
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLORA: GENERALIZABLE MOTION-FLOW-BASED
REWARD SHAPING FOR SCALABLE REAL-WORLD
ROBOT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Rewards design is a long-standing challenge in Reinforcement Learning (RL) for
robotics, particularly when scaling to real-world robot tasks. Generally speaking,
existing reward design approaches in real-world RL rely either on sparse rewards,
which provide little feedback and commonly lead to inefficient learning, or on
pre-trained vision-based reward models, which typically lack theoretical guaran-
tees and often fail in generalizing to new tasks. To address these challenges, we
introduce Flow-based Language-driven Offline Reward Adaptation (FLORA), a
framework that combines strong generalization capability with a theoretical guar-
antee of optimal policy invariance. FLORA adopts large language models (LLMs)
to automatically generate analytical reward functions for new tasks, leveraging
their inherent generalization ability across diverse tasks. Unlike end-to-end neural
reward models, these analytical reward functions encode task-relevant priors, en-
abling efficient few-shot adaptation. With only 3–5 demonstrations, our proposed
offline reward improvement procedure optimizes both the structure and parame-
ters of the rewards, producing reliable signals for new tasks. To enable direct oper-
ation from raw visual inputs and eliminate the reliance on privileged states, we ex-
tract flows from images as inputs to the analytical reward functions. Furthermore,
we propose a PBRS-Milestone rewards shaping structure to reformulate rewards
signals, which improves practicality while preserving optimal policy invariance
guarantee. Extensive experiments show that FLORA enables sample-efficient RL
on new tasks, outperforming strong baselines by more than 2× in simulation, and
solving complex real-world manipulation tasks in ∼20 minutes, where existing
baselines fail even after 60 minutes training. These results establish our method
as a critical step towards scalable real-world robot learning.

1 INTRODUCTION

Designing effective reward functions lies at the heart of reinforcement learning, which remains one
of the most stubborn bottlenecks in bringing learning-based control to real-world robots. In RL, the
reward design must not only specify what a task is, but also provide signals that are informative,
interpretable, and temporally consistent. Such a valid reward design would guide the agent’s explo-
ration while preserving policy invariance. In practice, however, rewards in real-world RL are either
sparse (Luo et al., 2024; Chen et al., 2025; Luo et al., 2025), offering little feedback and leading to
inefficient learning, or hand-crafted (Guzey et al., 2025), requiring significant human effort, domain
expertise, and careful tuning, while still being brittle and task-specific.

Recent work has attempted to overcome these challenges. Vision-Language Models (VLMs) (Ma
et al., 2024; Rocamonde et al., 2023) provide semantic grounding that is potentially informative
for reward design in RL. However, they commonly fail to directly deliver reliable or temporally
consistent signals, limiting their direct application in real-world robotics learning. Vision-based re-
ward models (Ma et al., 2023a; Alakuijala et al., 2025) offer dense and reliable feedback signal, but
are typically confined to narrow, in-distribution regimes with limited generalization to new tasks.
Language-conditioned reward functions (Ma et al., 2023b; Heng et al., 2025) improve interpretabil-
ity and self-consistency. However, they often rely on privileged state information, which cannot
operate directly on visual input. In addition, such paradigms require repeated rounds of costly RL

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

training in general to improve LLM-generated reward functions before implementation, which is
infeasible for real-world RLdeployment. Moreover, none of these approaches guarantee optimal
policy invariance, raising the risk that policies converge to behaviors misaligned with human in-
tent. These limitations expose a fundamental question: Can we design a reward model that is truly
generalizable and practical for real-world robot learning?

To address this question, we propose Flow-based Language-driven Offline Reward Adaptation
(FLORA). Our approach is generalizable, capable of guiding diverse manipulation tasks with only
a handful of demonstrations per task. It is reliable, providing interpretable and temporally consistent
reward signals that are grounded in task flows while preserving optimal policy invariance. It is also
practical, supporting deployment in real-world reinforcement learning without requiring privileged
information or expensive end-to-end training of the full RL loop to refine reward functions.

By unifying generalizability, reliability, and practicality, our approach takes a critical step
toward scalable and robust real-world robotic reinforcement learning. See website at
https://github.com/anonymous-submit-2026/FLORA.

2 RELATED WORK

Traditional Reward Design Methods In RL, rewards are often handcrafted by experts to encode
task objectives. While this has led to strong results in games and some robotic tasks (Mnih et al.,
2015; Silver et al., 2016), it is almost impossible to scale to diverse robotic settings due to the heavy
human effort and expertise required for each task. Inverse Reinforcement Learning (IRL) (Arora
& Doshi, 2021) aims to reduce this burden by inferring reward functions from expert demonstra-
tions. However, IRL typically needs millions of interactions to learn reliable rewards, making it
prohibitively expensive for real-world RL. In contrast, our method generates reliable reward func-
tions automatically without requiring pre-deployment environment interactions.

VLM-based Reward Design Approaches Another line of work leverages Vision-Language Mod-
els (VLMs) (Rocamonde et al., 2023; Ma et al., 2024; Kim et al., 2025), either by comparing task
descriptions with visual inputs (Rocamonde et al., 2023), prompting VLMs to output reward scores
(Ma et al., 2024), or using preferences over image-task pairs (Venkataraman et al., 2024; Ghosh
et al., 2025). Thanks to their inherent generalization capacity, VLM-based methods can general-
ize across many tasks. However, limited robot-specific data in VLM training leads to unstable and
temporally inconsistent reward signals, hindering their reliability in real-world RL. By grounding
reward functions analytically and refining them with offline robot datasets, our method produces
stable, consistent signals well-suited for practical deployment.

Image-based Reward Models To alievate the above-mentioned challenges, Image-based reward
shaping methods (Chen et al., 2021; Cui et al., 2022; Fan et al., 2022; Nam et al., 2023; Yang et al.,
2024a;b; Kim et al., 2025) proposed to train neural reward models, which can map raw visual inputs
directly to scalar signals, on robot dataset. Approaches such as LIV (Ma et al., 2023a) and VLC
(Alakuijala et al., 2025) achieve strong performance by producing precise, reliable rewards across
several robotic tasks. However, these models generally lack theoretical guarantees and often struggle
to generalize beyond training domains. In contrast, our framework leverages LLMs to generate
analytical reward functions that embed task-relevant priors and support efficient few-shot adaptation.
By reformulating rewards in a PBRS-Milestone structure, we further improve practicality while
preserving optimal policy invariance.

LLM-based Reward Design Approaches Large language models (LLMs) (Xie et al., 2023; Ma
et al., 2023b; Heng et al., 2025) have demonstrated strong ability to synthesize task-specific re-
ward functions, either by imposing predefined structures or through reflective refinement, achieving
human-level design quality in some tasks. However, these approaches often assume access to priv-
ileged state information—rarely available in real-world settings—and require repeated RL training
cycles to gather performance metrics for rewards improvements, making them prohibitively costly
in real-world RL. In contrast, our method introduces a surrogate validation and refinement proce-
dure for LLM-generated code, enabling offline reward learning without repeated full training runs.
Crucially, our method also removes the reliance on privileged state information, thereby addressing
one of the central obstacles encountered by prior approaches in real-world robotic learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 BACKGROUND

Reinforcement learning (RL) can be formulated as a Markov Decision Process (MDP), defined by
the tuple M = (O,A, R, T , γ). Here, O denotes the observation space, A the action space, R the
reward function, T the transition dynamics, and γ ∈ (0, 1] the discount factor. The agent’s objective
is to maximize the expected discounted return: G =

∑∞
t=0 γ

tR(st, at).

In this work we consider environments with sparse rewards, where feedback is provided only upon
reaching a goal state. Formally, the reward is defined as

R(s, a, s′) =

{
rs if s′ = sg,

0 otherwise,
(1)

where sg denotes the goal state, rs > 0 is the success reward. The lack of guiding signal makes
policy optimization exceptionally challenging.

3.1 REWARDS SHAPING

Reward shaping addresses this challenge by augmenting the original reward with additional infor-
mative signals. We formalize this by defining a transformed MDP M ′ as M ′ = (O,A,R′, T , γ),
where the new reward is defined as

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′), (2)

and F (s, a, s′) is a bounded shaping function designed to provide additional dense signals.

3.2 POTENTIAL-BASED REWARD SHAPING

Potential-Based Reward Shaping (PBRS) (Ng et al., 1999) is a well-studied approach that encodes
heuristic knowledge into the reward function via a potential function ϕ(s). Specifically, the shaping
term is defined as

F (s, a, s′) = γϕ(s′)− ϕ(s), (3)

where ϕ : O → R assigns each state a scalar “potential.”

A crucial theoretical property of PBRS is policy invariance: any optimal policy of the shaped MDP
M ′ is also optimal in the original MDP M . This allows agents to benefit from denser, more infor-
mative signals that accelerate exploration and learning, without altering the final learning objective.

Consequently, PBRS presents a theoretically appealing framework for reward shaping. However,
directly applying PBRS into complex, real-world domains like robot learning remains almost infea-
sible, due to the following reasons:

• PBRS typically assumes access to privileged states (e.g., object poses), which are unavail-
able in realistic visual robotics settings;

• Manually designing potential functions ϕ for diverse tasks is infeasible and does not scale;

• PBRS can be fragile in high-dimensional manipulation: sparse high-potential regions lead
to poor exploration and low returns.

LLMs for Potential Design. Recent progress in LLMs (Achiam et al., 2023; Liu et al., 2024)
suggests a way forward: LLMs can leverage common sense and task knowledge to automatically
propose candidate potential functions (Ma et al., 2023b; Heng et al., 2025), reducing the depen-
dence on hand-crafted design. However, this approach introduces new difficulties. LLM-generated
potentials are often noisy or inconsistent, and their quality can only be optimized after deployment
in reinforcement learning—a process prohibitively costly in the real world.

In summary, while LLMs partially mitigate the challenge of manual potential design, three key ob-
stacles remain: (i) dependence on privileged states, (ii) the fragility in high-dimensional domains,
and (iii) the need for efficient refinement and validation of LLM-generated potentials before deploy-
ment. Our method FLORA systematically addresses these issues, enabling practical and scalable
reward shaping for real-world robot learning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Optimize
Parameters

Demos

+ subtask-pred
monotonicity

PBRS-positive

Surrogate
metric

Flow

Flow
Gen

Video

PBRS-MS

FLORA - Flow-based Language-driven Offline Reward Adaptation

Rewards signals

r

t

1. Offline learning of potential functions 2. Online Real-world RL with rewards model

LLMs

Generate
(Revise)

Reward
Reflection

Query with
Feedback

Surrogate
Score

Rollouts

Env

Policy

Interacting
Real-World

RL

raw
flow

PBRS-MS

Auto Generated
Potential Function

Potential Function

Flow Gen

r

a s

We've evaluated the function.
Based on the attached scores
and logs..., provide a few
better candidates.

s, a, s’, r
updating

Bayesian
Optimization

Potential
Function

Figure 1: Framework Overview: FLORA consists of a flow generator that extracts motion flows
from images, an an auto-generated and auto-optimized potential function potential function that
computes potential values from these flows and a PBRS-MS module that produces final reward
signals. The framework operates in two stages: (i) Offline learning of potential functions: candidate
potential functions are optimized using a surrogate score with Bayesian optimization, while LLMs
refine their structure. (ii) Online Real-world RL with rewards model: FLORA can obtain rewards
from visual images and then store them into replay buffer to train the policy.

4 TOWARDS GENERALIZABLE AND PRACTICAL SHAPING FRAMEWORKS

To overcome the challenges of applying PBRS in real-world robot learning, we propose a shaping
framework built on three key components: (i) Flow-based representation for potentials that replace
privileged states with relational visual representations; (ii) Surrogate validation and refinement of
potentials via pre-validation criteria, LLM self-reflection, and Bayesian optimization; (iii) A ro-
bust rewards shaping formulation that preserves policy invariance while improving stability in high-
dimensional and imperfect potential function settings. Together, these components form FLORA,
a unified framework that is generalizable and practical, enabling real-world reinforcement learning
with dense rewards signals.

4.1 FLOW BASED REPRESENTATION FOR POTENTIALS

Standard PBRS requires access to privileged states such as object poses—inputs rarely available in
realistic robotic setups. Our key insight is that potential functions do not actually depend on precise
object positions or orientations; instead, what matters is the relative spatial relationships between
the gripper and objects, or between objects themselves.

Motivated by this observation, We therefore propose a flow-based representation of potentials. In-
stead of relying on precise state information, we construct object flows that capture relational dynam-
ics directly from raw videos. This approach leverages modern vision models for object localization
and point tracking. To improve accuracy, we combined with a light semi-automatic annotation step
used once per task to specify relevant regions (e.g., gripper, manipulated objects, target). Full details
of the pipeline, including segmentation, transfer matching, and spatio-temporal flow extraction, are
provided in Appendix A.

Given object observations o and o′ obtained from the flow representation, the shaped reward takes
the PBRS form:

F (s, a, s′) = F (o, a, o′) = γϕ(o′)− ϕ(o), (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where ϕ(·) is a potential function defined over the flow space rather than privileged states. This
formulation enables policy-invariant shaping that is grounded in observable motion flow.

4.2 SURROGATE VALIDATION OF LLM-GENERATED POTENTIALS

Typically, validating and refining LLM-generated potential functions requires multiple rounds of
RL training that is prohibitively expensive in real-world robotics (Dulac-Arnold et al., 2019). We
instead propose a lightweight surrogate validation framework that improves the rewards function on
an offline dataset prior to costly RL training.

Evaluation dataset. We collect a small set of successful demonstrations Ddemo for the target task.
Each video is processed into flow trajectories {(ot, µt)}Tt=1, where ot are object-flow observations
and µt are subtask labels. This compact dataset provides supervision for the surrogate evaluation.

Automatic annotation. Subtask labels are generated automatically using a GPT4.1 (Achiam et al.,
2023). Given task descriptions and demonstration videos, GPT4.1 segments trajectories into sub-
tasks and assigns labels to each frame. To improve consistency, we query GPT4.1 multiple times
per frame and adopt the majority label (details in Appendix B). This eliminates the need for human
annotations while preserving sufficient reliability.

Surrogate criteria. We score each candidate potential function ϕ by measuring its alignment with
properties of an ideal shaping function: (i) correctly predict task stages; (ii) increase monotonically
with task progress; (iii) produce positive shaping signals under the PBRS formulation.

The overall surrogate score is

Js(ϕ) = λ1 Cstage(ϕ) + λ2 Cprog(ϕ) + λ3 Cpbrs(ϕ), (5)

where Cstage, Cprog and Cpbrs are defined below.

Stage prediction. Given a demonstration trajectory (ot, µt)
T
t=1, an LLM-generated potential is

prompted returns both a predicted substage µ̂t and a value ϕµ̂t
(ot). We require the predicted sub-

stage τ̂t to align with the subtask label µt. This is scored as stage prediction accuracy:

Cstage(ϕ) =
1

T

T∑
t=1

1{µ̂t = µt} , (6)

where 1{·} is the indicator function.

Progress monotonicity. Within each trajectory, potentials should grow with progress. Let nor-
malized progress be pt = t/T . We compute the Pearson correlation Corr(·, ·) (Sedgwick, 2012)
between the predicted potentials and pt:

Cprog(ϕ) = Corr(ϕτ̂t(ot), pt) . (7)

A high correlation indicates that the sub-potential values are proportional to progress toward success.

PBRS Positivity. Finally, we check that PBRS-shaped signals remain predominantly non-
negative, ensuring useful shaping rewards:

Cpbrs(ϕ) =
1

T

T∑
t=1

1{F (ot, at, ot+1) ≥ 0} . (8)

4.3 HYBRID OFFLINE LEARNING OF POTENTIAL FUNCTIONS

Large language models are effective at proposing commonsense-structured potential functions but
often lack precision in assigning continuous parameters. To improve the quality of LLM generated
potential functions, we design a hybrid Offline Learning procedure that combines LLM reflection
with Bayesian optimization (BO) (Frazier, 2018): the LLM refines the structural form of potential
functions, while BO tunes their numerical parameters.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Bayesian Optimization. An LLM-generated potential can be written as ϕ(o | θ) with tunable
parameters θ. The objective of BO is to find parameters that maximize the surrogate score:

θ⋆ = argmax
θ
S(ϕ; θ). (9)

BO is applied to each LLM-generated function to optimize its parameters. The algorithm is shown
in the Appendix C.

LLM Reflection. After parameter optimization, we provide the LLM with structured feedback
consisting of: (i) candidate potential functions with their optimized parameters, (ii) their corre-
sponding surrogate scores, and (iii) a visualization of potential values evolving over demonstration
trajectories. Conditioned on this feedback, the LLM iteratively proposes refined candidates, pro-
gressively improving functional structure.

The hybrid Refinement Procedure is shown in the Algorithm 1.

4.4 A ROBUST REWARDS SHAPING FORMULATION

After the hybrid offline learning of potential functions, we obtain a potential function that is accept-
able but still maybe not perfect. Directly applying such a function in high-dimensional reinforcement
learning can lead to training instabilities, particularly for long-horizon tasks. We identify two main
causes of this issue. For the following theoretical analysis, we revert to the notation ϕ(s) to maintain
consistency with the classical PBRS framework.

(i) Limited exploration due to imperfect potential functions. Although refinement enforces po-
tentials that are generally monotonic with task progress, the resulting function may still contain
small local minima or maxima, such as e.g., ϕ(st+1) − ϕ(st) ≈ 0 in a local basin. In such re-
gions the agent receives little or misleading shaped reward, and exploration stagnates. The effect is
compounded in long-horizon tasks: even a few local irregularities (“bumps” or “ridges” in ϕ) can
repeatedly trap the agent in suboptimal regions, preventing successful rollouts.

(ii) Sparsity and fragility of high-potential regions. Let Shigh = {s | ϕ(s) ≥ τ} denote states with
high potential. In high-dimensional tasks, µ(Shigh)

µ(S) ≪ 1, where µ is the Lebesgue measure over states.
Thus, high potential regions are quite sparse. Moreover, ϕ often exhibits sharp discontinuities: two
visually similar states s (object grasped securely) and s′ (object just slipped) may yield |ϕ(s) −
ϕ(s′)| ≫ 0, even though ∥s − s′∥ is small. This discontinuity causes sharp drops in return; once
an agent falls from Shigh into a low-potential state, the cumulative return R =

∑
t r

′
t may collapse,

regardless of previously achieved progress. Because RL credit assignment spreads rewards across
many steps, the Q-function Q(s, a) may learn to undervalue the entire region near s. Hence, the Q-
function fails to separate promising from unpromising states, leading to instability during training.

To address this challenge, we propose PBRS-Milestone (PBRS-MS), a new reward shaping method
that augments PBRS with global signals at predefined subgoals. Instead of relying solely on local
potential differences, we introduce milestone rewards: large positive signals delivered when the
agent first crosses certain progress thresholds.

Milestone Rewards. Let ϕ : S → R≥0 be the potential function, and let ϕmax = maxs∈S ϕ(s)
denote its maximum. We define a sequence of milestone thresholds

K = {κ1, κ2, . . . , κK}, with κi ∈ (0, 1), κ1 < κ2 < · · · < κK . (10)

Each threshold corresponds to a milestone set

Mi = {s ∈ S | ϕ(s) ≥ κi ϕmax}, i = 1, . . . ,K. (11)

Let S be the original state space. We define an augmented state space S̃ = S×{0, 1, . . . ,K}, where
s̃ = (s,m) consists of the original state s and the current milestone index m. The milestone index
m records the highest milestone that has been achieved up to the current time, i.e.,

mt = max{i | ∃ t′ ≤ t : st′ ∈Mi}.

The milestone index updates deterministically as mt+1 = max(mt,max{i | st+1 ∈Mi}).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Instead of a one-time bonus, the milestone achievement is incorporated through a separate potential-
based shaping term. We define a milestone potential function Ψ : {0, 1, . . . ,K} → R on the
milestone index space:

Ψ(m) =

m∑
i=1

Ri,

where Ri > 0 is the bonus value associated with milestone i. This function Ψ(m) quantifies the
total cumulative bonus for achieving up to the m-th milestone.

PBRS-Milestone Reward Shaping. The final shaped reward in the augmented MDP is now defined
as the sum of the original reward, the local potential-based shaping from ϕ, and a global milestone-
based shaping from Ψ:

r′t = rt + γϕ(st+1)− ϕ(st)︸ ︷︷ ︸
local PBRS

+ γΨ(mt+1)−Ψ(mt)︸ ︷︷ ︸
global milestone PBRS

. (12)

Theorem 1 (Policy Invariance of PBRS-MileStone). Consider the original MDP M =
(S,A, P, γ,R) and the augmented MDP M̃ = (S̃,A, P̃ , γ, R̃) constructed by the Revised PBRS-
Milestone method, with the total reward defined as in eq. (12):

R̃(s̃t, at, s̃t+1) = R(st, at, st+1) + (γϕ(st+1)− ϕ(st)) + (γΨ(mt+1)−Ψ(mt)) . (13)

Then, for any discount factor γ ∈ [0, 1), the set of optimal policies is invariant between M and M̃ .
Specifically, a policy π∗ is optimal in M if and only if its natural extension π̃∗((s,m)) = π∗(s) is
optimal in M̃ .

Proof. The proof is provided in Appendix D.

5 EXPERIMENTS

To evaluate FLORA as a reward learning method for new robot tasks, we conducted a series of
experiments on simulated and real-world environments. We mainly focus on the following three
questions:

• How well does FLORA generalize across diverse tasks compared to strong baselines?
• Does FLORA perform reliably on Real World Robotic Tasks?
• Which components of FLORA contribute most to overall performance?

5.1 SIMULATION EXPERIMENTS

To assess FLORA’s generalizability, we evaluate it on eight Meta-World (Yu et al., 2020) tasks
spanning diverse motion primitives and task horizons. These tasks cover a wide range of manip-
ulation skills—push, pull, insert, turn, pick, and place—and include both single-stage tasks and
long-horizon tasks that require precise, contact-rich interactions. Detailed task descriptions and
settings are provided in Appendix E.1.

We compare against several SOTA reward models:(i) LIV (Ma et al., 2023a), trained on large-scale
real-robot datasets; (ii) VLC (Alakuijala et al., 2025), a transferable language-conditioned reward
model; (iii) Dense Rewards, Meta-World’s shaped reward functions with amplified success signals;
and (iv) Sparse Rewards, the default binary success signals. All methods operate under standard
implementations are image- and language-conditioned wherever applicable, and are trained from
scratch using a RLPD (Ball et al., 2023) agent. The hyberparameters of RLPD are provided in the
Appendix E.2.

Figure 2 reports learning curves of RLPD agents trained with these reward functions across eight
tasks. As expected, sparse rewards lead to near-zero success rates in most cases, except for relatively
simple tasks such as Drawer Close and Hammer, highlighting the difficulty of exploration in Visual
RL without shaped guidance. In contrast, our approach consistently achieves strong and stable
performance across all tasks, matching or surpassing Dense Rewards in both sample efficiency and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Environment Step (×104)

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
ate

Drawer Close

0 10 20 30
Environment Step (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Hammer

0 5 10 15 20
Environment Step (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Button Press Topdown

0 20 40 60
Environment Step (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Door Open

0 10 20 30 40
Environment Step (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Lever Pull

0 20 40 60
Environment Step (×104)

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
ate

Peg Insert Side

0 10 20 30 40
Environment Step (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Assembly

0 10 20 30 40
Environment Step (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Shelf Place

FLORA(Ours) VLC LIV dense sparse

Figure 2: Learning curves of RLPD agents with different reward functions on eight Meta-World
manipulation tasks, reported as success rate. Solid lines show the mean, and shaded areas indicate
stratified bootstrap intervals over 3 runs.

final success rate. In contrast, FLORA consistently achieves strong performance across all tasks,
matching or surpassing Dense Rewards in both sample efficiency and final success rate.

Specifically, FLORA shows rapid convergence on contact-rich tasks like Lever Pull and Peg Insert
Side, where other learning-based reward models such as LIV and VLC struggle to provide suffi-
ciently shaped signals. In long-horizon tasks such as Shelf Place and Assembly, FLORA delivers
significantly higher success rates by guiding RLPD agents with stage-aware potentials, while base-
lines plateau at suboptimal success rates. Importantly, FLORA requires no manually designed dense
rewards, yet closely tracks or even outperforms them, highlighting the effectiveness of our automatic
rewards refinement pipeline.

Taken together, these results show two key advantages of FLORA: (i) Generality — FLORA works
reliably across diverse manipulation tasks with different horizons and contact dynamics; (ii) Effi-
ciency — it provides dense progress-aware signals that accelerate training.

5.2 REAL-WORLD EXPERIMENTS

To evaluate the practicality of FLORA in realistic settings, we conduct two real-world manipulation
tasks that require long-horizon control and precise, contact-rich interactions.

We use a 7-DOF Franka Emika (Haddadin et al., 2022) equipped with wrist- and third-person RGB-
D cameras. Policies are conditioned on visual observations and proprioception. Additional imple-
mentation details are provided in Appendix F.1.

We have designed two challenging manipulation tasks: (i) Peg Insert Deep: aligning and inserting
a peg into a tightly fitting hole, demanding sustained contact and millimeter-level precision. (ii)
Box Open: grasping and rotating a hinged lid, requiring stable grasping and controlled rotational
motions. Both tasks demand fine-grained control under physical constraints.

For each task, we collected five teleoperated demonstrations to seed our reward learning pipeline.
We train policies using RLPD, a data-efficient visual reinforcement learning algorithm, keeping all
hyperparameters fixed for fair comparison. Demonstrations were also included in the replay buffer
for faster learning. The hyberparameters are provided in the Appendix F.2.

The experiment results in show in the Table 1. Within approximately 20 minutes of real-world train-
ing, FLORA enables RLPD to achieve a nearly 100% success rate. By contrast, SERL (Luo et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Peg Insert Deep (b) Box Open

Task Ours SERL
@ 20 min @ 60 min

Franka Peg Insert Deep 20/20 0/20
Franka Box Open 20/20 0/20

(c) Real-world experiments results.

Table 1: Real-world RL Experiments: (a) Franka Peg Insert Task, (b) Franka Box Open Task, (c)
Real-world experiments results: the success rate of RLPD agent with different rewards models.

2024) with its default binary classifier-based reward model fails to solve either task even after 60
minutes of training. Failure cases of the baseline highlight the difficulty of these tasks: in Peg Insert
Deep, policies approach the hole but consistently fail insertion due to the tight clearance tolerance;
in Box Open, unstable grasps prevent consistent lid rotation. In contrast, FLORA provides dense,
stage-aware rewards that guide the policy through critical sub-skills—securing a grasp, stabilizing
contact, and executing precise manipulations—leading to rapid and reliable convergence.

Overall, these real-world experiments demonstrate that FLORA produces reliable reward signals in
contact-rich manipulation tasks, substantially extends the applicability of SERL to more complex
robotic skills, and enables more data-efficient learning. Our results highlight a step forward toward
scalable real-world robotic reinforcement learning.

5.3 ABLATION STUDY

Ablation on rewards shaping structure we first conduct an ablation study with rewards
shaping structure, keep all other design same to our method: (1) PBRS-MS: the pro-
posed rewards shaping structure in our method; (2) PBRS Only: the classical potential-
based reward shaping method; (3) Direct Rewards, directly using potential values as rewards.

0 10 20 30 40 50
Environment Step (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Lever Pull

0 10 20 30 40 50
Environment Step (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Peg Insert Side
PBRS-MS PBRS direct

Figure 3: Ablation study on rewards shaping
structure.

Ablation experiments are performed on the Lever
Pull and Peg Insert Side tasks, with results sum-
marized in Figure 3. We observe that the classi-
cal PBRS performs poorly in these high-dimensional
settings: agents rarely achieve successful rollouts.
The Direct Rewards variant yields higher success but
suffers from poor data efficiency. And in some cases,
fails to converge to a nearly 100% success rate. This
occurs because directly using potential function val-
ues may alter the optimality of policies: the optimal
policy in the transformed MDP may no longer cor-
respond to the optimal policy in the original MDP. In contrast, PBRS-MS demonstrates consistent
fast convergence and stable performance, achieving high success rates and highlighting the method-
ological advantages of our approach.

We also have conducted ablation study on offline rewards improvement procedure, whose result
is shown in the Appendix G.

6 CONCLUSION

In this work, we have introduced FLORA, a motion flow-based reward shaping framework that is
both generalizable and practical for real-world robot learning. Our approach automatically con-
structs reliable, dense reward functions for new tasks while rigorously preserving optimal policy
invariance. By operating directly from raw visual inputs without relying on privileged states, our
framework enables seamless deployment in real-world RL scenarios. We believe this method sub-
stantially reduces the burden of reward engineering and paves the way for scaling reinforcement
learning to a wide range of real-world robotic applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Minttu Alakuijala, Reginald McLean, Isaac Woungang, Nariman Farsad, Samuel Kaski, Pekka
Marttinen, and Kai Yuan. Video-language critic: Transferable reward functions for language-
conditioned robotics. Transactions on Machine Learning Research (TMLR), 2025.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, 2021.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR,
2023.

Annie S. Chen, Suraj Nair, and Chelsea Finn. Learning Generalizable Robotic Reward Functions
from “In-The-Wild” Human Videos. In Proceedings of Robotics: Science and Systems, Virtual,
July 2021. doi: 10.15607/RSS.2021.XVII.012.

Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-
rft: A reinforced fine-tuning method for vla models via consistency policy. arXiv preprint
arXiv:2502.05450, 2025.

Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
Real-time open-vocabulary object detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 16901–16911, 2024.

Yuchen Cui, Scott Niekum, Abhinav Gupta, Vikash Kumar, and Aravind Rajeswaran. Can foun-
dation models perform zero-shot task specification for robot manipulation? In Learning for
dynamics and control conference, pp. 893–905. PMLR, 2022.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Udita Ghosh, Dripta S Raychaudhuri, Jiachen Li, Konstantinos Karydis, and Amit Roy-Chowdhury.
Preference vlm: Leveraging vlms for scalable preference-based reinforcement learning. arXiv
preprint arXiv:2502.01616, 2025.

Irmak Guzey, Yinlong Dai, Georgy Savva, Raunaq Bhirangi, and Lerrel Pinto. Bridging the human
to robot dexterity gap through object-oriented rewards. In 2025 IEEE International Conference
on Robotics and Automation (ICRA), pp. 3344–3351. IEEE, 2025.

Sami Haddadin, Sven Parusel, Lars Johannsmeier, Saskia Golz, Simon Gabl, Florian Walch, Mo-
hamadreza Sabaghian, Christoph Jähne, Lukas Hausperger, and Simon Haddadin. The franka
emika robot: A reference platform for robotics research and education. IEEE Robotics & Au-
tomation Magazine, 29(2):46–64, 2022.

Zen Kit Heng, Zimeng Zhao, Tianhao Wu, Yuanfei Wang, Mingdong Wu, Yangang Wang, and Hao
Dong. Boosting universal llm reward design through heuristic reward observation space evolution.
arXiv preprint arXiv:2504.07596, 2025.

Changyeon Kim, Minho Heo, Doohyun Lee, Honglak Lee, Jinwoo Shin, Joseph J Lim, and Kimin
Lee. Subtask-aware visual reward learning from segmented demonstrations. In The Thirteenth
International Conference on Learning Representations, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Jianlan Luo, Zheyuan Hu, Charles Xu, You Liang Tan, Jacob Berg, Archit Sharma, Stefan Schaal,
Chelsea Finn, Abhishek Gupta, and Sergey Levine. Serl: A software suite for sample-efficient
robotic reinforcement learning. In 2024 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 16961–16969. IEEE, 2024.

Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine. Precise and dexterous robotic manipulation
via human-in-the-loop reinforcement learning. Science Robotics, 10(105):eads5033, 2025.

Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayaraman. Liv:
Language-image representations and rewards for robotic control. In International Conference
on Machine Learning, pp. 23301–23320. PMLR, 2023a.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023b.

Yecheng Jason Ma, Joey Hejna, Chuyuan Fu, Dhruv Shah, Jacky Liang, Zhuo Xu, Sean Kirmani,
Peng Xu, Danny Driess, Ted Xiao, et al. Vision language models are in-context value learners. In
The Thirteenth International Conference on Learning Representations, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Taewook Nam, Juyong Lee, Jesse Zhang, Sung Ju Hwang, Joseph J Lim, and Karl Pertsch. Lift:
Unsupervised reinforcement learning with foundation models as teachers. In 2nd Workshop on
Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023, 2023.

Andrew Y Ng, Daishi Harada, and Stuart J Russell. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In Proceedings of the Sixteenth International
Conference on Machine Learning, pp. 278–287, 1999.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. Trans. Mach. Learn. Res., 2024.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. In The Thirteenth International Conference on Learning Representations, 2024.

Tianhe Ren, Yihao Chen, Qing Jiang, Zhaoyang Zeng, Yuda Xiong, Wenlong Liu, Zhengyu Ma,
Junyi Shen, Yuan Gao, Xiaoke Jiang, et al. Dino-x: A unified vision model for open-world object
detection and understanding. arXiv preprint arXiv:2411.14347, 2024.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2023.

Philip Sedgwick. Pearson’s correlation coefficient. British Medical Journal, 345, 2012.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Sreyas Venkataraman, Yufei Wang, Ziyu Wang, Navin Sriram Ravie, Zackory Erickson, and David
Held. Real-world offline reinforcement learning from vision language model feedback. arXiv
preprint arXiv:2411.05273, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning. In
The Twelfth International Conference on Learning Representations, 2023.

Mengda Xu, Zhenjia Xu, Yinghao Xu, Cheng Chi, Gordon Wetzstein, Manuela Veloso, and Shuran
Song. Flow as the cross-domain manipulation interface. In 8th Annual Conference on Robot
Learning, 2024.

Daniel Yang, Davin Tjia, Jacob Berg, Dima Damen, Pulkit Agrawal, and Abhishek Gupta.
Rank2reward: Learning shaped reward functions from passive video. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2806–2813. IEEE, 2024a.

Jingyun Yang, Max Sobol Mark, Brandon Vu, Archit Sharma, Jeannette Bohg, and Chelsea Finn.
Robot fine-tuning made easy: Pre-training rewards and policies for autonomous real-world rein-
forcement learning. In 2024 IEEE International Conference on Robotics and Automation (ICRA),
pp. 4804–4811. IEEE, 2024b.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Bowei Zhang, Lei Ke, Adam W Harley, and Katerina Fragkiadaki. Tapip3d: Tracking any point in
persistent 3d geometry. arXiv preprint arXiv:2504.14717, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A FLOW GENERATION

A natural approach to constructing object flow is to apply open-world object detection models (e.g.,
DINO-X (Ren et al., 2024), YOLO-World (Cheng et al., 2024)) to localize the gripper and task-
relevant objects, followed by point tracking within these regions, just likes Im2flow2act (Xu et al.,
2024). However, our experiments show that even state-of-the-art detectors are struggle in our setting:
they frequently fail to detect robot grippers, misclassify objects, or produce bounding boxes that are
oversized. These errors are particularly common for objects that appear infrequently in their training
datasets.

To address this limitation, we design a semi-automatic pipeline for robust flow construction. The
pipeline requires minimal human input (only once per task) and improves region selection accuracy.

We construct object flow in two stages, as shown in the Figure 4:

Region annotation (one-time per task). We apply SegmentAnything-v2 (Ravi et al., 2024) to a
single reference image to obtain a segmentation map. A human annotator selects the relevant re-
gions (e.g., gripper, manipulated objects, targets). We uniformly sample points within these regions,
producing the initial flow representation O0 ∈ R3×n.

Flow generation on new videos. For each video, we extract DINO-v2 (Oquab et al., 2024) embed-
dings from initial frames. Points in O0 are matched to nearest features, yielding a transferred set
O′

0 ∈ R3×n.Direct correspondence may yield inaccurate matches (e.g., near but not on the target
object); we therefore refine them by identifying the segmentation region containing the majority of
matches and reinitializing O0 from this region. Finally, we apply TAPIP3D (Zhang et al., 2025) to
generate the spatiotemporal flow sequence OT ∈ R3×T×n, where T denotes the sequence length.

Image with annotation

Initial Image

DINO
Point
Track
Model

Auto annotated Image

correspondence

Images with flow

Flow
tracking

Point Sample
Filter

Figure 4: The flow generation procedure.

B SUBTASK LABEL

Automatic annotation of subtask labels. Instead of relying on human annotators to label subtasks
in Ddemo, we leverage GPT4.1 for automatic annotation. Specifically, we first provide the VLM with
a textual description of the task and a demonstration video, prompting it to segment the task into
a sequence of subtasks. Given the segmentation criteria, the VLM is queried to assign a subtask
label to each frame in the dataset. For each query, we present the VLM with a randomly sampled
subset of frames from the same video, arranged in random order, which encourages more consistent
predictions across the trajectory. To improve reliability, we query the GPT4.1 multiple times per
image and adopt the most frequent label. These automatically generated labels enable surrogate
evaluation without human annotation.

C HYBRID OFFLINE LEARNING ALGORITHM

The hybrid offline learning algorithm is shown in the Algorithm 1. And the Bayesian Optimization
(BO) for tuning parameters θ is shown in the Algorithm 2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Hybrid Offline Learning Procedure

1: Input: Task description l, environment code M , coding LLM LLM,
2: surrogate score function S, initial prompt p0, Bayesian optimization routine BO
3: Hyperparameters: Number of iterations N , batch size K
4: Initialize prompt: p← p0
5: for iteration i = 1, 2, . . . , N do
6: // Generate K candidate reward functions via LLM
7: {(ϕ1, θ1), . . . , (ϕK , θK)} ∼ LLM(l,M, p)
8: Initialize best score: sbest ← −∞
9: for each candidate (ϕk, θk) where k = 1, . . . ,K do

10: // Optimize parameters using Bayesian optimization
11: θ∗k ← BO(ϕk, θk,S)
12: s∗k ← S(ϕk; θ

∗
k)

13: if s∗k > sbest then
14: sbest ← s∗k
15: ϕbest ← ϕk, θ∗best ← θ∗k
16: end if
17: end for
18: // Update prompt with top-performing candidates
19: p← p⊕ Reflection(ϕbest, θ

∗
best, sbest)

20: end for
21: Return: Optimal reward function ϕbest and parameters θ∗best

Algorithm 2 Bayesian Optimization (BO) for tuning parameters θ

Input: Objective function S(ϕ; θ), search space Θ, budget T
Initialize dataset D0 = {}
for t = 1, 2, . . . , T do

Fit surrogate model Ŝt using Dt−1

Define acquisition function at(θ | Ŝt) (e.g., Expected Improvement)
Select next query point:

θt = argmax
θ∈Θ

at(θ | Ŝt)

Evaluate true objective: yt = S(ϕ; θt)
Augment dataset: Dt = Dt−1 ∪ {(θt, yt)}

end for
Output: Best parameter θ⋆ = argmax(θ,y)∈DT

y

D PROOF OF THEOREM 1

Proof. The foundation of this proof is the well-established theorem that potential-based reward
shaping (PBRS) preserves optimal policies (Ng et al., 1999). The shaping function must be of
the form:

F (s, a, s′) = γΦ(s′)− Φ(s), (14)
where Φ is a potential function defined on the state space.

In our Revised PBRS-Milestone method, the total reward in the augmented MDP M̃ is given by:

R̃(s̃t, at, s̃t+1) = R(st, at, st+1) + Flocal + Fglobal,

where
Flocal = γϕ(st+1)− ϕ(st), Fglobal = γΨ(mt+1)−Ψ(mt).

We can combine these two shaping terms into a single, composite potential-based shaping function
defined on the augmented state space S̃. Let us define a new potential function Φtotal : S̃ → R as
the sum of the local and global potentials:

Φtotal(s,m) = ϕ(s) + Ψ(m).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Now, consider the shaping function generated by Φtotal:

Ftotal(s̃t, at, s̃t+1) = γΦtotal(s̃t+1)− Φtotal(s̃t)

= γ (ϕ(st+1) + Ψ(mt+1))− (ϕ(st) + Ψ(mt))

= (γϕ(st+1)− ϕ(st)) + (γΨ(mt+1)−Ψ(mt))

= Flocal + Fglobal.

This demonstrates that the combined shaping reward Flocal + Fglobal used in our method is indeed
a valid potential-based shaping function of the form eq. (14) for the augmented MDP M̃ , with the
potential function Φtotal defined on the augmented state space.

Therefore, by the direct application of the policy invariance theorem (Ng et al., 1999), the sets of
optimal policies for the original MDP M and the augmented MDP M̃ are identical. The optimal
action-value functions Q∗ and Q̃∗ are related by:

Q̃∗((s,m), a) = Q∗(s, a)− Φtotal(s,m) = Q∗(s, a)− (ϕ(s) + Ψ(m)) .

Since the subtracted term Φtotal(s,m) is independent of the action a, the action that maximizes
Q∗(s, a) is identical to the action that maximizes Q̃∗((s,m), a) for any augmented state (s,m).
This completes the proof.

E SIMULATION EXPERIMENTS

E.1 TASKS

We benchmark our method on eight manipulation tasks from the Meta-World benchmark (Yu et al.,
2020), chosen to cover diverse motion primitives, object interactions, and task horizons:

• Drawer Close: The agent must push a partially opened drawer until it is fully closed. This
tests precise pushing control and position tracking.

• Hammer: The agent grasps a hammer and uses it to pound a nail into a fixed board. This
requires both tool use and coordinated arm control.

• Button Press Topdown: The agent presses a button from above until it is fully depressed.
This emphasizes vertical positioning accuracy.

• Door Open: The agent pulls a door handle and opens the door past a target angle. This
requires learning pull motions and hinge dynamics.

• Lever Pull: The agent pulls down a lever until it reaches a target threshold. This again
combines reaching, grasping, and pulling actions.

• Peg Insert Side: The agent aligns a peg with a side-mounted hole and inserts it. This is a
long-horizon contact-rich task requiring fine alignment.

• Assembly: The agent picks up a nut and places it onto a peg fixed on the table. This
requires precise pick-and-place coordination and object handling.

• Shelf Place: The agent grasps a block and places it onto a shelf at a target position. This
tests long-horizon reaching and placing motions with height control.

These tasks span primitive skills including push, pull, press, open, insert, and place, and together
represent a wide spectrum of contact-rich manipulation challenges.

For each task, we collect five demonstration videos using a scripted policy, randomly selecting three
for training and two for evaluation. For each video, we extract motion flows with our pipeline and
use GPT4.1 to automatically annotate sub-task labels and produce sub-task segmentation criteria.
We then provide the task description, environment code, and the generated segmentation criteria
to GPT4.1 to generate multiple candidate potential functions. Finally, we apply our offline reward
improvement procedure to validate and iteratively optimize these candidates, selecting the one with
the highest surrogate score as the final potential.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hyperparameter Value
Policy
Tanh squash distribution True
Std parameterization exp
Std min 1× 10−5

Std max 5

Critic Network
Activations tanh
Use layer norm True
Hidden dims [256, 256]

Policy Network
Activations tanh
Use layer norm True
Hidden dims [256, 256]

Training
Temperature init 1× 10−2

Discount (γ) 0.99
Backup entropy False
Critic ensemble size 4
Critic subsample size 2
Critic–Actor update ratio 2

Optimizers
Temperature LR 1× 10−4

Temperature grad clip norm 1
Actor LR 3× 10−4

Actor grad clip norm 1
Critic LR 3× 10−4

Critic grad clip norm 1

Table 2: Hyperparameters of RLPD used in our simulation experiments.

E.2 HYPERPARAMETERS

The hyperparameters used for training the RLPD agent are summarized in Table 2.

F REAL-WORLD EXPERIMENTS

F.1 ROBOT SETUP

We use a 7-DOF Franka Emika Panda, controlled at 10 Hz in end-effector space. Visual observa-
tions come from two RGB-D cameras: an Intel RealSense D405 mounted on the wrist and an Intel
RealSense D455 providing a third-person view. The policy receives both visual inputs and robot
proprioception.To ensure safe interaction, we employ impedance control as the low-level controller
to regulate contact forces and prevent potential damage.

F.2 HYPERPARAMETERS

The hyperparameters used for training the RLPD agent in the real-world RL tasks are summarized
in Table 3.

G ABLATION STUDY

Ablation on offline rewards improvement procedure we conduct an ablation study with offline
rewards improvement procedure, keep all other design same to our method: (1) LLM Reflection +

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hyperparameter Value
Policy
Tanh squash distribution True
Std parameterization exp
Std min 1× 10−5

Std max 5

Critic Network
Activations tanh
Use layer norm True
Hidden dims [256, 256]

Policy Network
Activations tanh
Use layer norm True
Hidden dims [256, 256]

Training
Temperature init 1× 10−2

Discount (γ) 0.96
Backup entropy False
Critic ensemble size 10
Critic subsample size 2
Critic–Actor update ratio 4

Optimizers
Temperature LR 1× 10−4

Temperature grad clip norm 1
Actor LR 3× 10−4

Actor grad clip norm 1
Critic LR 3× 10−4

Critic grad clip norm 1

Replay buffer
Demos 5

Table 3: Hyperparameters of RLPD used in our real-world RL experiments.

BO: our proposed procedure that combines LLM reflection with Bayesian Optimization; (2) LLM
Reflection only: using LLM reflection alone to refine the reward functions; (3) BO: using Bayesian
Optimization alone to optimize the reward functions. (4) Direct: directly selecting the best LLM-
generated reward function from candidates without additional optimization.

For each variant, we repeat the optimization process five times and evaluate using the three proposed
metrics: Stage prediction score Cstage(ϕ), Progress monotonicity score Cprog(ϕ) and PBRS positive
score Cpbrs(ϕ). Results are reported in Table 4.

Env Variants Cprog Cstage CPBRS Js

Lever-Pull

LLM Reflection + BO 0.92±0.01 0.90±0.00 0.94±0.00 9.29±0.04
LLM Reflection only 0.82±0.21 0.68±0.17 0.67±0.14 7.31±1.58
BO only 0.96±0.01 0.78±0.08 0.91±0.02 9.14±0.03
Direct 0.44±0.06 0.44±0.00 0.58±0.04 5.10±0.06

Peg-Insert

LLM Reflection + BO 0.90±0.05 0.88±0.01 0.89±0.07 8.95±0.15
LLM Reflection only 0.85±0.07 0.66±0.01 0.73±0.10 7.69±0.26
BO only 0.89±0.06 0.75±0.09 0.88±0.08 8.74±0.06
Direct 0.84±0.01 0.67±0.01 0.58±0.09 6.89±0.47

Table 4: Ablation study on offline rewards improvement procedure. The evaluation metrics are our
proposed surrogate scores: Stage prediction score Cstage(ϕ), Progress monotonicity score Cprog(ϕ),
PBRS positive score Cpbrs(ϕ) and total surrogate score Js

.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

As shown in Table 4, the low surrogate score of the Direct method indicates that LLM-generated
potential functions are not of sufficient quality for direct use. Incorporating LLM Reflection im-
proves the quality of these functions, but the resulting rewards still fail to provide signals that are
reliably monotonic with task progress. In contrast, BO substantially enhances monotonicity, yet its
effectiveness is fundamentally limited—it can only tune the parameters of a fixed structure without
introducing new semantic insights. Taken together, these findings demonstrate that combining LLM
Reflection with BO achieves the best results, as reflection contributes semantic structure while BO
enforces quantitative consistency.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) serve two purposes in our study:

• Reward function generation. We employ LLMs to automatically propose candidate re-
ward functions that are subsequently refined through reward shaping. In this capacity, the
LLM is an integral component of our algorithmic pipeline.

• Writing assistance. We also use LLMs to improve the clarity and consistency of the text,
including task descriptions and experimental documentation. This usage is restricted to
language refinement and does not affect technical content.

All experimental methods, architectures, and results are solely determined by our proposed algo-
rithms and evaluations, ensuring that LLM usage does not influence decision-making or outcomes.

18

	Introduction
	Related Work
	Background
	Rewards Shaping
	Potential-Based Reward Shaping

	Towards Generalizable and Practical Shaping Frameworks
	Flow based Representation for Potentials
	Surrogate validation of LLM-generated potentials
	Hybrid Offline Learning of potential functions
	A Robust Rewards Shaping Formulation

	Experiments
	Simulation Experiments
	Real-world Experiments
	Ablation study

	Conclusion
	Flow generation
	Subtask label
	Hybrid Offline Learning Algorithm
	Proof of Theorem 1
	Simulation experiments
	Tasks
	Hyperparameters

	Real-world experiments
	Robot Setup
	Hyperparameters

	Ablation study

