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Abstract
Industrial systems are increasingly threatened by cyberattacks
with potentially disastrous consequences. To counter such
attacks, industrial intrusion detection systems strive to timely
uncover even the most sophisticated breaches. Due to its crit-
icality for society, this fast-growing field attracts researchers
from diverse backgrounds, resulting in 130 new detection
approaches in 2021 alone. This huge momentum facilitates
the exploration of diverse promising paths but likewise risks
fragmenting the research landscape and burying promising
progress. Consequently, it needs sound and comprehensible
evaluations to mitigate this risk and catalyze efforts into sus-
tainable scientific progress with real-world applicability. In
this paper, we therefore systematically analyze the evaluation
methodologies of this field to understand the current state
of industrial intrusion detection research. Our analysis of
609 publications shows that the rapid growth of this research
field has positive and negative consequences. While we ob-
serve an increased use of public datasets, publications still
only evaluate 1.3 datasets on average, and frequently used
benchmarking metrics are ambiguous. At the same time, the
adoption of newly developed benchmarking metrics sees little
advancement. Finally, our systematic analysis enables us to
provide actionable recommendations for all actors involved
and thus bring the entire research field forward.

1 Introduction

The digitalization of Industrial Control Systems (ICSs) has
led to an escalating rise in cyberattacks [5, 52, 67], of which
prominent ones include the Stuxnet or Ukrainian power grid
attacks. These attacks are boosted by widely deployed legacy
devices not meant to implement crucial security measures [15].
Specialized Industrial Intrusion Detection Systems (IIDSs)
address this gap by providing an easily retrofittable security
solution for legacy industrial deployments [16, 27]. To this
end, IIDSs passively monitor network traffic or the physical
process state and alert human operators to initiate adequate
countermeasures in case of suspected attacks [74].

As an emerging hot research area, IIDSs attract researchers
and industrial operators from diverse backgrounds. It thus
comes as no surprise that, according to our literature research,
at least 1109 distinct authors have published ideas for detec-
tion mechanisms between 2019 and 2021 alone. While their

diverse background is beneficial to cover lots of different per-
spectives and ideas, the resulting fast-paced advancements
lead to a lack of established evaluation methodologies and
comparability across the field. Consequently, worthwhile
ideas remain hard to identify, and it is unclear which im-
provements are suitable to close the gap to much-needed
production-ready IIDSs. Ideally, the vast research efforts
would be channeled through clear, comparable, coherent, and
expressive evaluation methodologies. Only through a result-
ing comparability between approaches can the IIDS research
landscape fully benefit from its high diversity.

Digging deeper into conducted evaluations, researchers use
benchmarking datasets that are either publicly available or,
more commonly, custom-made for that specific test hindering
repeatable experiments. Based on these datasets and an IIDS’
alerts, various (performance) metrics are computed. However,
IIDSs are often evaluated on pre-selected datasets, covering
specific favorable scenarios [14]. Furthermore, metrics are
chosen or designed based on specific goals determined (to
some degree arbitrarily) by the researchers. The resulting
custom evaluation methodologies lead to an immense het-
erogeneity within the IIDSs research landscape, where most
works, despite common goals, lack comparability. Conse-
quently, technological and scientific progress is inhibited.

In this regard, meta-analyses of IIDS research already un-
veiled inefficiencies in the detection capabilities of published
works [17] or criticized the conclusions drawn from scien-
tific evaluation procedures [8, 23, 43]. Simultaneously, we
observe attempts to fix these issues by, e.g., collecting repre-
sentative benchmarking datasets [14], inventing specialized
industrial metrics to accurately assess the “success” of an
IIDS [24, 32–35, 38, 40, 44, 69], or by providing an abstract
format to facilitate a coherent research landscape [74]. How-
ever, related work so far still fails to (i) quantify how IIDSs are
evaluated within the vast body of literature, (ii) assess the ap-
plicability and impact of recent critiques partially known from,
e.g., traditional intrusion detection [8,51,66], and (iii) deliver
overarching recommendations to pave the way towards the
shared goal of improving IIDSs to truly protect industrial net-
works and critical infrastructure against future cyberattacks.

With this paper, we strive to close the outlined gap with
a Systematization of Knowledge (SoK) on the evaluation
methodologies across IIDS research. To this end, we conduct
a Systematic Mapping Study (SMS) to quantify the current
state of the research landscape encompassing 609 papers.
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From the resulting knowledge basis, we can draw a clear
picture w.r.t. positive and negative developments as well as
persistent flaws. Ultimately, our works allow us to provide
clear recommendations for all involved actors to catalyze their
joint efforts to protect the world’s most critical networks.

Contributions. To pave the way toward a more coherent
IIDS landscape, we make the following contributions:

• We survey 609 papers published until 2021 proposing IIDS
designs and extract information about how their respective
evaluations were conducted (Sec. 3).

• We systematize the gained knowledge w.r.t. utilized
datasets and metrics to identify positive and negative trends
as well as their potential for future improvements. We then
complement these theoretical results with practical experi-
ments to extend the understanding of the interplay between
datasets and metrics (Sec. 4 and Sec. 5).

• Finally, we summarize current flaws in IIDS evaluations
and formulate recommendations to improve future IIDS
research for all involved actors: IIDS researchers, dataset
creators, and industrial operators (Sec. 6).

Artifact Availability. We make the data of our SMS
publicly available at https://www.dropbox.com/sh/
bvhlrinhv4rn50u/AAAmQxzzGqZmU-7E0yfRvxZXa, and
will publish our evaluation tools used for the practical
experiments upon acceptance (for anonymity purposes).

2 Research on Industrial Intrusion Detection

To lay the foundation for our work, we provide a brief intro-
duction to the field of industrial intrusion detection (Sec. 2.1)
and its challenges (Sec. 2.2) before we discuss related work on
the evaluation methodologies of this research field (Sec. 2.3).
Based on this, we motivate the need for systematizing the
knowledge on evaluating industrial intrusion detection re-
search and formulate basic research questions (Sec. 2.4) to
ultimately steer future research in an effective direction.

2.1 Industrial Intrusion Detection
The high degree of digitization in industries unleashes an
enormous level of automation by integrating sensors, actu-
ators, and control logic into tightly coupled cyber-physical
systems. The current trend to build ICSs by adapting once
proprietary and local network protocols, e.g., Modbus, to ubiq-
uitous Ethernet networks, e.g., using ModbusTCP, paired with
connectivity to the Internet, enables unique applications, e.g.,
remote monitoring or Supervisory Control and Data Acquisi-
tion (SCADA). Yet, these technologies simultaneously open
new attack vectors, as prominent attacks demonstrate [5, 52].

To counter these security issues, various preventive mea-
sures have been proposed, e.g., secure variants of industrial

communication protocols [14, 15]. But, retrospectively in-
tegrating these measures into existing ICSs, operating for
decades, is costly, if possible at all, due to their strict require-
ments toward, e.g., availability and latency. In this context,
intrusion detection is proposed as a promising alternative
or complementing technology to passively retrofit security
into ICSs [74] by monitoring systems or networks for suspi-
cious activities or violations of security policies. However,
established intrusion detection solutions from computer net-
works serving, e.g., offices or data centers, are not as effec-
tive in industries [76], primarily due to ICSs’ reliance on
unique (real-time) hardware such as Programmable Logic
Controllers (PLCs) and sophisticated, custom-tailored attacks
targeting the physical process [5, 70]. Consequently, research
focuses on specialized Industrial Intrusion Detection Sys-
tems (IIDSs), which leverage the repetitive and predictable
characteristics occurring in, e.g., Modbus’ communication
patterns or the physical process.

The IIDS research landscape can be coarsely classified
along five dimensions: attacker model, detection technique,
benchmarking environment, evaluation metric, and reactions.
The attacker model influences which kind of attacks an intru-
sion detection system should be able to detect and potentially
even differentiate. Note that while some surveys consider
fault detection similar to attacks [49], faults do not occur
as a consequence of cyberattackss but rather through, e.g.,
wear and tear [27] and are thus left out of the scope of this
work. Thus, the attacker model determines an IIDS’s input
data, with common ones being network traffic, host data from
SCADA systems or PLCs, and physical process data [49].

The main work of researchers then goes into designing
the actual detection technique, which can be loosely catego-
rized into knowledge-based, behavior-based, or hybrid ap-
proaches [53]. While knowledge-based systems (also referred
to as misuse or supervised detection [53]) identify harmful
behavior based on (known) patterns, behavior-based IIDSs
rather specify how the ICS behaves normally and alert devia-
tions from usual actions. Moreover, the detection technique is
also heavily influenced by the attacker model. While attacks
on a network layer are best detected on a per-packet basis, e.g.,
with deep-packet inspection [29], process-based detection can
leverage a broader view of the ICS, e.g., by analyzing whether
the physical process moves towards a critical state [13].

To validate the design of a detection technique and facil-
itate comparability of a newly proposed IIDS, its detection
performance is evaluated with the help of suitable bench-
marking environments and evaluation metrics (potentially in
addition to computational performance or w.r.t. explainabil-
ity [64]). Despite the data type, benchmarking environments
for all kinds of industrial domains come in different forms,
such as datasets, physical testbeds, simulations, or real facili-
ties [14,36]. Each type has its own trade-offs in terms of, e.g.,
accessibility, cost, or closeness to real deployments, so their
selection needs to be carefully made. Moreover, the IIDS’
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performance needs to be measured based on sensitive metrics.
In that regard, scientists can refer to a plethora of common
metrics [61] expressing the amount of false positive alerts or
more complex characteristics (cf. Appx. B).

A final dimension is the reaction to IIDS alerts to mitigate
an attack. Especially when transferring an IIDS to real-world
deployments, operators may conduct (manual) forensic analy-
ses to understand the cause for alert [4] and ultimately miti-
gate the threat [67] by, e.g., applying firewall rules. Preventive
measures can also be coupled directly to a detection mech-
anism for more automated reactions, then called intrusion
prevention systems. Those do, however, need to be care-
fully designed, since in an industrial setting simply blocking
suspicious traffic may cause more harm than the attack itself.

2.2 Challenges of Evaluating IIDS

IIDS research takes place in a diverse field encompassing ICS
architectures ranging from water supply over power delivery
to manufacturing, where cyberattacks are primarily unique
to a particular deployment [5, 52]. Even though ICSs rely on
researchers to design appropriate countermeasures and test
their efficiency in real-world deployments, operators rarely
provide such urgently-needed data samples [3, 50, 66]. While
these challenges constitute an opportunity to tackle IIDS re-
search from varying angles, transfer insights across industrial
domains, and investigate their efficiency in real-world deploy-
ments, they likewise segregate the overall research landscape,
resulting in isolated silos [74]. Consequently, sound scientific
evaluations remain as the foundation to facilitate coherence
and measure the overall progress of the research field.

However, due to influences from various fields and a gen-
erally high interest in IIDSs, so far no coherent evaluation
methodology could be established and subsequently improved.
In practice, the path taken by most researchers to design and
test their IIDSs relies on privately acquired and/or public (syn-
thetic) datasets containing samples of benign traffic and/or
physical process data as well as attack scenarios. To evaluate
their IIDSs, researchers first train (and configure) their IIDS
on samples of benign behavior and/or attacks (depending on
the type of IIDS) from a specific industrial scenario. On a
second evaluation dataset, they then compare the IIDS out-
put (alerts) to the attack labels contained within the chosen
dataset, i.e., they track how well the IIDS detects attacks and
to which degree benign traffic or process values are uninten-
tionally classified as suspicious. Finally, various metrics, e.g.,
the F1 score, quantify the detection performance and serve as
the basis for comparisons to related work.

While most works adhere to this loosely outlined evalua-
tion methodology, the devil is in the details [43]. Optimally,
a given dataset would be suitable for a large amount of IIDS
types and thus constitute a reference benchmark. However,
widely-used datasets usually cover only specific industrial do-
mains and a small subset of imaginable attacks [14]. Thus, the

datasets made available to the research community decisively
influence the scenarios within which IIDSs are evaluated and
also the types of attacks IIDSs are optimized for. Moreover,
utilized evaluation metrics do not draw a complete picture of
an IIDS’s detection performance without putting them into
context [27], which rarely happens adequately within the re-
search field. As a matter of fact, this lack of hardened and
proven research methodologies has been exposed to various
criticism in recent years, as identified by related work.

2.3 Related Work on Evaluating IIDSs

Taking a closer look at recent literature on the challenges
of evaluating industrial intrusion detection research (cf.
Sec. 2.2), we identify a range of works discussing and criticiz-
ing the current state of IIDS research. First, various surveys
provide an overview of the utilized detection methods across
that research field [16, 27, 49, 53, 63, 67, 74, 75], ranging from
learning specific communication patterns to analyzing the
physical state of the monitored system. In this context, diffi-
culties reproducing results and generalizing IIDSs to related
ICSs domains beyond those specifically evaluated were re-
ported [17, 74]. While these surveys repeatedly cover more
than 70 publications, showing the huge attention industrial
intrusion detection attracts, at the same time, they indicate a
lack of coherence and advancement within the research field.

Similar surveys focused on summarizing available datasets
and testbeds (from which datasets can be generated) specif-
ically designed for IIDS evaluations [14, 36]. These efforts
identify at least 61 testbeds and 23 benchmarking datasets that
are publicly available [14]. Since these surveys focus solely
on datasets, they lack essential analyses about the actual ap-
plication of datasets. As a rare exception, Balla et al. [10]
analyzed dataset usage for deep learning detection methodolo-
gies, observing a strong bias toward non-ICS datasets, such
as the KDD dataset family, with a usage of over 50 %.

Besides the used dataset or testbed, the choice of metrics
plays an important role when evaluating IIDSs. Without a ded-
icated focus on industrial intrusion detection, Powers [61] pro-
vides an overview of different metrics and puts their expres-
siveness into context. Yet, the considered point-based metrics
(cf. Appx. B.1), e.g., accuracy or precision (also used in other
domains such as machine learning), must be used carefully
not to introduce any biases [61]. Moreover, especially for eval-
uations on (industrial) time-series datasets, further challenges,
such as an imbalanced representation of attacks, have to be
considered [8, 25]. Consequently, more advanced time series-
aware metrics have been proposed [24, 32–35, 38, 44, 69] (cf.
Appx. B.2). While this development promises to enhance
the expressiveness of evaluations, their soundness and usage
remain mostly unexplored so far.

Finally, various meta-surveys focus on machine learning
pitfalls for industrial intrusion detection [18, 23, 50, 63] or
highlight challenges when transferring IIDSs from research
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to actual industrial deployments [3, 50, 66]. These problems
include, e.g., inappropriate use of metrics [8], the dominance
of lab-based datasets [8, 63], or predominant focus on only a
few of the wide range of industrial domains and protocols [63].
Importantly, empirical data on the evaluation of IIDS research
is not yet available.

In summary, evaluations of IIDSs can, in theory, be based
on a solid foundation of public datasets and advanced metrics.
However, this research branch lacks a decent understanding
of the methodologies actually applied within it beyond indi-
vidual criticism regarding isolated aspects.

2.4 The Need for Systematization
The tremendous research interest in industrial intrusion de-
tection, with 130 publications in the year 2021 alone, has
led to a huge variety of evaluation methodologies. The re-
sulting fast-paced research has a huge risk of becoming dis-
joint [74], eventually slowing down the overall progress in
securing ICSs. Most importantly, the heterogeneity across in-
dustrial domains [74] and an observed widespread evaluation
bias [27, 70, 74] make comparisons between IIDSs difficult.
Past surveys on detection methodologies, datasets, metrics,
and meta-studies have only studied individual aspects in iso-
lation from each other (cf. Sec. 2.3). Thus, to unveil the
root causes hindering coherent and sustainable IIDS research,
there is a need to systematically consolidate the current state
of evaluations in industrial intrusion detection research to
ultimately identify remedies against the status quo.

We argue that only by analyzing how IIDSs are evalu-
ated on a broad scale, as done in a Systematic Mapping
Study (SMS) [41], we can comprehensively tackle the ques-
tion of research coherence and evaluation soundness, i.e., to
which extent evaluations are performed on uniform (public)
datasets with widespread and suitable metrics to achieve a
high level of comparability. More precisely, we aim to answer
the following research questions:
▶ Q1: Which datasets are actually used to evaluate IIDSs?
▶ Q2: To which extent do IIDSs compare against each other?
▶ Q3: Which metrics are utilized in evaluations of IIDSs?

Besides providing a comprehensive picture of the traits and
characteristics of IIDS evaluations, answering these questions
lays the foundation to formulate actionable recommendations
for IIDS evaluation, enabling the different actors within the
research community to focus their joint effort on the overar-
ching challenge of securing industrial deployments.

3 Systematic Mapping Study

The objective of this SoK is to provide a systematic under-
standing of how (differently) IIDS research is currently eval-
uated and how this current status quo can be sustainably im-
proved. While related work already hints at prevalent issues
that might prevent objective comparisons (cf. Sec. 2.3), a
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Figure 1: To conduct the SMS, we follow a two-staged ap-
proach which results in extracting a total of 609 relevant
publications proposing novel IIDS as of December 2022. We
list the corresponding search string in Appx. A.

holistic analysis is missing so far. Therefore, we strive to
ascertain the state of IIDS evaluation methodologies by con-
ducting a Systematic Mapping Study (SMS), a variation of a
classical Systematic Literature Review (SLR) [41], to obtain
a large, qualitative, and unbiased collection of relevant publi-
cations in a verifiable process, oriented along established best
practices and guidelines [41]. First, we search relevant papers
for a broad subject (IIDSs proposals) from the scientific liter-
ature with a systematic process. Afterward, publications are
analyzed and classified based on the subjects of our analysis
(Q1–Q3), i.e., their evaluation methodology.

To holistically answer the outlined research questions for
a large and heterogeneous research field, we perform a com-
prehensive SMS as depicted in Fig. 1. According to the
research questions, the SMS focuses on publications that pro-
pose IIDSs for ICSs as researchers naturally have to evaluate
their performance in a scientific manner. In contrast to Balla
et al. [10], we only consider publications that leverage at
least one industrial-specific dataset, i.e., they were obtained
from an ICS, e.g., include specific protocols such as Modbus,
physical process data, or ICS-specific cyberattacks.

To conduct our SMS, we leverage Parsifal [21] to orga-
nize and comprehensibly document our screening process.
First, we transformed the research questions into a search
string 1 (cf. Appx. A), which we successively optimized
through validation with an initial set of known and representa-
tive literature 2 . We then queried four search engines (IEEE
Xplore, ACM DL, Scopus, and Web of Science) on December
2022 and found a total of 3046 hits 3 . From this initial set
of publications, we discarded duplicates (1484 publications)
and performed a first screening of all remaining publications’
titles and abstracts 4 . In this initial screening, we mostly fo-
cused on removing publications from other research domains
that still matched our search string and such publications that
clearly do not propose (and thus evaluate) an IIDS approach.
After this first screening phase, 953 unique publications re-
mained for further consideration. Note that we did not filter
for any specific detection techniques. Still, most publications
covered by the survey (and thus the research field) resemble
machine-learning.

In a final step, we conducted a detailed screening of the re-
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maining publications to extract those that build the foundation
for our further analysis 5 . When accessing the full text of
all papers, only 13 publications were not accessible to us and
thus omitted. We performed a detailed second screening of
all remaining publications, resulting in 331 further rejections
of those that do not match our requirements for proposing
IIDSs, e.g., belonged to fault detection (cf. Sec. 2.1). From
the resulting set of 609 accepted publications, we extracted
the relevant data to answer our research questions, such as the
datasets and metrics they utilize for their evaluations. To en-
sure consistency, one author performed the detailed screening
and data extraction while the workload for initial title/abstract
screening was shared across multiple persons.

Through our systematic approach, to the best of our knowl-
edge, we are the first to analyze the entire IIDS landscape.
With 609 analyzed publications, our work is based on a sig-
nificantly larger knowledge base than any of the previous
surveys of related work (cf. Sec. 2.3). This basis enables us
to analyze the evaluation methodologies of the broad IIDS
research landscape. Beyond presenting our findings, releas-
ing our SMS as a public artifact (cf. Artifact Availability)
may help future researchers to find appropriate candidates for
comparisons, facilitates further analyses, or enables tracking
of the progress within the ICS domain in the future.

4 IIDS Evaluation in Research

With a systematic basis of 609 publications proposing IIDSs
gathered in our SMS (cf. Sec. 3), we now assess how the
overall research landscape on evaluation methodologies for
IIDSs has evolved over time. As a systematic representation
has been missing so far (cf. Sec. 2.3), we augment the field
with a high-level overview in Sec. 4.1. Afterward, we unveil
common trends in evaluation methodologies, especially w.r.t.
the utilized datasets (cf. Sec. 4.2). Finally, we study the
degree of comparability between IIDSs publications in terms
of the utilized dataset and evaluation metric (cf. Sec. 4.3).

4.1 Overview of the IIDS Research Landscape
We begin our analysis with a high-level overview of the evo-
lution and composition of the IIDS research landscape.

4.1.1 Evolution

To understand the evolution of the IIDS research domain, we
focus on the number of published papers over time (cf. Fig. 2),
which we enrich with timestamps of notable cyber incidents
and the releases of commonly used evaluation datasets. While
the first publications within the IIDS domain date back to
2003, the domain initially received little attention, with only
28 publications until 2012. From 2013 onward, research took
off exponentially, with an average increase of 40.9 % in yearly
publications. In 2021, the last year considered in our SMS,
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Figure 2: Publications on IIDSs took off around 2013 and kept
increasing as more cyberattacks occurred. Simultaneously
the trend fosters to evaluate on public datasets.

we identified 130 new publications, which is higher than in
any previous year. In comparison, the Top 10 cyber security
conferences experienced a lower average yearly increase in
accepted publications from 7.2 % for Crypto up to only 25.5 %
for USENIX Sec during the same timespan [77].

We presume that the key driver for this development and
interest in this research domain is caused by the raised public
awareness following the Stuxnet cyberattack and subsequent
ones like the two major incidents with the Ukrainian power
grid [5]. Apart from such targeted attacks, industries were
equally affected by more widespread malware, such as Not-
Petya or WannaCry [5], due to their increasing digitalization
and Internet-facing deployments (cf. Sec. 2.1). With attacks
still continuing [52], endangering human safety, expensive
equipment, as well as the environment, the peak in 2021 with
130 proposals comes as no surprise—underlining the growing
importance of IIDS research.

A first look at the (publicly) utilized datasets’ in Fig. 2 also
allows us to deduce the existence of a growing number of
public datasets. These datasets stem from various industrial
domains, such as water purification, gas distribution, and elec-
trical power generation, among many others. This conclusion
aligns with recent results identifying a growing number of
public datasets emerging across many industrial domains [14].

From this initial assessment, we conclude that IIDS re-
search tackles the diverseness of industrial domains based on
variously utilized datasets and experiences steady growth that
does not seem to have reached its peak yet.

4.1.2 Coherence

For such a rapidly growing research landscape in a diverse
industrial environment, we further want to understand how
coherent research is performed, i.e., whether directions exist
that receive more attention and whether recent results build
on previous findings. Therefore, we visualize the connections
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Figure 3: Publications arranged in a citation graph reveal
two directions roughly disjunct into approaches considering
network traffic datasets and ones evaluating process data.

among publications by their citation relationships in Fig. 3.
Citation data was retrieved and aggregated from OpenAlex
and Semantic Scholar for all 609 publications, and we draw
a connection between two publications if one cites another.
In Fig. 3, publications are arranged by the force-directed
Fruchterman-Reingold placement algorithm [22], i.e., con-
nected vertices are pulled closer together. Moreover, for publi-
cations utilizing publicly accessible datasets, we colored their
vertices belonging to process data datasets, network traffic, or
both. Note, however, that our analysis omits 125 publications
for which no connection to other publications could be found,
either because the citation data for the respective publications
was incomplete or because the IIDSs were indeed presented
without relating to the vast body of existing works.

On average, a publication is cited by 2.9 other IIDS publi-
cations, while the Top 5 cited publications [13, 29, 30, 42, 70]
(not in order) are cited on average by 46.6 papers as of the
1st March 2023. These numbers provide a first glance at the
connectivity in IIDS research.

Yet upon an initial inspection of the citation structure, we
observe that the IIDS research domain is divided into two
basic directions based on the evaluated dataset types: A first
group of 102 papers (blue) resembles the larger class that
focuses on process data datasets. In addition, we discovered
a slightly smaller class of 81 publications (red) that corre-
sponds to intrusion detection methodologies detecting attacks
in network data. Only rarely (19 times) do IIDSs fall into
both classes (green). Interestingly, both research fields show

Origin Name Type Domain Protocol Usage

iTRUSTa
SWaT [28] P∗ Water – 9.0 %
BATADAL [68] P Water – 1.6 %
WADI [2] P Water – 1.0 %

Morris et al.b
Morris-Gas [55] N Gas Modbus 11.8 %
Morris-Power [1] P Electricity – 5.6 %
Morris-Water [55] N Water Modbus 2.8 %

Misc

UCI-Water [60] P Water – 2.0 %
HAI [65] P Diverse – 1.1 %
Lemay [45] N Electricity Modbus 1.0 %

N: Network captures P: Process data
∗ Network captures for SWaT exist, but are rarely used in research.

a https://itrust.sutd.edu.sg/itrust-labs_datasets
b https://sites.google.com/a/uah.edu/tommy-morris-uah/

ics-data-sets

Table 1: Across the top nine public datasets, two account for
the majority of uses. Despite ICSs’ diversity, the top datasets
focus on a few domains and protocol combinations.

little connectivity, indicating a limited exchange of knowl-
edge across these fields. This is backed by the fact that the
clustering coefficient for the sub-domains (process data 0.15
and network traffic 0.13) is slightly higher than for the entire
IIDS research landscape (0.11).

Consequently, publications are more likely to cite each
other if they stem from the same type, which promises a high
number of comparisons among them. Still, the low clustering
indicates incoherence in the overall research domain.

4.2 Benchmarking Datasets
With a basic understanding of the IIDS research domain, we
now assess how evaluations are conducted in more detail.
In this context, the chosen benchmarking datasets are a cru-
cial building block as it serves as the basis for nearly all
subsequent performance calculations. While related work
has assessed which datasets are readily available [14], their
exact usage and distribution remains unknown as of now
(cf. Sec. 2.3). Consequently, this section answers our first
research question Q1, regarding the datasets IIDSs are evalu-
ated on. For a description of the existing datasets and testbeds,
please refer to the survey conducted by Conti et al. [14].

4.2.1 Overview

As can be derived from Fig. 2, over the entire timespan, the
majority of used datasets are private, and only 33.3 % of the
publications evaluate at least one public dataset. Note that
we counted datasets as private if there existed no obvious
procedure to retrieve the dataset. While private datasets may
represent unique use cases, e.g., real-world data of industrial
facilities, they significantly hinder reproducibility and com-
parisons to related works since they usually deny access to
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Figure 4: Publications usually utilize a single dataset, and
only 16.4 % of the papers leverage multiple datasets at all.

outsiders. In our SMS, we refrained from investigating pri-
vate datasets in more depth because of the varying degrees
of descriptions throughout the publications. Hence, needed
details cannot be fully captured or verified. Nonetheless, we
observe a trend starting around 2013 toward increased uti-
lization of public datasets, which accounts for 54.7 % of the
evaluated datasets in 2021. Therefore, it is more likely that
an IIDS uses public datasets if published recently.

This trend follows the publication of high-quality datasets
that are still widely used today. When looking at peak usage of
public datasets, the SWaT [28] and Morris-Gas Pipeline [55]
datasets jointly occur in 20.4 % of the publications, which is
the majority of the publications utilizing a public dataset at
all (33.3 %) and other public datasets are thus used much less
frequently. As a consequence, a significant portion of research
activities seems to be biased toward these two datasets.

Regarding dataset diversity, across our entire SMS, we
identified 35 unique public datasets, which exceeds previous
reports of 23 datasets by Conti et al. [14]. In contrast to
Balla et al. [10] (cf. Sec. 2.3) and by the design of our SMS
(cf. Sec. 3), we dominantly encounter specialized industrial
datasets contradicting their observed research bias toward non-
industrial datasets. However, of the many public datasets, 16
are only used once, and 14 occur at least three times (the Top
nine public datasets are depicted in Fig. 2). Thus, availability
alone is not decisive for a widespread use and other factors
such as covered domain and attacks as well as the overall
quality of the data seems to play an essential role as well.

4.2.2 Dataset Types

In the next step, we examine the Top nine datasets more
closely and highlight their different directions (cf. Tab. 1).

First, a dataset’s type can be either a network capture,
mostly required for network-based IIDSs or a (preprocessed)
sample of physical system data, e.g., a time series of tem-
perature values. For each type, we observe one major origin
that accounts for most of the utilization across research, with
iTRUST for process-based datasets and Morris et al. primarily
for network-based ones. Considering the type of the top nine

Combination Count Origins

Morris-Gas & Morris-Water 12 1
Morris-Gas & Morris-Power 8 1
Morris-Power & Morris-Water 7 1
SWaT & WADI 4 1
Morris-Gas & UCI-Water 4 2
Morris-Gas & SWaT 3 2
Electra Modbus & S7Comm 3 1

Morris-Gas, Power & Water 5 1

No private datasets were considered

Table 2: If multiple datasets are used, they mostly stem from
the same class or origin, attributing little to richer evaluations.

utilized datasets, we observe a strong focus on process-based
datasets with 20.3 % compared to 15.6 % for network-based,
which is in line with the observations from Sec. 4.1.2.

Since industrial domains are diverse, we expect a large cov-
erage of them across utilized datasets as well. However, the
commonly covered industrial domains are mainly driven by
the water and gas facilities, indicating an underrepresentation
of all other domains, such as power generation, electricity
distribution, or manufacturing. Yet, considering the large
numbers of domains covered by private datasets, for which
(high-quality) public alternatives do not exist, we cannot con-
clude that other domains receive few attention nor that those
industries show no interest in IIDS research.

Lastly, industries are well known for their diverse and in-
compatible pooling of network protocols, mostly for legacy
reasons [15]. Despite market-share studies identifying 11
dominant network technologies [31], research either focus on
Modbus (having 10 % market share [31]) or no communica-
tion protocol at all. While we discovered IIDSs for further
industrial protocols such as IEC 60870-5-104 [46], S7 [47],
or DNP3 [62], their representation is marginal and mostly
confined to private datasets. Therefore, the distributions of
utilized datasets w.r.t. their type, industrial domain, and net-
work protocol reveal a significant drift between peer-reviewed
literature and actual production systems.

4.2.3 Research Embedding

In the last step, we assess how the different datasets are em-
bedded into research. Therefore we begin with the number
of different datasets that are used within a single publication,
as shown in Fig. 4. A large class of publications (509) eval-
uates a single dataset, and only a minority (100) on more
than one. One publication uses 1.3 datasets on average. This
observation is in line with the previous clustering observed
in Sec. 4.1.2, which is more coherent w.r.t. the top-used
datasets, suggesting that researchers often primarily focus
on a single dataset. Given that we found at least 35 datasets
publicly available, researchers most likely could consider ad-
ditional, compatible datasets, especially when claiming that

7
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proposed IIDSs are applicable to a large range of industrial
domains [74]. This claim is backed by the fact that two publi-
cations have already evaluated as many as six datasets [11,26].
However, our results also suggest a discrepancy between
datasets w.r.t. ease of use, documentation, and completeness,
motivating the limited use of the available datasets.

Looking into the preferred datasets, Tab. 2 enumerates
the top dataset combinations. While we observe prominent
combinations, the corresponding datasets usually originate
from the same source and thus represent similar domains
and protocols. Only seven publications evaluate datasets that
stem from two origins. Thus, potentially widely applicable
IIDSs are evaluated for specific (research) deployments from
a single industrial domain, most likely not representative of
an entire domain. Consequently, research fails to effectively
widen the scope of available evaluations and rather introduces
biases by focusing on a few specific niches.

Overall, IIDS research is still governed by private datasets,
with a steadily increasing trend toward public datasets. How-
ever, we observe the potential for improvement in the number
of datasets used during evaluation as well as their diversity
w.r.t. their type, industrial domain, and network protocol.

4.3 Reproducibility and Comparability

Next, we address our second research question Q2 asking
to which extent IIDSs compare against each other. We as-
sess this question from two directions, first by examining the
conditions for reproducibility and second by measuring the
degree of comparability, which are both perceived as good
scientific standards [56], even though reproducibility lacks
far behind expectations in the entire research community (be-
yond intrusion detection research) [9]. While reproducibility
enables researchers to comprehend, build upon, or even en-
hance existing work, comparability allows them to determine
how well an approach performs, i.e., to highlight the impact
of newly proposed contributions over previous work or which
approaches might be suitable for real-world deployments.

4.3.1 Reproducibility

Within IIDS research, reproducing existing work is not un-
common, e.g., to concisely analyze the prospects and limita-
tions of individual approaches [17, 43], prove the feasibility
of new ideas upon reproduced implementations [74], or solely
for scientific profoundness [56]. Yet, successfully reproduc-
ing approaches is not guaranteed [17]. To even enable the
cumbersome process of reproducing IIDS research, the avail-
ability of artifacts, such as datasets or code, is needed.

In our survey, we observe that 33.3 % of the publications al-
ready utilize public datasets with an improving trend (54.7 %
of utilized datasets in 2021 are public; cf. Fig. 2). How-
ever, successfully reproducing older publications is less likely.
While the availability of code is not strictly required, as the
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Figure 5: On average, authors compare IIDSs to 0.5 ap-
proaches from the related work (black), while theoretically,
they could compare to at least 6.0. This gap increases for
papers evaluating the SWaT or Morris-Gas datasets.

relevant details should be part of the publication, it greatly
eases the reproducibility process. Unfortunately, it is difficult
to ascertain the availability of source code in a systematic way
as it is not always clear where to find availability statements or
corresponding pointers in publications. Still, we only encoun-
tered 21 publications with obvious references, e.g., clearly
highlighted repositories. We subjectively deduce an overall
low availability of source code across IIDS research.

Thus, researchers often have to rely solely on the descrip-
tions and evaluation results provided by the paper to verify
their code. Overall, reproducibility is thus challenging as
optimally both criteria (public dataset and source code) have
to be met. The increasing use of public datasets promises im-
provements in at least one direction, while publicly available
artifacts accompanying publications remain the exception.

4.3.2 Comparability

Fortunately, cumbersome reproducibility is often not needed
when, for example, it suffices to compare results to related
work, e.g., to prove a novel attack detection approach supe-
rior. This requires that both works have been evaluated on
at least one common dataset. Likewise, to objectively judge
their detection performance, both publications must employ at
minimum one identical evaluation metric. Common metrics
include, but are not limited to, e.g., accuracy, precision, recall,
or F1 [61]. Appx. B provides descriptions of further metrics.

To judge the degree of comparability across the research
landscape for each publication, we extracted the actual num-
ber of comparisons made by the authors and calculated the
number of theoretically possible comparisons. Therefore,
while conducting our SMS (cf. Sec. 3), we gathered how
many publications each author uses as comparison references
and additionally extracted the exact metrics used in each pub-
lication’s evaluation. We estimate the minimum amount of
theoretically possible comparisons by counting a publication
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as comparable if it shares at least one common dataset and
metric and was published in an earlier year. Note that while
not every two publications assume the same attack model,
comparability can still be justifiable in the cases where the
dataset matches since authors should select a dataset that best
fits their approach. This methodology provides a great oppor-
tunity to assess actual and theoretical possible comparability,
and Fig. 5 depicts the degree of comparability.

Overall, the number of actual comparisons performed by
researchers is low, with 0.5 publications on average. For the
two most-common datasets, we observe higher values (SWaT
2.4 and Morris-Gas 1.7). Still, there exists the theoretical
opportunity for authors to compare a proposed IIDS to an
average of 6.0 alternatives. On the one hand, this proves that
many works are indeed comparable in terms of datasets and
metrics. On the other hand, prominent datasets help in that
regard since their theoretical comparability is higher (SWaT
10.0 and Morris-Gas 16.4). Note that it should not be the
ultimate goal to compare against as many publications as
possible since quality is preferential before quantity.

Looking closer into the details of Fig. 5, it is interest-
ing that 10 % of the publications evaluating the Morris-Gas
dataset (yellow) actually compare only against 7 % of dif-
ferent Morris-Gas publications. However, for SWaT (red),
10 % of publications are actually compared to about 18 %
of existing works. Meanwhile, theoretical comparability for
Morris-Gas publications is even higher than for SWaT (dotted
lines). Regarding all publications (black), a total of 95.4 % of
publications are not compared to a single IIDS.

The state of comparability in the IIDS research is decent
but with opportunities for improvement in the future as many
publications share common datasets and metrics already.

5 Survey on Evaluation Metrics

Previously, we analyzed comparability as a combination of
utilizing overlapping datasets and evaluation metrics and ob-
served that more publications could compare against each
other in theory (cf. Sec. 4.3.2). However, our analysis still
lacks a more detailed look at evaluation metrics used in IIDS
research. Moreover, and most importantly, it is still unclear
how expressive a given (combination of) metric(s) is in judg-
ing the detection performance of an IIDS.

To this end, we provide an overview of common and newly
proposed metrics and categorize them into a taxonomy (cf.
Sec. 5.1). Next, we assess their utilization across IIDS re-
search along our SMS (cf. Sec. 5.2). Finally, since there
exist known flaws to metrics (cf. Sec. 2.3), we examine how
susceptible the research domain is in that regard by analyzing
their expressiveness in practical experiments (cf. Sec. 5.3).

Metric Appendix Conf. Matr. Synonym
TPTNFP FN

Po
in

t-
ba

se
d

TPR B.1.2 ✓ ✓
Recall Sensitivity
Hit-Rate

FNR B.1.3 ✓ ✓ Miss-Rate
TNR B.1.4 ✓ ✓ Specificity Slectivity
FPR B.1.5 ✓ ✓ Fall-out
PPV B.1.6 ✓ ✓ Precision Confidence
NPV B.1.7 ✓ ✓ –
Accuracy B.1.8 ✓ ✓ ✓ ✓ Rand Index
F1 B.1.9 ✓ ✓ ✓ –
RoC B.1.10 ✓ ✓ ✓ ✓ –
AuC B.1.11 ✓ ✓ ✓ ✓ –

Ti
m

e-
aw

ar
e Detected Scenarios B.2.1 ✓ –

Detection Delay B.2.2 ✓ ✓ –
(e)TaPR [33, 34] B.2.3 ✓ ✓ ✓ ✓ eTaP eTaR eTaF1
Affiliation [32] B.2.4 ✓ ✓ ✓ ✓ –

Table 3: Our taxonomy distinguishes between point-based and
time series-aware metrics. Metrics may occur under different
synonyms. For details, refer to Appx. B.

5.1 A Taxonomy of IIDS Evaluation Metrics
Evaluating the performance of an IIDS is of utmost impor-
tance to prove its effectiveness and compare it quantitatively
against related works either in terms of attack detection per-
formance, or computational resources.

Since computational resources are stated only occasion-
ally throughout the SMS, we shorty introduce which aspects
were evaluated. The most prominent aspect, still in 136 pub-
lications, refers to the time to train a model or classify a
given datapoint/dataset. More infrequently are statistics about
CPU/GPU usage (13), RAM utilization (12), or model size
(16). However, a sound comparison without equivalent hard-
ware or implementations is challenging and therefore those
metrics are beyond the scope of the SoK in the following.

Regarding detection performance, during the conduction
of our SMS, we extracted a total of 167 distinct metrics that
were used during the evaluations. To provide an initial holistic
overview, we present the most used metrics found in the
SMS and relevant (newer) ones observed in related work in a
taxonomy (cf. Tab. 3). The metrics are discussed in a more
general fashion in the following, while short explanations for
all 14 introduced metrics can be found in the Appx. B.

5.1.1 Confusion Matrix

Scientific evaluations of IIDSs base on labeled benchmarking
datasets (cf. Sec. 4.2), including samples of cyberattacks (ma-
licious) and benign behavior. After a training phase, for each
data-point in the dataset, the known labels are compared to the
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output of the IIDS (alarm or no alarm). The high-level goal
of an IIDS is to detect as many attack instances as possible
while emitting few (false) alarms for benign behavior. Note
that especially in ICSs, where cyberattacks are rare compared
to benign behavior, false alarms should be minimal [18].

As the first performance indicators, one can count the oc-
currences of all four possible combinations between dataset
labels and IIDS outcomes called true-positive (TP), true-
negative (TN), false-positive (FN), and false-positive (FP),
making up the confusion matrix to capture an IIDSs behavior.

5.1.2 Point-based Metrics

Since there is a desire to express performance with a single
value irrespective of the dataset, there exist a large variety of
point-based metrics derived from the confusion matrix [61]
(cf. Tab. 3). These express properties, such as its overall cor-
rectness (accuracy), the fraction of correct alarms (precision),
or fraction of identified attacks (recall). Point-based metrics
find wide application beyond IIDS research, e.g., machine
learning, and thus a natural choice for comparisons.

5.1.3 Time Series-aware Metrics

Point-based metrics are suitable when the benchmarking
datasets’ entries are independent. However, ICSs are inher-
ently time-dependent, i.e., the current state of an ICS is always
a result of the system’s previous state. Consequently, IIDS
datasets extracted from these systems also need to be consid-
ered in the aspect of time, i.e., an alarm extending beyond
an attack while the system did not yet reach its normal op-
erational state should be interpreted differently from a false
alarm in the middle of normal behavior. In such or similar
scenarios, point-based metrics are skewed, which is already
known in literature since 2014 by Gensler et al. [25].

Consequently, many novel time-aware metrics tackle such
flaws [25, 32–34, 44, 69]. They, e.g., simply count the number
of detected and continuous attack scenarios (detected scenar-
ios) [48], aggregate the time it takes until the IIDS emits an
alert after the attack began (detection delay), or define new
time series-aware versions of precision and recall to favor
early detection of an attack instance (e)TaPR [34]. Yet, Huet
et al. [32] already found that (e)TaPR is not free of flaws
and responded with their own Affiliation metric. Note that
while time series-aware metrics like Numenta [44] or the one
proposed by Tatbul et al. [69] and Gensler et al. [25] exist,
they were observed only seldom in our SMS, if at all.

5.2 Metrics Utilized in IIDS Research

Given that a wide variety of metrics exist to express IIDS
performance, in our final research question Q3, we ask how
often and when these metrics are used. Overall in our SMSs,
we found 167 different metrics and flavors, including, e.g.,
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Figure 6: Point-based metrics dominate IIDS evaluations,
with accuracy, precision, recall, and F1 being the top most
used metrics. Over time, the number of metrics in a publica-
tion increased to currently 3.2 on average in 2021.

subtle deviations such as multi-class or weighted variants.
To handle this amount of metrics, we aggregated them into
similar classes, e.g., binary-class and multi-class accuracy are
considered as the same metric type. Since a majority is used
infrequently, i.e., only 12 occur at least ten times, we bundle
rarer metrics into a single class (others) in the following.

5.2.1 Metrics over time

To obtain a first overview of the utilization of frequent metrics,
we depict their use over time in Fig. 6. First of all, the number
of different metrics used in a single publication on average
(2.3 overall) kept increasing since 2013, and nowadays, pub-
lications use 3.2 metrics on average. This greatly coincides
with the previous observation in Fig. 2, where the year 2013
marked the turning point when IIDS research took off. This
trend toward more metrics contributes to higher comparabil-
ity in the research domain and hints at in-depth evaluations.
However, there also exist 157 publications that evaluate with-
out any quantitative metrics and instead rely only on textual
descriptions, e.g., elaborating which attack scenarios were
detected or discussing results visually along graphs. Note that
textual descriptions cannot be aggregated into a unified class
as they differ significantly, i.e., two publications using textual
descriptions hardly describe the same feature.

In contrast to dataset utilization (cf. Fig. 2), the metric
utilization fluctuates less over time. One notable trend, again
starting around 2013, is that accuracy, precision, recall, and
F1, i.e., the classical point-based metrics, have established
themselves as metrics with high usage by representing 63.1 %
of all used metrics. At the same time, out of the 348 publica-
tions utilizing one of these four metrics, only 81 state all four.
Thus their usage is inconsistent, and most publications only
focus on certain aspects of their expressiveness.

Concerning all point-based metrics, which account for
93.3 % of all metrics, the confusion matrix resembles an
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Figure 7: Papers utilizing SWaT and especially the Morris-
Gas dataset are dominated by point-based metrics. Time
series-aware metrics are slightly more frequent for SWaT.

important metric as it builds the foundation to calculate all
point-based metrics (cf. Sec. 5.1.1). However, out of the 57
papers that publish the confusion matrix, just 19 fully state or
discuss all four common metrics (accuracy, precision, recall,
and F1), even though this would be easily doable. In 9.4 %
of the publications where the confusion matrix is published,
at least missing metrics can be calculated, which is not pos-
sible the other way round, i.e., the confusion matrix cannot
be computed if, e.g., F1 scores are indicated. It thus remains
questionable why publications omit frequently used metrics
when all data to compute them has to be available anyway.

Even though it has been known since 2014 that for indus-
trial IDSs, point-based metrics may be flawed [25], they make
up 93.3 % of all metrics. As a time series-aware metric, detec-
tion delay receives constant but infrequent use by 48 publica-
tions overall. Still, detection delay alone does not quantify the
portion of detected attacks and thus likely serves to enhance
point-based metrics. Newer promising time series-aware met-
rics yet have to gain traction (only 13 publications use them),
despite their added value in interpreting IIDS results.

Evaluations in the IIDSs research dominantly build upon
point-based metrics, which are known to have flaws, espe-
cially on time-series datasets as used in IIDS research [25,33].

5.2.2 Metric distribution on datasets

In Sec. 4.1.2, we observed the formation of obvious clusters
in research around publications using the same dataset. Con-
sequently, Fig. 7 depicts the dataset’s influence on the chosen
metrics. Therefore we pick the two most commonly used
datasets, SWaT and Morris-Gas (cf. Sec. 4.2), and compare
their metrics distribution against all publications.

The top four metrics (accuracy, precision, recall, and F1)
play a major role for the SWaT and Morris-Gas datasets too,
even more than across all publications. Recall, for example,
is used in 43.0 % of all publications but indicated for 79.2 %
of IIDSs evaluated on the Morris-Gas dataset. The order of
usage between them is also similar, i.e., precision is used the
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Figure 8: Metrics show strong correlations w.r.t. combina-
tions they occur in publications. E.g., F1 is used in 152
publications, and among them 82.2 % publish precision. Vice
versa, 77.2 % of the 162 papers with precision also state F1.

most and F1 the least. The only exception is accuracy, which
is indicated less often for the SWaT dataset. This difference
might be caused by SWaT featuring far fewer attack instances.
Another exception is that other point-based metrics (confusion
matrix, FPR, TNR, FNR, and NPV) receive greater attention
in the Morris-Gas dataset. Contrary, time series-aware metrics
are slightly more common for SWaT.

Our analysis highlights once again the dominance of point-
based metrics, especially for the top two datasets by usage.

5.2.3 Metric Combinations

Even though there exists a variety of metrics (cf. Sec. 5.1), a
single metric usually has to be considered in relation to others.
E.g., precision and recall have to be discussed jointly since
an IIDS which detects all attacks (high recall score) might
do so simply by emitting alerts continuously, which would
become visible in a low precision score. Fused metrics like
F1 try to remedy this situation but deny in-depth reasoning
afterward as they do not retain the precise original informa-
tion. According to our SMS, publications state 2.3 metrics on
average to sketch light on the IIDS performance from differ-
ent perspectives. Consequently, as the last step, we evaluate
which metrics are used together.

To this end, Fig. 8 depicts the occurrence of combinations
between the considered metrics. On the diagonal, we enumer-
ate how often each metric is utilized globally, i.e., recall is
used 262 times. The remaining cells indicate how often the
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indication of one metric leads to the usage of another metric.
In total, 152 publications used the F1, and 91.4 % of these

papers (stating F1) also published recall values. This is not
surprising since knowledge of the recall is required to calcu-
late F1. Vice versa, however, 262 papers used recall, and of
them only 53.1 % of those also published F1 scores. Looking
at precision and recall as two complementing metrics, recall
is used in 93.8 % of the publications that state precision. If
recall is stated, only 58.0 % also publish precision. While the
number of detected attacks (recall) is valuable information,
for the 42 % of IIDS not indicating precision, it is unknown
whether the IIDS indeed performs better than an IIDS that
simply outputs one continuous alarm.

For popular point-based metrics (within the black rectan-
gle), we observe a strong dependence between them, which is
not surprising as these are heavily used (cf. Fig. 6 and Fig. 7).
Since many point-based metrics are derived from the confu-
sion matrix (cf. Tab. 3), the confusion matrix likewise has a
high correlation with these four. However, it is not guaranteed
that these are published reliably, as F1 is contained in only
57.9 % of the cases when the confusion matrix is presented.
This is in line with our previous observation that of the 57
publications with a confusion matrix, only 19 state all of the
four most often used point-based metrics (cf. Sec. 5.2.1).

Except for the dependencies between FNR and FPR, there
exist few apparent correlations, thus often omitting the classi-
cal point-based metrics completely. Especially publications
taking advantage of newer, time series-aware metrics lack
other metrics. While this development makes sense (why
should we indicate flawed metrics when we can use better
ones), it makes comparisons to prior works harder.

5.3 Expressiveness of Metrics

Until now, our SoK on evaluations of IIDSs bases on theo-
retical observations from literature, e.g., which datasets and
metrics are used. In the following, we extend our analysis
beyond a literature mapping study with practical experiments
to understand the quantitative impact of metric choices on
the evaluation outcomes and to derive metrics that offer high
expressiveness. To this end, we conduct a comparison study
across ten IIDSs from research on two datasets and utilize
our evaluation tool (cf. Availability Statement) to compare
various metrics. Especially for newer time series-aware met-
rics, which are more difficult to compute [32,34], no common
library exists thus far. Besides the metrics discussed in the
following, the tool provides a total of 18 point-based and 14
time-aware metrics, for which few implementations exist.

5.3.1 Experiment Design

As we observed in Sec. 4.2, the IIDS research community
is governed by two major directions of datasets: network-
based datasets such as the Morris-Gas [55] and process data

datasets such as SWaT [28] containing physical time series
data. We aim to cover both types in our evaluation and thereby
also cover two important IIDS types from research, namely
knowledge- and behavior-based IIDSs (cf. Sec. 2.1). For
knowledge-based IIDSs, we examine five supervised ma-
chine learning approaches [59, 72] originally evaluated on
the Morris-Gas dataset. For behavior-based IIDSs training on
process data, we leverage five anomaly detection approaches,
with TABOR basing on timed automata [48], Seq2SeqNN
utilizing neural networks [39], PASAD leveraging singular
spectrum analysis [6], SIMPLE implementing minimalistic
boundary checks [73], and Invariant mining invariant logical
formulas [20]. Contrary to the supervised machine learning
approaches on the Morris-Gas dataset, these IIDSs are evalu-
ated on the temporally ordered SWaT dataset, which provides
dedicated attack-free training data and testing data, including
anomalies. As an interesting case for the SWaT dataset, we
added an IIDS that randomly emits alerts by a 50 % chance.

5.3.2 Metrics Under Study

In this study, we focus on the four common point-based met-
rics accuracy, precision, recall, and F1 (cf. Sec. 5.2) and
modern time series-aware variants of them called enhanced
time series-aware recall (eTaPR) [34] (cf. Appx. B.2.3). More
precisely, eTaP for precision, eTaR for recall, and eTaF1 for
F1 (there is no time series-aware accuracy equivalent). Addi-
tionally, we consider the time-aware Affiliation metrics (again
expressed as variations of precision, recall, and F1) proposed
by Huet et al. [32], which claim to be robust against ran-
domly generated alerts. These metrics, like their point-based
counterparts, favor high detection rates but diminish the ex-
pressiveness of consecutive alarms if they start too early or
overhang beyond the duration of an attack. Furthermore, we
examine a variant of F1, which allows weighting precision
and recall differently. This may be crucial in industries since
cyberattacks are rare compared to normal behavior, prefer-
ring a high precision over false alarms. The datasets in our
study already incorporate this class imbalance, with Morris-
Gas containing 22 % malicious data, SWaT just 12 %, and
real deployments likely observing even fewer attacks. Thus
we examine F0.1 in addition, weighting precision ten times
more than recall. As the last metric, and since there is only
one repetition for each attack type in SWaT, we discuss the
percentage of detected scenarios (unique attack types).

5.3.3 Results

Point-based. We begin with analyzing the knowledge-based
IIDSs on the Morris-Gas dataset in Fig. 9(a). Here, the point-
based metrics (accuracy, precision, recall, and F1) coherently
judge the IIDSs’ performance, i.e., one IIDS is strictly better
than another, and only in recall does the ordering between
ExtraTrees and DecisionTrees flip. The F0.1 variant’s judg-
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Figure 9: While point-based metrics rate IIDSs’ performance
consistently on the Morris-Gas dataset (a), they fail to provide
a coherent picture of the time-series dataset SWaT (b) and
judge IIDSs better than time-aware metrics.

ment is in line with the other metrics, likely due to the high
amount of malicious samples (22 %) in this dataset. Also,
the time series-aware variants draw a nearly identical picture
here. Note that the attack instances of the Morris-Gas dataset
correspond to manipulations of individual network packets,
and thus temporal effects are minimal. While the IIDSs are
well at detecting these attacks, it is unclear whether the attacks
themselves are actually comprehensible to ones observed on
real deployments. Overall, the considered metrics coherently
judge the IIDSs’ performance on the Morris-Gas dataset.

The picture changes for the SWaT dataset comprising of
time series of physical states (cf. Tab. 1). We additionally
depict the raw alert emitted by the IIDSs over time in Fig. 10.
First of all, as depicted in Fig. 9(b), all IIDSs perform well
according to accuracy (more than 0.75). Yet, in comparison to
all other metrics, accuracy seems to overestimate their capabil-
ities. We attribute this to SWaT’s composition comprising to
12 % of attacks (which is more realistic than Morris-Gas with
22 % as attacks are rare in practice), and an IIDS that emits
no alarms at all would score an accuracy of 0.88 already.

Regarding precision and recall, we observe ambiguity.
Seq2SeqNN falls far behind the other approaches in recall,
which we attribute to a single long attack in SWaT (accounting
for 63 % of all attack samples) being missed by the approach
(cf. Fig. 10). Besides this attack, Seq2SeqNN achieves de-
cent scores as it correctly detects most of the other attacks (cf.
detected scenarios). Therefore, point-based metrics overvalue
this attack, i.e., no obvious relation exists between the attack’s
duration and its severity that would justify this effect. In con-
trast to the Morris-Gas dataset, the F0.1 score clearly favors
IIDSs with higher precision, and thus TABOR is preferred
over the SIMPLE IIDS (even though nearly equivalent in F1).

Time series-aware. In general, time series-aware metrics
promise to solve these inaccuracies of point-based metrics.
In our practical study, all IIDSs perform much worse on the

time eTa series-aware variants [34], which might be the case
since they have not been designed for this kind of (potentially
more valuable) evaluation. Here, the SIMPLE IIDS is now
the best-performing approach according to eTaP, eTaF1, and
eTaF0.1 as its emits alerts are precise, i.e., no overshooting
as by PASAD or occasional short false-alarms as in TABOR
and the Invariant IIDS. Yet contradicting the traditional recall
score, Seq2SeqNN now belongs to the best IIDSs in the time-
series recall pendant (eTaR) probably because the time-aware
metric analyzes alarms consecutively, and thus false-negatives
of overshooting alarms are not weighted that negatively.

The time-aware affiliation metrics [32] draw a completely
different picture since all IIDSs perform much better. The
ratings for precision, F1, and F0.1 are mostly consistent, and
the IIDSs only differ significantly in terms of affiliation recall.
However, a random IIDS, which the metric should consider as
the minimum baseline [32], is counterintuitively perceived as
a better approach than PASAD and TABOR in the affiliation
F1 score. In all other point-based and time-aware metrics, this
random IIDS is perceived as the worst approach (except for
detected scenarios and recall).

False-positive resistance. For practical deployment, IIDSs
with many false positives are unsuitable [18], and thus identi-
fying those in evaluations is crucial. In that regard, while the
Invariant IIDS outperforms all other approaches in many met-
rics, visually (cf. Fig. 10) exhibits the least usable approach
due to its plentiful but short-lived false alarms. Only in the
eTa metrics it performs badly.

5.3.4 Conclusion

Point-based metrics draw a coherent picture for the Morris-
Gas dataset containing a significant amount of attacks with
few temporal effects as single network packets were manip-
ulated. In contrast, authors have to carefully examine their
results on the SWaT dataset since, depending on the chosen
metric, their IIDS may perform excellently or poorly. These
results are in line with Fung et al. [23], finding that time-
series metrics are preferable for reconstruction-based IIDSs
and point-based scores may be misleading. For the affiliation
metrics by Huet et al. [32], our experiment challenges their re-
sults, especially for an IIDS that emits alerts randomly. Thus,
a better understanding of how such newer time series-aware
metrics have to be interpreted is crucial.

Overall, it is unlikely that a single metric exists that catches
all industrial operators’ different goals, e.g., preferring few
false alarms over detected attacks. IIDSs should be evaluated
with different metrics to truly highlight their capabilities, as
cherry-picking metrics may lead to misleading results. The
F0.1 score provides an interesting alternative for more real-
istic scenarios. Furthermore, visual comparisons exhibit a
non-negligible added value to evaluations too. Lastly, the
knowledge- and behavior-based IIDSs are hardly comparable
today since they are divided by dataset type.
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Figure 10: Visualizing alerts side-by-side provides an in-depth view of their distinct alerting behavior. E.g., the underwhelming
performance of the Seq2SeqNN IIDS in point-based recall (cf. Fig. 9) can easily be attributed to a single prolonged attack of the
SWaT dataset. Note that alerts have been extended to a minimum width of 1 minute for visibility (except for Random).

6 Common Issues & Recommendations

The huge potential of IIDSs to combat rising threats from cy-
berattacks against industrial networks is indisputable. Unsur-
prisingly, our systematic analysis (Sec. 4 and Sec. 5) shows an
unbroken and increasing interest in this research field (40.9 %
average yearly increase between 2013 and 2021), with at
least 609 publications investing great efforts in proposing
IIDSs, which are complemented by further work on creating
datasets, designing evaluation metrics as well as surveys and
meta-analysis. However, our SMS also unveils and quantifies
flaws in this field that hamper scientific progress. Thus, in the
following, we synthesize common issues persisting in IIDS
evaluations and distill recommendations to move forward to
more thorough IIDS evaluations.

6.1 Common Issues in IIDS Evaluations

Our systematic analysis of the IIDS research field reveals that
the current state-of-the-art w.r.t. evaluation methodologies
has serious inefficiencies, eventually slowing down the over-
all progress in securing industrial deployments. Our SMS,
covering the body of literature until 2021, enables quantify-
ing these inefficiencies and makes (promising) trends visible
in contrast to previous meta-surveys and experiments on a
usually narrower scale (cf. Sec. 2.3). More precisely, we iden-
tify three issues (I1–I3) prevalent in evaluations of IIDSs and
present them along the results from our SMS in the following.
▶ I1: Dataset Diversity. We identify a lack of diversity in
datasets used for evaluations. Regarding the utilization of
datasets, we find that IIDSs are evaluated on 1.3 datasets
on average (cf. Fig. 4), which aligns with 1.32 datasets on
average reported by related work [74]. Notably, the majority
(501 publications) considers only a single dataset, despite
a significant selection of datasets being publicly available
(we identified 35 public datasets in our SMS, and other work
lists 23 datasets or 61 industrial testbeds [14]). Since there
exists this large gap between available and utilized datasets,
this raises the question of why many datasets are only used
rarely. Possible reasons include datasets being too narrow

in scope (e.g., focusing on single attack types), too small
(providing only few training or testing samples), difficult to
use (e.g., requiring in-depth knowledge of a specific industrial
protocol), or simply not widely known among researchers.
Lua et al. [49] also find that high-quality datasets are rare.
Moreover, for the few publications that evaluate multiple
datasets (16.4 %), these datasets mostly stem from the same
origin (cf. Tab. 2). Thus, IIDSs’ evaluations are mostly
confined to a single scenario (dataset) and do neither cover the
diversity of industrial domains nor communication protocols
(cf. Sec. 4.2.2). Consequently, it remains unclear whether
IIDSs are applicable outside the narrow scenario they have
been evaluated in, making real-world deployments risky and
requiring repeated efforts for different scenarios.

▶ I2: Metrics Ambiguity. Metrics used in evaluations and
comparisons pose ambiguity regarding the actual detection
performance of IIDSs. Due to the unclear and biased choice of
metrics, the actual detection performance of proposed IIDSs
often remains unclear, as also claimed by Giraldo et al. [27].
Seemingly promising, we observed an increase in the number
of utilized metrics (3.2 per publication on average in 2021)
while simultaneously moving away from mere textual descrip-
tions (cf. Sec. 5.2) toward established point-based metrics
(cf. Fig. 6). Accuracy, precision, recall, and F1 make up the
majority of utilized metrics again [49]. However, we also
encountered a total of 167 flavors of metrics, e.g., subtle vari-
ations such as multi-class or weighted scores, which further
complicates metric ambiguity. At the same time, essential
metrics, expected to be provided in combination, are often
omitted or incomplete in publications. I.e., of the 57 publica-
tions providing the confusion matrix, only 19 state accuracy,
precision, recall, and F1 in combination (cf. Sec. 5.2.1). Even
more severe, precisely these four point-based metrics, mak-
ing up 63.1 % of the metric usage, do not accurately capture
the detection performance in time-series scenarios [23] and
are skewed towards the detection of long-lasting attacks (cf.
Sec. 5.3). While plenty new metrics [25, 32–34, 44, 69] are
designed that supposedly address these issues, these metrics
are rarely used in evaluations (only 13 publications), likely
because a broad understanding about their expressiveness is
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missing. Lastly, as our practical experiments show, not a
single metric can describe all aspects of an IIDS, and visual
comparisons can disprove, e.g., seeming promising IIDSs.
▶ I3: Underutilized Comparability. Evaluations of IIDSs
do not capitalize on the large potential for comparisons
among the vast body of existing research. The number of
comparisons to related work performed by new IIDSs’ has
experienced earlier criticism already [27]. On average, an
IIDS is only compared with 0.5 other proposals, slightly more
than observed in previous works (0.38) [74]. Yet, in theory,
authors could compare an IIDS to an average of 6.0 other
approaches sharing at least one common dataset and metric
(cf. Fig. 5). Simultaneously, the current state of the research
field leaves researchers large freedom to choose from any of
the theoretically suitable publications for their comparisons.
This situation is even aggravated by the sparse commitment
to publish artifacts (cf. Sec. 4.3.1), which leaves researchers
no choice other than to reproduce others’ works, e.g., to ulti-
mately conduct comparability studies—a non-trivial task that
is prone to failure [17]. Meanwhile, researchers have to rely
on public datasets and the expressiveness of metrics that both
exhibit flaws themselves (cf. I1 and I2). However, proper
comparisons are essential to better understand if and how a
novel IIDS improves upon existing work and thus collectively
move the research field forward.

6.2 Recommendations for IIDS Evaluations

To address these prevalent issues and thus enhance evaluations
as well as the applicability of future IIDSs research, we extract
key aspects from our systematic analysis and turn them into
six actionable and practical recommendations (R1–R6).

Since our recommendations target different parties involved
in IIDS research, we address them to (i) researchers designing
new detection approaches, evaluating them, and comparing
them to the state-of-the-art; (ii) dataset creators recording
qualitative datasets or providing simulations and testbeds;
and (iii) industrial operators with precise knowledge of the
individual needs of ICSs’ striving to role out IIDSs in practice.
▶ R1: Evaluate More and Diverse Datasets. Researchers
should use the many readily available datasets to comprehen-
sively evaluate their IIDSs for different industrial domains,
communication protocols, and attack types. Using multi-
ple, especially diverse datasets avoids overfitting [73], boosts
generalizability across ICS, enables insights across multiple
domains, and allows assessing the potential efforts required to
facilitate (widespread) deployability across industries. For a
concise dataset selection, we recommend focusing on publicly
available datasets such as those listed in Conti et al.’s [14]
comprehensive datasets and testbeds overview. For evalu-
ations requiring process data, datasets of multiple origins
and industrial domains should be used. Likewise, for IIDSs
operating on network traffic, generalizing the approach to
different industrial protocols should be considered. More-

over, specialized datasets that, e.g., model a single attack
type, cover a niche industrial domain, or deploy rarely used
protocol, still provide substantial added value when used in
combination with other, more general datasets to better under-
stand the capabilities and limitations of an IIDS. Addition-
ally, researchers can consider datasets containing attacks and
faults (e.g., the IEC61850SecurityDataset [12]) to evaluate
whether their proposed IIDSs can differentiate these kinds
of unwanted behavior to facilitate swift and correct reactions
by operators to alerts. Lastly, to ease evaluations on a multi-
tude of datasets with potentially varying formats, agreeing on
unified dataformats, such as IPAL [74], may help lower the
burdens for researchers.
▶ R2: Provide High Quality Datasets. Dataset creators
should provide the research community with high-quality and
diverse datasets to counteract the current bias to two ma-
jor datasets (cf. Tab. 1). To ensure the practical relevance
of datasets, they should ideally be generated in close coop-
eration with industrial partners [57] since otherwise, IIDSs
designed upon them risk not being of practical use to indus-
trial operators. Such collaborations, even though costly [7],
also allow enriching datasets with properties and demands of
actual industrial deployments, e.g., the criticality of an attack,
an acceptable delay until which a detection is excepted, or
documentation of how long the ICS behaves abnormally af-
ter an attack until it stabilized again. Furthermore, research
lacks datasets that tackle the needs of all IIDS flavors (cf.
Sec. 4.2.2), inhibiting a consolidation of the overall research
landscape. For one, only a few datasets (Faramondi et al.
providing a rare exception [19]) combine network traffic and
process data, which is necessary to compare IIDSs that work
on these different data types. Moreover, datasets should be
designed and created such that they are applicable to both
supervised and anomaly-based IIDS training (currently, no
corresponding dataset is known to us), e.g., by including rep-
etitions and variations of the same attack, providing sufficient
long samples of benign behavior, and including novel attacks,
which are not previously trained on, to avoid the drawing
of false conclusions [43]. For more concrete advice on how
scientific IIDS evaluation datasets should be designed, please
refer to the works by Gómez et al. [58] and Mitseva et al. [54].
▶ R3: Use Standardized and Accessible Metrics. Re-
searchers should carefully consider the use of metrics and
rely on both common (flawed) metrics for comparability as
well as recent time-series aware metrics (cf. Sec. 5.2) that
attempt to mitigate known flaws. In that regard, meta-studies
on how metrics fare against each other, as done in Sec. 5.3
and by Huet et al. [32], help understand the expressiveness
of evaluations. Ideally, a wide variety of different metrics
is used to disseminate the performance of newly proposed
IIDS, which would also facilitate comparisons in the future.
Especially with the rise of new metrics and to standardize
the evaluation process, researchers should be equipped with
adequate tooling to calculate these metrics easily. Our evalua-
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tion tool used in Sec. 5.3 and published along this paper will
greatly help in that regard. To facilitate a sensible choice of
metrics and ensure comparability of related IIDS approaches,
dataset creators should explicitly define standard evaluation
metrics for their datasets, as has been done, e.g., for the HAI
dataset [65]. First, fixing metrics a priori ensures the neu-
trality of evaluations and reduces potential biases in their
selection by researchers. More importantly, however, dataset
developers know the underlying ICS best, e.g., w.r.t. the im-
pact of false positives or the likelihood of attacks. Often they
are the only people with the necessary expertise to identify
the demands of a cybersecurity solution and, thus, the most
valuable metrics to benchmark an IIDSs in their scenario.
▶ R4: Facilitate Comparability With Public Artifacts. Re-
searchers should make the artifacts publicly available [18],
especially IIDS implementations, underlying their work to fa-
cilitate comparability of IIDS research. If artifacts cannot be
provided, e.g., due to licensing issues or private datasets, we
recommend that researchers at least release the precise IIDS
outputs, e.g., a list with all packets classified as malicious
by an IIDS. These outputs, together with the (anonymized)
labels of the dataset, suffice to calculate new metrics retrospec-
tively, thus gaining new insights into the IIDS’s performance
even after publication. Furthermore, publishing an IIDS’s
alerts when evaluated on a public dataset is also valuable if
published alongside its implementation, as getting research
code to run and produce the same results independently is
often hard work (e.g., due to lacking documentation), es-
pecially some years down the road. Such published labels
directly avoid the current lock-in to metrics during the time
of publication, thus greatly enhancing the comparability of
IIDS research. This freedom is especially crucial in an early
stages of IIDS research since it is unknown which metrics and
evaluation methodologies will eventually gain acceptance.
▶ R5: Strive for Continuous Feedback Loops. All stake-
holders should strive for coherence and applicability of IIDS
research. Researchers should avoid proposing isolated IIDSs
without proving their necessity and bridge the gaps between
related branches for greater coherence [74]. At the same time,
meta-surveys that critically review the state-of-the-art have to
provide directions regarding which approaches work well in
given settings, which datasets and metrics are suitable, and
which approaches should IIDSs should compare to. Lastly,
a continuous exchange between all stakeholders should be
established [57], e.g., in the form of public talks, workshops,
or the dissemination of scientific publications. Only then can
industrial operators stay informed about recent advancements
and likewise keep dataset creators updated to ensure overall
research strives for practical applicability. As an initial step
in that direction, we provide the artifacts of our broad SMS,
which can serve as the foundation for future surveys on more
specific topics, such as in-depth analyses of the proposed de-
tection methodologies or benefits and drawbacks of the wide
variety of (newly proposed) evaluation metrics.

▶ R6: Think Beyond Alerting. Researchers should extend
their focus beyond optimal attack detection coverage and the
required actions after IIDS alerts. Such actions may include
steps to understand the alert [18, 64], localize the attacker [4],
mitigate an attack’s damage potential [67], recover the sys-
tem to a safe state [71], and lastly, perform forensics to learn
for the future [37]. Given this chain of tasks operators have
to execute, which may include temporal interruptions of the
process, it may also be crucial for researchers to consider
the costs of (false) alarms emitted by their solutions. While
research on follow-up procedure of IIDS alerts is currently
critically underrepresented in the literature, this is partially
caused by the secrecy of industrial operators. The sharing of
detailed information about the operation of real-world ICSs
allows researchers to propose valuable and actionable im-
provements to current processes. Moreover, this information
also allows researchers to design suitable evaluation method-
ologies to evaluate the performance of the processes following
an alarm. Overall, IIDS should thus no longer be considered
as an isolated system, but the step from detection to (incident)
response should be considered a tightly interlocked process.

7 Conclusion

The ongoing digitization of industries and increasing expo-
sure of ICS to the Internet are accompanied by a rise in cy-
berattacks. Consequently, the new research field of industrial
intrusion detection, promising to provide an easily deployable
solution to uncover even sophisticated attacks, gained traction.
In 2021 alone, 130 new detection approaches were proposed.

This SoK presents the first systematic attempt to shed
light on this fast-growing research field and how different
approaches are evaluated. Our thorough analysis of 609 pub-
lications reveals the tremendous efforts invested by the com-
munity to protect industrial systems. However, when it comes
to evaluating detection approaches, we uncover widespread
issues w.r.t. dataset diversity, the ambiguity of metrics, and
missed opportunities for comparability, hampering the overall
progress of this quickly growing research field. Based on
our systematic analysis, we formulate actionable recommen-
dations to overcome these issues and thus bring the entire
research domain forward to sustainably and significantly im-
prove the security of (real-world) industrial deployments.
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A Systematic Literature Review

To find relevant literature proposing IIDSs with the help of
various search engines, we derived a search string during the
design of the SMS (cf. Sec. 3). As depicted in Fig. 1, the
search string combines collections of keywords for the phrases
industrial and detection. After validating the outcome of
several search strings and keywords against known literature
of that research landscape, we derived the following search
string utilized in the SMS:

(“Industrial Control Systems” OR “Process Control Systems”
OR “Supervisory Control and Data Acquisition” OR

“PCS” OR “ICS” OR “SCADA”)
AND

(“Attack Detection” OR "Anomaly Detection” OR “Intrusion
Detection”)

The final search string was applied to the combination of
titles, abstracts, and keyword of all publications. Note that
search engines do not care about capitalization.

B Overview on Utilized Metrics

Detection performance metrics quantify the capabilities of an
IIDS, i.e., its ability to differentiate benign from malicious
behavior. Thus, such metrics are essential to achieve objec-
tive comparisons among publications in research. Aside from
subjective textual descriptions, we found a large variety of
different metrics and flavors throughout our SMS, ranging
from well-defined and widely adopted ones to novel propos-
als. To facilitate a systematic overview, we have derived a
taxonomy in Sec. 5.1. In the following, we now provide ad-
ditional details about the most important metrics, covering
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well-established point-based metrics (Sec. B.1) and promising
time series-aware metrics (Sec. B.2). Please refer to Tab. 3
for synonyms by which these metrics are also known.

B.1 Point-based Metrics

The “traditional” way to evaluate IIDSs is to utilize a bench-
marking dataset which includes a label for each entry in the
dataset, stating whether this entry is benign or malicious, i.e.,
it corresponds to a (specific) cyberattack. Note that multi-
class IIDSs and corresponding metrics also exist, e.g., IIDSs
that precisely identify and attribute each conducted cyberat-
tack type. However, for the sake of simplicity, we only refer
to binary (malicious and benign) metrics in the following.

Given the labels of a dataset and the outputs/alerts of an
IIDS, one can compare them point-to-point to estimate in how
many instances the output is correct (T) and how often it is
false (F), i.e., deviating from the expected label. Various met-
rics then derive performance scores with different meanings,
usually normalization in the interval of [0,1]. For a detailed
discussion on each metric, please refer to [8, 61].

B.1.1 Confusion Matrix

Beginning with the dataset’s labels and the IIDS’s alarms, four
different outcomes are possible: First, true negatives (TN) are
all instances where the dataset label is benign, and the IIDS
has not raised an alarm. Likewise, true positives (TP) corre-
spond to those attack instances within the dataset that are cor-
rectly identified as attacks. In contrast, false negatives (FN)
are attack instances that are incorrectly not detected by the
IIDS. Lastly, false positives (FP) are false alarms triggered
even though no attack has occurred.

Counting all of these four possible outcomes across a
dataset yields the confusion matrix, laying the foundation
for many point-based metrics introduced in the following.

B.1.2 Recall / True Positive Rate (TPR)

This metric states how many attacks of the dataset are actually
detected by an IIDS. Naturally, an IIDS has to detect as many
attack instances of a dataset as possible.

T P
T P+FN

B.1.3 Miss Rate / False Negative Rate (FNR)

In contrast to TPR, FNR measures the fraction of missed
attacks. Hence, a lower score is preferred.

FN
T P+FN

B.1.4 Specificity / True Negative Rate (TNR)

Since cyberattacks are rare, it is crucial that an IIDS does not
trigger alarms during benign system behavior. Thus, TNR
defines the fraction of correctly classified benign behavior. A
high TNR score is preferential.

T N
T N +FP

B.1.5 Fall-out / False Positive Rate (FPR)

Similar to TNR, IIDSs should only trigger an alarm in case of
actual attacks. Therefore, FPR calculates the fraction of false
alarms across the dataset, which has to be as low as possible.

FP
FP+T N

B.1.6 Precision / Positive Prediction Value (PPV)

When focusing on the alarms triggered by an IIDS, PPV
defines the fraction of correctly detected attacks among all
existing attacks in the dataset.

T P
T P+FP

B.1.7 Negative Prediction Value (NPV)

Contradicting the PPV metric, NPV counts the number of
correctly classified negative predictions among all attack free
parts in the dataset.

T N
T N +FN

B.1.8 Accuracy

The first metric capturing the overall number of correct clas-
sifications is accuracy. The higher the accuracy score is, the
more reliable the predictions of the IIDS are.

T P+T N
T P+T N +FP+FN

B.1.9 F1

For intrusion detection, there is an inherent tradeoff between
achieving a maximal number of detected attacks (TPR) while
reducing false positives (expressed by PPV as correct alarms).
The F1 score combines both design goals into a single metric
through the harmonic mean. Note that F scores with different
TPR and PPV weightings exist, as discussed in Sec. 5.3.

2T P
2T P+FP+FN

22



Submitted to the Journal of Systems Research (JSys) 2023

B.1.10 Receiver operating Characteristics Curve (RoC)

IIDSs and their detection models may require fine-tuning
hyperparameters, e.g., to determine a threshold upon which
an alert is triggered. Since the previous metrics evaluate
IIDSs for a fixed setting, it is impossible to describe their
behavior across the parameter range.

The RoC curve is a method to visualize multiple IIDS
configurations and their performance by plotting FPR on the
x-axis and TPR on the y-axis. Since each entry represents
a tradeoff for a specific IIDS model, the RoC curve enables
developers to choose a suitable configuration visually. For a
detailed discussion on the appropriate usage of RoC curves,
please refer to Arp et al. [8].

B.1.11 Area under Curve (AuC)

The Area under (the RoC) Curve abstracts from a visual
performance indicator and defines a quantitative metric ex-
pressing IIDS performance for a variety of configurations by
integrating the enclosed area. If only a single configuration is
measured with the RoC visualization, AuC can be simplified
into to the following formula [61].

1− FPR + FNR
2

B.2 Time Series-aware Metrics
Besides point-to-point comparisons between dataset labels
and IIDS alarms, recent metrics strive towards time series-
awareness [24, 33–35, 38, 44, 69]. They usually define attacks
and alarms as a continuous time range with start and end
points. Alarm intervals should be largely overlapping, i.e., an
alarm is expected immediately after the start of an attack and
should stop in time after the attack phase.

B.2.1 Detected Scenarios

In contrast to point-based metrics and since time series-aware
attacks are considered a single instance, it suffices to be indi-
cated by an IIDS with a single short alarm. Unlike point-based

metrics, attacks are considered a single instance in the time
series-aware domain, and thus it is sufficient for an IIDS to
trigger a single alarm. Therefore, detected scenarios enumer-
ates the number of independent attack instances detected by
at least a single alarm.

B.2.2 Detection Delay

Nonetheless, early detection is still preferential in time-critical
scenarios as this increases the time to respond to an attack.
Thus, for all attacks in the dataset, the detection delay aggre-
gates the time intervals between the start of an attack and the
time of the first detection.

B.2.3 Enhanced Time-aware Precision and Recall

Recently in 2022, Hwang et al. [34] proposed their (enhanced)
time series-aware variants for classical point-based metrics,
i.e., precision, recall, and F1, addressing known issues when
adopting point-based metrics to time series-aware evaluations.
For instance, while point-based recall weights long attacks
as more important, the new time series-aware recall variant
(eTaR) treats all consecutive attacks equally. To replace preci-
sion, eTaP implements diminishing returns for long-lasting
alarms. Lastly, the new proposed eTaF score is defined in the
same way as the regular F score (cf. Sec. B.1.9) but leverages
the substitute eTaP and eTaR metrics.

B.2.4 Affiliation Metrics

A similar approach was taken by Huet et al. [32] with their
affiliation metrics. Again they consider alerts and the ground
truth as continuous time-ranges instead of independent points.
In the first step, their approach associates each alert to the
closest ground truth, called local affiliation, and then calcu-
lates the individual distances for precision and recall. What
makes their approach interesting is, that the final result is nor-
malized in comparison to an IIDS that emits alerts at random.
As also done for eTaF1, the time-aware affiliation precision
and recall variants are averaged into the affiliation F score.
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