
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025
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Figure 1: Most existing generalizable 3D Gaussian splatting methods (e.g., pixelSplat (Charatan
et al., 2023), MVSplat (Chen et al., 2024)) assigns a fixed number of Gaussians to each pixel,
leading to inefficiency in capturing local geometry and overlap across views. Differently, our Adap-
tiveGaussian dynamically adjusts the Gaussian distributions based on geometric complexity in a
feed-forward framework. With comparable efficiency, AdaptiveGaussian (trained using 2 views)
successfully generalizes to various numbers of input views with adaptive Gaussian densities.

ABSTRACT

We propose AdaptiveGaussian, an efficient feed-forward framework for learn-
ing generalizable 3D Gaussian reconstruction from arbitrary views. Most existing
methods rely on uniform pixel-wise Gaussian representations, which learn a fixed
number of 3D Gaussians for each view and cannot generalize well to more in-
put views. Differently, our AdaptiveGaussian dynamically adapts both the Gaus-
sian distribution and quantity based on geometric complexity, leading to more
efficient representations and significant improvements in reconstruction quality.
Specifically, we introduce a Cascade Gaussian Adapter (CGA) to adjust Gaus-
sian distribution according to local geometry complexity identified by a keypoint
scorer. CGA leverages deformable attention in context-aware hypernetworks to
guide Gaussian pruning and splitting, ensuring accurate representation in com-
plex regions while reducing redundancy. Furthermore, we design a transformer-
based Iterative Gaussian Refiner (IGR) module that refines Gaussian represen-
tations through direct image-Gaussian interactions. Our AdaptiveGaussian can
effectively reduce Gaussian redundancy as input views increase. We conduct ex-
tensive experiments on the large-scale ACID and RealEstate10K datasets, where
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our method achieves state-of-the-art performance with good generalization to var-
ious numbers of views.

1 INTRODUCTION

Novel view synthesis (NVS) seeks to reconstruct a 3D scene from a series of input views and gener-
ate high-quality images from previously unseen viewpoints. High-quality and real-time reconstruc-
tion and view synthesis are crucial for autonomous driving (Tonderski et al., 2023; Khan et al., 2024;
Tian et al., 2024), robotics perception ( Wilder-Smith et al., 2024; Jiang et al., 2023a) and virtual or
augmented reality ( Yang et al., 2024; Zheng et al., 2024).

NeRF-based methods ( Mildenhall et al., 2020; Hu et al., 2022; Liu et al., 2020; Neff et al.,
2021) have achieved remarkable success by encoding 3D scenes into implicit radiance fields, yet
sampling volumes for NeRF rendering is costly in both time and memory. Recently, Kerbl et al.
(2023) proposed to represent 3D scenes explicitly using a set of 3D Gaussians, enabling much more
efficient and high-quality rendering via a differentiable rasterizer. Still, the original 3D Gaussian
Splatting requires separate optimization on each single scene, which significantly reduces inference
efficiency. To tackle this problem, recent researches have aimed at generating 3D Gaussians directly
from a feed-forward network without any per-scene optimization ( Charatan et al., 2023; Chen et al.,
2024; Liu et al., 2024; Szymanowicz et al., 2024; Zheng et al., 2024). Typically, these approaches
adhere to a paradigm where a fixed number of Gaussians is predicted for each pixel in the input
views. The Gaussians derived from different views are then directly merged to construct the final
3D scene representation. However, such a paradigm limits the model performance as the Gaussian
splats are uniformly distributed across images, making it difficult to capture local geometric details
effectively. Additionally, as the number of input views increases, directly merging Gaussians can
degrade reconstruction performance due to severe Gaussian overlap and redundancy across views.

To address this, we propose AdaptiveGaussian, which enables dynamic adaption on both 3D Gaus-
sian distribution and quantity. To be specific, we first uniformly initialize Gaussian positions follow-
ing Chen et al. (2024) to accurately localize the Gaussian centers. To identify geometry complexity
across images, we then compute a relevance score map for each input view from image features in
an end-to-end manner. Under the guidance of score maps, we construct a Cascade Gaussian Adapter
(CGA), which leverages deformable attention (Xia et al., 2022) to control the pruning and splitting
operations. After CGA, more Gaussians are allocated to regions with complex geometry for precise
reconstruction, while unnecessary and duplicate Gaussians across views are pruned to reduce redun-
dancy and improve efficiency. Since these Gaussian representations still fall short in fully capturing
the image details, we further introduce a transformer-based Iterative Gaussian Refiner (IGR) to refine
3D Gaussians through direct image-Gaussian interactions. Finally, we employ rasterization-based
rendering using the refined Gaussians to generate novel views at target viewpoints.

We conduct extensive experiments on ACID (Liu et al., 2021a) and RealEstate10K (Zhou et al.,
2018) benchmarks for large-scale 3D scene reconstruction and NVS. AdaptiveGaussian outperforms
existing methods on arbitrary input views with a comparable inference speed. Notably, compared to
previous pixel-wise methods which generate uniform pixel-aligned Gaussian predictions, our model
mitigates Gaussian overlap and redundancy across views by dynamically adjusting their distribution
based on local geometry complexity, leading to much more precise reconstruction as the number of
input views increases, achieving a PSNR improvement of around 6 dB compared to pixel-wise meth-
ods. Visualizations and ablations further demonstrate that both CGA and IGR blocks are crucial in
adapting Gaussian distribution, capturing geometry details, and improving reconstruction accuracy.

2 RELATED WORK

Multi-View Stereo. Multi-View Stereo (MVS) aims to reconstruct a 3D representation from multi-
view images of a given scene or object. Since accurate depth estimation is essential for reliable
3D reconstruction from 2D inputs, most MVS methods ( Gu et al., 2020; Ding et al., 2021; Yao
et al., 2018) require ground truth depth for supervision in training process. Additionally, point-based
MVS approaches generally separate the processes of depth estimation and point cloud fusion pro-
cesses. Recently, inspired by efficient Gaussian representations proposed by Kerbl et al. (2023),
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Chen et al. (2024) introduces to directly predict depth for pixel-wise Gaussians from a cost volume
structure without requiring depth supervision, significantly improving model scalability and flexi-
bility. Therefore, following a similar approach, we construct a lightweight cost volume to facilitate
depth estimation, which serves as an efficient initialization for 3D Gaussians in our AdaptiveGaus-
sian.

Per-scene 3D Reconstruction. Neural Radiance Fields (NeRF) have revolutionized the field of
3D reconstruction by representing scenes as implicit neural fields (Mildenhall et al., 2020). Subse-
quent researches have focused on overcoming the limitations of the original NeRF to improve its
performance and broaden its applicability. Some researches aim to improve the efficiency for novel
view synthesis ( Hu et al., 2022; Fridovich-Keil et al., 2022; Yu et al., 2021a; Liu et al., 2020;
Neff et al., 2021). Moreover, several studies concentrate on capturing intricate geometry and tem-
poral information to achieve accurate and dynamic reconstruction ( Li et al., 2021; Du et al., 2021;
Pumarola et al., 2020; Tian et al., 2023; Wang et al., 2022). Compared to implicit NeRF-based
methods, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) represents a 3D scenario as a set of ex-
plicit 3D Gaussians, enabling a rasterization-based splatting rendering process that is significantly
more efficient in both time and memory. Given that 3DGS still requires millions of 3D Gaussians
to represent a single scene, numerous studies have focused on achieving real-time rendering and
minimizing memory usage ( Fan et al., 2023; Katsumata et al., 2024; Lu et al., 2024). Additionally,
some researches focus on enhancing the reconstruction quality of 3DGS by employing multi-scale
rendering (Yan et al., 2024), advanced shading models (Jiang et al., 2023b) or incorporating physi-
cally based properties for realistic relighting (Gao et al., 2023). However, these methods still require
per-scene optimization and rely on dense input views, which can be computationally expensive and
limit their scalability for large-scale or dynamic scenes.

Generalizable 3D Reconstruction. PixelNeRF (Yu et al., 2021b) pioneers the approach of pre-
dicting pixel-wise features directly from input views to reconstruct neural radiance fields. Follow-
ing methods incorporate volume or transformer architectures to improve the performance of feed-
forward NeRF models ( Chen et al., 2021a; Xu et al., 2024; Miyato et al., 2024; Sajjadi et al., 2022;
Du et al., 2023). However, these feed-forward NeRF approaches typically demand substantial mem-
ory and computational resources due to the expensive per-pixel volume sampling process (Wang
et al., 2021a; Johari et al., 2022; Barron et al., 2021; Garbin et al., 2021; Reiser et al., 2021; Müller
et al., 2022). With the advent of 3DGS, PixelSplat (Charatan et al., 2023) initiates a shift towards
feed-forward Gaussian-based reconstruction. It takes sparse input views to directly predict pixel-
wise 3D Gaussians by leveraging epipolar geometry to learn cross-view features. MVSplat (Chen
et al., 2024) constructs a cost volume structure for depth estimation, which significantly boosts both
model efficiency and reconstruction quality. Additionally, MVSGaussian (Liu et al., 2024) further
improves model performance by introducing an efficient hybrid Gaussian rendering process. More-
over, SplatterImage (Szymanowicz et al., 2024) and GPS-Gaussian (Zheng et al., 2024) predict
pixel-wise 3D Gaussians for object-centric or human reconstruction.

However, these feed-forward methods are constrained by the pixel-wise Gaussian prediction
paradigm, which limits the model’s performance as the Gaussian splats are uniformly distributed
across images. Such a paradigm inadequately captures intricate geometries, while also causing
Gaussian overlap and redundancy across views, ultimately resulting in severe rendering artifacts.
In comparison, AdaptiveGaussian consists of a Cascade Gaussian Adapter (CGA), allowing for dy-
namic adaption on both Gaussian distribution and quantity. Visualizations demonstrate that CGA
is capable of allocating more Gaussians in areas rich in geometric details, while reducing duplicate
Gaussians in similar regions across input views. Furthermore, we introduce an Iterative Gaussian
Refiner (IGR), enabling direct interaction between 3D Gaussians and local image features via de-
formable attention. Experimental results show that IGR effectively leverages image features to guide
Gaussians in capturing the full information contained within the images, significantly enhancing the
model’s ability to capture local intricate geometry.

3 PROPOSED APPROACH

In this section, we present our method to learn generalizable Gaussian representations from arbitrary
views. Given an arbitrary set of input images I = {Ii}Ni=1 ∈ RN×H×W×3 and corresponding
camera poses C = {Ci}Ni=1, our AdaptiveGaussian aims to learn a mapping M from images to 3D
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Figure 2: Overview of AdaptiveGaussian. Given multi-view input images, we initialize 3D Gaus-
sians using a lightweight image encoder and cost volume. Cascade Gaussian Adapter (CGA) then
dynamically adapts both the distribution and quantity of Gaussians. By leveraging local image
features, Iterative Gaussian Refiner (IGR) further refines Gaussian representations via deformable
attention. Finally, novel views are rendered from the refined 3D Gaussians using rasterization-based
rendering.

Gaussians for scene reconstruction:

M : {(Ii, Ci)}Ni=1 7→ {(µj , sj , rj , αj , shj)}NK
j=1, (1)

where NK is the total number of 3D Gaussians, which adaptively varies depending on the scene
context. Each Gaussian is parameterized by its position µj , scaling sj , rotation rj , opacity αj and
spherical harmonics shj .

As illustrated in Figure 2, we first use a lightweight cost volume for depth estimation and Gaussian
position initialization. We then introduce Cascade Gaussian Adapter (CGA), which dynamically
adapts both Gaussian distribution and quantity based on local geometric complexity. Finally, we
explain how Iterative Gaussian Refiner (IGR) enables direct image-Gaussian interactions, further
refining Gaussian distribution and representations for enhanced reconstruction.

3.1 GAUSSIAN INITIALIZATION

Position Initialization. Following the instructions of MVSplat (Chen et al., 2024), we first extract
image features via a 2D backbone consisting of CNN and Swin Transformer (Liu et al., 2021b).
Specifically, CNN encodes multi-view images to corresponding feature maps, while Swin Trans-
former performs both self-attention and cross-view attention to better leverage information cross
views. Then, we obtain the aggregated multi-view features F = {Fi}Ni=1.

To initialize Gaussian positions precisely, we construct a lightweight cost volume (Yao et al., 2018)
for depth estimation, denoted as Φdepth. We then predict Gaussian centers as follows:

µ = P−1(Φdepth(F), C) (2)

where P−1(·) stands for unprojection operation.

Parameter Initialization. For each Gaussian center µj , we randomly set corresponding scaling
sj ∈ R3, rotation rj ∈ R4, opacity αj ∈ R1, spherical harmonics shj ∈ RC within a proper range.
we then get the initial Gaussians set G = {(µj , sj , rj , αj , shj)}HW

j=1 ∈ RHW×(11+C).

3.2 CGA: CASCADE GAUSSIAN ADAPTER

After obtaining the initial Gaussian set G, we introduce Cascade Gaussian Adapter (CGA) driven
by a multi-view keypoint scorer Ψ, as shown in Figure 3(a). CGA contains a set of context-aware
hypernetworks H which dynamically control and guide the following Gaussian pruning and splitting
operations. This approach ensures that regions with complex geometry details are represented by a
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Figure 3: Illustration of the proposed CGA and IGR Blocks. (a) CGA comprises a keypoint
scorer followed by a series of hypernetworks that produce context-aware thresholds to guide the
splitting and pruning of Gaussians. (b) IGR further facilitates direct image-Gaussian interactions,
enabling Gaussian representations to capture and extract local geometric features more effectively.

greater number of Gaussians, while areas with poor geometry can be represented with fewer Gaus-
sians. In parallel, CGA effectively removes redundant Gaussians to prevent Gaussian overlap across
views. Compared to previous pixel-wise methods, which rigidly allocate a fixed number of Gaus-
sians per pixel, our design dynamically adapts both distribution and quantity of Gaussians based
on geometric complexity. This flexibility allows for a more accurate capture of local geometry and
mitigates the problem of Gaussian overlap, thereby improving the overall quality of reconstruction.

Given the aggregated features F derived in Section 3.1, Ψ computes relevance score maps R =
{Ri}Ni=1 ∈ RN×H×W , where each score map Ri is obtained by a learnable weighted average of
contributions from different views:

R = Ψ(F) = softmax

(
MLP

(
N∑
i=1

αi · Fi

))
, αi =

exp(βi)∑N
j=1 exp(βj)

, (3)

where A = [α1, α2, . . . , αN ]T ∈ RN represents the contribution factor of each view, and is deter-
mined by learnable parameters βi(i = 1, 2, ..., N).

We first introduce a set of hypernetworks H = {Hk}Kk=1 to generate context-aware thresholds. CGA
is composed of K stages, where each stage Hk takes score maps R along with Gaussian set Gk =

{(µ(k)
j , s

(k)
j , r

(k)
j , α

(k)
j , sh

(k)
j )}Nk

j=1 ∈ RNk×(11+C) as input, and outputs thresholds τ (k)high, τ
(k)
low ∈ R

for splitting and pruning. As illustrated in equation 4, we first sample and embed Gaussian set Gk

into Gaussian score queries Q(k)
r . Then we project sampled reference points µ(k) onto score maps

R with corresponding camera parameters C. Finally, we update queries Q(k)
r with weighted scores

from S and get both thresholds through a simple MLP. Initially, we set G1 = G.

τ
(k)
high, τ

(k)
low = Hk(Gk,R, C) = MLP(

N∑
i=1

αi · DA(Q(k)
r , Ri, P (µ(k), Ci))), (4)

where DA(·), P (·) denote the deformable attention function and projection operation, respectively.

Then, we obtain Gaussian-wise scores by projecting Gaussian centers onto score maps R. To elab-
orate, let Sk = {s(k)ij } ∈ RN×Nk be the score matrix for Gaussian set Gk, where each score s

(k)
ij

is the value at the projection point of the j − th Gaussian center in Ri, or 0 if it does not project
onto any region in Ri. The final Gaussian-wise scores Savg

k are then computed by averaging scores
across different views:

Savg
k = ST

k ·A, (5)
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Once Gaussian-wise scores are obtained, regions with higher scores, indicating more complex ge-
ometry details, undergo splitting operation to allocate more Gaussians for finer representations. For
regions with lower scores, we apply an opacity-based pruning operation, gradually reducing Gaus-
sian opacity and scaling to minimize their impact and reduce redundancy.

Splitting. For Gaussian g
(k)
j ∈ Gk with score higher than τ

(k)
high, we generate M separate new Gaus-

sians for more detailed representations:

G
(k)
j = SplitNet(g(k)j ) ∈ RM×(11+C), (6)

where SplitNet(·) is a simple MLP-based network that ensures all parameters within proper range.
The newly generated Gaussians are then directly concatenated with the existing Gaussian set Gk.

Pruning. For Gaussian g
(k)
j ∈ Gk with score lower than τ

(k)
low , we apply an opacity-based pruning

operation rather than directly removing it. Specifically, we set a predefined opacity threshold τα. If
the Gaussian opacity is greater than τα, we gradually reduce its opacity and scaling:

α
(k)
j → γα · α(k)

j , s
(k)
j → γs · s(k)j , (7)

where γα < 1 and γs < 1 are reduction factors. Otherwise, the current Gaussian is removed entirely
from Gaussian set Gk.

After K-stage adaptation in the Cascade Gaussian Adapter, the initial uniform 3D Gaussian repre-
sentations are transformed into adaptive forms. Gaussians are redistributed according to geometric
complexity, resulting in a more efficient and context-aware representation.

3.3 IGR: ITERATIVE GAUSSIAN REFINER

Though CGA allows for a more optimal Gaussian distribution, the Gaussian representations still fall
short in capturing the full information contained in the images. Inspired by the efficiency demon-
strated by GaussianFormer (Huang et al., 2024) in occupancy prediction, we design a transformer-
based Iterative Gaussian Refiner (IGA) to further extract local geometric information from input
views, as shown in Figure 3(b). In this process, we leverage deformable attention to enable direct
image-Gaussian interactions, enhancing the ability for 3D Gaussians to more accurately capture
intricate geometry details in reconstruction and view synthesis.

IGR is composed of B attention and refinement blocks. In Section 3.2, CGA adapts the original
Gaussian set G to G = GK . To continue, we first sample and embed G into Gaussian queries Q.
In each block, deformable attention is first applied between Gaussian queries Q and multi-view
features F to update Gaussian representations. This is followed by a refinement stage where a
residual module further fine-tunes the queries. The overall process of IGR can be formulated as:

Qb = Φref (

N∑
i=1

αi ·DA(Qb−1, Fi, P (µ(b), Ci))) b = 1, 2, . . . , B, (8)

where DA(·),Φref (·), P (·) denote the deformable attention function, refinement layer and projec-
tion operation, Fi, Ci, αi represents the image feature, camera parameters and contribution factor of
input view Ii, respectively. Qb(b = 1, 2, ..., B) stands for output queries from the b− th IGR block,
and µ(b) is the Gaussian center of current stage. Initially, we set Q0 = Q.

Finally, the refined Gaussian queries are decoded into Gaussian parameters Gf through a simple
MLP to ensure all parameters within proper range, and then can be used for rasterization-based
rendering at novel viewpoints.

Gf = {(µf
j , s

f
j , r

f
j , α

f
j , sh

f
j )}

NK
j=1 = MLP(QB). (9)

Our full model takes ground-truth target RGB images at novel viewpoints as supervision, allowing
for efficient end-to-end training. The training loss is calculated as a linear combination of MSE and
LPIPS (Zhang et al., 2018) losses, with loss weights of 1 and 0.05, respectively.
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Table 1: Results of Novel View Synthesis on the RealEstate10K and ACID benchmarks. We
report the average PSNR and LPIPS (Zhang et al., 2018) on the test set, where all models are trained
with 2 reference views and inferred with 4, 8 and 12 reference views.

Datasets Methods 2→4 Views 2→8 Views 2→12 Views

PSNR LPIPS PSNR LPIPS PSNR LPIPS

RealEstate10K

pixelNeRF 21.03 0.520 21.22 0.498 21.28 0.501
MuRF 23.30 0.188 23.78 0.186 23.94 0.185

pixelSplat 22.02 0.195 19.97 0.229 18.92 0.267
MVSplat 22.30 0.185 20.39 0.216 19.69 0.233

AdaptiveGaussian 23.95 0.182 24.05 0.183 24.18 0.180

ACID

pixelNeRF 20.77 0.508 21.03 0.487 21.05 0.485
MuRF 25.85 0.193 26.04 0.190 26.10 0.191

pixelSplat 21.08 0.207 17.70 0.264 17.30 0.279
MVSplat 20.89 0.209 18.13 0.260 17.33 0.277

AdaptiveGaussian 26.21 0.189 26.28 0.185 26.44 0.182

Compared to the uniform pixel-wise paradigm, our AdaptiveGaussian approach dynamically adapts
both the Gaussian distribution and quantity within the Cascade Gaussian Adapter. Additionally, the
Iterative Gaussian Refiner refines Gaussian representations to capture intricate geometric details in
the input views. This design achieves more efficient Gaussian distributions while mitigating overlap
and redundancy common in pixel-wise methods.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. To assess the performance of our model, we conduct experiments on two extensive
datasets: ACID (Liu et al., 2021a) and RealEstate10K (Zhou et al., 2018). The ACID dataset con-
sists of video frames capturing natural landscape scenes, comprising 11,075 scenes in the training
set and 1,972 scenes in the test set. RealEstate10K provides video frames from real estate environ-
ments, with 67,477 scenes allocated for training and 7,289 scenes reserved for testing. The model is
trained with two reference views, and four novel views are selected for evaluation. During testing,
we select 4, 8 and 12 views as reference views to cover as wide a view range as possible to evaluate
the model performance on large-scale and wide-range scenarios.

Implementation Details. We set the resolutions of input images as 256x256. In Cascade Gaussian
Adapter (CGA), we apply K = 3 stages of cascade Gaussian adaption. As for the splitting operation,
the SplitNet generates M = 1 separate new Gaussians, whereas the pruning process uses reduction
factors γα = γs = 0.5 and opacity threshold τα = 0.3. We use B = 3 blocks in Iterative Gaussian
Refiner (IGR) to extract local geometry from input views. We implement our AdaptiveGaussian
with Pytorch and all the models are trained on a single NVIDIA A6000 GPUs for 300,000 iterations
with Adam optimizer. More training details are provided in Section A.2.

4.2 MAIN RESULTS

Novel View Synthesis. As shown in Table 1 and Figure 4, our proposed AdaptiveGaussian consis-
tently outperforms previous NeRF-based methods and pixel-wise Gaussian feed-forward networks
across all settings with 4, 8 and 12 reference views. Notably, as the number of input views increases,
the reconstruction performance of both pixelSplat (Charatan et al., 2023) and MVSplat (Chen et al.,
2024) degrades significantly, while AdaptiveGaussian shows a slight improvement. This is because
previous methods directly merge multiple views by back-projecting pixel-wise Gaussians to 3D
space based on depth maps. Without the capability to adapt the quantity and distribution of Gaus-
sians dynamically, pixel-wise methods often produce duplicated Gaussians with significant overlap,
and their spatial positioning is suboptimal. In contrast, AdaptiveGaussian is able to optimize both
the distribution and quantity of Gaussians via CGA, while IGR blocks facilitate direct interaction
between Gaussian queries and local image features, resulting in more accurate reconstructions.

7
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Image Input               pixelSplat MVSplat AdaptiveGaussian Ground Truth

Figure 4: Visualization results on ACID and RealEstate10K benchmarks. Pixel-wise methods
suffer from Gaussian overlap due to suboptimal Gaussian distributions, whereas AdaptiveGaussian
enables dynamic Gaussian adaption and improved local geometry refinement.

Table 2: Comparison of PSNR and Gaussian Quantity on RealEstate10K Dataset. We present
the average PSNR and the number of Gaussians (K) for inference using 4, 8 and 16 input views.

Methods 2→4 Views 2→8 Views 2→16 Views

PSNR↑ # Gaussians PSNR↑ # Gaussians PSNR↑ # Gaussians

pixelSplat 22.02 786 K 19.97 1572 K 18.90 3146 K
MVSplat 22.30 262 K 20.39 524 K 19.40 1049 K

AdaptiveGaussian 23.95 240 K 24.05 375 K 24.24 568 K

Multi-View Comparison. We further compare model performance and Gaussian quantities of dif-
ferent methods across various input views in Table 2. Though we find that our method requires more
Gaussians than MVSplat (Chen et al., 2024) with 2 input views due to more frequent splitting than
pruning, it achieves better reconstruction with fewer Gaussians as the number of views increases.
In regions with richer geometric details, CGA blocks first split more Gaussians for finer representa-
tions, followed by IGR to further refine these Gaussians using deformable attention on local image
features to better capture and reconstruct geometric details. Meanwhile, CGA prunes duplicate and
overlapping Gaussians across views to control the growth of overall Gaussian quantity as the number
of input views increases.

Efficiency Analysis. We explore the efficiency of AdaptiveGaussian compared with dominant pixel-
wise methods on a single NVIDIA A6000 GPU. All models are inferred with multiple settings of
input views on RealEstate10K (Zhou et al., 2018) dataset. We report the average inference latency
and rendering FPS in Table 3. Undeniably, AdaptiveGaussian requires higher inference latency
than MVSplat (Chen et al., 2024) due to the extra cost of CGA and IGR blocks. However, our
model can achieve siginificantly higher rendering FPS by utilizing fewer Gaussians as the input
view increases. This advantage is particularly important when rendering a large number of novel
views, and it mitigates the weakness of AdaptiveGaussian on inference efficiency to some degree.

4.3 EXPERIMENTAL ANALYSIS

In this section, we further investigate and conduct experiments to demonstrate the effectiveness of
our AdaptiveGaussian. We first visualize the both depth map and Gaussian distribution. Then, we
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Table 3: Results of Novel View Synthesis on RealEstate10K and ACID Benchmarks. The in-
ference time (in seconds) and rendering FPS are reported for models trained with 2 reference views
and inferred with 4, 8, 12, and 16 reference views.

Methods 4 Views 8 Views 12 Views 16 Views

Inf. Time FPS Inf. Time FPS Inf. Time FPS Inf. Time FPS

pixelSplat 0.299 110 0.847 64 1.853 45 2.938 37
MVSplat 0.126 197 0.363 133 0.775 108 1.240 83

PixelGaussian 0.235 207 0.705 187 1.179 175 2.053 162

Figure 5: Visualization of depth map and point cloud on multi-view NVS on RealEstate10K
dataset. AdaptiveGaussian enables to capture detailed local geometry while mitigating Gaussian
redundancy across views.

Input                     MVSplat AdaptiveGaussian MVSplat AdaptiveGaussian

conduct cross-dataset generalization and ablation studies on our model. These experiments demon-
strate that CGA dynamically adapts both the distribution and quantity of Gaussians according to
geometric complexity, while IGR further extract local features via direct image-Gaussian interac-
tions, offering significant improvements over traditional pixel-wise methods.

3D Geometry Reconstruction. To demonstrate that our AdaptiveGaussian outperforms to recon-
struct intricate local geometry as our model is able to adapt Gaussian distributions according to
geometry complexity, we visualize the depth map and centers of Gaussians in Figure 5. MVS-
plat Chen et al. (2024) uniformly predicts pixel-aligned 3D Gaussians across images and merge the
representations from different viewpoints directly, which leads to redundancy within overlapping re-
gions and fails to fully capture the fine 3D geometry. The visual results demonstrate that the adaptive
allocation and refinement processes within both the CGA and IGR blocks of our AdaptiveGaussian
model generate more precise Gaussian locations, which further enhances the capability of Gaussian
representations to capture the intricate 3D geometry during reconstruction.

Cross-dataset Generalization. To further demonstrate the generalization capability of Adaptive-
Gaussian, we conduct additional cross-dataset experiments. Specifically, We train our model on
RealEstate10K Zhou et al. (2018) dataset and evaluate its performance on ACID Liu et al. (2021a)
and DTU Jensen et al. (2014) datasets. For each setting, the reference views are sampled to en-
sure the coverage of the widest possible field of view. As shown in Table 4, AdaptiveGaussian is
able to maintain the advantage from mitigating Gaussian overlap and redundancy in cross-dataset
generalization, which leads to superior performance as input view increases.
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Table 4: Cross-dataset generalization on ACID and DTU datasets. We sample the reference
views to cover as wide a range as possible on both datasets.

Method ACID DTU

4 Views 8 Views 16 Views 4 Views 8 Views 16 Views

pixelSplat 21.60 18.75 18.23 12.30 11.94 11.47
MVSplat 21.88 19.45 18.94 12.45 12.10 11.55

AdaptiveGaussian 26.01 26.22 26.37 13.42 13.46 13.56

Table 5: Ablations on the components of AdaptiveGaussian. We report the average PSNR,
LPIPS, and the number of Gaussians (K) of model inference.

Methods PSNR↑ LPIPS↓ #Gaussians

Vanilla 20.07 0.279 262 K
+ Rigid Cascade Gaussian Adapter 21.56 0.224 226 K

+ HyperNetworks H 23.07 0.188 240 K
+ Iterative Gaussian Refiner 23.95 0.157 240 K

Deformable Attention. We adopt deformable attention to obtain Gaussian scores and refine Gaus-
sian representations in both CGA and IGR blocks. To further investigate the benefits of this de-
sign, we compare the results with and without the deformable learnable keypoints generated from
the query points. Since the Gaussian representations from AdaptiveGaussian are not strictly pixel-
aligned, the projection of Gaussian center is uncertain to match the corresponding location in the
feature maps. Deformable attention enables more flexible and adaptive Gaussian-image interac-
tions compared to attention with rigid perception fields. Therefore, the introduction of deformable
attention can lead to a PSNR increase of 1.58 in average.

Ablation Study. To further investigate the architecture of AdaptiveGaussian, we conduct abla-
tion studies by inferring our model on RealEstate10K (Zhou et al., 2018) test dataset with 4 in-
put views. We first introduce a vanilla model, where the initial Gaussian set G is directly used
to render novel views. Then, we adopt rigid CGA blocks without context-aware Hypernetworks
H, which means Gaussian set G goes through splitting and pruning based on fixed thresholds
(τ

(k)
high = 0.8, τ

(k)
low = 0.2, k = 1, 2, ...,K). We further add HyperNetworks H to generate context-

aware thresholds. Finally, we adopt IGR blocks to refine the Gaussian representations via image-
Gaussian interactions. As shown in Table 5, HyperNetworks H utilizes score maps S to generate
context-aware thresholds, enabling a more dynamic and efficient Gaussian distribution for scene
representation compared to rigid splitting and pruning. Furthermore, IGR blocks refine the Gaus-
sian set iteratively via deformable attention between Gaussians and image features, enhancing their
ability to describe and reconstruct intricate local geometric details.

5 CONCLUSION

In this paper, we have presented AdaptiveGaussian to learn generalizable 3D Gaussian reconstruc-
tion from arbitrary input views. AdaptiveGaussian is able to dynamically adapt both Gaussian dis-
tribution and quantity guided by the complexity of local geometry details in the Cascade Gaussian
Adapter blocks, which allocate more to detailed regions and reducing redundancy across views. Fur-
ther, Iterative Gaussian Refiner blocks facilitate direct image-Gaussian interactions to improve local
geometry reconstructions. thus leading to superior performance in reconstruction and view synthesis
compared to pixel-wise paradigm.

Discussions and Limitations. Although AdaptiveGaussian can adjust the distribution of 3D Gaus-
sians dynamically, the initial Gaussians are still derived from pixel-wise unprojection. When we
initialize the Gaussian centers completely at random, the model fails to converge. Moreover, de-
formable attention in IGR consumes substantial computational resources when the number of Gaus-
sians is extremely large, highlighting the need for a more efficient approach to represent 3D scenes
with fewer Gaussians. Furthermore, AdaptiveGaussian is unable to perceive the unseen parts of 3D
scenes beyond the input views, suggesting the potential need to incorporate generative models.
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