0|x1)]
LT = Eq(x0) DKL (q(xT |x0)∥p(xT ))

Lt−1 =
T∑

t=2
Eq(xt|x0) [DKL (q(xt−1|xt, x0)∥pθ(xt−1|xt))]

The total loss, based on these three parts, is defined as:

Lvlb = L0 +
T −1∑
t=1

Lt−1 + LT (14)

The term Lt−1, also known as the denoising term, is critical for teaching the model to estimate the transition
pθ(xt−1|xt), which approximates the true distribution q(xt−1|xt, x0). Minimizing the KL divergence between
these two distributions ensures that the model can effectively remove noise and progressively recover the
original data.

To make the denoising process more computationally feasible for our proposed layer-based recovery technique,
we introduce the approximations x̂t−1 and x̂t in place of the actual values. This parameterized version of
Lt−1 is given by:

Lt−1 =
T∑

t=2
Eq(xt|x0) [DKL (q(xt−1|xt, x0)∥pθ(x̂t−1|x̂t))] (15)

Lt−1 is minimised across different noise levels and timesteps via apply stochastic sampling by selecting
random timesteps from a uniform distribution:

Lt−1 = arg min
θ

Et∼U(2,T ) DKL (q(xt−1|xt, x0)∥pθ(x̂t−1|x̂t)) (16)

Hence,

Lt−1 = arg min
θ

Et∼U(2,T ) DKL (N (xt−1; µq(t), Σq(t))∥N (x̂t−1; µ̂θ, Σq(t))) (17)

where µq(t) and Σq(t) are defined as:

µq(t) =
√

α(1 − ᾱt−1)xt +
√

ᾱt−1(1 − αt)x0

1 − ᾱt
,
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Σq(t) = (1 − αt)(1 − ᾱt−1)
1 − ᾱt

I.

Our goal is to model pθ(x̂t−1|x̂t) to have a distribution as close as possible to q(xt−1|xt, x0) (Ho et al., 2020).
Therefore, we approximate pθ(x̂t−1|x̂t) as a Gaussian with mean µ̂θ and variance Σq(t), where µ̂θ is defined
as:

µ̂θ =
√

α(1 − ᾱt−1)xθ(x̂t+1, t) +
√

ᾱt−1(1 − αt)x0

1 − ᾱt
.

Here, xθ(x̂t+1, t) is parameterized by a neural network that predicts xt, given the noisy estimate x̂t+1 and
the timestep t. The network learns to predict the denoised xt at each step of the reverse process.

Using this definition of µ̂θ, the loss term Lt−1 can be expressed as:

Lt−1 = arg min
θ

Et∼U(1,T −1)
1

2Σq(t)

∣∣∣∣∣
∣∣∣∣∣
√

α(1 − ᾱt−1)xθ(x̂t+1, t) +
√

ᾱt−1(1 − αt)x0

1 − ᾱt

−
√

α(1 − ᾱt−1)xt +
√

ᾱt−1(1 − αt)x0

1 − ᾱt

∣∣∣∣∣
∣∣∣∣∣
2

2

.

(18)

Equation 18 can be simplified as (see Appendix A for the complete derivation):

Lt−1 = arg min
θ

Et∼U(1,T −1)

√
α(1 − ᾱt−1)

2Σq(t)(1 − ᾱt)
∥x̂θ(x̂t+1, t) − xt∥2

2 (19)

Optimizing Lt−1 involves training a neural network x̂θ(x̂t+1, t) to predict xt given the estimated variable
x̂t+1 and the timestep t. This differs from the loss in Equation 10, where the network x̂θ(xt, t) is conditioned
on the noisy input xt to predict the original noiseless input x0.

To estimate a latent variable xt using Equation 19, we map each timestep to a layer of a single neural
network. For a network with N layers, this mapping creates an effective equivalence to N neural networks.
When N = T − 1, each timestep t ∈ [1, T − 1] in the forward process corresponds to one neural network
layer.

To accelerate the reverse diffusion process, we introduce a timestep skip parameter τ > 1, reducing the
number of layers to N = T

τ . This allows the data distribution to be recovered in N steps, significantly fewer
than T , speeding up data recovery.

The reverse process begins with white noise xT ∼ N (0, I), which is passed through the first layer of the
network at timestep l = T − τ . Subsequent layers process l = T − nτ for 2 ≤ n ≤ N (see Figure 1).
Each layer generates an intermediate estimate x̂T −nτ ∈ Rf×h, which is used by the next layer to produce
x̂T −(n+1)τ ∈ Rf×h.

In this sequential setup, the timesteps t are implicitly encoded by the neural network layers, removing the
need for explicit conditioning on t. Thus, Equation 19 is implemented as:

Lt−1 =
T −(N−1)τ∑

t=T −τ

λt

∥∥x̂l=t
θ (x̂t+τ ) − xt

∥∥2
2 (20)

The loss term Lt−1 is optimized by learning a neural network x̂θ(x̂t+1, t), which predicts xt conditioned on
the estimated variable x̂t+1 and timestep t. Here, λt represents the contribution of the layer l = t to the
overall loss Lt−1. In (Ho et al., 2020), t is sampled randomly, and the expectation Et,x0,ϵ0 [Lt−1] (Equation
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16) is used to estimate the variational lower bound Lvlb (Equation 18). However, the method proposed
by (Ho et al., 2020) results in samples that do not achieve competitive log-likelihoods (Nichol & Dhariwal,
2021). Log-likelihood is a key metric in generative models, driving them to capture all modes of the data
distribution (Razavi et al., 2019). Inspired by this, we aim to optimize the full Lvlb efficiently.

To compute the loss L0, the output x̂T −(N−1)τ from the layer l = T − (N − 1)τ is passed to the final layer
l = T − Nτ of the neural network. The final predicted x̂0 is then given by x̂0 = x̂l=T −Nτ

θ (x̂T −(N−1)τ ).
This prediction is used to estimate the probability pθ(x̂0 | x̂T −(N−1)τ ), which predicts the original indices
of the input xd

0 as defined by the codebook (see Figure 1). Similar to Nichol & Dhariwal (2021), we use the
cumulative distribution function (CDF) of a Gaussian distribution to estimate pθ(x̂0 | x̂T −(N−1)τ ). The loss
L0 is computed as:

L0 = − log pθ(x̂0 | x̂T −(N−1)τ ) (21)

The term LT is not modeled by the neural network and does not depend on θ. It approaches zero if the
forward noising process sufficiently corrupts the data distribution such that q(xT | x0) ≈ N (0, I). This term
can be computed as the KL divergence between two Gaussian distributions. Therefore, the total variational
loss is defined as:

Lvlb = L0 + Lt−1 + LT (22)

During implementation, we ignore LT and compute the loss as:

Lvlb = L0 + Lt−1.

While LT is theoretically constant and does not depend on the model parameters, its inclusion introduces
practical issues during training. Specifically, the KL divergence term LT = DKL(q(xT |x0)∥p(xT )) reflects the
mismatch between the prior p(xT ) ∼ N (0, I) and the distribution q(xT |x0), which depends on the forward
noising process. If the noise schedule is not perfectly tuned, this mismatch can cause LT to dominate the
overall loss during optimization. This phenomenon has been observed empirically and aligns with findings
in prior work (Nichol & Dhariwal, 2021).

Moreover, LT , though constant with respect to model parameters, can distort the magnitude of the total loss,
overshadowing model-dependent terms like L0 and Lt−1. This distortion can hinder convergence and lead to
suboptimal optimization dynamics (see Figure 2). While (Nichol & Dhariwal, 2021) proposed addressing this
issue by refining the noise schedule, we chose to exclude LT from the training loss entirely. This simplifies
the implementation and allows the optimization process to focus on the model-dependent terms without
sacrificing theoretical consistency during evaluation.

Algorithms 1 and 2 summarize the training and sampling procedures of the proposed method.

3.2 Conditional Speech Generation

To enable the model to generate speech conditioned on specific acoustic features, we modify the neural
network layer to incorporate these features, denoted as y. The loss function is now defined as:

Lt−1 =
T −(N−1)τ∑

t=T −τ

λt

∥∥x̂l=t
θ (x̂t+τ , y) − xt

∥∥2
2 (23)

We design the score network x̂l
θ(., .) to process both the estimated value x̂t+τ and the acoustic features y.

To achieve this, we use feature-wise linear modulation (FiLM) (Perez et al., 2018), as used in (Chen et al.,
2020). FiLM adaptively influences the layer activations by applying an affine transformation based on the
input Mel spectrogram y (see Equation 25).

7



Under review as submission to TMLR

Figure 2: Learning curves comparing the full objective Lvlbfull = L0 + Lt−1 + LT and Lvlb on the LJSpeech
dataset.

Algorithm 1 Training Algorithm with τ , T , x0, Codebook Z
1: Initialize N = T

τ
2: repeat
3: Initialize Lt−1 = 0
4: Map x0 rows to codebook indices: xd

0
5: Set λt = 0.001
6: Initialize x̂t+τ = xT ∼ N (0, I)
7: Sample noise: ϵ0 ∼ N (0, I)
8: for t = T − τ to T − (N − 1)τ :
9: Update loss: Lt−1+ = λt

∥∥xl=t
θ (x̂t+τ ) −

√
ᾱtx0 +

√
1 − ᾱtϵ0

∥∥2
2

10: Update prediction: x̂t+τ = xl=t
θ (x̂t+τ )

11: Increment weight: λt+ = 0.001
12: if t = T − (N − 1)τ :
13: Predict x̂0 = xl=t−τ

θ (x̂t+τ )
14: Compute likelihood p(x̂0 | x̂t) for restoring xd

0
15: Compute loss: L0 = − log p(x̂0 | x̂t)
16: Compute total loss: Lvlb = L0 + Lt−1
17: Update the neural networks xl

θ(.) to minimize Lvlb

18: until Lvlb converges

FiLM(x̂t+τ ) = γ ⊙ x̂t+τ + β (24)

Here, both γ and β ∈ Rf×h modulate x̂t+1 based on the Mel spectrogram y, and ⊙ represents the Hadamard
product.
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Algorithm 2 Sampling Algorithm with τ , xt, xl=t
θ (.), and T − τ ≤ t ≤ T − Nτ

1: Initialize x̂t+τ = xT ∼ N (0, I)
2: for t = T − τ to T − Nτ :
3: Update estimate: xt = xl=t

θ (x̂t+τ )
4: Update prediction: x̂t+τ = xl=t

θ (x̂t+τ )
5: end for
6: Return final prediction: xT −Nτ = x0

To compute L0 for conditional generation, we first estimate the conditional probability pθ(x̂0 | x̂T −(N−1)τ , y),
which predicts the original indices xd

0 of the input x0 as established by the codebook. The loss L0 is then
computed as:

L0 = − log pθ(x̂0 | x̂T −(N−1)τ , y) (25)

4 Alternative Loss Functions

To improve the quality of generated speech samples, we explored alternative objective functions. These loss
functions aim to balance simplicity with performance, focusing on generating clearer and more accurate
speech.

The first alternative, shown in Equation 27, is a simplified version of the original loss in Equation 10. This
loss minimizes the difference between the predicted output x̂θ and the original input x0, making it more
computationally efficient.

Lsimple =
∥∥∥x̂

l=T −(N−1)τ
θ (x̂t+τ ) − x0

∥∥∥2

2
(26)

The second alternative, shown in Equation 28, is a hybrid loss that combines the simplicity of Lsimple with
the full variational lower bound loss Lvlbfull from (Nichol & Dhariwal, 2021). This hybrid approach aims
to leverage the benefits of both simplified and complete loss functions to improve model performance across
various conditions.

Lhybrid = Lsimple + λLvlbfull (27)

where Lvlbfull = L0 + Lt−1 + LT .

5 Models

5.1 Encoder

The encoder (used in the forward process, see Figure 1) consists of a single layer of 256 convolutional
filters with a kernel size of 16 samples and a stride of 8 samples. This configuration is chosen to capture
sufficient temporal and spectral information from the input speech. The encoder generates a representation
x0 ∈ RF ×T ′ , where F is the feature dimension and T ′ is the time axis.

x0 = ReLU(conv1d(x))

The latent variables xt ∈ RF ×T ′ are then generated from x0 during the forward diffusion process. To
reconstruct the original signal, we use a transposed convolutional layer at the end of the reverse process,
which has the same stride and kernel size as the encoder to ensure symmetry.
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5.2 Data Recovery Model

For data recovery, an estimate x̂T −(n−1)τ ∈ RF ×T ′ is first normalized using layer normalization. This
normalized estimate is then passed through a linear layer with a dimension of F .

Next, the output is chunked into segments of size s along the T ′ axis with a 50% overlap to better capture
temporal dependencies. The chunked output x̂′

T −(n−1)τ ∈ RF ×s×V , where V represents the total number of
chunks, is passed through a neural network layer (see Figure 3).

Each layer of this network is a transformer with 8 attention heads and a 768-dimensional feedforward network.
The transformer processes the input x̂′

T −(n−1)τ ∈ RF ×s×V and outputs x̂′
T −nτ ∈ RF ×s×V , which is passed

to the next layer T − (n + 1)τ . After processing, the final estimate x̂T −nτ ∈ RF ×T ′ is obtained by merging
the last two dimensions of x̂′

T −nτ ∈ RF ×s×V .

Figure 3: A single layer of the transformer model used for data recovery.

6 Evaluation

This section discusses the datasets and training parameters used to develop and evaluate the proposed
technique, referred to as UDPNet (Unrolling Diffusion Process Network).

6.1 Dataset

To ensure comparability with existing tools and maintain alignment with trends in the speech synthesis
domain, we evaluated UDPNet on two popular datasets: LJSpeech for single-speaker speech generation and
VCTK for multi-speaker evaluation.

The LJSpeech dataset consists of 13,100 audio clips sampled at 22 kHz, totaling approximately 24 hours of
single-speaker audio. Clip lengths range from 1 to 10 seconds, and all clips feature a single female speaker.
Following (Chen et al., 2020), we used 12,764 utterances (23 hours) for training and 130 utterances for
testing.

For multi-speaker evaluation, we used the VCTK dataset, which includes recordings of 109 English speakers
with diverse accents, originally sampled at 48 kHz and downsampled to 22 kHz for consistency. Following
(Lam et al., 2022), we used a split where 100 speakers were used for training and 9 speakers were held out
for evaluation.

Feature Extraction: Mel-spectrograms were extracted from each audio clip, resulting in 128-dimensional
feature vectors. The extraction process used a 50-ms Hanning window, a 12.5-ms frame shift, and a 2048-
point FFT, with frequency limits of 20 Hz (lower) and 12 kHz (upper), similar to (Chen et al., 2020).

6.2 Training Parameters

UDPNet was trained on a single NVIDIA V100 GPU using the Adam optimizer. A cyclical learning rate
(Smith, 2017) was employed, with the learning rate varying between 1e − 4 and 1e − 1. The batch size was
set to 32, and training was performed over 1 million steps.

For conditional speech generation, Mel-spectrograms extracted from ground truth audio were used
as conditioning features during training. During testing, Mel-spectrograms were generated by Tacotron 2
(Shen et al., 2018). To generate the FiLM parameters β and γ, we adopted the upsampling block approach
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proposed in Chen et al. (2020), where these parameters modulate layer activations to incorporate conditioning
information.

Layer Contribution to Loss: Each neural network layer’s contribution to the total loss Lt−1 (Equation
20) was weighted using a layer-specific factor λ. The weights were initialized at λ = 0.001 for the first layer
and incremented by 0.001 for each subsequent layer. This approach ensured that higher layers, which handle
progressively refined denoising steps, had a greater impact on the overall loss. This weighting helps the
model prioritize more challenging denoising tasks, which are typically assigned to the higher layers.

6.3 Baseline Models and Metrics

To evaluate UDPNet, we compared its performance against several state-of-the-art vocoders with publicly
available implementations. The selected baseline models are:

• WaveNet (Oord et al., 2016) 1

• WaveGlow (Prenger et al., 2018) 2

• MelGAN (Kumar et al., 2019) 3

• HiFi-GAN (Kong et al., 2020a) 4

• WaveGrad (Chen et al., 2020) 5

• DiffWave (Kong et al., 2020b) 6

• BDDM (Lam et al., 2022) 7

• FastDiff (Huang et al., 2022a) 8

We assessed the models using a combination of subjective and objective metrics:

• Mean Opinion Score (MOS): Human evaluators rated the naturalness and quality of generated
speech on a 5-point scale (1 = Bad, 5 = Excellent). Evaluators were recruited via Amazon Mechanical
Turk, wore headphones, and rated 10 samples each.

• Objective MOS Prediction: We used three deep learning-based MOS prediction tools: SSL-MOS
9 (Cooper et al., 2022), MOSA-Net 10 (Zezario et al., 2022), and LDNet 11 (Huang et al., 2022c).
These tools are widely used in the VoiceMOS challenge (Huang et al., 2022b).

• F0 Frame Error (FFE): This metric measures pitch accuracy by quantifying discrepancies between
the generated and ground truth audio.

Objective MOS Prediction Tools: SSL-MOS is a Wav2Vec-based model fine-tuned for MOS prediction
by adding a linear layer to the Wav2Vec backbone. MOSA-Net incorporates cross-domain features, including
spectrograms, raw waveforms, and features from self-supervised learning speech models, to enhance its
predictions. LDNet estimates listener-specific MOS scores and averages them across all listeners for a final
score.

1https://github.com/r9y9/wavenet_vocoder
2https://github.com/NVIDIA/waveglow
3https://github.com/descriptinc/melgan-neurips
4https://github.com/jik876/hifi-gan
5https://github.com/tencent-ailab/bddm
6https://github.com/tencent-ailab/bddm
7https://github.com/tencent-ailab/bddm
8https://FastDiff.github.io/
9https://github.com/nii-yamagishilab/mos-finetune-ssl

10https://github.com/dhimasryan/MOSA-Net-Cross-Domain
11https://github.com/unilight/LDNet
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6.4 Model Configurations

UDPNet was evaluated using different forward diffusion steps (fsteps) while maintaining a fixed number of 8
reverse steps. The forward steps considered were 1200, 960, 720, and 240, corresponding to skip parameters
τ = {150, 120, 90, 30}, respectively. Each configuration accepted a 0.3-second audio input.

The forward noise schedule αi was defined as a linear progression across all steps:

αi = Linear(α1, αN , N),

where N represents the total number of forward steps. For example, with 1200 forward steps, the schedule
was specified as Linear(1 × 10−4, 0.005, 1200).

During training, we conditioned UDPNet on Mel-spectrograms extracted from ground truth audio, while
for testing, spectrograms generated by Tacotron 2 (Shen et al., 2018) were used. To enhance conditional
generation, FiLM parameters β and γ were generated following the upsampling block approach proposed in
Chen et al. (2020), modulating the activations of corresponding layers.

To ensure that higher layers, which handle finer denoising tasks, had a greater influence during training,
each layer’s contribution to the loss Lt−1 was weighted. The weights λ were initialized at 0.001 for the first
layer and incremented by 0.001 for each subsequent layer. This design ensures a progressive emphasis on
higher layers, aligning with their role in refining the denoised output.

6.5 Results

6.5.1 Gradient Noise Scales of the Objective Functions

We evaluated the gradient noise scales of three proposed objective functions: Lvlb, Lsimple, and Lhybrid,
following the methodology in (McCandlish et al., 2018) and (Nichol & Dhariwal, 2021). The models were
trained on the LJSpeech dataset for single-speaker evaluation, using a configuration of 1200 forward steps
and 8 reverse steps, which offered a balance between computational efficiency and performance.

As shown in Figure 4, Lhybrid exhibited the highest gradient noise levels. This behavior is attributed to
the inclusion of the LT term in the objective function. As noted by (Nichol & Dhariwal, 2021), LT , which
represents the KL divergence between the prior and forward noising process at the final timestep, introduces
significant noise during uniform timestep sampling. This makes training less stable and impairs convergence.

In contrast, Lvlb demonstrated more stable gradient behavior compared to both Lsimple and Lhybrid, making
it the preferred choice for subsequent evaluations. Its stability ensures smoother optimization and better
performance during training.

Figure 4: Gradient noise scales for the Lvlb, Lhybrid, and Lsimple objectives on the LJSpeech dataset.
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6.5.2 Single-Speaker Evaluation

To assess UDPNet’s performance in conditional speech generation on a single-speaker dataset, we evaluated
it using both subjective and objective metrics. Table 1 presents the subjective Mean Opinion Score (MOS)
alongside objective MOS results obtained from SSL-MOS, MOSA-Net, and LDNet. Additionally, the table
includes the Real-Time Factor (RTF), measuring the speed of speech generation.

The best-performing configuration of UDPNet, with 1200 forward steps and 8 reverse steps (1200, 8),
achieved a subjective MOS of 4.49. This is only 0.23 points lower than the ground truth score of 4.72,
demonstrating that UDPNet can produce high-quality, natural-sounding speech closely approximating the
original audio. Moreover, UDPNet (1200, 8) outperformed all other models in objective MOS metrics across
SSL-MOS, MOSA-Net, and LDNet, confirming its superior ability to generate high-fidelity, distortion-free
speech.

In terms of speed, all UDPNet configurations showed competitive RTF values. Notably, smaller step sizes
(τ) led to faster generation times, with the configuration using 240 forward steps achieving the lowest RTF
of 0.00182. This suggests that reducing the step size decreases the amount of noise each neural network layer
needs to remove, thereby reducing computational load and accelerating speech generation.

We also observed that increasing the number of forward steps improved audio quality, as reflected in higher
subjective and objective MOS scores. This improvement likely stems from the more gradual denoising process,
which better preserves fine-grained details of the speech signal. Additionally, the use of latent variables xt

as targets in the objective function Lvlb, instead of the original input x0, helps minimize prediction errors.
Previous studies (Zhou et al., 2023) indicate that large prediction errors contribute to speech distortion, and
their reduction in UDPNet likely explains its superior performance.

Finally, UDPNet (1200, 8) achieved the lowest F0 Frame Error (FFE) rate of 2.3%, further demonstrating
its ability to maintain pitch accuracy and reduce speech distortion compared to other state-of-the-art models.

Table 1: Evaluation results of UDPNet compared to state-of-the-art tools on the LJSpeech test dataset.
Metrics include subjective MOS, objective MOS (SSL-MOS, MOSA-Net, and LDNet), F0 Frame Error
(FFE), and Real-Time Factor (RTF).

LJSpeech Test Dataset
Model MOS(↑) SSL-MOS(↑) MOSA-Net(↑) LDNet(↑) FFE(↓) RTF(↓)

Ground Truth 4.72±0.15 4.56 4.51 4.67 - -
BDDM (12 steps) 4.38±0.15 4.23 4.17 4.42 3.6% 0.543
DiffWave (200 steps) 4.43±0.13 4.31 4.28 4.36 2.6% 5.9
WaveGrad (1000 steps) 4.32±0.15 4.27 4.23 4.31 2.8% 38.2
HIFI-GAN 4.26±0.14 4.19 4.13 4.27 3.3% 0.0134
MelGAN 3.49±0.12 3.33 3.27 3.42 6.7% 0.00396
WaveGlow 3.17±0.14 3.12 3.09 3.14 7.3% 0.0198
WaveNet 3.61±0.15 3.51 3.47 3.54 6.3% 318.6
UDPNet (fsteps: 1200, rsteps: 8) 4.49±0.12 4.43 4.35 4.44 2.3% 0.0042
UDPNet (fsteps: 960, rsteps: 8) 4.33±0.15 4.283 4.23 4.31 3.7% 0.00371
UDPNet (fsteps: 720, rsteps: 8) 4.17±0.15 4.12 4.09 4.14 4.3% 0.002912
UDPNet (fsteps: 240, rsteps: 8) 4.09±0.13 4.05 4.01 4.05 4.7% 0.00182

6.5.3 Multi-Speaker

The evaluation of UDPNet on the multi-speaker VCTK dataset demonstrates its robust generalization to
unseen speakers. As shown in Table 2, UDPNet (1200, 8) achieved a subjective MOS of 4.38, closely matching
the ground truth score of 4.63, and outperformed all baseline models in objective MOS metrics, including
SSL-MOS, MOSA-Net, and LDNet.

While UDPNet slightly trails DiffWave in F0 Frame Error (FFE) by 0.1%, this marginal difference under-
scores its balanced design, which prioritizes both speech quality and efficiency. The fixed 8 reverse steps,
enabled by the novel layer-timestep mapping, contribute to its superior efficiency while maintaining compet-
itive FFE.
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Moreover, UDPNet’s real-time factor (RTF) of 0.0042 in the (1200, 8) configuration demonstrates a significant
speed advantage over traditional diffusion models. This efficiency makes UDPNet particularly well-suited
for real-time applications, such as AI-powered voice assistants or multi-speaker transcription systems.

The layer-timestep mapping introduced in UDPNet ensures efficient denoising, contributing to its ability
to generate high-quality speech while requiring fewer computational resources. For instance, the (240, 8)
configuration achieves the fastest RTF of 0.00182, showcasing UDPNet’s flexibility in balancing quality and
efficiency through adjustable skip parameters (τ).

In summary, UDPNet (1200, 8) exemplifies the potential of its architectural novelties, achieving high fidelity,
strong generalization, and competitive inference speeds in multi-speaker scenarios.

Table 2: Evaluation results of the conditioned version of the proposed method compared to state-of-the-art
tools on the evaluation metrics using the multi-speaker dataset (VCTK).

VCTK Test Dataset
Model MOS(↑) SSL-MOS(↑) MOSANet(↑) LDNet(↑) FFE(↓) RTF(↓)

Ground Truth 4.63±0.05 4.57 4.69 4.65 - -
BDDM (12 steps) 4.33±0.05 4.28 4.25 4.35 4.3% 0.543
DiffWave (200 steps) 4.38±0.03 4.41 4.32 4.33 3.2% 5.9
WaveGrad (1000 steps) 4.26±0.05 4.31 4.21 4.24 3.4% 38.2
HIFI-GAN 4.19±0.14 4.12 4.16 4.18 3.9% 0.0134
MelGAN 3.33±0.05 3.27 3.24 3.37 7.7% 0.00396
WaveGlow 3.13±0.05 3.12 3.16 3.09 8.2% 0.0198
WaveNet 3.53±0.05 3.43 3.45 3.46 7.2% 318.6
UDPNet (fsteps: 1200, rsteps: 8) 4.38±0.12 4.43 4.36 4.40 3.3% 0.0042
UDPNet (fsteps: 960, rsteps: 8) 4.28±0.05 4.23 4.25 4.29 4.2% 0.00371
UDPNet (fsteps: 720, rsteps: 8) 4.12±0.05 4.11 4.13 4.08 4.6% 0.002912
UDPNet (fsteps: 240, rsteps: 8) 4.04±0.03 4.01 3.91 4.01 5.2% 0.00182

6.5.4 Unconditional Speech Generation

For unconditional speech generation, the model was trained on the multi-speaker VCTK dataset. To generate
speech samples, random white noise was sampled and processed through the trained UDPNet without
conditioning on any acoustic features. The results for unconditional speech generation are presented in
Table 3.

For short clips, the best-performing configuration, UDPNet (fsteps: 1200, rsteps: 8), achieved a subjective
MOS of 3.11. Listening to the audio samples, we observed a phenomenon where the generated clips begin
with coherent and natural-sounding sentences, but the coherence diminishes as the duration increases. This
issue suggests a need for future work to better understand and address the model’s temporal coherence
limitations.

Despite this challenge, UDPNet generates clean-sounding speech with minimal noise or artifacts. This
demonstrates its ability to produce high-quality unconditioned speech while maintaining efficiency, as indi-
cated by the competitive real-time factors (RTF) across configurations. Notably, the fastest configuration,
UDPNet (fsteps: 240, rsteps: 8), achieved an RTF of 0.00162, showcasing the scalability of the proposed
architecture.

Table 3: Results of the unconditioned version of UDPNet on the multi-speaker dataset.
VCTK Test Dataset

Model MOS (↑) SSL-MOS (↑) MOSANet (↑) LDNet (↑) RTF (↓)
UDPNet (fsteps: 1200, rsteps: 8) 3.11±0.12 3.17 3.16 3.23 0.0038
UDPNet (fsteps: 960, rsteps: 8) 3.04±0.05 3.09 3.01 3.09 0.00351
UDPNet (fsteps: 720, rsteps: 8) 3.02±0.05 3.07 3.01 3.06 0.002812
UDPNet (fsteps: 240, rsteps: 8) 2.98±0.03 3.02 3.03 3.08 0.00162

7 Conclusion

In this paper, we introduced UDPNet, a novel approach for accelerating speech generation in diffusion models
by leveraging the structure of neural network layers. By progressively recovering the data distribution from
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white noise, each neural network layer performs implicit denoising. Through the use of a skip parameter τ ,
we effectively map neural network layers to the forward diffusion process, reducing the number of recovery
steps required and improving efficiency.

Our modified objective function allows the model to balance accuracy and speed, and we further enhanced
conditional speech generation by incorporating Feature-wise Linear Modulation (FiLM) to integrate acoustic
features into the denoising process. Through extensive evaluations on both single-speaker and multi-speaker
datasets, UDPNet demonstrated the ability to produce high-quality speech samples while maintaining com-
petitive generation speed.

While the results are promising, future work could explore the impact of increasing the number of forward
steps, investigate the coherence degradation over time in unconditional speech generation, and apply UDPNet
to additional speech tasks or other generative modeling domains. Overall, UDPNet offers a significant step
forward in efficient and high-quality speech generation for diffusion-based models.
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A Appendix.

B Derivation of Equation 26

We start by defining the loss function Lt−1 as the Kullback-Leibler (KL) divergence between the true posterior
distribution q(xt−1|xt, x0) and the learned model distribution pθ(x̂t−1|x̂t):

Lt−1 = arg min
θ

Et∼U(2,T )DKL (q(xt−1|xt, x0)∥pθ(x̂t−1|x̂t)) (28)

Next, assuming that both q(xt−1|xt, x0) and pθ(x̂t−1|x̂t) are Gaussian distributions, we rewrite the KL
divergence as:

Lt−1 = arg min
θ

Et∼U(2,T )DKL (N (xt−1; µq(t), Σq(t))∥N (x̂t−1; µ̂θ, Σq(t))) (29)

where the covariance matrix Σq(t) and the means µq(t) and µ̂θ are defined as:

Σq(t) = (1 − αt)(1 − ᾱt−1)
1 − ᾱt

I,

µq(t) =
√

α(1 − ᾱt−1)xt + √
ᾱt−1(1 − αt)x0

1 − ᾱt
,

µ̂θ =
√

α(1 − ᾱt−1)xθ(x̂t+1, t) + √
ᾱt−1(1 − αt)x0

1 − ᾱt
.

The KL divergence between two Gaussians, with identical covariance matrices Σq(t), simplifies as follows:

DKL (N (xt−1; µq(t), Σq(t)) ∥N (x̂t−1; µ̂θ, Σq(t))) =
1
2

[
log |Σq(t)|

|Σq(t)| − d + tr
(
Σq(t)−1Σq(t)

)
+ (µ̂θ − µq(t))T Σq(t)−1 (µ̂θ − µq(t))

] (30)

Since the covariance matrices are identical, the trace term and the log determinant term cancel out, reducing
the KL divergence to:

DKL (N (xt−1; µq(t), Σq(t)) ∥N (x̂t−1; µ̂θ, Σq(t))) = 1
2

[
(µ̂θ − µq(t))T Σq(t)−1 (µ̂θ − µq(t))

]
(31)

Substituting µ̂θ and µq(t), we get:

1
2Σq(t)

[(√
α(1 − ᾱt−1)xθ(x̂t+1, t) + √

ᾱt−1(1 − αt)x0

1 − ᾱt
−

√
α(1 − ᾱt−1)xt + √

ᾱt−1(1 − αt)x0

1 − ᾱt

)2]
(32)

Simplifying this expression:

√
α(1 − ᾱt−1)

2Σq(t)(1 − ᾱt)
[
∥xθ(x̂t+1, t) − xt∥2

2
]

(33)

Thus, the final expression for the loss term Lt−1 is:
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Lt−1 =
√

α(1 − ᾱt−1)
2Σq(t)(1 − ᾱt)

[
∥xθ(x̂t+1, t) − xt∥2

2
]

(34)
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