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Abstract

While bisimulation-based approaches hold promise for learning robust state repre-
sentations for Reinforcement Learning (RL) tasks, their efficacy in offline RL tasks
has not been up to par. In some instances, their performance has even significantly
underperformed alternative methods. We aim to understand why bisimulation
methods succeed in online settings, but falter in offline tasks. Our analysis reveals
that missing transitions in the dataset are particularly harmful to the bisimulation
principle, leading to ineffective estimation. We also shed light on the critical
role of reward scaling in bounding the scale of bisimulation measurements and
of the value error they induce. Based on these findings, we propose to apply the
expectile operator for representation learning to our offline RL setting, which
helps to prevent overfitting to incomplete data. Meanwhile, by introducing an
appropriate reward scaling strategy, we avoid the risk of feature collapse in rep-
resentation space. We implement these recommendations on two state-of-the-art
bisimulation-based algorithms, MICo and SimSR, and demonstrate performance
gains on two benchmark suites: D4RL and Visual D4RL. Codes are provided at
https://github.com/zanghyu/Offline_Bisimulation.

1 Introduction

Reinforcement learning (RL) algorithms often require a significant amount of data to achieve optimal
performance [40, 48, 22]. In scenarios where collecting data is costly or impractical, Offline RL
methods offer an attractive alternative by learning effective policies from previously collected data [29,
43, 32, 35, 16, 24]. However, capturing the complex structure of the environment from limited data
remains a challenge for Offline RL [4]. This involves pre-training the state representation on offline
data and then learning the policy upon the fixed representations [51, 47, 41, 53]. Though driven
by various motivations, previous methods can be mainly categorized into two classes: i) implicitly
shaping the agent’s representation of the environment via prediction and control of some aspects of
the environment through auxiliary tasks , e.g., maximizing the diversity of visited states [34, 10],
exploring attentive contrastive learning on sub-trajectories [51], or capturing temporal information
about the environment [47]; ii) utilizing behavioral metrics, such as bisimulation metrics [11, 13, 5],
to capture complex structure in the environment by measuring the similarity of behavior on the
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representations [52, 7]. The former methods have proven their effectiveness theoretically and
empirically in Offline settings [41, 47, 51], while the adaptability of the latter approaches in the
context of limited datasets remains unclear. This paper tackles this question.

Bisimulation-based approaches, as their name suggests, utilize the bisimulation metrics update
operator to construct an auxiliary loss and learn robust state representations. These representations
encapsulate the behavioral similarities between states by considering the difference between their
rewards and dynamics. While the learned representations possess several desirable properties, such as
smoothness [19], visual invariance [54, 1, 52], and task adaptation [56, 37, 46, 8], bisimulation-based
objectives in most approaches are required to be coupled with the policy improvement procedure [54,
6, 52]. In Offline RL, pretraining state representations via bisimulation-based methods is supposed
to be cast as a special case of on-policy bisimulation metric learning where the behavior policy is
fixed so that good performance should ensue. However, multiple recent studies [51, 21] suggest that
bisimulation-based algorithms yield significantly poorer results on Offline tasks compared to a variety
of (self-)supervised objectives.

In this work, we highlight problems with using the bisimulation principle as an objective in Offline
settings. We aim to provide a theoretical understanding of the performance gap in bisimulation-based
approaches between online and offline settings:“why do bisimulation approaches perform well in
Online RL tasks but tend to fail in Offline RL ones?” By establishing a connection between the
Bellman and bisimulation operators, we uncover that missing transitions, which often occur in Offline
settings, can cause the bisimulation principle to be compromised. This means that the bisimulation
estimator can be ineffective in finite datasets. Moreover, we notice that the scale of the reward impacts
the upper bounds of both the bisimulation measurement2 fixed point and the value error. This scaling
term, if not properly handled, can potentially lead to representation collapse.

To alleviate the aforementioned issues, we propose to learn state representations based on the expectile
operator. With this asymmetric operator predicting expectiles of the representation distribution, we can
achieve a balance between the behavior measurement and the greedy assignment of the measurement
over the dataset. This results in a form of regularization over the bisimulation measurement, thus
preventing overfitting to the incomplete data, and implicitly avoiding out-of-distribution estimation
errors. Besides, by considering the specific properties of different bisimulation measurements, we
investigate the representation collapse issue for the ones that are instantiated with bounded distances
(e.g., cosine distance) and propose a way to scale rewards that reduces collapse. We integrate these
improvements mainly on two bisimulation-based baselines, MICo [7] and SimSR [52], and show the
effectiveness of the proposed modifications.

The primary contributions of this work are as follows:

• We investigate the potential harm of directly applying the bisimulation principle in Offline
settings, prove that the bisimulation estimator can be ineffective in finite datasets, and
emphasize the essential role of reward scaling.

• We propose theoretically motivated modifications on two representative bisimulation-based
baselines, including an expectile-based operator and a tailored reward scaling strategy. These
proposed changes are designed to address the challenges encountered when applying the
bisimulation principle in offline settings.

• We demonstrate the superior performance our approach yields through an empirical study
on two benchmark suites, D4RL [15] and Visual D4RL [35].

2 Related Work

State representation learning in Offline RL Pretraining representations has been recently studied
in Offline RL settings, where several studies presented its effectiveness [3, 47, 41, 25]. In this
paradigm, we learn state representations on pre-collected datasets before value estimation or policy
improvement steps are run. The learned representation can then be used for subsequent policy
learning, either online or offline. Some typical auxiliary tasks for pretraining state representations
include capturing the dynamical [42] and temporal [47] information of the environment, exploring

2Since some bisimulation-based approaches do not exactly use metrics but instead of pseudometrics, diffuse
metrics or else, we will use the term “measurement” in the following.
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attentive contrastive learning on sub-trajectories [51], or improving policy performance by applying
data augmentations techniques to the pixel-based inputs [9, 35].

Bisimulation-based methods The pioneer works by [20, 33] aim to overcome the curse of dimen-
sionality by defining equivalence relations between states to reduce system complexity. However,
these approaches are impractical as they usually demand an exact match of transition distributions.
To address this issue, [12, 14] propose a bisimulation metric to aggregate similar states. This metric
quantifies the similarity between two states and serves as a distance measure to allow efficient state
aggregation. Unfortunately, it remains computationally expensive as it requires a full enumeration of
states. Later, [5] devise an on-policy bisimulation metric for policy evaluation, providing a scalable
method for computing state similarity. Building upon this, [54] develop a metric to learn state
representations by modeling the latent dynamic transition as Gaussian. [6] further investigate the
independent couple sampling strategy to reduce the computational complexity of representation
learning, whereas [52] propose to learn state representations built on the cosine distance to alleviate a
representation collapse issue. Despite the promising results obtained, one of the major remaining
challenges in this paradigm is its dependency on coupling state representation learning with policy
training. This is not always suitable for Offline settings, given that obtaining on-policy reward
and transition differences is infeasible due to our inability to gather additional agent-environment
interactions. To adapt bisimulation-based approaches to Offline settings, one solution is to consider
the policy over the dataset as a specific behavior policy, and then apply the bisimulation principle
on it to learn state representations in a pretraining stage, thus disentangling policy training from
bisimulation-based learning. Notably, although there exist recent studies [51, 42] investigating the
potential of bisimulation-based methods to pretrain state representations, it has not yielded satisfactory
results yet [51].

3 Preliminaries

3.1 Offline RL

We consider the standard Markov decision process (MDP) framework, in which the environment is
given by a tupleM = (S,A, T, r, γ), with state space S, action space A, transition function T that
decides the next state s′ ∼ T (·|s, a), reward function r(s, a) bounded by [Rmin, Rmax], and a discount
factor γ ∈ [0, 1). The agent in state s ∈ S selects an action a ∈ A according to its policy, mapping
states to a probability distribution over actions: a ∼ π(·|s). We make use of the state value function
V π(s) = EM,π [

∑∞
t=0 γ

tr (st, at) | s0 = s] to describe the long term discounted reward of policy π
starting at state s. In the sequel, we use T a

s and ras to denote T (·|s, a) and r(s, a), respectively. In
Offline RL, we are given a fixed dataset of environment interactions that include N transition samples,
i.e. D = {si, ai, s′i, ri}Ni=1. We assume that the dataset D is composed of trajectories generated i.i.d.
under the control of a behavior policy πβ , whose state occupancy is denoted by µβ(s).

3.2 Bisimulation-based Update Operator

The concept of bisimulation is used to establish equivalence relations on states. This is done recur-
sively by considering two states as equivalent if they have the same distribution over state transitions
and the same immediate reward [30, 20]. Since bisimulation considers worst-case differences between
states, it commonly results in “pessimistic” outcomes. To address this limitation, the π-bisimulation
metric was proposed in [5]. This new metric only considers actions induced by a given policy π
rather than all actions when measuring the behavior distance between states:
Theorem 1. [5] Let M be the set of all measurements on S. Define Fπ : M→M by

Fπ(g)(si, sj) = |rπsi − rπsj |+ γW(g)
(
Tπ
si , T

π
sj

)
(1)

where si, sj ∈ S, rπsi =
∑

a∈A π(a|si)rasi , Tπ
si =

∑
a∈A π(a|si)T a

si , andW(g) is the Wasserstein
distance with cost function g between distributions. Then Fπ has a least fixed point gπ∼, and gπ∼ is a
π-bisimulation metric.

Although it is feasible to compute the behavior difference measurement gπ∼ by applying the operator
Fπ iteratively (which is guaranteed to converge to a fixed point since Fπ is a contraction), this
approach comes at a high computational complexity due to the Wasserstein distance on the right-hand
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side of the equation. To tackle this issue, MICo [6] proposed using an independent couple sampling
strategy instead of optimizing the overall coupling of the distributions Tπ

si and Tπ
sj , resulting in a novel

measurement to evaluate the difference between states. Additionally, SimSR [52] further explored
the potentiality of combining the cosine distance with bisimulation-based measurements to learn state
representations. Both works can be generalized as:

FπGπ(si, sj) = |rπsi − rπsj |+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[Gπ(s′i, s
′
j)], (2)

and Fπ has a least fixed point Gπ
∼

3. The instantiation of G varies in different approaches [6, 52]. For
example, in SimSR [52], the cosine distance is used to instantiate G on the embedding space, and the
dynamics difference is computed by the cosine distance between the next-state pair (s′i, s

′
j) sampled

from a transition model of the environment. A more detailed description can be found in Appendix C.
Lemma 2. [6] (Lifted MDP) The bisimulation-based update operator Fπ forM is the Bellman
evaluation operator for a specific lifted MDP.

Due to this interpretation of the bisimulation-based update operator as the Bellman evaluation operator
in a lifted MDP, we can derive certain conclusions about bisimulation by drawing inspiration from
policy evaluation methods. In the next section, we will borrow analytical ideas from [17] to prove that
the bisimulation-based objective may be ineffective for finite datasets. We summarize all notations in
Appendix A and provide all proofs in Appendix D.

4 Ineffective Bisimulation Estimators in Finite Datasets

The high-level idea of bisimulation-based state representation learning is to learn state embeddings
such that when states are projected onto the embedding space, their behavioral similarity is maintained.
We denote our parameterized state encoder by ϕ : S → Rn and a distance D(·, ·) in the embedding
space Rn by Gπ

ϕ(si, sj)
.
= D(ϕ(si), ϕ(sj)). For instance, D(·, ·) may be the Łukaszyk–Karmowski

distance [6] or the cosine distance [52]. To avoid unnecessary confusion, we defer implementation
details to Section 5.

When considering bisimulation-based state representations, the goal is to acquire stable state repre-
sentations under policy π via the measurement Gπ

∼. The primary focus is usually to minimize a loss
over the bisimulation error, denoted by ∆π

ϕ, which measures the distance between the approximation
Gπ

ϕ and the fixed point Gπ
∼:

∆π
ϕ(si, sj) := |Gπ

ϕ(si, sj)−Gπ
∼(si, sj)|. (3)

However, since the fixed point Gπ
∼ is unobtainable without full knowledge of the underlying MDP,

this approximation error is often unknown. Recall that in Lemma 2, we have shown that we can
connect a bisimulation-based update operator to a lifted MDP. Taking inspiration from Bellman
evaluation for the value function, we define the bisimulation Bellman residual ϵπϕ as:

ϵπϕ(si, sj) := |Gπ
ϕ(si, sj)−FπGπ

ϕ(si, sj)|. (4)

Then, we can connect the bisimulation Bellman residual with the bisimulation error by the following:
Theorem 3. (Bisimulation error upper-bound). Let µπ(s) denote the stationary distribution over
states, let µπ(·, ·) denote the joint distribution over synchronized pairs of states (si, sj) sampled
independently from µπ(·). For any state pair (si, sj) ∈ S × S , the bisimulation error ∆π

ϕ(si, sj) can
be upper-bounded by a sum of expected bisimulation Bellman residuals ϵπϕ:

∆π
ϕ(si, sj) ≤

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]
. (5)

Thereafter, the bisimulation Bellman residual is used as a surrogate objective to approximate the
fixed point Gπ

∼ when learning our state representation. Indeed, the minimization of the bisimulation
Bellman residual objective over all pairs (s′i, s

′
j) ∼ µπ leads to the minimization of the corresponding

bisimulation error. This ensures that if the expected on-policy bisimulation Bellman residual (i.e.,
3For readability, we will conflate the notations Gπ and Gπ(x, y), they are the same if not specified
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Eµπ [ϵ
π
ϕ], and we will use the term “expected bisimulation residual” in following) minimization

objective is zero, then the bisimulation error must be zero for the state pairs under the same policy.
However, when the dataset is limited, rather than an infinite transition set covering the whole MDP,
minimizing the expected bisimulation residual will no longer be sufficient to guarantee a zero
bisimulation error.

Proposition 4. (The expected bisimulation residual is not sufficient over incomplete datasets).
If there exists states s′i and s′j not contained in datasetD, where the occupancy µπ(s

′
i|si, ai) >

0 and µπ(s
′
j |sj , aj) > 0 for some (si, sj) ∼ µπ , then there exists a bisimulation measurement

Gπ
ϕ and a constant C > 0 such that

• For all (ŝi, ŝj) ∈ D, the bisimulation Bellman residual ϵπϕ(ŝi, ŝj) = 0.
• There exists (si, sj) ∈ D, such that the bisimulation error ∆π

ϕ(si, sj) = C.

As an example, if we only have (si, ai, r, s
′
i) and (sj , aj , r, s

′
j) in a dataset, where both rewards

equal to zero for state si and sj , and if we choose Gπ
ϕ(si, sj) = C, and Gπ

ϕ(s
′
i, s

′
j) =

1
γC, then the

bisimulation Bellman residual is ϵπϕ(si, sj) = 0, while the bisimulation error ∆π
ϕ = Gπ

ϕ(si, sj)−0 =
C is strictly positive. Note that this failure case does not involve modifying the environment in an
extremely adversarial manner, it simply occurs when we are required to estimate the representation
of states with subsequent states that are missing from the dataset. Since the distance between the
missing states can be arbitrarily large as they are out-of-distribution, directly minimizing the Bellman
bisimulation error could achieve the minimal Bellman bisimulation error over the dataset, while not
necessarily improving the state representation.

In the context of Offline RL, since the dataset is finite, bisimulation-based representation learning
ought to be conceptualized as a pretraining process over the behavior policy πβ of the dataset D.
However, the failure case above indicates that applying the bisimulation operatorFπβ and minimizing
the associated Bellman bisimulation error does not necessarily ensure the sufficiency of the learned
representation for downstream tasks. Ideally, if we had access to the fixed-point measurement
G

πβ
∼ , then we could directly minimize the error between the approximation G and the fixed-point

G
πβ
∼ . However, given the static and incomplete nature of the dataset, acquiring the fixed-point

G
πβ
∼ explicitly is not feasible. From another perspective, the failure stems from out-of-distribution

estimation errors. Assuming we could estimate the bisimulation exclusively with in-sample learning,
this issue could be intuitively mitigated. As such, we resort to expectile regression as a regularizer,
allowing us to circumvent the need for out-of-sample / unseen state pairs.

5 Method

In this section, we describe how we adapt existing bisimulation-based representation approaches
to offline RL. We use the expectile-based operator to learn state representations that optimize the
behavior measurement over the dataset, while avoiding overfitting to the incomplete data. In addition,
we analyze the impact of reward scaling and propose as a consequence to normalize the reward
difference in the bisimulation Bellman residual in order to satisfy the specific nature of different
instantiations of the bisimulation measurement while keeping a lower value error. The pseudo-code
of our method is shown in Algorithms in Appendix B.

5.1 Expectile-based Bisimulation Operator

The efficacy of expectile regression in achieving in-sample learning has already been demonstrated
in previous research [28, 36]. Consequently, we will first describe our proposed expectile-based
operator, and subsequently show how expectile regression can effectively address the aforementioned
challenge. Specifically, we consider the update operator as follows:(

Fπβ
τ G

πβ

ϕ

)
(si, sj) := argmin

G
πβ
ϕ

Eai∼πβ(·|si),aj∼πβ(·|sj)
[
τ [ϵ̂]2+ + (1− τ)[−ϵ̂]2+

]
,

ϵ̂ = E
s′i∼T

πβ
si

s′j∼T
πβ
sj

[
|r(si, ai)− r(sj , aj)|+ γG

πβ

ϕ̄
(s′i, s

′
j)︸ ︷︷ ︸

target G

−Gπβ

ϕ (si, sj)
]
,

(6)
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where ϵ̂ is the estimated one-step bisimulation Bellman residual, πβ is the behavior policy, Gϕ̄ is
the target encoder, updated using an exponential moving average, and [·]+ = max(·, 0). Since the
expectile operator in Equation 6 does not have a closed-form solution, in practice, we minimize it
through gradient descent steps:

G
πβ

ϕ (si, sj)← G
πβ

ϕ (si, sj)− 2αEai∼πβ(·|si),aj∼πβ(·|sj) [τ [ϵ̂]+ + (1− τ)[ϵ̂]−] (7)

where α is the step size. The fixed-point of the measurement obtained using this expectile-based
operator is denoted as Gτ . Although the utilization of the expectile statistics is well established, its
application for estimating bisimulation measurement is not particularly intuitive. In the following,
we will show how expectile-based operator can be helpful in addressing the aforementioned issue.
First, it is worth noting that when τ = 1/2, this operator becomes the bisimulation expectation of the
behavior policy, i.e., Eµπβ

[ϵ̂]. Next, we shall consider how this operator performs when τ → 1. We
show that under certain assumptions, our method indeed approximates an “optimal” measurement in
terms of the given dataset. We first prove a technical lemma stating that the update operator is still a
contraction, and then prove a lemma relating different expectiles, finally we derive our main result
regarding the “optimality” of our method.

Lemma 5. For any τ ∈ [0, 1),Fπ
τ is a γτ -contraction, where γτ = 1−2α(1−γ)min {τ, 1− τ} < 1.

Lemma 6. For any τ, τ ′ ∈ [0, 1) with τ ′ ≥ τ , and for all si, sj ∈ S and any α, we have Gτ ′ ≥ Gτ .

Theorem 7. In deterministic MDP and fixed finite dataset, we have:

lim
τ→1

Gτ (si, sj) = max
ai∈A,aj∈A

s.t. πβ(ai|si)>0,πβ(aj |sj)>0

G∗
∼((si, ai), (sj , aj)). (8)

where G∗
∼((si, ai), (sj , aj)) is a fixed-point measurement constrained to the dataset and defined on

the state-action space S ×A as

G∗
∼((si, ai), (sj , aj)) = |r(si, ai)− r(sj , aj)|+ γE

s′i∼T
πβ
si

s′j∼T
πβ
sj

 max
a′
i∈A,a′

j∈A
s.t. πβ(a

′
i|s

′
i)>0,πβ(a

′
j |s

′
j)>0

G∗
∼((s

′
i, a

′
i), (s

′
j , a

′
j))

 .

Intuitively, G∼((si, ai), (sj , aj)) can be interpreted as a state-action value function Q(s̃, ã) in a
lifted MDP M̃ , and G∼(si, sj) as a state value function V (s̃). We defer the detailed explanation to
Appendix E.

Theorem 7 illustrates that, as τ → 1, we are effectively approximating the maximum
G∼((si, ai), (sj , aj)) over actions a′i, a

′
j from the dataset. When we set τ = 1, the expectile-

based bisimulation operator achieves fully in-sample learning: we only consider state pairs that have
corresponding actions in the dataset. For instance, only when we have (s′i, a

′
i) ∈ D and (s′j , a

′
j) ∈ D,

can we apply the measurement of G∗
∼. As such, by manipulating τ , we balance a trade-off between

minimizing the expected bisimulation residual (for τ = 0.5) and evaluating G∗
∼((si, ai), (sj , aj))

solely on the dataset (for τ = 1), thereby sidestepping the failure case outlined in Proposition 4 in an
implicit manner.

5.2 Reward Scaling

Most previous works [5, 54, 6, 52] have overlooked the impact of reward scaling in the bisimulation
operator. To demonstrate its importance, we investigate a more general form of the bisimulation
operator in Equation 2, given as:

FπG(si, sj) = cr · |rπsi − rπsj |+ ck · Eπ
s′i,s

′
j
[G(s′i, s

′
j)]. (9)

We then can derive the following:

Gπ
∼(si, sj) = FπGπ

∼(si, sj) = cr · |rπsi − rπsj |+ ck · Eπ
s′i,s

′
j
[Gπ

∼(s
′
i, s

′
j)]

≤ cr · (Rmax −Rmin) + ck · Eπ
s′i,s

′
j
[Gπ

∼(s
′
i, s

′
j)]

≤ cr · (Rmax −Rmin) + ck ·max
s′i,s

′
j

Gπ
∼(s

′
i, s

′
j).

(10)
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Figure 1: The effectiveness of Reward Scaling (RS) in SimSR on halfcheetah-medium-expert-v2,
with results averaged on 3 random seeds. (Left) Effective Dimension [53] comparison: without RS,
there is a significant reduction in the effective dimension, accompanied by a marked increase in
instability as training progresses. (Right) Numerical value comparison of estimated bisimulation
Bellman residual: ϵ̂ is persistently greater than 0 in the absence of RS, which indicates that target G
is invariably larger than Gϕ, suggesting that Gϕ does not achieve steady convergence.

Accordingly, we have Gπ
∼(si, sj) ≤

cr·(Rmax−Rmin)
1−ck

. Adopting the conventional settings of cr = 1 and
ck = γ as suggested in [6, 52], could possibly result in a relatively large upper bound of Gπ

∼ between
states. This is due to the common practice of setting γ at 0.99. However, when bisimulation operators
are instantiated with bounded distances, e.g., cosine distance, such a setting may be unsuitable.
Therefore, it becomes important to tighten the upper bound.

Besides, we can also derive the value bound between the ground truth value function and the
approximated value function:

Theorem 8. (Value bound based on on-policy bisimulation measurements in terms of approximation
error). Given an MDP M̃ constructed by aggregating states in an ω-neighborhood, and an encoder
ϕ that maps from states in the original MDPM to these clusters, the value functions for the two
MDPs are bounded as ∣∣∣V π (s)− Ṽ π (ϕ (s))

∣∣∣ ≤ 2ω + ∆̂

cr(1− γ)
. (11)

where ∆̂ := ∥Ĝπ
∼ − Ĝπ

ϕ∥∞ is the approximation error.

In essence, Equation 10 and Theorem 8 reveal that: (i) there is a positive correlation between the
reward scale cr and the upper bound of the fixed-point Gπ

∼, and (ii) a larger reward scale cr facilitates
a more accurate approximation of the value function Ṽ π(ϕ(s)) to its ground-truth value V π(s). It is
important to note that cr also impacts the value of ∆̂, as depicted in Figure 7(Right)4. Therefore, it is
crucial to first ensure the alignment with the instantiation of the bisimulation measurement, and then
choose the largest possible cr to minimize the value error. For instance, as the SimSR operator [52]
uses the cosine distance, ck = γ is predetermined. We should thus set cr ∈ [0, 1 − γ], and apply
min-max normalization to the reward function. This can make Gπ

∼ ≤ 1 and therefore be consistent
with the maximum value of 1 of the cosine distance. To achieve a tighter bound in Equation11, we
should then maximize the reward scale, setting cr to 1− γ. Figure 7 illustrates the effectiveness of
this reward scaling.

6 Experiments

6.1 Performance Comparison in D4RL Benchmark

Implementation Details We analyze our proposed method on the D4RL benchmark [15] of OpenAI
gym MuJoCo tasks [50] which includes a variety of datasets that have been commonly used in the

4Despite Figure 7(Right) depicting the approximate residual ϵ̂, we have drawn a connection between ϵπϕ and
∆π
ϕ in the Appendix, which can reflect the possible situations for ∆̂.
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Figure 2: Performance comparison on 12 D4RL tasks over 10 seeds with one standard error shaded
in the default setting. For every seed, the average return is computed every 10,000 training steps,
averaging over 10 episodes. The horizontal axis indicates the number of transitions trained on. The
vertical axis indicates the normalized average return.

0 20 40 60 80
Normalized scores

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

SimSR
SimSR+RS
SimSR+RS+EBS
MICo
MICo+EBS

Figure 3: Bootstrapping distributions for uncertainty in IQM (i.e. inter-quartile mean) measurement
on D4RL tasks (left) and visual D4RL tasks (right), following from the performance criterion in [2].

Offline RL community. To illustrate the effectiveness of our method, we implement it on top of
two bisimulation-based approaches, MICo [6] and SimSR [52]. It is worth noting that there are
two versions of SimSR depending on its use of a latent dynamics model: SimSR_basic follows the
dynamics that the environment provides, and SimSR_full constructs latent dynamics for sampling
successive latent states. We opt for SimSR_basic as our backbone, as it exhibits superior and more
stable performance in the D4RL benchmark tasks compared to SimSR_full. Additionally, to explore
the impact of bisimulation-based representation learning on the downstream performance of policy
learning, we build these approaches on top of the Offline RL method TD3BC [16]. We examine three
environments: halfcheetah, hopper, and walker2d, with four datasets per task: expert, medium-expert,
medium-replay, and medium. We first pretrain the encoder during 100k timesteps, then freeze it,
pass the raw state through the frozen encoder to obtain the representations that serve as input for the
Offline RL algorithm. Further details on the experiment setup are included in Appendix F.

Analysis Figure 2 illustrates the performance of two approaches and their variants in the D4RL
tasks. We use EBS to represent the scheme of employing the expectile-based operator, while RS
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denotes the reward scaling scheme. The latter includes both min-max reward normalization and
penalization coefficient with (1−γ) in the bisimulation operator. As discussed in Section 5.2, the role
of reward scaling varies depending on the specific instantiation of G5. We observe that without RS,
SimSR almost fails in every dataset, which aligns with our understanding of the critical role reward
scaling plays. The results also illustrate that EBS effectively enhances the downstream performance
of the policy for both SimSR and MICo. It is noteworthy that in this experiment, we set τ = 0.6 for
the expectile in SimSR and τ = 0.7 in MICo across all datasets, demonstrating the robustness of this
hyperparameter. Regarding SimSR, when RS is applied (SimSR+RS), the performance is comparable
to the TD3BC baseline, while the incorporation of the expectile-based operator (SimSR+RS+EBS)
further enhances final performance and sample efficiency. Besides, we additionally present the IQM
normalized return of all variants in Figure 3, illustrating our performance gains over the backbones.
Further, we have also constructed an ablation study to investigate the impact of different settings of τ ,
the results show that a suitable expectile τ is crucial for control tasks. We present the corresponding
results in Appendix E.

6.2 Performance Comparison in V-D4RL Benchmark
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Figure 4: Performance comparison on V-D4RL
benchmark.

Implementation details We also evaluate our
method on a visual observation setting of DM-
Control suite (DMC) tasks, V-D4RL benchmark
[35]. Similar to the previous experiment, we
add the proposed schemes on top of MICo and
SimSR. In the experiments, we notice that the
latent dynamics modeling can help to boost
performance for the visual setting, hence we
use SimSR_full as the backbone. Addition-
ally, we also notice that MICo often gives really
poor performance in the V-D4RL benchmark,
while adding latent dynamics alleviates the is-
sue. Therefore, we boost MICo with explicit
dynamics modeling for a fair comparison. To
compare the performance with the other rep-
resentation approaches, we include 4 competi-
tive representation learning approaches for Of-
fline RL, including DRIML [38], HOMER [39],
CURL [31], and Inverse model [44]. Detailed descriptions of these approaches can be found in
Appendix G.

Analysis We evaluate all aforementioned approaches by integrating the pre-trained encoder from
each into an Offline RL method DrQ+BC [35], which combines data augmentation techniques with
TD3BC. The results in Table 1 and Figure 4 illustrate the effectiveness of our proposed method, the
numerical improvements are underlined with red upward arrows. Compared to the other baselines,
while SimSR+RS+EBS does not achieve the highest score in all datasets, it achieves the best
overall performance. Besides, our modifications on MICo and SimSR consistently show significant
improvements. This indicates that our proposed method is not only applicable to raw-state inputs but
also compatible with pixel-based observations.

7 Discussion

Limitations and Future Work While τ remains constant in our D4RL experiments, optimal
performance may arise under different τ settings, contingent on the specific attributes of the dataset.
Therefore, to yield the best outcomes, one might need to set various τ to identify the most suitable
value. However, this process could consume substantial computational resources. Another area of
potential study involves evaluating the effectiveness of our approach in off-policy settings, given that
off-policy settings may also lead to similar failure cases.

5Since MICo does not necessitate a particular upper bound, RS may be harmful to its performance. Our
experiments have substantiated this observation, leading us to exclude the MICo+RS results from Figure 2.
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Table 1: Performance comparison with several other baselines on V-D4RL benchmark, averaged on 3
random seeds.

Dataset CURL DRIMLC HOMER ICM MICo→MICo+EBS SimSR→ SimSR+RS+EBS
cheetah-run-medium 392 524 475 365 177→ 449 (↗ 272) 391→ 491(↗ 100)
walker-walk-medium 452 425 439 358 450→ 447 (—) 443→ 480(↗ 37)
cheetah-run-medium-replay 271 395 306 251 335→357 (↗ 22) 374→ 462(↗ 88)
walker-walk-medium-replay 265 235 283 167 207→ 240 (↗ 33) 197→ 240(↗ 43)
cheetah-run-medium-expert 348 403 383 280 282→ 341 (↗ 59) 360→ 547(↗ 187)
walker-walk-medium-expert 729 399 781 606 586→ 635(↗ 49) 755→ 845(↗ 90)
cheetah-run-expert 200 310 218 237 308→ 331(↗ 23) 409→ 454(↗ 45)
walker-walk-expert 769 427 686 850 370→ 447 (↗ 77) 578→ 580 (—)
total 3426 3118 3571 3114 2715→ 3253 (↗ 538) 3507→ 4043 (↗ 536)

Conclusion In this work, we highlight the effectiveness of the bisimulation operator over incomplete
datasets and emphasize the crucial role of reward scaling in Offline settings. By employing the
expectile operator in bisimulation, we manage to strike a balance between behavior measurement and
greedy assignment of the measurement over datasets. We also propose a reward scaling strategy to
reduce the risk of representation collapse in specific bisimulation-based measurements. Empirical
studies show the effectiveness of our proposed modifications.
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A Notation

Table 2 summarizes our notation.

Table 2: Table of Notation.
Notation Meaning Notation Meaning

M MDP M̃ Lifted MDP (auxiliary MDP)

S state space A action space

T transition function r reward function

γ discount factor π policy of the agent

V π(s) state value function given policy π D dataset

πβ behavior policy µβ(s) state occupancy of the dataset

Fπ on-policy bisimulation operator gπ∼ π-bisimulation metric

D(·, ·) a specific distance Gπ
∼ fixed point of MICo and SimSR

ϕ state encoder Gπ
ϕ(si, sj) parameterized bisimulation measurement

∆π
ϕ bisimulation error ϵπϕ bisimulation Bellman residual

µπ(s) stationary distribution over states on policy π µπ the distribution over pairs of states

Eµπ [ϵ
π
ϕ] expected on-policy bisimulation Bellman residual Fπβ behavior bisimulation operator

τ expectile term γτ discount factor with expectile

Fπβ
τ behavior bisimulation operator with expectile ϵ̂ estimated one-step residual

Gϕ̄ bisimulation measurement parameterized by target encoder G∼(si, ai, sj , aj) a measurement on state-action space

G∗
∼(si, ai, sj , aj) maximum measurement constrained to dataset cr scale term of reward in bisimulation

ck scale term of transition in bisimulation Ṽ π(ϕ(s)) value function based on state encoder

ω distance bound of aggregating neighbor ∆̂ approximation error of bisimulation measurement

B Algorithm

We provide the algorithm in Algorithm 1, and a pytorch-like implementation build on top of SimSR
in Algorithm 2.

Algorithm 1 Proposed Implementation
1: Stage 1 Preprocessing:
2: Min-Max reward normalization: r̄ = r−rmin

rmax−rmin
3: Stage 2 Pretraining the encoder:
4: Initialize encoder parameter ϕ, expectile τ , learning rate α, discount factor γ.
5: for each gradient step do
6: Apply reward scaling when computing ϵ̂:

ϵ̂ = (1− γ)|r̄(si, ai)− r̄(sj , aj)|+ γG
πβ

ϕ̄
(s′i, s

′
j)−G

πβ

ϕ (si, sj) (12)

7: Update encoder ϕ:

ϕ← ϕ− 2αEai∼πβ(·|si),aj∼πβ(·|sj) [τ [ϵ̂]+ + (1− τ)[ϵ̂]−] (13)

8: end for
9: Stage 3 Training value function and policy network:

10: Initialize value function parameter ψ, policy network parameter θ, learning rate λV and λπ .
11: for each gradient step do
12: Sample tuple (s, a, s′, r̄) from dataset D
13: Encode the states to representation space: z = ϕ(s), z′ = ϕ(s′)
14: Update value function with (z, a, z′, r̄):

ψ = ψ − λV∇ψLV (ψ). (14)

15: Update policy network with (z, a, z′, r̄):

θ = θ − λπ∇θLπ(θ). (15)

16: end for
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Algorithm 2 SimSR+RS+EBS Pseudocode, PyTorch-like

class ReplayBuffer(object):
def __init__(self):

...
self.reward_normalization()
...

...
def reward_normalization(self):

r_max = self.reward.max()
r_min = self.reward.min()
self.reward = (self.reward - r_min) / (r_max - r_min)

def compute_distance(features_a, features_b):
similarity_matrix = torch.matmul(features_a, features_b.T)
dis = 1-similarity_matrix
return dis

def expectile_loss(diff, expectile):
weight = torch.where(diff > 0, expectile, (1 - expectile))
return weight * (diff ** 2)

# encoder: mlp, encoder network, the output is l2-normalized
# target_encoder: mlp, same as encoder, updated by EMA
# discount: discount factor $\gamma$
# slope: expectile $\tau$
def compute_ebs_loss(encoder, target_encoder, replay_buffer, batch_size, discount, slope):

observation, action, reward, discount, next_observation = replay_buffer.sample(batch_size) # sample a
batch of tuples from replay buffer

latent_state = encoder(observation)
latent_next_state = target_encoder(next_observation)
r_diff = (1 - discount) * torch.abs(reward.T - reward)
next_diff = compute_distance(latent_next_state, latent_next_state)
z_diff = compute_distance(latent_state, latent_state)
bisimilarity = r_diff + discount * next_diff

encoder_loss = expectile_loss(bisimilarity.detach() - z_diff, slope)
encoder_loss = encoder_loss.mean()
return encoder_loss

C Technical backgrounds

C.1 Bisimulation metric

Bisimulation measures equivalence relations on MDPs with a recursive form: two states are deemed
equivalent if they share the equivalent distributions over the next equivalent states and they have
the same immediate reward [30, 20]. However, since bisimulation considers equivalence for all
actions, including bad ones, it commonly results in “pessimistic” outcomes. Instead, [5] developed
π-bisimulation which removes the requirement of considering each action and only needs to consider
the actions induced by a policy π.
Definition 9. [5] Given an MDP M, an equivalence relation Eπ ⊆ S × S is a π-bisimulation
relation if whenever (s,u) ∈ Eπ the following properties hold:

1. r(s, π) = r(u, π)

2. ∀C ∈ SEπ , T (C|s, π) = T (C|u, π)

where SEπ is the state space S partitioned into equivalence classes defined by Eπ. Two states
s, u ∈ S are π-bisimilar if there exists a π-bisimulation relation Eπ such that (s, u) ∈ Eπ .

However, π-bisimulation is still too stringent to be applied at scale as π-bisimulation relation
emphasizes the equivalence is a binary property: either two states are equivalent or not, thus becoming
too sensitive to perturbations in the numerical values of the model parameters. The problem becomes
even more prominent when deep frameworks are applied.

Thereafter, they proposed a π-bisimulation metric to leverage the absolute value between the immedi-
ate rewards w.r.t. two states and the 1-Wasserstein distance (W1) between the transition distributions
conditioned on the two states and the policy π to formulate such measurement:
Theorem 10. Define Fπ : M→M by Fπ(d)(s, u) = |Rπ

s −Rπ
u|+ γW1(d)(T

π
s , T

π
u ), then Fπ has

a least fixed point dπ∼, and dπ∼ is a π-bisimulation metric.
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Although the Wasserstein distance is a powerful metric to calculate the distance between two
probability distributions, it requires to enumerate all states which is impossible in RL tasks of
continuous state space. Various extensions have been proposed [54, 6, 52] to reduce the computational
complexity. DBC [54] extend bisimulation metrics to learn state representation, via minimizing the
ℓ1-norm distance of representations and the bisimulation metrics, meanwhile modeling the latent
dynamics as Gaussian and utilizing W2 distance to compute it, which can be formulated as a closed-
form result. However, DBC has several issues like loss function mismatch and specific requirements
for Gaussian modeling, which limits its application and performance.

C.2 MICo distance

MICo distance [6], tackles the above issue by restricting the coupling class to the independent
coupling to avoid intractable Wasserstein distance computation. The MICo operator and its associated
theoretical guarantee are given as:
Theorem 11. [6] Given a policy π, MICo distance Fπ is defined as:

FπU(si, sj) = |rπsi − rπsj |+ γEs′i∼Tπ
s ,s′j∼Tπ

sj
[U(s′i, s

′
j)] (16)

has a fixed point Uπ .

By considering the Wasserstein distance in the definition of bisimulation metrics can be upper-
bounded by taking a restricted class of couplings of the transition distributions, MICo restricts the
coupling class precisely to the singleton containing the independent coupling, utilizing the Indepen-
dent Couple sampling strategy to bypass the computation of the Wasserstein distance. However,
MICo distance U requires to be a Łukaszyk-Karmowski metric, which does not satisfy the identity
of indiscernibles. As a result, the approximated distance on the learned embedding space based on
the MICo distance, which involves a Łukaszyk-Karmowski metric to measure the distance between
dynamics, may suffer from the violation issue of the identity of indiscernibles.

C.3 SimSR operator

To avoid the potential representation collapse, SimSR [52] develop a more concise update operator to
learn state representation more effectively. Coupling with cosine distance, SimSR defines its operator
as:
Theorem 12. [52] Given a policy π, Simple State Representation (SimSR) is updated as:

Fπcosϕ(si, sj) = |rπsi − rπsj |+ γEs′i∼Tπ
si

,s′j∼Tπ
sj
[cosϕ(s′i, s

′
j)] (17)

has the same fixed point as MICo.

Further, considering the latent dynamics can be beneficial to representation learning, they additionally
develop a form of operator including dynamics modeling:

Theorem 13. [52] Given a policy π, and a latent dynamics model T̂ , SimSR is updated as

Fπcosϕ(si, sj) =|rπsi − rπsj |+ γEz′
i∼T̂π

ϕ(si)
,z′

j∼T̂π
ϕ(sj)

[cos(z′i, z
′
j)]. (18)

If latent dynamics are specified, Fπ has a fixed point.

When considering MICo distance and the basic version of SimSR, we can notice that they have a
similar recursive iteration formulation. And therefore both works can be generalized under:

FπGπ(si, sj) = |rπsi − rπsj |+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[Gπ(s′i, s
′
j)], (19)

while the instantiation of G varies in these two approaches.

C.4 Lifted MDP

The connection between bisimulation-based operators and lifted MDP can be referred to [6]. We
provide the corresponding Lemma here for reference.
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Lemma 2. (Lifted MDP) The bisimulation-based update operator Fπ for M, is the Bellman
evaluation operator for a specific lifted MDP.

Proof. Given the MDP specified by the tuple (S,A, T,R), we construct a lifted MDP (S̃, Ã, T̃ , R̃),
by taking the state space to be S̃ = S2, the action space to be Ã = A2, the transition dynamics to
be given by T̃ ã

s̃ (s̃
′) = T̃

(ai,aj)

(si,sj)
((s′i, s

′
j)) = T ai

si (s
′
i)T

aj
sj (s

′
j) for all (si, sj), (s′i, s

′
j) ∈ S2, ai, aj ∈ A,

and the action-independent rewards to be R̃s̃ = R̃(si,sj) = |rπsi − rπsj | for all si, sj ∈ S. The

Bellman evaluation operator F̃ π̃ for this lifted MDP at discount rate γ under the policy π̃(ã|s̃) =
π̃(ai, aj |si, sj) = π(ai|si)π(aj |sj) is given by (for all Gπ ∈ RS×S and (si, sj) ∈ S × S):

(F̃ π̃G̃π)(s̃) = R̃s̃ + γ
∑
s̃′∈S̃

T̃ ã
s̃ (s̃

′)π̃(ã|s̃)G̃π(s̃′)

(F̃ π̃Gπ)(si, sj) = R̃(si,sj)+γ
∑

(s′i,s
′
j)∈S2̃

T
(ai,aj)

(si,sj)
((s′i, s

′
j))π̃(ai, aj |si, sj)Gπ(s′i, s

′
j)

= |rπsi − rπsj |+ γ
∑

(s′i,s
′
j)∈S2

Tπ
si(s

′
i)T

π
sj (s

′
j)G

π(s′i, s
′
j) = (Fπ

MGπ)(si, sj) .

C.5 Expectile Regression
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Figure 5: The asymmetric squared loss used for
expectile regression. Larger τ gives more weight
to positive differences.

Expectile regression, a method in statistics, is
an extension of quantile regression that provides
a more detailed analysis of a distribution’s tail.
This technique aims to estimate the expectiles
of a conditional distribution, which are like per-
centiles but with respect to the mean, not the
median. In essence, expectile regression can
help capture the structure of data variability and
analyze extreme observations in a more precise
manner than quantile regression. The τ ∈ (0, 1)
expectile of some random variable X is defined
as a solution to the asymmetric least squares
problem:

argmin
mτ

Ex∼X [Lτ
2 (x−mτ )] , (20)

where Lτ
2(u) = |τ − 1(u < 0)|u2. That is, for τ > 0.5, this asymmetric loss function downweights

the contributions of x values smaller than mτ while giving more weights to larger values. Figure 5
shows the illustration of this asymmetric loss. More detailed descriptions can be found in [28, 36].

D Proof

D.1 Connection between bisimulation error and bisimulation Bellman residual

In this section, we will revise some definitions a bit for obtaining the equivalence between bisimulation
error and bisimulation Bellman residual. We first define bisimulation error ∆π

ϕ that measure the
distance of the approximation Gπ

ϕ to the fixed point Gπ
∼ as:

∆π
ϕ := Gπ

ϕ(si, sj)−Gπ
∼(si, sj). (21)

And define bisimulation Bellman residual ϵπϕ as:

ϵπϕ := Gπ
ϕ(si, sj)−FπGπ

ϕ(si, sj). (22)

Notably, this is slightly different from the notation in Section 4 given the fact that we do not apply
absolute value here. Then, we can have the following theorems.
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Theorem 14. (The bisimulation Bellman residual can be defined as a function of the bisimulation
error)

ϵπϕ(si, sj) = ∆π
ϕ(si, sj)− γEs′i∼Tπ

si

s′j∼Tπ
sj

[∆π
ϕ(s

′
i, s

′
j)], (23)

Proof. This follows directly from the bisimulation update operator:

ϵπϕ(si, sj) = Gπ
ϕ(si, sj)−FπGπ

ϕ(si, sj)

= Gπ
∼(si, sj) + ∆π

ϕ(si, sj)−Fπ(Gπ
∼(si, sj) + ∆π

ϕ(si, sj))

= ∆π
ϕ(si, sj)− γEs′i∼Tπ

si

s′j∼Tπ
sj

[∆π
ϕ(s

′
i, s

′
j)]

(24)

Theorem 15. (The bisimulation error can be defined as a function of the bisimulation Bellman
residual). For any state pair (si, sj) ∈ S × S , the approximation error ∆π

ϕ(si, sj) can be defined as
a function of the Bellman bisimulation error ϵϕ

∆π
ϕ(si, sj) =

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]
. (25)

Proof. Our proof follows similar steps to the proof of Lemma 6.1 in [26] and Theorem 1 in [17].
First by definition:

∆π
ϕ(si, sj) := Gπ

ϕ(si, sj)−Gπ
∼(si, sj)

⇒ Gπ
∼(si, sj) = Gπ

ϕ(si, sj)−∆π
ϕ(si, sj)

(26)

Then we can decompose the error:

∆π
ϕ(si, sj) = Gπ

ϕ(si, sj)−Gπ
∼(si, sj)

= Gπ
ϕ(si, sj)−

|rπsi − rπsj |+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[Gπ
∼(s

′
i, s

′
i)]


= Gπ

ϕ(si, sj)−

|rπsi − rπsj |+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[Gπ
ϕ(s

′
i, s

′
j)−∆π

ϕ(s
′
i, s

′
j)]


= Gπ

ϕ(si, sj)−

|rπsi − rπsj |+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[Gπ
ϕ(s

′
i, s

′
j)]

+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[
∆π

ϕ(s
′
i, s

′
j)
]

= ϵπϕ(si, sj) + γEs′i∼Tπ
si

s′j∼Tπ
sj

[
∆π

ϕ(s
′
i, s

′
j)
]

(27)
By considering the operator G as the Bellman evaluation operator for the lifted MDP (See Section C.4),
we can rewrite the formula as:

∆π̃
ϕ(x̃) = ϵπ̃ϕ(x̃) + γEx̃′∼T π̃

x̃

[
∆π̃

ϕ(x̃
′)
]
. (28)

Then we can treat ∆π̃
ϕ(x̃) as a value function and ϵπ̃ϕ(x̃) as reward, we can see that:

∆π̃
ϕ(x̃) =

1

1− γ
Ex̃′∼T π̃

x̃

[
ϵπ̃ϕ(x̃

′)
]
. (29)

Then we can obtain

∆π
ϕ(si, sj) =

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]
. (30)
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D.2 Thoerem 3

Theorem 3. (Bisimulation error upper-bound). Let µπ(s) denote the stationary distribution over
states, let µπ(·, ·) denote the joint distribution over synchronized pairs of states (si, sj) sampled
independently from µπ(·). For any state pair (si, sj) ∈ S × S , the bisimulation error ∆π

ϕ(si, sj) can
be upper-bounded by a sum of expected bisimulation Bellman residuals ϵπϕ:

∆π
ϕ(si, sj) ≤

1

1− γ
E(si,sj)∼µπ

[
ϵπϕ(si, sj)

]
. (31)

Proof. We start from Equation 25 in Section D.1.

∆π
ϕ(si, sj) =

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]

⇒ |∆π
ϕ(si, sj)| =

1

1− γ

∣∣∣E(s′i,s
′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]∣∣∣

≤ 1

1− γ
E(s′i,s

′
j)∼µπ

[∣∣ϵπϕ(s′i, s′j)∣∣] .
(32)

Then when we define bisimulation error ∆π
ϕ(si, sj) := |∆π

ϕ(si, sj)| and bisimulation Bellman
residual ϵπϕ(s

′
i, s

′
j) := |ϵπϕ(s′i, s′j)|, we have

∆π
ϕ(si, sj) ≤

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]
. (33)

D.3 Proposition 4

Proposition 4. (The expected bisimulation residual is not sufficient over incomplete datasets). If
there exists states s′i and s′j not contained in dataset D, where the occupancy µπ(s

′
i|si, ai) > 0 and

µπ(s
′
j |sj , aj) > 0 for some si ∈ D, sj ∈ D, then there exists a bisimulation measurement and C > 0

such that

• For all (ŝi, ŝj) ∈ D, the bisimulation Bellman residual ϵπϕ(ŝi, ŝj) = 0.

• There exists (si, sj) ∈ D, such that the bisimulation error ∆π
ϕ(si, sj) = C.

Proof. This is a direct consequence of Theorem 15. Let D′ contain the set of state pairs (s′i, s
′
j) not

contained in the dataset D, where the next-state pair occupancy µπ(s
′
i, s

′
j |si, ai, sj , aj) > 0. Let

Dunique be the set of unique state pairs in D. It follows that

∆π
ϕ(si, sj) =

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]

=
1

1− γ

∑
(s′i,s

′
j)∼Dunique

µπ((s
′
i, s

′
j)|si, ai, sj , aj)ϵπϕ(s′i, s′j)+

1

1− γ

∑
(s′i,s

′
j)∼D′

µπ((s
′
i, s

′
j)|si, ai, sj , aj)ϵπϕ(s′i, s′j)

(34)

Recall that ϵπϕ(si, sj) = ∆π
ϕ(si, sj) − γEs′i∼Tπ

si

s′j∼Tπ
sj

[∆π
ϕ(s

′
i, s

′
j)], and there exists at least one

G(si, sj), such that (si, sj) ∈ D′. Since the sets D and D′ are distinct, it follows
that there exists a measurement G such that ϵπϕ(si, sj) = 0 for all (si, sj) ∈ D, but
1

1−γ

∑
(s′i,s

′
j)∼D′ µπ(s

′
i, s

′
j |si, ai, sj , aj)ϵπϕ(s′i, s′j) = C.
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D.4 Lemma 5

Lemma 5. For any τ ∈ [0, 1), Fπ
τ is a γτ -contraction, where γτ = 1− 2α(1− γ)min {τ, 1− τ}.

Proof. Note that Fπ
1/2 is the standard bisimulation operator for π, of which the fixed point is Gπ

∼. To
keep the notation succinct, we will replace Gπ with G. For any G1, G2,

Fπ
1/2G1(si, sj)−Fπ

1/2G2(si, sj)

= (G1(si, sj) + αEπ[δi])− (G2(si, sj) + αEπ[δj ])

= (1− α)(G1(si, sj)−G2(si, sj)) + αEπ[(1− γ)|rπsi − rπsj |+ γG1(s
′
i, s

′
j)

− (1− γ)|rπsi − rπsj | − γG2(s
′
i, s

′
j)]

= (1− α)(G1(si, sj)−G2(si, sj)) + αEπ[γG1(s
′
i, s

′
j)− γG2(s

′
i, s

′
j)]

≤ (1− α)∥G1 −G2∥∞ + αγ∥G1 −G2∥∞
= (1− α(1− γ))∥G1 −G2∥∞.

(35)

When τ ̸= 1
2 , we introduce two more operators to simplify the analysis:

(Fπ
+G1)(si, sj) = G(si, sj) + Eπ[δ]+

(Fπ
−G2)(si, sj) = G(si, sj) + Eπ[δ]−

(36)

Now we show that both operators meet the Banach-fixed point theorem (e.g. ∥Fπ
+G1 −Fπ

+G2∥∞ ≤
∥G1 −G2∥∞). For any G1, G2:

(Fπ
+G1)(si, sj)− (Fπ

+G2)(si, sj)

= G1 −G2 + Eπ[[δi]+ − [δj ]+]

= Eπ[G1 + [δi]+ − (G2 + [δj ]+)]

(37)

The relationship between G1 + [δi]+ and G2 + [δj ]+ exists in four cases:

• δi ≥ 0, δj ≥ 0, then

G1 + [δi]+ − (G2 + [δj ]+) = γ(G1(s
′
i, s

′
j)−G2(s

′
i, s

′
j)). (38)

• δi < 0, δj < 0, then

G1 + [δi]+ − (G2 + [δj ]+) = G1(si, sj)−G2(si, sj). (39)

• δi ≥ 0, δj < 0, then

G1 + [δi]+ − (G2 + [δj ]+)

= (1− γ)|rπsi − rπsj |+ γG1(s
′
i, s

′
j)−G2(si, sj)

< (1− γ)|rπsi − rπsj |+ γG1(s
′
i, s

′
j)− ((1− γ)|rπsi − rπsj |+ γG2(s

′
i, s

′
j))

= γ(G1(s
′
i, s

′
j)−G2(s

′
i, s

′
j)),

(40)

where the inequality comes from G2(si, sj) > (1− γ)|rπsi − rπsj |+ γG2(s
′
i, s

′
j).

• δi < 0, δj ≥ 0, then

G1 + [δi]+ − (G2 + [δj ]+)

= G1(si, sj)− ((1− γ)|rπsi − rπsj |+G2(s
′
i, s

′
j))

≤ G1(si, sj)−G2(si, sj),

(41)

where the inequality comes from G2(si, sj) ≤ (1− γ)|rπsi − rπsj |+ γG2(s
′
i, s

′
j).
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As a result, we have (Fπ
+G1)(si, sj)− (Fπ

+G2)(si, sj) ≤ ∥G1 −G2∥∞. Combine Fπ
+ and Fπ

−, we
can rewrite Fπ

τ as:
Fπ

τ G(si, sj) = G(si, sj) + 2αEπ[τ [δ]+ + (1− τ)[δ]−]

= (1− 2α)G(si, sj) + 2ατ(G(si, sj) + Eπ[[δ]+] + 2α(1− τ)(G(si, sj) + Eπ[[δ]−])

= (1− 2α)G(si, sj) + 2ατ(Fπ
+G1)(si, sj) + 2α(1− τ)(Fπ

−G1)(si, sj).
(42)

What’s more
Fπ

1
2
G(si, sj) = G(si, sj) + αEπ[δ]

= G(si, sj) + α((Fπ
+G1)(si, sj) + (Fπ

−G1)(si, sj)− 2αG(si, sj))

= (1− 2α)G(si, sj) + α((Fπ
+G1)(si, sj) + (Fπ

−G1)(si, sj)).

(43)

When τ > 1
2 , for any G1 and G2:

(Fπ
τ G1)(si, sj)− (Fπ

τ G2)(si, sj)

= (1− 2α)(G1(si, sj)−G2(si, sj)) + 2ατ((Fπ
+G1)(si, sj)− (Fπ

+G2)(si, sj))

+ 2α(1− τ)((Fπ
−G1)(si, sj)− (Fπ

−G2)(si, sj))

= (1− 2α− 2(1− 2α)(1− τ))(G1(si, sj)−G2(si, sj))2(1− τ)((Fπ
1
2
G1)(si, sj)− (Fπ

1
2
G2)(si, sj))

− 2α(1− 2τ)((Fπ
+G1)(si, sj)− (Fπ

+G2)(si, sj))

≤ (1− 2α− 2(1− 2α)(1− τ))∥G1(si, sj)−G2(si, sj)∥∞
+ 2(1− τ)(1− α(1− γ))∥G1(si, sj)−G2(si, sj)∥∞
− 2α(1− 2τ)∥G1(si, sj)−G2(si, sj)∥∞

= (1− 2α(1− τ)(1− γ))∥G1(si, sj)−G2(si, sj)∥∞
(44)

When τ < 1
2 , for any G1 and G2:

(Fπ
τ G1)(si, sj)− (Fπ

τ G2)(si, sj)

= (1− 2α)(G1(si, sj)−G2(si, sj)) + 2ατ((Fπ
+G1)(si, sj)− (Fπ

+G2)(si, sj))

+ 2α(1− τ)((Fπ
−G1)(si, sj)− (Fπ

−G2)(si, sj))

= (1− 2α− 2τ(1− 2α))(G1(si, sj)−G2(si, sj)) + 2τ((Fπ
1
2
G1)(si, sj)− (Fπ

1
2
G2)(si, sj))

+ 2α(1− 2τ)((Fπ
−G1)(si, sj)− (Fπ

−G2)(si, sj))

≤ (1− 2α− 2τ(1− 2α))∥G1(si, sj)−G2(si, sj)∥∞
+ 2τ(1− α(1− γ))∥G1(si, sj)−G2(si, sj)∥∞
+ 2α(1− 2τ)∥G1(si, sj)−G2(si, sj)∥∞

= (1− 2ατ(1− γ))∥G1(si, sj)−G2(si, sj)∥∞.
(45)

D.5 Lemma 6

Lemma 6. For any τ, τ ′ ∈ [0, 1) with τ ′ ≥ τ , and for all si, sj ∈ S and any α, we have Gτ ′ ≥ Gτ .

Proof. We denote Gτ ′ is the fixed point of applying the operator Fπ
τ ′ , and Gτ is the fixed point of

applying the operator Fτ . Based on Equation 6, we have:
Fπ

τ ′G(si, sj)−Fπ
τ G(si, sj)

= (1− 2α)G(si, sj) + 2ατ ′Fπ
+G(si, sj) + 2α(1− τ ′)Fπ

−G(si, sj)

− ((1− 2α)G(si, sj) + 2ατFπ
+G(si, sj) + 2α(1− τ)Fπ

−G(si, sj))

= 2α(τ ′ − τ)(Fπ
+G(si, sj)−Fπ

−G(si, sj))

= 2α(τ ′ − τ)Eπ[[δ]+ − [δ]−] ≥ 0.

(46)

Therefore Gτ ′ > Gτ .
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D.6 Theorem 7

Theorem 7. In deterministic MDP and fixed finite dataset, we have:

lim
τ→1

Gτ (si, sj) = max
ai∈A,aj∈A

s.t. πβ(ai|si)>0,πβ(aj |sj)>0

G∗
∼((si, ai), (sj , aj)). (47)

where G∗
∼((si, ai), (sj , aj)) is a fixed-point measurement constrained to the dataset and defined on

state-action space S ×A as

G∗
∼((si, ai), (sj , aj)) = |r(si, ai)−r(sj , aj)|+γE

s′i∼T
πβ
si

s′j∼T
πβ
sj

 max
a′
i∈A,a′

j∈A
s.t. πβ(a

′
i|s

′
i)>0,πβ(a

′
j |s

′
j)>0

G∗
∼((s

′
i, a

′
i), (s

′
j , a

′
j))

 .

(48)

Proof. First, we can easily proof that G∗
∼(si, ai, sj , aj) is a fixed point. Define the corresponding

operator of G∗
∼ is F ∗, we can know that F ∗ is a contraction. Then, we have

Corollary 16. For any τ , si, sj ∈ S we have

Gτ (si, sj) ≤ max
ai∈A,aj∈A

s.t. πβ(ai|si)>0,πβ(aj |sj)>0

G∗
∼((si, ai), (sj , aj)) (49)

Proof. The proof follows from the observation that convex combination is smaller than maximum.

Besides, we also have

Lemma 17. Let X be a real-valued random variable with a bounded support and supremum of the
support is x∗. Then,

lim
τ→1

mτ = x∗

Proof. Same as the Lemma 1 in [28]. One can show that expectiles of a random variable have the
same supremum x∗. Moreover, for all τ1 and τ2 such that τ1 < τ2, we get mτ1 ≤ mτ2 . Therefore,
the limit follows from the properties of bounded monotonically non-decreasing functions.

Combining Corollary 16 and Lemma 17, we can obtain the above.

D.7 Theorem 8

Theorem 8. (Value bound based on on-policy bisimulation measurements in terms of encoder error).
Given an MDP M̃ constructed by aggregating states in an ω-neighborhood, and an encoder ϕ that
maps from states in the original MDPM to these clusters, the value functions for the two MDPs are
bounded as ∣∣∣V π (si)− Ṽ π (ϕ (si))

∣∣∣ ≤ 2ω + ∆̂

cr(1− γ)
. (50)

where ∆̂ := ∥Ĝπ
∼ − Ĝπ

ϕ∥∞ is the approximation error.

Proof. Let the reward function be bounded as R ∈ [0, 1], ϕ : S → S̃, and ϕ(si) = ϕ(sj) ⇒
Ĝπ

ϕ(si, sj) = |ϕ(si)− ϕ(sj)| ≤ 2ω, we can conduct an aggregat MDP M̃ = (S̃,A, T̃ , R̃). Let ξ be
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a measure on S. Following Lemma 8 in [27], we have that:∣∣∣V π (si)− Ṽ π (ϕ (si))
∣∣∣ ≤ c−1

r

ξ(ϕ(s))

∫
z∈ϕ(s)

cR |rπ(s)− rπ(z)|

+ (1− γ)

∣∣∣∣∣∣
∫

s′∈S

(Tπ(s′|s)− Tπ(s′|z)) crγ

1− γ
V π(s′)ds′

∣∣∣∣∣∣ dξ(z) + γ∥V π − Ṽ π∥∞

≤ c−1
r

ξ(ϕ(s))

∫
z∈ϕ(s)

Gπ
∼(s, z)dξ(z) + γ∥V π − Ṽ π∥∞

(51)
Thus, taking the supremum on the LHS, we have:

(1− γ)
∣∣∣V π (si)− Ṽ π (ϕ (si))

∣∣∣ ≤ c−1
r

ξ(ϕ(s))

∫
z∈ϕ(s)

Gπ
∼(s, z)dξ(z)

≤ c−1
r

ξ(ϕ(s))

∫
z∈ϕ(s)

Ĝπ
ϕ(s, z) + ∥Gπ

∼ − Ĝπ
ϕ∥∞dξ(z)

=
c−1
r

ξ(ϕ(s))

∫
z∈ϕ(s)

(2ω + ∆̂)dξ(z)

= c−1
r (2ω + ∆̂).

(52)

Therefore, ∣∣∣V π (si)− Ṽ π (ϕ (si))
∣∣∣ ≤ 2ω + ∆̂

cr(1− γ)
, (53)

E Understanding of Theorem 7

Theorem 7. In deterministic MDP and fixed finite dataset, we have:

lim
τ→1

Gτ (si, sj) = max
ai∈A,aj∈A

s.t. πβ(ai|si)>0,πβ(aj |sj)>0

G∗
∼((si, ai), (sj , aj)). (54)

where G∗
∼((si, ai), (sj , aj)) is a fixed-point measurement constrained to the dataset and defined on

the state-action space S ×A as

G∗
∼((si, ai), (sj , aj)) = |r(si, ai)− r(sj , aj)|+ γE

s′i∼T
πβ
si

s′j∼T
πβ
sj

 max
a′
i∈A,a′

j∈A
s.t. πβ(a

′
i|s

′
i)>0,πβ(a

′
j |s

′
j)>0

G∗
∼((s

′
i, a

′
i), (s

′
j , a

′
j))

 .

(55)

Given the MDP specified by the tuple (S,A, T,R), we construct a lifted MDP (S̃, Ã, T̃ , R̃), by
taking the state space to be S̃ = S2, the action space to be Ã = A2, the transition dynamics to be
given by T̃ ã

s̃ (s̃
′) = T̃

(ai,aj)

(si,sj)
((s′i, s

′
j)) = T ai

si (s
′
i)T

aj
sj (s

′
j) for all (si, sj), (s′i, s

′
j) ∈ S2, ai, aj ∈ A,

and the action-independent rewards to be R̃s̃ = R̃(si,sj) = |rπsi − rπsj | for all si, sj ∈ S. The

Bellman evaluation operator F̃ π̃ for this lifted MDP at discount rate γ under the policy π̃(ã|s̃) =
π̃(ai, aj |si, sj) = π(ai|si)π(aj |sj) is given by (for all Gπ ∈ RS×S and (si, sj) ∈ S × S):

(F̃ π̃Q∗)(s̃, ã) = R̃s̃,ã+γ
∑
s̃∈S̃

T̃ ã
s̃ (s̃

′)max
ã∈Ã

Q∗(s̃′, ã′). (56)
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Though similar, Equation 55 has more constraints as it requires the possibility of πβ(a
′
i|s′i) and

πβ(a
′
j |s′j) are larger than zero in the dataset. As such, we may also change the Equation 56 to:

(F̃ π̃Q∗)(s̃, ã) = R̃s̃,ã+γ
∑
s̃∈S̃

T̃ ã
s̃ (s̃

′) max
ã′∈A

s.t. π̃β(ã
′|s̃′)>0

Q∗(s̃′, ã′).
(57)

This is, indeed, equivalent to the in-sample-style Q function in [28]. Intuitively, G∗
∼((si, ai), (sj , aj))

can be interpreted as the optimal state-action value function Q∗(s̃, ã) in a lifted MDP M̃ . Then
Gπ

∼((si, ai), (sj , aj)) is the state-action value function Qπ(s̃, ã) that associated with policy π, and
G∼(si, sj) as a state value function V (s̃). And therefore, we can connect our expectile-based
bisimulation operator to the lifted MDP, where we can use the conventional analytics tools in RL to
analyze bisimulation operators.

F Additional Experiments

F.1 Ablation Study - Value of Expectile
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Figure 6: Performance comparison on 12 D4RL tasks over 10 seeds with one standard error shaded
in the default setting.

Here we present the ablation study of setting different expectile τ ∈ {0.3, 0.4, · · · , 0.7} in Figure 6
to investigate the effect of the critical hyper-parameter in EBS. The experimental results demonstrate
that the final performance gradually improves with a larger τ . Notably, the most superior performance
is achieved when τ equals 0.6. However, when τ further increases to 0.7, the agent’s performance
suffers a sharp decline. We hypothesize that this could be due to the value function possibly exploding
when τ is set to larger values, subsequently leading to poorer performance outcomes. This is as
expected since the over-large τ leads to the overestimation error caused by neural networks. The
experimental results demonstrate that we can balance a trade-off between minimizing the expected
bisimulation residual and evaluating “optimal” measurement solely on the dataset by choosing a
suitable τ .

F.2 Ablation Study - Effectiveness of Reward Scaling

In the experiment, we set γ as 0.99 and cr will be 1− γ = 0.01 accordingly in RS. In this ablation
experiment, we considered different combinations of min-max normalization/standardization and
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Figure 7: Ablation studies on 6 D4RL tasks over 3 seeds with one standard error shaded.
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Figure 8: Ablation studies on 6 D4RL tasks over 3 seeds on MICo.

various value of cr (including 1, 0.1, 0.01, and 0.001). The results in Figure 7 are consistent with our
analysis in Section 5.2. The last two show better gains. As RS has tighter bounds, it excels in most
datasets, validating our theory.

F.3 Case Study on MICo

As we illustrate in Section 5.2 and Section 6, Results in Figure 8 show that an unsuitable reward
scaling dramatically decreases the performance while applying EBS will increase the performance in
many datasets.

G Additional Related Works

Here we present a brief introduction of all the baselines we used in the experiments:

TD3BC [16] add a behavior cloning term to regularize the policy of the TD3 [18] algorithm,
achieves a state-of-the-art performance in Offline settings.

DrQ+BC [35] combining data augmentation techniques with the TD3+BC method, which applies
TD3 in the offline setting with a regularizing behavioral-cloning term to the policy loss. The policy
objective is: π = argmax

π
E(s,a)∼D

[
λQ(s, π(s))− (π(s)− a)2

]
DRIML [38] and HOMER [39] (Time Contrastive methods) learn representations which can
discriminate between adjacent observations in a rollout and pairs of random observations.
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CURL [31] (Augmentation Contrastive method) learns a representation that is invariant to a class
of data augmentations while being different across random example pairs.

Inverse Model [44] (One-Step Inverse Models) predict the action taken conditioned on the previous
and resulting observations.

H Additional Discussion

H.1 The severity of the proposed problem

How do bisimulation-based objectives perform in other (online or goal-conditioned) settings?
Various methods, such as DBC [54], MICo [6], SimSR [52], and PSE [1], have consistently demon-
strated positive results in online settings, regardless of the presence of distractors. This evidence
supports the efficacy of bisimulation techniques in online settings. Additionally, GCB [23] ex-
celled in goal-conditioned environments, ExTra [46] showcased the power of bisimulation metric
in exploration, and HiP-BMDP [55] successfully incorporated bisimulation into multi-task settings,
highlighting its superior performance, all mostly in online settings too, with little work in offline RL.
These studies suggest that when tailored to specific environments, bisimulation methods can excel.
Despite these works, bisimulation methods have had little success when extended to offline settings,
and our motivation is to tackle this problem.

While bisimulation objectives used in the offline setting are directly affected by missing tran-
sitions, many other representation objectives may not. When referring to state representation
learning, using bisimulation in offline settings presents challenges due to the two issues we outlined:
the presence of missing transitions and inappropriate reward scales. Concurrently, there exists other
representation objectives, like CURL [31], ATC [49], which focus on pairs of states without the
explicit necessity for transition information. As a consequence, they do not explicitly require account-
ing for missing transitions or reward scaling in their objectives. This absence of direct influence sets
them apart from bisimulation-based methods. Yet, we consider that bisimulation-based techniques
have a theoretical edge and have proven effective in online settings, Thus, we deem that our work is
impactful in that it delivers a proof that bisimulation can be successful offline.

Compounded effect for bisimulation principle in offline settings. In online scenarios, state
representations and policies are updated concurrently, while in offline settings, state representation
is pre-trained before policy learning, with the two phases completely decoupled. Errors during
representation learning in offline settings can have a compounded effect on policy learning, leading to
significant issues. This is the reason that missing transitions is particularly harmful to the bisimulation
principle in offline settings. Although reward scales affect bisimulation universally, as offline settings
require pretraining state embedding, any major discrepancy between this fixed representation and the
policy parameter space can further undermine the learning process. Hence, the proposed solutions
hold promise for enhancing bisimulation’s efficiency in offline settings.

H.2 Suitability of different techniques

EBS We provide EBS as a general method, which is applicable to all bisimulation-based objectives,
given that they all adhere to the foundational principle of bisimulation. This principle revolves around
the contraction mapping properties similar to the value iteration. Whenever there’s an intent to employ
bisimulation in offline scenarios, with an aim to reduce the Bellman residual for approximating the
fixed point, the outlined challenge emerges. Consequently, EBS holds the potential to enhance any
bisimulation-based method, regardless of the distance they use.

RS In essence, the given theoretical analysis is applicable across all bisimulation-based objectives.
However, the precise settings for hinge on the foundational distance. For instance, SimSR uses the
cosine distance which has definitive bounds. As a result, we need to infer the ideal setting from
Equation 10 and Theorem 8. In contrast, the MICo-like distance and DBC employ L-K distance and
L1 distance respectively, having bounds ranging from . Consequently, they can adapt to more value
settings. We propose our approach as a general method/principle to employ a novel bisimulation
metric or distance, especially in the context of offline RL.
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Table 3: The exact values of bisimulation error and bisimulation bellman residual
Transition number 100 500 1000 2000
Bisimulation error 0.2792 0.2891 0.2880 0.2915
Bisimulation Bellman residual 0.003 0.0009 0.0032 0.0016

I Empirical estimation of bisimulation error

In this section, we would like to conduct a toy experiment to empirically show that the bisimulation
error could possibly be larger than bisimulation bellman residual in fixed/finite datasets.

Data collection To collect the evaluation dataset, we utilize TD3 [18] (a deterministic algorithm)
instead of SAC [22] to avoid stochasticity. Firstly, we train a TD3 agent using the rlkit [45] codebase
until convergence. Then, we collect 10k transitions and select specific transitions (such as 10, 100,
1000, 5000...) from these 10k transitions with uniform probability to form the evaluation dataset
D. For determining termination, we follow the settings described in [18] and [22], considering a
state terminal only if termination occurs before 1000 timesteps. If termination occurs before 1000
timesteps, we set γ = 0; otherwise, we set γ = 0.99.

Computation Given an evaluation dataset D, the bisimulation Bellman residual ϵϕ is computed
by 1

|D|
∑

((si,ai),(sj ,aj))∼D (Gϕ (si, sj)− (| r (si, ai)− r (sj , aj) + γGϕ (si, sj)))
2, and the bisim-

ulation error ∆ϕ is computed by 1
D
∑

(si,sj)∼D (Gϕ (si, sj)−G∼ (si, sj))
2, where G∼ denotes the

corresponding fixed point measurement. Since directly computing G∼ is challenging, we compute
|V π (si)− V π (sj)| instead, as they should be equal when considering the measurement is the fixed
point and the transition is deterministic. To compute V π(si), we reset the MuJoCo environment to
the specific state si and ran the policy for 1000 timesteps. Since the environment and policy are
deterministic, a single trajectory is sufficient to estimate the true value.

The results are presented in Table 3, which indicates that the bisimulation error on finite datasets is
indeed larger than the bisimulation bellman residual.
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